Residual-stress characterization by use of elastic-wave-scattering measurements

PDF Version Also Available for Download.

Description

The presence of a state of residual stress in a material can impair its structural quality by adversely affecting its elastic limit, yield point, etc. In this paper we derive the appropriate equations for the use of elastic waves to probe an inhomogeneous state of residual stress. As in other treatments of ultrasonic residual stress measurement, we start with nonlinear effects and require knowledge of third order elastic constants. Unlike other treatments, which relate these nonlinear effects to small relative changes in propagation speed of an incident wave, we identify these effects as a source of scattering of the incident ... continued below

Physical Description

Pages: 19

Creation Information

Domany, E. & Gubernatis, J.E. January 1, 1982.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The presence of a state of residual stress in a material can impair its structural quality by adversely affecting its elastic limit, yield point, etc. In this paper we derive the appropriate equations for the use of elastic waves to probe an inhomogeneous state of residual stress. As in other treatments of ultrasonic residual stress measurement, we start with nonlinear effects and require knowledge of third order elastic constants. Unlike other treatments, which relate these nonlinear effects to small relative changes in propagation speed of an incident wave, we identify these effects as a source of scattering of the incident wave. Like other treatments, one difficulty with ultrasonic residual stress measurements is separating small residual stress effects from other effects. However, we will give an example of at least one class of problems where this separation appears possible using our approach. It is demonstrated that elastic wave propagation in the presence of non-uniform residual stress can be viewed as a scattering problem. One should note that in various limits, such as that of short wavelength, this scattering problem (as well as any other) can be treated by optical methods (ray bendings, diffraction, etc.). The special features of a scattering situation are expected to be important for smaller wavelengths, and therefore their experimental observability is questionable, and can be resolved only by careful and thorough measurements.

Physical Description

Pages: 19

Notes

NTIS, PC A02/MF A01.

Source

  • Review of progress in quantitative NDE, San Diego, CA, USA, 1 Aug 1982

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE83000647
  • Report No.: LA-UR-82-2664
  • Report No.: CONF-820820-5
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 6855193
  • Archival Resource Key: ark:/67531/metadc1186488

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1982

Added to The UNT Digital Library

  • July 2, 2018, 10:52 p.m.

Description Last Updated

  • Oct. 19, 2018, 1:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Domany, E. & Gubernatis, J.E. Residual-stress characterization by use of elastic-wave-scattering measurements, article, January 1, 1982; United States. (https://digital.library.unt.edu/ark:/67531/metadc1186488/: accessed March 20, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.