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ABSTRACT 

The i n v e r s e conduction problem a r i s e s when experimental 
measurements are taken i s the interior of a body, and i t i s 
desired to calculate temperature and heat flux values on the 
surface. The problem i s shown to be i l l -posed , as the solu
tion exhibits unstable dependence on the given data functions. 
A special solut ion procedure i s developed for the one-
dimensional case which replaces the heat conduction equation 
v i th an approximating hyperbolic equation. If viewed from a 
new perspective, where the ro les of the spatial and time var i 
ables are interchanged, then ;»n i n i t i a l value problem for the 
damped wave equation i s obtained. Since t h i s formulation i s 
well-posed, both analytic and numerical solut ion procedures 
are readily avai lable . Sample calculations confirm that this 
approach produces consistent , re l iable re su l t s for both l inear 
and nonlinear problems. 

x i 



ANALYSIS AND SOLUTION OF THE ILL-POSED 
INVERSE HEAT CONDUCTION PBOBLEM 

C. F. Weber 

I. INTRODUCTION 

The classical direct problem in heat conduction is to determine the 

interior teaperatnre distribntion of a body frost data given on its sur

face. However, applications arise in which data it not available over 

the entire snrface bnt is given instead at interior points. In snch 

cases, it is necessary to calculate snrface temperatures rather than 

use then to calculate interior values. This constitutes an inverse 

problem. 

Consider, for exaaple, the illustration in Fig. 1. Boundary condi

tions given at x' and x " result in a direct problem for x' s x s x'" 

and inverse problems in the regions where 0 s x s x" or x " £ x £ L. 

If x' and x" coincide, then two independent conditions (e.g., tempera

ture and heat flux) must be specified, and two inverse problems exist. 

If x' and x" are different points, then the direct problem is solved 

first and its solution used to obtain boundary conditions for each 

inverse problem. 

Analysis of the direct problem has progressed for almost two centu

ries, resulting in s wealth of knowledge concerning the behavior of both 

exact »nd numerical solution procedures. Because this problem is well-

posed, solution computations sre straightforward, even for nonlinear 

problems and irregular geometries. Unfortunately, the same is not true 

for the inverse problem. The ill-posed nature of this problem not only 

1 
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x = 0 x = x' x = x " x = L 
Fig. 1. Diagraa of Direct and Inverse Problem Regions 
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defies easy solution, bat serves to discourage the type of a&ssive stsdy 

that has accompanied the direct problea. 

Present aethods of solving the inverse conduction problea iaclade 

exaet, integral, and discrete nanerical techaiqnes. Exact and integral 

aethods (1,21 have contributed significantly to the theory and under

standing of the problea, bat >re nsnally restricted to applications vith 

constant physical properties. Discrete approziaation by finite differ

ences [3,4,51 or finite eleaeats [61 are applicable to nonlinear prob-

leas, but the success of these aethods is still liaited in aany cases by 

the inherent ill-posedness of the problea. Although good results have 

been obtained ir soae situations, discrete aethods are generally not 

capable of handling aore complicated problems without soae corrective 

action. 

As a result, various improvements in conventional discrete aethods 

have been proposed. Garifo, Schrock, and Spedicato [4] deacribe a pro

cedure to approxiaate the actual solution by solving a sequence of 

veil-posed problems. Good results are obtained for soae cases, although 

the authors note certain situations where the method fails coapletely. 

Favorable results have also been achieved by Beck [3] using nonlinear 

estiaation. In this method, accurate surface flux values are determined 

by a least squares procedure which calculates a correction froa previ

ously coaputed (but possibly inaccurate) temperature values. This is 

probably the most successful and consistent approach currently in use. 

An alternate procedure is described in this article which uses a 

technique siailar to the guasi-inversion principle described by Tir.honov 

and Arsenin [7), In this approach, the inverse problea is closely 

approximated by a well-posed problea whose solution is easily obtained. 
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In addition, a great wealth of knowledge exists concerning the behavior 

of this new problea and stable, high order numerical methods are already 

available. 

To better understand the difficulties inherent in the inverse prob

lea, a detailed analysis of its ill-posed nature is carried out in Sect. 

II. The general solution procedure is then described in Sect. III. 

Sect. IV presents three saaple problems, representing slab and radial 

geoaetries, as well as constant and temperature dependent physical prop

erties. In Sect. V, the solution technique is applied to the sample 

problems, and the resulting approximations are discretized to obtain 

numerical solutions. These numerical results are reported in Sect. VI 

and coapared to the known exact solutions. Finally, Sect. VII provides 

a summary and conclusions. 

II. ILL-POSEDNESS OF THE INVERSE HEAT CONDUCTION PROBLEM 

The concept of a well-posed problea* was first introduced by 

J, Hadamard in 1923, and has been developed significantly since then. 

There is a general consensus that a well-posed problem is one for which 

a solution exists, is unique, and depends continuously on givenrdats. 

This last condition, termed stability, ensures that small changes in 

data will produce small changes in the solution. 

The inverse conduction problem has been considered ill-posed by 

several authors [3,4]. To undertake a further analysis, consider the 

heat conduction equation in sla> geometry with constant physical proper

ties, 

•The information in this paragraph is adapted largely from both the 
trabslation editor's preface and the author's preface to the English 
edition [7J. 
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jj - «£? = Q(x,t). 0 < x < L. 0 < t < tf. (la) 

where a = k/pCp is the thermal diffnsivity. Referring to Fig. 1, an 

inverse problem arises when auxiliary conditions occur in the form 

T(x~.t) = f(t) (lb) 

fjx'.t) = g(t) (lc) 
T(x.O) = T.(x). (Id) 

For the special case where x' = z~ = 0 and Q(x,t) = 0, Burggraf [1] 

has shown that if f and g are infinitely differentiable, then the solu

tion to Eqs. (la) - (lc) is given by 

n=0 n=0 

This result is also obtained by Widder [8], who formally proves existence 

of this solution by showing that both series In Eq. (2) converge uni

formly for bounded t, provided that f and g satisfy 

!*(•)# * I -<2n)l . I in) .A _(2n)l . , „ 
|f* (t)| s irLn . *»<* |S (t)| s V\n , n = 0.1,2..... 

for som- constants M and P. Uniqueness of the solution (2) follows 

quickly sin«.c any two solutions must both be equal to the right-hand 

side of Eq. (2), and therefore to each other. 

In many applications, the initial temperature T 0 is determined from 

a steady-state problem using f(0) and g(0) as *nput. For other situ

ations, T 0 may be determined separately. In any case, if the initial 

condition T 0 satisfies the compatibility condition 

n°o n ao 

then the solution at any point depends continuously on the initial 
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temperature. However, even if Eq. (3) does hold, it will be shown that 

F.q. (2) does not deperd continuously on f and g. 

In examining the stability of the solution (2), it is necessary to 

•easure the differences between two sets of data and the differences 

between corresponding solutions. For this ptrprie, consider the 

maximum-norms for both data and solution. 

| f | =£11* ! f ( t ) l - >«> =n<t<* , * ( t ) l - , T l -OsiuL lT(x,t)l. (4) o s t s t f osistf ost*t 

Now, let Tjd.t) and T2(x»t) be solutions of Eq. (2) resulting from the 

temperature and flux data f x(t), g x(t) and f»(t), g,(t), respectively. 

A necessary condition Tor stability is that the norm |T X - T,I can be 

made arbitrarily small by choosing f x, f-, g 1 # and g 2 so that the norms 

\ i x - f,l and Igx - g2l are sufficiently small. Thii is generally 

impossible, as can be seen by the following example. 

Let gi = "» = 0 and let f x be an arbitrary analytic function. 

For a second data function f,(t) = f,(t) + \ cos P*t, p* > 0, the 
P 

"error term" — cos p*t can be made arbitrarilv small by picking p* large P 
enough. This forces i x and f 2 to be arbitrarily "close," as measured by 

the norm of Eq. (4), since 

'*• - f'" " o""«J \ " »*« I - \-
However, as detailed in th<; Appendix, the corresponding solutions T 2 and 

Tj may not be close at all, since 

it, - r.l *J | t fi£ »4° | • \ | ».> £ ... £ | . (5) 
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Because the term on the far right is unbounded in B, a small data norm 

will never result in a small solution norm; hence, the solution (2) is 

unstable. 

III. GENERAL SOLUTION PROCEDURE 

Because of the unrtable solution dependence on boundary data, the 

approach in Sect. II is totally inadequate for most practical problems. 

A truly satisfactory solution must remain stable even if data is given 

approximately. 

The alternative procedure presented here slightly alters system (1) 

so as to produce a well-posed system. This new system will yield a 

solution whicL is a good approximation to the desired solution of the 

ill-posed problem. This procedure (called quasi-inversion) resembles 

the use of artificial viscosity terms to smooth out shock discontinu

ities in fluid mechanics problems [9]. The technique is also mentioned 

by Tikhonov and Arsenin [7], who briefly discuss the approach for a 

general nonlinear ill-posed system. 

Following this approach, consider the system 

d*T 3T d*T 
rj^i + fx - *j$ = o o < x < L, o < t < t £. (6.) 

T(x,0) = T 0(x) (6b) 

T(0,t) = f(t) (6c) 

7^(0,1) = g(t) (6d) 
ox 

T(x,tf) = T4(x), (6e) 
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where 7 is t non-negative constant and T, is an arbitrary function. If 

y is small, then Eq. (6a) closely resembles Eq. (la). In fact. Horse 

and Feshbach [10] suggest this (the "telegraph" equation) as a better 

model of heat conduction, since it does not permit instantaneous trans

fer of heat as Eq. (la) does. For y > 0, Eq. (6a) is hyperbolic and has 

a solution resembling traveling waves. The characteristics of this 

equation are lines with slopes ± ffla, as depicted in Fig. 2. Because 

the domain of dependence for the solution at any point is bounded by the 

characteristics through that point, the additional boundary condition 

Eq. (6e) affects only the shaded region of Fig. 2. For small enough y, 

the size of this region becomes insignificant; hence, the effects of 

Eq. (6e) can largely be eliminated.* Thus, for small y, system (6) 

closely approximates the actual inverse system (1). 

In his development of nonlinear estimation. Beck [3] notes that the 

surface heat flux at time t depends on interior temperature values at 

times both before and after t. Although this may appear to violate 

physical intuition, it is a fundamental concept that will allow an 

efficient, stable solution of system (8). 

The hyperbolic system (6) involves only one space variable and is 

to be solved in the rectangle 0 < x < L, 0 < t < tf. If the roles of 

the independent variables are reversed, i.e., if x is regarded as the 

"time" variable and t as the "space" variable, then system (6) is iden

tical to the system 

*If the final time temperature distribution is known, it should 
certainly be used forT 1(x). In this case, computations in the shaded 
region of Fig. 2 would produce legitimate temperature values. 
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t=0-
x=0 x=L 

Fig. 2. Characteristic Curve* of Modified Systen 



10 

u(5.0) = ff«) (7b) 

|f(?.0) = g(5) (7c) 

n(O.r) = T.(T) (7d) 

u(tf.t) = Tx{x). (7e) 

where ( is considered the space variable and T the time variable. Sys

tem (7) is a conventional initial-boundary valne problem for a second 

order hyperbolic equation with constant coefficients. Tychonov aud 

Samarski [11, pp. 107-116] use the Riemann function to derive a closed 

form solution for this system which is analogous to the D'Alembert 

solution for the undamped wave equation. The qualities of existence, 

uniqueness, and continuous dependence on data follow easily from this 

solution; hence, system (7) represents a well-posed problem. 

In summary, the inverse heat conduction problem (1) can be closely 

approximated by the hyperbolic system (6). If viewed as in system (7), 

this hyperbolic system is well-posed; hence, the unstable nature 

and possible data incompatibility are completely overcome. Another 

advantage of this procedure, to be developed later, is that the numer

ical solution of the approximating hyperbolic system is efficient 

and accurate, even for nonlinear problems. 

IV. SAMPLE PROBLEMS 

To further examine this approach, three test problems are consid

ered. All are similar in form to system (1) and have known analytic 

solutions. 
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Problem I. Slab geometry, constant properties. This example is 

used to demonstrate the accuracy that can be obtained for linear prob

lems. For simplicity, the sp.iial variable is restricted to the inter

val 0 £ x s 1 and the physical constants k,a are nnity. Bonndary condi

tions model an insulated bonndary at x = 0 and a specified temperature 

at x = x". Because these conditions are not given at the same point, 

this problem is well-posed in the region 0 < x < x"; the formulation 

in the region x " < x < 1 constitutes an inverse problem. To simplify 

notation, let u = u(x,t) denote the well-posed solution (0 < x < x " ) , 

so that T(x,t) represents only the inverse solution (x" < x < 1). Botr 

u and T must satisfy the heat conduction equation (la) and the initial 

condition (Id) in their respective regions; each must also satisfy the 

boundary condition (lb). The equation 

K <»•« • • 
is the second boundary condition for the well-posed solution u. The 

second condition [cf. Eq. (lc)] for T is obtained by applying continuity 

of heat flux (conservation of energy) at x"; this leads to 

f^ (x",t) -J* (x"t), 0 < t < tf. (8) 

Upon solution of the well-posed problem, Eq. (8) constitutes known 

boundary data for the ill-posed problem. 

An exact solution should var> significantly in both variables, in 

order to thoroughly test the solution method. It should also have a 

simple form, to facilitate the analysis. Selecting the exact solution 

in both regions to be 

T(x,t) • cos x e P* (9) 



12 

and subst i tut ing into Eqs. ( l a ) , ( l b ) , and ( Id ) , the functions Q, f, and 

T c aire determined to be 

Q(x,t) = (1 + p) cos x e P t (10) 

T,(x) = cos x (11) 

f(t) = cos x " e p t . (12) 

A numerical solution is obtained using Eqs. (10)-(12) as data in both 

the well-posed and inverse regions. This solution is then compared with 

Eq. (9) for validation. 

Problem II. Slab geometry, highly nonlinear. This example, repre

senting heat conduction with a nonlinear source term, is adapted from 

Ref. 4. Eq. (la) is replaced by 

J^ - ~ = (1 + T»)(l - 2T), 0 < x < 1, 0 < t < tf, (13) 

which i s solved using the auxiliary conditions ( lb ) - ( ld ) with x " - 0 , 

f ( t ) = tan t , g ( t ) = 1 + tan*t, and T 0 (x) - tan x. A numerical solution 

i s obtained and then compared with the exact solution 

T(x , t ) = tan(x + t ) . (14) 

Problem III. Radial geometry, nonlinear, inhomogeneous material. 

This problem if. similar to that encountered in evaluating the heat 

transfer properties of nuclear reactor fuel rods. A cylinder composed 

of two materials arranged in concentric regions has the temperature 

specified at the interface. For simplicity, the radii of the interface 

and outer boundary are specified as r * Jj and r • 1, respectively. 

Assuming he it conduction only in the radial dimension, the temperature 

in each region satisfies the equation 
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The initial temperature and the irk,"--.1 temperature at r = % are also 

specified, corresponding to conditions (lb) and (Id). Since the prob

lem is independent of azimuthal angle, the boundary condition 

3T 
9r ^ - 0 (16) 

is imposed, which, as in Problem I, creates a well-posed problem in the 

inner region. Upon solution in this region, the continuity of heat flux 

provides the following interface condition: 

[»«>5]r-i*-[»«»R]«-r. «»> 
which is the second boundary condition for the outer (ill-posed) region. 

This corresponds to Eq. (8) in Problem I, and can easily be put in the 

form of Eq. (lc). 

Exact solutions and physical coefficients are chosen to be of the 

form 

T C . . I I . i " - 5 " ' / ' " H . (U) 
( ncos r e r > h 

. , _ . j v ( l + T ) r < h . oC m \h (20 - T) t>h 
k ( T ) j 1 + T r > H ' P C P ( T ) -\h. (10 - T) c <h ' 

Analogous to the development of Problem I, these representations are 

substituted into Eqs. (15), (Id), and (lb) to obtain the heat source and 

initial 'eaperatures for each region as well as the interface tempera

ture f(t). As described in both previous examples, this "physical data" 

is used to compute a numerical solution, which is then compared with 

Eq. (18) for verification. 
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V. NUMERICAL APPROXIMATIONS 

When data i s given at two d i s t inc t spatial points, as in Problems I 

and HI, temperatures in the well-posed region are detsrsised at a l l 

t ixe steps before the solution in the i l l -posed region i s begun. This 

re su l t s in an exp l i c i t representation for the interface f lux , which i s 

necessary for the solution of the inverse problem. To obtain a discrete 

approximation in the well-posed region, any numerical method for para

bo l i c equations can be used. The Crank-Nicolson implicit scheme i s used 

for both Problems I and III in th i s a r t i c l e , giving exce l lent r e s u l t s . 

Deta i l s of the method can be found in standard texts on numerical 

analys is ;* hence, i t w i l l not be discussed further in th i s study. 

In order to solve the inverse problems ( i l l -posed regions of Prob

lems I a nd HI, entire slab for Problem II) by the method presented in 

Sect. I l l , i t i s necessary to add the term r(d*T/dt*) to the left-hand 

sides of Eqs. ( l a ) , (13 ) , and ( l * ? . The result ing di f ferent ia l equa

tions can then be discret ized by any conventional method for hyperbolic 

equations. Consistent with the discussion accompanying system ( 7 ) , the 

numerical solution i s obtained for all time steps at a given spatial 

node before any temperature values are computed at the next spatial 

node. This i s in contrast to solution methods for the direct problem, 

which' generally solve for all spatial nodes at a given time step before 

computing any values at the next time step. 

At an i l l u s t r a t i o n of the solution procedures used for a l l three 

inverse piobi ems, consider the modified equation for the i l l -posed 

region of Problem I, 

•See, for example, Ames [12] or Forsythe and /asow [13 ] , 
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^ + f? " IxT - ««•«> * " < * « ! . 0 < t < tf. (19) 
Introducing the discrete aesh (x.,t ) and using the custoaary notation 

T(x.,t ) * T. .. Eq. (19) is discretized using central differences to 

approximate all derivatives. This results in the following second-

order, explicit difference equation: 

(At)* ( T i , k + l " 2 T i , k + T i . k - 1 ) + 2At ( T i , k + l " ^ . k - l * 

" lip (TM.k ~ 2 T i . k

 + ViV + * W 
+ 0[(Ax)» + (At)*]. (20) 

Eq. (20) is tri-level, since temperature values froa three different 

spatial positions appear. It is explicit because only one tenperature 

value at the unknown spatial position x is involved. Courant, 

Fredricks, aiu* Levy [14] have shown that this difference equation is 

convergent (numerically stable and consistent) to tlie differential 

equation (19) provided the inequality 

is satisfied. In practice, this condition poses virtually no restric

tion at all, since Y aust be very snail from previous considerations. 

The discretization of Problems II and III follows closely the 

previous discussion for Problem I. As in Eq. (20), the difference equa

tions for these probleas are also second-order explicit and tri-level. 

For Problem II, solution is restricted to the region where x + t < n/2 

since the exact solution (14) becoaes infinite if this condition is vio

lated. Were the probleas linear, numerical stability would occur when 

Eq. (21) holds for Problem II and when 



cm**^.?*. 
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* &£ s 1 (22) 
k (At)* * *"' 

holds for Problem III [14]. Although stability conditions for the / 

actual nonlinear problems are not known, Eqs. (21) nad (22) were easily 

satisfied (siace y aust be very saall) aad ao coapatatioas showed any { 

sign of instability. 
VI. COMPUTATION RESULTS 

Coaputer prograas have been written iapleatenting the aaaerical 

scheaes of the previous section for each of the three saaple probleas. 

The exact solutions were also coaputed and coapared with the difference 

solutions. Results imported here for all three probleas were calculated 

using a value of y = 0.01, although all runs with y < 0.01 gave 

virtually identical results. 

The calculated results froa all three saaple probleas showed good 

accuracy when coapared with the exact solutions. As depicted in 

Table 1, the spatial profiles of discrete teaperatures for Problem III 

showed slightly increasing error aoving away froa the node where data 

was given. This error, due to discretization and roundoff, is to be 

expected. It does not provoke unstable solution behavior, as even the 

temperature values near the outer surface retain considerable accuracy. 

To illustrate the tiae behavior of the solutions. Tables 2-6 con-

pars the surface teaperatures and beat fluxes with the exact values for 

each problea. At each tiae step, the surface heat flux was coaputed 

from the tenperature distribution using the following second-order, 

backward difference approximation for the temperature derivative: 

( S ) l f f c • 2Al [3Ti,k - 4Ti-l,k + Ti-2.k] + ° [<*>']' < M> 
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Tabla 1. Problem XXI Radial Profila Comparison of Calculated and Exaot 
b Toaparaturaa Solution at Salaotad Tiaia Valuaa 

Tiaa JliiiiOilBfj-
0.50 0.53 0.(0 C.6S 0.70 0.73 0.80 0.85 0.90 0.95 1.00 

1.5 

3.0 

4.S 

1.5877 1.5422 1.4928 1.439? 1.3830 1.3i28 1.2593 1.1927 1.1231 1.0306 0.9755 
1.5877 1.5424 1.4932 1.4403 1.3838 1.3238 1.2605 1.1941 1.1246 1.0524 0.9773 

3.3612 3.2646 3.1599 3,0473 2.9270 2.7994 2.6(48 2.5293 2.3798 2.2221 2.0(28 
3.3612 3.2652 3.1611 3.0491 2.9294 2.8024 2.6684 2.5278 2.9808 2.2279 2.0694 

7.1156 6.9109 6.6889 6.4502 6.1953 5.9248 5.6394 5.3398 5.0267 4.7008 4.3(29 
7.1156 6.9124 6.(920 (.4548 (.2013 5.9327 5.(490 5.3313 5.0401 4.71(4 4.9809 

Top line is calculated; bottom lino is exact aolution. 

Uses parameter value B - 0.5. 



Table 2. Problem I Surface Calculation* 

Calculated Exact Relative Calculated Exaot Relative 
b b 

Tiae Teaperature Teaperature Error Flux Flux Error 
1 

0.0 0.5403 0.5403 0.0000 0.8422 0.8415 -0.0008 

o.s 0.4207 0.4208 0.0001 0.6357 0.6SS3 -0.0003 

1.0 0.3277 0.3277 0.0001 0.5106 0.5104 -0.0005 

l . S 0.2552 0.2552 0.0001 0.3<77 0.3975 -0.0005 

2 .0 0.1987 C.1988 0.0001 0.3097 0.3096 -0.0005 

2.5 0.1548 0.1548 0.0001 0.2412 0.2411 -0.0005 

3 .0 0.1205 0.1206 0.0001 0,1879 0.1878 -0.0005 

3,5 0.0939 0.0939 0.0001 0.1463 0.1462 -0.0005 

4 .0 0.0731 0.0731 0.0001 0.1139 0.1139 -0,0005 

4.5 0.0569 0.0369 0.0002 0.0887 0.0887 -0.0005 

usee paraaeter values B - -0,5, x" - 0.5 

Relative Error - (Exaot - C»loulated)/Exaot 



Table 3. Problem II Surface Calculations 

Calculated Exact Relative Calculated Exaot Relative 
Tiae Teaperature Teaperature Error Flux Flux Error 

0.00 1.5574 1.5574 0.0000 -3 .4 t51 -3.4253 0.0030 

O.OS 1.7523 1.7433 -0.0052 -4.0731 -4.0391 -0.0084 

0.10 1.9762 1.9648 -0.0058 -4.9037 -4.8603 -0.0089 

0.1S 2.2492 2.2345 -0.0066 -6.0482 -5 .9930 -0.0092 

0.20 2.5*15 2.5722 -0.0075 -7.6874 -7.6160 -0.0094 

0.25 3.03 57 3.0096 -0,0087 -10.148 -10.057 -0.0090 

0.30 3.6383 3.6021 -0.0100 -14.082 -13.975 -0.0076 

0.35 4.5080 4.4552 -0.0118 -20.938 -20.849 -0.0043 

0.40 5.8797 5.7979 -0.0141 -34.471 -34.615 0.0042 

0.4S 8.5735 8.2380 -0.0165 -66.990 -68.865 0.0272 

0.50 14.280 14.101 -0 ,0 i27 -178.45 -199.84 0.1071 

0.52 19,651 19.669 0.0009 -312.67 -387.88 0.1939 

0.S4 30.7159 32.4*01 0,0537 -656.75 -1054.7 0.3773 

0.56 62.088 92.616 0.3296 -1899.0 -8578.1 0.7786 

^Relative Error « (Exaot - Calculated)/Exact 



Table 4. Problem III Serface Calculations with 
Exponential Decrease in Exact Solution 

C a l c u l a t e d Exact R e l a t i v e Calculated Exact R e l a t i v e 

Time Temperature 

0 .4618 

Temperature 

0 . 4 6 1 8 

b Error Flux Flux b Error 

0 . 0 

Temperature 

0 .4618 

Temperature 

0 . 4 6 1 8 0 .0000 1.0521 1 .0512 - 0 . 0 0 0 8 

0 . 5 0 .3593 0 .3596 0 .0009 0 .7627 0 .7615 - 0 . 0 0 1 6 

1 .0 0 . 2 7 9 8 0 .2801 0 .0010 0 .5592 0 .5583 - 0 . 0 0 1 6 

1.5 0 . 2 1 7 9 0 .2181 0 .0010 0 .4144 0 .4138 - 0 . 0 0 1 6 

2 . 0 0 .1697 0 .1699 0 .0010 0 .3100 0 .3095 - 0 . 0 0 1 5 

2 . 5 0 . 1 3 2 2 0 .1323 0 .0009 0 .2336 0 .2333 - 0 . 0 0 1 4 

3 . 0 0 .1029 0 .1030 0 .0008 0 .1772 0 .1770 - 0 . 0 0 1 3 

3 . 5 0 .0802 0 .0802 0 .0007 0 .1352 0 . 1 3 5 0 - 0 . 0 0 1 2 

4 . 0 0 .0625 0 .0625 0 .0007 0 .1035 0 .1034 • 0 . 0 0 1 1 

4 . 5 0 .0486 0 .0487 0 .0006 0 .0796 0 .0795 - 0 . 0 0 1 1 

5 . 0 0 .0379 0 . 0 3 7 9 0 .0005 0 .0613 0 .0613 - 0 . 0 0 0 6 

Uses parameter values 0 = -0.5. (exponential decrease <n time) 

Relative Error - (Exact - Calculated)/Exact 



Table 5. Problem III Surface Calculations with 
Exponential Increase in Exact Solution 

Calculated Exact Relat ive Calculated Exact Relat ive 
Tine Temperature Temperature Error Flux Flux Error 

0 . 0 0.4618 0.4618 0.0000 1.052i 1.0512 -0.0008 

0 .5 0.5922 0.5929 0.0011 1.4737 1.4709 -0.0019 

1 .0 0.7601 0,7613 0.0016 2.0934 2.0883 -0.0024 

1.5 0.975C 0.9775 0.0021 3.0193 3.0105 -0.0029 

2 . 0 1.252 1.255 0 0025 4.422* 4.4084 -0.0033 

2 . 5 1.607 1.612 0.0028 6.5791 6.5553 -0.0036 

3 . 0 2.063 2.069 0.0032 9.9319 9.8924 -0.0040 

3 . 5 2.648 2,657 0.0035 15.200 15.134 -0.0043 

4 . 0 3.399 3.412 0.0038 23.551 23.443 -0.0046 

4 . 5 4.363 4.381 0.0041 36.891 36.713 -0.0049 

5 . 0 5.601 5.625 0.0043 58.336 S8.040 -0.0051 

Uses parameter values P =• 0.5, (exponential increase in time) 

Relative Error • (Exact - Calculated)/Exact 
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Table 6. Problem XX Surface Teaperature Results vita Perturbed Data 

Calcula 
1 

ted Teaoerature 
2 3 

Exact 
Teap. 

a.b Relative Error 
Tiae 

Calcula 
1 

ted Teaoerature 
2 3 

Exact 
Teap. 1 2 3 

0.00 1.5599 1.5574 1.5574 1.5574 -0.0016 0.0000 0.0000 

0.05 1.6890 1.7077 1.7523 1.7433 0.0312 0.0204 -0.0052 

0.10 1.9948 2.0170 1.9762 1.9648 -0.0153 -0.0266 -0.0058 

0.15 2.2036 2.2327 2.2492 2.2345 0.0138 0.0008 -0.0066 

0.20 2.6514 2.5955 2.5915 2.5722 -0.0308 -0.0091 -0.0075 

0.25 3.2652 3 .0447 3.0357 3.0096 -0.0849 -0.0117 -0.0087 

0.30 3.7952 3 .6707 3.6383 3 .6021 -0.0536 -0.0191 -0.0100 

0.35 4.2172 4.4563 4.5080 4.4552 0.0534 -0.0002 -0.0118 

0.40 5.8334 5.7487 5.8797 5.7979 -0.0061 0.0085 -0.0141 

0.45 8.3735 8.6286 8.3735 8.2380 -0.0164 -0.0474 -0.0165 

0.50 15.455 14.043 14.280 14.101 -0.0960 0.0041 -0.0127 

0.52 17.543 19.018 19.651 19.669 0.1081 0.0331 0.0009 

0.54 34.404 28.232 30.716 32.460 -0.0599 0.1302 0.0537 

0.56 59.598 54.682 62.088 92.616 0.3565 0.4096 0.3296 

Case 1: Both bonadsry and initial conditions subject to aaxiaua of 
3% rtndoa error 

Case 2: Flux boundary condition subject to aaxiaua of 3% rsndoa error 
Case 3: Exact boundary and initial conditions 

Relative Error • (Ex»ct - Calculated)/Exact 

L 
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As expected, the computed solution for Problem I (constant properties) 

shows better agreement than the calculations for either nonlinear prob

lem. However, even the nonlinear problem results show accuracy to 

within 2% for most values. 

Another observation concerns the decreasing accuracy of the compu-

tations for problems where the exact solutions are increasing with time. 

As shown in Table 5, Problem XXI calculations with a positive exponen

tial parameter 0 [cf. Eq. (18)) are not as accurate as those for nega

tive 0. Similarly, Table 3 indicates that the numerical results for 

Problem II are worthless in the immediate vicinity of the boundary x + t 

= n/2. However, no numerical approximation could be expected to perform 

reliably near a point where the solution becomes infinite. In the final 

analysis, this type of behavior is to be expected for problems with 

increasing solutions; hence, neither of these results is unreasonable. 

It is important to emphasize that the inverse computations of Prob

lems I and III must use the results from their well-posed regions to 

calculate interface data. This involves the approximation of Eq. (23) 

to calculate the interface flux. The approximate nature of this data 

shows little adverse effect on the inverse solution as a whole, since in 

each case the differential formulation [corresponding to system (6)] is 

well-posed and the numerical approximation is stable. This favorable 

quality of the solution methodology is further illustrated in Table 6. 

These results are obtained by solving Problem II with randomly pertnrbed 

data. To achieve this, uniformly distributed random errors between ± 3% 

were introduced at each point in the values of the functions f, g, and 

T 0. As seen in Table 6, these random errors are propagated as slight 

inaccuracies in the surface temperatures, but not as vicious oscillation 

or unbounded growth. 
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VII. SUMMARY AND CONCLUSIONS 

The analysis of the linear inverse formulation in Sect. II showed 

that the exact solution of Eq. (2) is characterized by discontinuous 

dependence on data (instability). Nevertheless, most previous solution 

procedures have utilized a direct approach, and certain of these methods 

have obtained reasonable solution results for some cases. However, the 

ill-posed nature of the problem implies that direct solution procedures 

are not capable of consistently producing reliable results. 

In order to be assured of a meaningful solution, it was useful to 

actually change the form of the problem and to alter one's perspective 

of the problem. Thus, the heat conduction operator was approximated 

by a hyperbolic equation, and was solved numerically for all time steps 

at each spatial node before progressing to the next spatial node. 

Although this violates a fundamental principle of direct heat conduction 

(namely, temperatures at a given time do not depend on temperature 

values at any future time), it was seen to be a significant factor in 

devising a solution methodology for the inverse problem. Of particular 

importance in this approach was the introduction of the coefficient 

T (cf, Eq. (6a)], which was required to be small in order to 

i) assure that the governing equation accurately described heat 
conduction, 

ii) reduce the domain of influence of the added final time condition, 
and 

iii) maintain numerical stability. 

The formulation presented in Sect. Ill utilized all of these ingredients 

to produce a well-posed probl' < that closely approximated the original 

inverse problem. 
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The new solution Method was applied to several test problems and 

the resulting solutions were in good agreement with the known exact 

solutions. The procedure was applicable to nonlinear problems and to 

problems involving several material regions. The numerical solution was 

obtained efficiently and quickly by an explicit, second order algorithm; 

solution stability was maistained with insignificant restrictions on 

stepsizes, even for randomly perturbed data. Thus, the method appears 

applicable to virtually any formulation of this inverse heat conduction 

problem. 



f 
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APPENDIX 

Taking the difference of the functions T x and T, in Eq. (5) 

results in 

- J E £{= (f) »ta - » -
n=v 

n+1 / »\2n-H 

For t = 0, x* = a, the above reduces to 

T - T - i f <-*>n
 R
4» 

and therefore 

BIX 
iTi - T,l = Oststf TjCx.t) - T, <x,t) P 

Y Lilian (A.l) 

A closed form for the ser ies on the right can be obtained as follows: 

1 u —u» i il* — iu cosh |i cos M = ~ (e + e Me + e r ) 

«•> n I-

- i £ 7 ^ h » 2 n • »-»ta] 

( l * i ) n • ( l - i ) n + ( - l ) n ( l - i ) n • ( - l ) n ( l + i ) ° 

(A.2) 
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Substituting the equalities 

1 • i = ft e " ' 4 = / 2 i . 1 - i = / 2 e " ' * = /=2l 

into Eq. (A.2) gives 

cosh u cos u • 2 § iter [«">* * M »"«»" ] 

a=0 

4n 
t 

(4n)! - £ T^r (2i) 2 B 

n=0 

Letting 0 = / T u gives 

- fe - fe - £ £ £ »4B-CO J 
J 'M / " # 

r.-O 

which i s the desired r e s u l t . 


