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CHEMICAL THERMODYNAMIC REPRESENTATION OF <U02tx>*

Terrence B. LINDEMER and Theodore M. BESMANN
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

The entire <U02+x>** data base for the dependence of the nonstoichlometry, x, on temperature and

chemical potential of oxygen (oxvgen potential) was retrieved from the literature and repre—

This data base was interpreted by least—squares analysis using equations derived from

sented.
For

the classical thermodynamic theory for the solid solution of a solute in a solvent.
hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the
data were best represented by a [U0;]-{U305] solution. For 0/U ratios abose 2 and oxygen poten-
tials below this boundary, a [U0,]-[U,0, 5] solution represented the data. The <U0,_,> data
were xepresented by a [U0,]~- [U1/3] solution. The resulting equations represent the experimental
ln(po )-1n{x) behavior and can be used in thermodynamic calculations to predict phase boundary
compoSitions consistent with the literature. Collectively, the present analysis permits, for
the first time, a mathematical representation of the behavior of the total data base.

.\’/‘

1., INTRODUCTION

The use of actinide oxides as nuclear fuels
has led to a very large data base on the non-
stoichiometry of uranium dioxide, plutonium
“ dioxide, rare—earth dioxides, and their mutual
Esolid solutions. The portion of the data base
"~ of interest here consists of the T-x-po,

. interdependence, where T is the temperature in

‘kelvin, x the deviation from stoichiometry, and

‘*Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract
 DC-AC0O5-840R21400 witlk the Martin Marietta Energy Systems, Inc.

[ 1, { }, and ( ) denote crystalline solid, solid-solution species, ‘'iquid, and

v**The symbols < >,
‘ gas respectively.



pgz the pressure of oxygen in units of MPa
divided by the standard-state oxygen pressure,
0.101 MPa. This paper and a companion paper are
the first two of a series in which these data
are represented by the chemical thermodynamics
of the mutual solid solution of elements or com-
pounds. It appears taat only Hoch and co-
workers!»2 have applied this methodology to the
actinide oxide systems.

The representation used here presumes that
the chemical activities of the actinide and oXy-—
gen in the fluorite-—structure phases can be
described by a solution of two species. The
solvent specles 1s chosen to have the stoichiom-
etry of the undefected phase, in this case [UO,],
and the solute species is chosen to reflect,
together with the solvent, the oxygen potential-
temperature—composition behavior and the system
phase relations. This allows use of the species
in reactions to describe phase boundaries and
chemical potentials Iin an easy and convenient
manner. It is realized, however, that combina-
tions of the specles to form defected fluorite
crystal lattices may nct be possible. Further,
the configurational entropy resulting from the
assumption that the speclies are randomly mixed
is not accurate because of the impossibility of

predicting allowed lattice site positions.

2. DATA BASE

The relevant data base for nonstoichiometric
urania is summarized in ta%le 1 and fig. 1.
Collectively, ~1780 x—T—p82 values have been
reported. All these data have been compiled in
one Oak Ridge National Laboratory document,
along with similar data for the U-Pu--J system.l‘0

Since many of the original data were given



graphically, a brief explanation of the digiti-
zation of these data is in order. Each figure
from the original references was photocopled,
and small figures were then enlarged. The copy
was taped to graph paper with the coordinate
axes of the figure coincident with those of the
graph paper, and a pin was used to punch a hole
through the data points and the graph paper.
The coordinate values were read from the graph
paper in mm and converted by a computer program
to values of T, 0/U, and the chemical potential
of oxygen [RT 1n (pgz), with R being the 1deal
gas constant]. Iu addition, the program calcu-
lated the values of the data in the units given
on the original figure. These values were then
compared with the figure so that, as far as
could be determined, any errors in data extrac-—

tion and conversion were eliminated.

3. BASIS OF THE REPRESENTATION

The nonstoichiometry of uranium dioxide will
be represented by a solution of two fluorite-
structure, face—centered-cubic (fcc) species
having different 0/U ratios. One species will
be [UO;] and the other [U,0p]. The moles, m, of
each specles in the solution are calculated from

the mass-balance equations for uranium and oxy-

gen, respectively,

1 = mUO2 + a mUaOb (1)
and
0/U =2tx = 2 m + b . (2)
U0, ™,0p

The standard Gibbs free energy of the solution

is defined as
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AGECWOgs > = my  AGECUO> + my o AGECU0p>¢

+n RT 1n (nUOZ) + nUaob RT 1n (nUaob)

U0, (3
+ E n ’
"50,"u,%
in which E is the energy of interaction between

the solid-solution species, ny denotes the mole
fraction of species 1, and AG?(i) is the stan-
dard Gibbs free energy of formation of species 1
from the elements 1in thelr standard states.

Note that the standard states of both species 1in
the solution are defined here as having the fcc,
fluorite structure. The partial molal free
energy expressions are very useful because they
can be used directly in equilibrium calcula-

tions. These are obtained for specles i by

the operation

al(m; + my) AG?<U02tx>] —
— — = AG[1] . (4)

i

This leads to

— - ) 1

+ E n2 (5

Ua0p

and

- o]
AG[UaOb] = AGf<Uaob>fCC + RT 1n (nUaob)

2
+ En vo, (6)

4, ANALYSIS OF DATA

About 130 T—x~p32 values were removed from
the data base during the course of the analysis.
As will be demonstrated later, these 130 values
appeared to be Inconsistent with the behavior of
the rest. The rejected sets were those of
Chapman and Meadows,12 Chilton and Kirkham,32
Tetenbaum and Hunt's <UO,4,> data,?? and

Swanson.3! See section 5 for further discussion
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‘ of Tetenbaum and Hunt's data. None of these
data were used in the least-squares analyses,
although they are plotted in several of the
figures to show their deviation from the rest.
Least-squares analysis of the accepted data was
always performed with equal weighting of the
T—x—ln(p32) values.

4.1 <U0y44>, high hyperstoichiometry

It i{s generally recognized that isothermal
x—p32 data plotted as 1n(x) vs 1n(p32) shows a
change in slope at about 0/U = 2,01. Examina-
tion of all the raw data exhibiting this transi-
tion revealed that this change can be better
defined 3s occurring at a constant oxygen poten-—
tial of about -260 kJ/mol. The data more posi-—
tive than this oxygen potential value will be
analyzed first.

A least—squares analysis of this portion of

the data base was made utilizing the equation
*
In (pg,) = a/T +b + c 1n(x) . (7)

The slope, c, was 2.21 for the range

2,01 < 0/U < 2.1, This is within 1U% of the
commonly reported slope of 2. Above 0/U = 2.1,
the slope increases continuously. Both of these
features are shown in fig. 2 for a typical data
set obtained by combining Hagemark and Broli's
data, 16 for which T = 1673 K and 2.094 < 0/U

< 2.239, with Roberts and Walter's data,® for
which T = 1675 K and 2.01 < O/U < 2,225. It is
the behavior of the reglon above 0/U = 2.1 that
permitted the choice of the proper solute
species.

The procedure for deducing which sonlute
oxide should be used in solution with [UO,] com-
menced by considering the several different
equilibria to be given below. The solvent oxide

is always [UO;], and the solute oxides are known



oxldes of uranium except for [U205], which was
included because it represents the hypothetical
oxide formed from UtS, and [U10/3023/3]

(0/U = 2.3), which can be considered to be
slightly substoichiometric [U307] (0/U = 2.33).
The T-x-1n (psz) relationship corresponding to
each equilibrium is also given below assuming

E = 0. For the equilibrium 2[U0,] + (0,) %
2[U03],

* o o
RT 1n (poz) = Aern - TASrxn

+ 2 RT In (x/(1-x)) . (R)

in which AH and AS are the usual product-
TXn TXn

reactant differences in enthalpy of formation

and entropy, respectively, for a particular

equilibrium. For the equilibrium 4[U0,] +
(02) 5 2[U205],

RT 1n (pg.) = AE® - Tas®
po2 rxn rXn
+ 2 RT 1n XD, (9
(1-2x)2

For the equilibrium 6[U0,] + (0,) $ 2[U30,],
* o o]

RT In (poz) B Aern TAern

x(1-2x)2 | (10)

(1-3x)3

+ 2 RT 1n

For the equilibrium (20/3)[U0,] + (0,) %
2{U)5/3023/31,

* s} o
RT In (p02) B Aern TAern

x(1-2.33x)2-33 (11)
(1-3.33x)3-33

+ 2 RT 1n

For the equilibrium 8[U0,] + (0;) % 2[U,04],
* o (s}
RT In (poz) - Aern TAern

x{1-3x)3 | (12)

+ 2 RT 1
SR



At this stage of the analysis, one is concerned
with finding which one of the several equations
will actually result in a slope of 2 over the
entire range of x. Therefore, for the data set
given in fig. 2, it 1is sufficient to divide each
of the above equations by RT and to plot 1n(p32)
versus each of the several In(f(x)) terms.
Figure 2 illustrates the resulting plots.
Coincidence of any one plot of In(f(x)) with the
line having a slope of two would indicate that
that particular function, and thus a particular
solid solution, was most representative of the
data.

Several observations can be made from fig., 2.
It is clear that the representations based on
the solutes [U:07] or [U;y/3023/3] come closest
to giving a slope of two over the entire range
of x. (In fact, the observation that the
[U02]-[U307] solution did not quite give the
desired relationship for this particular data
subset led to the use of the Uyq/3053/3 compo-
sition.) It can also be seen that all the
representations give a slope close to 2 at the
smaller values of x, or, more specifically, at
x < 0.05. It follows that very nonstcichio-
metric data are recessary in order to permit the
general application of the present methods to
other nonsteichiometric systems. Finally, the
present technique provides a sensitive 1Indica-
tion of the 0/U ratio of the solute oxide;
ratios of 2.3 to 2.33 appear close to those
needed, while ratios of 2.5 (from [U,05]) or
2.25 (from [U,0g]) are wide of the mark. It can
also be seen from the equatlon for the {[U0;]-

[U,09] solution that the logarithmic term is
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+ indeterminate at x » 0.25, which would prevent
application of the equations all the way to the
upper phase boundary of <UO,4,.>.

The [U0,]-[U307] representation was used in
a much more extensive least-squares analysis of

the data base. The equation for this can be

arranged in the form

* - 2
RT 1n (pp,) - 2RT In x(1=207  _ \g°
(1-3x)3 rxn
- 2
_ TASo +E 2 12x + 12x¢ (13)
rxn (1-2x)2

It was applied to all data for which RT 1n(p;2)
was more positive than -260 kJ/mol. This
amounted to 1145 sets of T—x—ln(pgz) values.
The least-squares analysis gave the values
MRS = -297700 J/mol, aS°_ = =117 Jemol~l.K"1,
rxn rxn

and E = ~2632 J/mol. Since E was small, the
data base was reanalyzed assuming E = 0,
giving AH:xn = -312807 J/mol and AS?xn =
~-126 Jemol~™l-K~l, As will be shown later, the
effects of the E term appeared inconsequen-
tial, and the latter enthalpy and entropy values
were utilized.

The thermodynamic values for the [UO,]-
[U307] representation were used to calculate
the valves of x at the phase boundary with
<U,09>. As will be shown in section 4.4, the
[U0,]-[U30;]) solution is applicable at the phase
boundary for 0/U » 2.05. The calculated values
of x were then compared with the values of
Grénvold,"? which appear to be representative

of several investigations. The relevant

equilibrium Is

[U0,] + [U30;] % <U,0g> . (14)



Reference 43 gives tabulated values for the
standard free energy of formation for <UO,> and

<U40g9>. The values at 600 and 1200 K were used

to give the relationships

AG2<U02> (J/mol) = -1080000 + 169.0T

(400 < T < 1400 K) , (15)
and
AG§<Uq09> (J/mol) = -4489000 + 739.1T

(400 < T < 1400 K) . (16)

The equivalent expression for <U307>f.. wWas

derived from eq. (13), for which AG?xn (J/mol) =
-312800 + 126T, which is equivalent to

o o
ZAGf<U307)fcc 6AGf<U02). This and eq. (15)

lead to

AGE<U307> . (I/mol) = -3396400 + 569.9T . (17)

With this information, the free energy dif-
ference for reaction (16) is AG:xn (¥/mol) =

~12600 + 0.3T, and eqs. (5), (6), and (14-17)

lead to
AG? . = 0=-12600 + 0.3T - RT In x(1-3x) . (18)
x (1-2x)2

The Newton-Raphson technique (see Appendix 1)
was used to solve for values of x at

400 < T < 1400 K. At a given x value, the
present analysis predicted a phase boundary

. lying about 200 K lower than observed.“? How-
ever, all could be brought into essentilally
perfect agreement by using an enthalpy of
~16000 J/mol in eq. (18). This minor correction
of —3400 J/mol is about 207 of the uncertainty
of the AH2,298 value for <U409>,““ and it is
suggested that, for the phase boundary calcula-
tion, eq. (18) be made more negative by this
amount. The final form of the [U0,]-[U30,]

representation is thus:
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*
RT 1n (POZ) (J/mol) = -312800 + 126T

x(1-2x)2 | (19a)

+ 2RT 1n
(1-3x)3

AG[UO5] (J/mol) = -1080000 + 169.0T

+ RT I1n 123X, (19b)
1-2x
and
AG[U307] (J/mol) = -3396400 + 569.9T
x (19¢)
+ RT 1n —l-_—zx-

Four other techniques were used to compare the
results of the least-squares fit with the raw
data base and with the results of other fits to
the data. The first technique was the least-
squares determination of the slope as well as
H:xn’ s° , and E, the second was the sta-
tistical definition of the scandard deviation,
the third was a plot of fitted oxygen potential
minus observed oxygen potential versus tem-—
perature (a residuals plot), and the fourth was
a transformation of all the data to 1500 K. To
determine the slope by the least~squares method,
the In term in eq. (13) was placed on the right-
hand side and resulted In a slope of 1.95. This
value is within 3% of the theoretical value of
two and helps confirm that the model does repre-—
sent the behavior of the data. The values of
the standard deviations of the fits with and
without E showed that including E reduced the
standard deviation from 8650 J/mol to
8250 J/mol, or only about 5%. The residuals
plot appeared the same whether or not the E
term was included, and also illustrated no trend
of the residuals with temperature, which indi-
cates ihat the fit adequat:ly represents the

temperature dependence of the data.
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Figure 3, the transformaiion of all the data
to 1500 K, was accomplished with the use of
eq. (13) divided by RT, .After writing one
equation at 1500 K, the second at temperature T,
and subtracting the second from the first, onme

obtains the general equation
% %
In (P0y) 5q0x = 1n (Poy)y

2 —12x4-1&2)( 1 _1) .(20)
(1 - 20 1500 ~ T

o
+ 1/R{AH + E
rxn

Choosing first AH:xn = ~312807 J/mol and
E = 0, the right-hand side of eq. (20) was
evaluated from each experimentil T—x—ln(pgz)
data set, thus giving the 1U(P02) Values»trans—
formed to 1500 K. Again using E = 0, these
values are plotted as the ordinate in fig. 3
versus the abscissa values calculated from the
general fvrction
1n (x(l—zx)Z) N E (2-12x + 12x2) ) (21)
(1-3x%)3 2R 1500 (1-2x)2

Also shown in fig. 3 is the line represent-
ing the behavior predicted at 1500 K from the
least-squares fit of the data base; this line
has a slope of 2., An analogous plot with
AHD = -297700 and E = -2632 J/mol was not
discernibly better than that shown in fig. 3.
Consideration of all the factors described above
led to the conclusion that the E term was
unimportant and could be assumed to be zero.

The process described above was repeated in
its entirety for the [UO0,]-[U;45/3053/3] solu-
tion. The least-squares determination of the

slope gave 1.74, as opposed to the theoretical
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value of 2 and the value of 1.95 obtained from
the [UO5]-{U307] solution. Comparison of all
the other results revealed no discernible
improvement in the fit of the data over that
obtained with the [U0;]-[U30;] solution. It was
thus dropped from further consideration.

4.3 <U0,4y>, low hyperstolchiometry

In this section the hyperstoichiometric
data lying below an oxygen potential of
-260 kJ/mol will be analyzed. There are some
indications in the raw data base that the slope
of the ln(pgz)-ln(x) plot in this region may be
temperature dependent. To explore this possi-

bility, the data were analyzed utilizing the

equation
*
ln(poz) = af.. + b+ ¢ lalx) +eT In(x) . (22)

The least—squares analysis of the approxi-
mately 200 T—x—ln(pgz) values gave values of a,
b, ¢, and e, with the term e being used to
reveal any temperature dependence of the slope,
c. The analysis determined a slope of 4.21,
which is within 6% of 4.00, while the tempera-
ture dependence contributed only about a 1%
variation in the slope, that is, the slope was
independent of temperature.

Two solid solutions were conecidered for this
region, [U0,]-[U504 5] and [U0,]-[U; 505, 5].
These cholces were made on the assumption that
the 0/U ratio of the solute oxide should be that
of a known U-0 compound and that the ratio
should possibly be equal to or less than that
for the [U307] used in the more hyper-
stolchiometric region. The particular oxide
formulations used hete, [U504,5] and [U; 503 5],
.were chosen so that the equations shown below

would give the observed slope of 4. The
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least-squares analysls was applied to the data
for which 0/U > 2 and the oxygen potential was
less than —-260 kJ/mol. For the [U0,]-[U,0, 5]

solution, the equation is

*
RT 1n (pp,) (J/mol) = -360000 + 214T

+art 1 2O (23a)

and the partial Gibbs free energy relations are

AG[UO,] (J/mol) = -108C000 + 169.0T

1-4x . (23b)

and

AG[U504, 5] (J/mol) = -2250000 + 39].4T

2x (23¢)

+RT1nT__—2;,

while for the [U0,]-{U; 503 g] solution,
*
RT 1n (p02) (J/mol) = —-250000 + 214T

EE(I_X)O.S . (24)
(l-3x)1'5

+ 4RT 1n

An extensive comparison of the two with the data
revealed no difference between them.
Arbitrarily, the [U0,]-[U,0,_ g] solution is used
to represent the data in this region.

The predictions of the [U0,-U,0,,5] repre-
sentation compare reasonably well with the low-x
data, as seen in fig. 3. Again, using the pro-
cedures outlined in the derivation of eq. (20),
all the data were transformed to 1500 K uti-

lizing the equation

* ~ * 360000 (1 _ 1) (95
In(pPoy) 500k = 10(PO, Iy R (1500 'T) (25

and plotted versus the function

2x(1-2x) _
?T:Z;Si_' 1n(2)

(26)
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Here, the factor 1n(2) is subtracted from the
first term so that the data would joln smoothly
along the abscissa with the data plotted via the
[U051-[U307] representation. [At low x, the
logarithmic term of the latter representation
reduces to approximately 1n(x), while that for
the [U0,]-[U,0, 5] representation reduces to
approximately 1n(2x).]

Neither of these two representations of the
data predicted the values of x for the <U0p;y>-
<U,09> two-phase region. Both are applicable at
approximately O/U < = 2.06, as will be riowr in
section 4.7. At the boundary, the equilibria
2[U,04 51 % <U,09> and [UO,] + 2[U; 503,5]
<U,09> are applicable and both led to large x
values at low temperatures and small values at
high temperatures, which 1s opposite to the
experilmental behavior.%2 Additionally, calcula-
tions for these equilibria demonstrated that, in
order to bring the model into agreement with the
phase boundary, the AH:xn value would have to be
changed from 11000 to -76500 J/mol, while the
Asgxn value would have to be changed from —43.7

to 68.74 J°mol™1+K"1l, Such adjustments are

unrealistic.
4.4 The boundary between the two <UO,4y >
regions

The location of the boundary between the two
hyperstoichiometric regions can be calculated
from the results in sections 4.2 and 4.3, For
the boundary between the [UO,)-[U307] and
(00,]-[U50, 5] systems, eq. (23a) is subtracted
from eq. (1%a) and the terms rearranged to give

(1-4x)4

= 3677 _ . (27
0=z 10.5 + 2 In z sty )
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This equation was solved for x at a given tem—
perature by the Newton—Raphson iterative tech-
nique, and then the value of x was substituted
into eq. (23a) to calculate ln(sz) and the oxy-
gen potential at that temperature. Figure 4
illustrates the bot dary and permits comparison
with several sets of experimental data. The

oxygen potential of the boundary 1is represented
by the equation

RT In (pg,) (J/mol) = -266700 + 16.5T .  (28)

4.5 <00,y >

The hypostoichiometric data consisted of
about 220 T-—x—p;2 values. These data were dif-
ficult to analyze by the current methods because
of two factors: first, the complexity of the
original experiments at high temperatures and
very low oxygen potentials led to considerable
scatter in the data; second, there were little
data at 0/U < 1.9 or x > 0.1, It was demon-
strated above that x values considerably larger
than 0.1 were necessary to distinguish the best
solute specles. The single very
substoichiometric data set is that of Ackermann
et al.,22 but it is not 1sothermal and cannot be
used to plot the data in the manner used in
fig. 2. Fortunately, the x dependence for the
{U}—<U02_x> two—-phase region could be used to
help define the best fit of the data.

The analysis commenced by determining the
slope of the ln(pgz)—ln(x) relationship, eq. (7).
The slope was dependent upon which portion of
the data base was included. For the entire data
base, 1.99993 > 0/U > 1.692, the slope was -2,27;
with the upper 0/U cutoff at 1,999, the slope
was -2,.33, and for 1.99, it was =-3.16.
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It was thus decided to explore several
sclid-solution representations that would have
slopes of -2, -3, and -4. The U-0O phase diagram
provides little guidance for possible solutes,
since there are no oxldes lying between uranium
and <UO5_,>, but uranium is clearly suggested as
a solute. Trivalent uranium suggests a solute
oxide having an O/U ratio of 1.5, and the
presence of [UO] in extensive solution in [UC]%3
suggests an O/U equaling 1.0. The following

equilibria can thus be written for O/U = 1.,5:

2[U503] + (0;) = 4[U0,], slope = -2; (29)
3[U1_3302] + (05) = 4[U0,], slope = -3; (30)
and

4{U00y 5] + (0y) = 4[UO,], slope = —4; (31)

while for 0/U 1.0,

2[U0] + (05) 2[U0,], slope = —2; (32)

3[Ug,6700.57] + (03) = 2[U0,], slope = -3; (33)
and

4[Uy 50p.5) + (0,) = 2[U0,], slope = -4; (34)
and for the solute uranium,

2{Uy, 5] + (0y) = [UOy], slope = -2; (35)
3[Ug,33] + (0y) = [UO,], slope = -3; (36)
and
4[U0.25] + (02) = [U02], slope = -4, (37)

All the equilibria were analyzed in considerable
detail. This included plotting all the data
transformed to 2400 K, as shown in fig., 5 for
the [U0,]-[Uy/3] solution. It was particularly
clear that the solutions for which the slope was
-3 fit the data best. This was especially true
for the data of Ackermann et al.?22 In fig. 5
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their data fell amidst the data of the other
lnvestigators, whereas in a similar figure
plotted according to the system of eq. (35) it
was below and to the left of the rest, and for
the system of eq. (37) it was above and to the
fight, It was also apparent that at any given
slope, there was no discernible difference in
the goodness of the fit as a function of the 0/U
ratio of the models used for that particular
slope. Nevertheless, the three solutions for
which the slope 1s ~3 were all fitted to the
entire data base (0/U < 2) and gave the
following equations, which are to be modified
later:

[UOZ—U1/3] solution,

*
RT 1n (p02) (J/mol) = -1230100 + 225.7T

2.
+ 26900 3x+1.5x4-3
(14x)?
- 3RT In 1.5% ; (38)

(14x)2/3(1-0.5x)1/3
[U02]—[U2/302/3] solution,

*
RT 1n (pp,) (J/mol) = -1226800 + 229.4T

6x—-1.5%x2-3
(14+0,5x%)2

+ 30285

- 3 RT In 1.5 x ; (39)

(140.5x)1/3(1-x)2/3

and
[V0;]-[U4/30,] solution,

*
RT 1n (P02) (J/mol) = -1228300 + 238.2T

12x-3x2-3
(1.-0.5x)2

+ 34845

1.5x(1-0.5x) /3 (40)
(1—2x)“/3

-3 RT 1n
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In addition to the above three equations,
another set of three equations were forced to
fit the data of Ackermann et al.?? Their data
are the only T—x—;02 data at the phase boundary
with uranium and are the only data for which the
x dependence of the interaction terms is signif-
icant. The least-squares fitting process began
for the total data base by assuming the Inter-
action term was zero and solving for the
enthalpy and entropy values only. It was noted
that, for a given model, the entropy term
remained nearly constant whether or not the
interaction term was included. Then, using this
entropy value as a known, the data of Ackermann
et al.?? was fitted to give the interaction
parameter coefficient as well as a new enthalpy
value. 1In this way, their data could be fitted
almost perfectly.

Use of any of the six representations tc
calculate values of x for the {U}~<U0, > two-
phase region led to x values two to three times
larger than those measured, and the fitting pro-
cedure was modified. Equations (38-40) are
obviously very similar and fit the data equally
well as far as could be determined, but the
[U02]—[U1/3] solutfon is preferred. It is the
most straightforward to apply to other thermo-
dynamic analyses because all the thermodynamic
data for uranium are known, whereas they are not
for uranium monoxide and sesquioxide. Thus, in
the {U}—<U02_x> two—phase region, one has the
equilibrium
1/3{v} s (U /5], (41)

for which the free energy relation 1s gererally
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R o 1.5
© A'lrxn TAern + RT 1n 14+x
[1-0.5x)2 (42)
+E(_f;;—_

The chemical activity of {U} is assumed to be
unity, and the free energy of formation {U} is
by definition, zero. Thus, the enthalpy and
entropy terms in eq. (42) are those for
{U1/3}fcc’ which were determined in the follow-
ing manner. Several different least—squares
fitting procedures were used to obtain values
of Aﬂzxn, As:xn, and E for eq. (38). The
enthalpy and entropy values represant those

for the difference AG?<U02>~3AG§<U1/3>fCC .
Valves of AG%(UOZ> are given in ref. 43 and can
be represented by -1079700 + 170.5T J/mol for
the temperature range of the UQ,_, data. Thus,
the Gibbs free energy of formation for uranium
in solution was calculated, which gave the
required enthalpy and entropy values for

eq. (42). By far, the best agreement at the
phase boundary was obtained by fitting all i'e
data without an interaction parameter. For
example, at 1872, 2347, and 2700 K the calcu-
lated values of x were 0.058, 0.163, ~nd C.301,
respectively. These compare with 0,043, 0.179,
and 0.330, respectively, from the assessment
shown in fig. 2 of Green and Leibowitz.“4® Thus,
the <UO,_.> region appears to be best repre-
sented by the [U1/3]-[002] solution for which

the final equations are

*
RT 1n (pp,) (J/mol) = ~1300000 + 225.7T

~3RT 1n 1.5x , (43a)

(14x)2/3(1-0.5x)1/3

AG[UO0;] (J/mol) = -1079700 + 170,5T

1-0.5x , 43b
+ RT In == (43b)
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and

AG[Uy/3] (J/mol) = 73433 - 18.47

1.5% . 43
) (43¢)

+ RT 1In

4.6 Oxygen potential for (U02>

The oxygen potential for exactly stoichio-
metric <U0,> can be obtained from eqs. {1%a),
(23a), and (43a). Exact stoichiometry can be
defined as the condition where the hyper-
stoichiometry equals the hypostoichiometry.
Also, the nonstoichiometry is very smail. Thus,
eq. (23a) can be written in the form
RT 1n (pgz) (J/mol) = =3€0000 + 214T

+ 4RT 1n(2) + 4RT 1n(x) (44)

and eq. (43a) beconmes
RT 1n (p32) (J/mol) = ~1300000 + 225,7T
- 3RT 1n(1.5) ~ 3RT in(x) . (45)

Upon eliminating thz rerms in 1n(x) and

rearranging, the desired definition becomes

RT In (p§,) (J/mol) = -897000 + 224.8T
(T < 3015) . (46)

The temperature 1limit of 3015 K results from the
intersection of the oxygen potential for exact
stoichiometry with that for the [UOZI—[U307]—
[UZOM-S] boundary, eq. (28). Above 3015 K, the
[U02]~[U307] and [UOZ]_[U1/3] representations
can be combined similarly to give the definition
of exact stoichlometry up to the melting item-—

perature of <U0,>,

*
RT 1n (POZ) (J/mol) = -707700 + 161.8T
(3015 < T < 3120 K) . (47>
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4.7 Oxygen potential at <U0,, > phase
boundaries

The oxygen potential of the <U0,4,>-<U ;09>
two-phase region was calculated from the results
glven in section 4.2, Equation (18), with an
enthalpy value of -16000 J/mol, was used to
calculate x values of 0.083, 0.155, and 0.206 at
800, 1190, and 1300 K, respectively. The oxygen
potentlal at these values 1s then calculated
from eq. (19a) and fitted to give the oxygen
pdtential of the phase boundary from 715 to
1400 R,

RT 1n (py,) (J/mol) = ~390200 + 183.6T .  (48)

The lower limit of 715 K comes from the inter-
section of eq. (48) with eq. (28), which occurs
at 0/U ~ 2,06, Equation (48) agrees within a
few percent of that from eq. (5) of a publica-
tion of Blackburn.®

The oxygen potential of the <U0, >—{U0,4, '}
two-phase region was estimated in the following
manner. The experiments of Latta and FryxellY’
gave <10, 1> for the solidus composition at
2820 K, and eq. (19a) gives an oxygen potential
of -36202 J/mol. For <U02> at 3120 K, the
melting temperature, eq. (47) gives an oxygen
potential of -202884 J/mol. Assuming linearity
of oxygen potential with temperature leads to

RT 1n (pp,) (J/mol) = 1530600 - 556 T . (493

The <U0y_4> equilibria with liquid uranium
containing dissolved oxygen has two regions
lying on either side of the 2700 K monotectic.Y6
Below 2700 K, the x values for the phase boundary
were given in section 4.5 at three temperatures.
These data were used in eq. (43a) to calculate

the oxygen potential at T <2700 K and led to
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*
RT 1n (poz) (J/mol) = -1063400 + 160.9 T . (5

Above 2700 K, the oxygen potentials at 2700 and
3120 K were used similarly to give for that tem-—

perature range

RT In (p;Z) (J/mol) = 3367600 + 1014T .  (51)

5. DISCUSSION AND CONCLUSIONS

Figure 6 illustrates the T-x-RT ln(;O2)
dependence predicted from the present analysis
and permits a qualitative comparison of the
prediction with the data. The <UO,4.> behavior
was calculated from the two different hyper-
stoichiometric solutions, eqs. (19a) and (23a),
which intersect at their mutual boundary,
eq. (28). The behavior of <U0,_y> is repre-
sented by eq. (43a). Exact stolichiometry is
defined by eqs. (46) and (47), and it can be
seen from fig. 6 that the adjacent hyper-
stolchiometry and hypostoichiometry intersect
properly at stoichiometry. The <UO,4,>—{U0p4y1}
two-phase region calculated from eq. (49) is
illustrated, as are the two <U0;_,> phase boun-
daries with U-C liquids calculated from
eqs. (50) and (51).

Figure 3 illustrates that some of the
<U0,4y> data sets disagree markedly with the
majority. Those data in disagreement were not
included in the present numerical analysis, as
was noted at the beginning of section 4. For
<U0,.%”>, all of the data, except Swanson's, 31
appeared to Le 1in reasonable agreement, as 1is
shown in fig. 5; Swanson's data was off-scale on
the positive side. Tetenbaum and Hunt's?0 data
exhibited the characteristic rapid rise in oxy-
gen potential at O0/U = 2,006, rather than the
usually observed 0/U = 2, The present model

does not reflect the behavior of Tetenbaum and
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Hunt's data. However, 1f all their 0/U values
would have been decreased by 0.006, they would
have agreed much more closely with the other
data shown in figs. 3 and 5.

The model proposed by Blackburn“8 was com—
pared with the present results. For <UO0,_,>,
his eq. (11) was used to give the Lehavior shown
in fig. 5, while for <U0y4, > his eq. (17a) gave
the results shown in fig, 3. His equat:on for
hyperstoichiometry includes an empirical polyno-
mial term that permits a fit of the data for
0/U > 2.1. It can be seen from fig. 3 that his
equation adequately represents the data in the
same region that the present [U0,]-[U30;] repre-
sentation 1s used, but the present representa-
tion needs no empirical adjustment at 0/U > 2.1.
Figure 3 also 1llustrates that Blackburn's model
apparently does not represent the data at small
hyperstoichiometries. For <U0,._.>, fig. 5
11lustrates that Blackburn's model generally
appears to 1liz on the low side of the data, but
it does agree with the data at the lower phase
boundary, which he used to obtain his AH:xn and
Asixn' Blackburn's definition of the oxygen
potential for exactly stoichiometric <U0-~> was
obtained by combining his egs. (11) and (23) to
give RT ln(psz) = -787750 + 167.0T J/mol. A
more recent evaluation cf exact stolchiometry
by Hyland“9 glves a nearly identical equation.
These can be compared with that from egs. (46)
and (47), which give an oxygen potential
52 kJ/mol more negative at 1000 K, exact agree-
ment at 1916 K, and 64 kJ/mol more positive at
the melting temperature, 3120 K. Some of the
disagreement between the present model and

Blackburn's is undoubtedly the result of the
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poor fit of the near-stoichiometric data by
Blackburn's model (figs. 3 and 5). Additionally,
Breitung®® calculated the oxygen potential for
stoichiometric <U02>; data in his table 3 lead
to RT 1n(p32) = -766500 + 157.3T J/mol, a result
closer to those of Blackburn“® and Hyland“® than
to the present analysis.

It 1s interesting to note that Fink et al.5!
analyzed the enthalpy data for <U02> and
concluded that 2670 K 1s the temperature for a
significant transition in the enthalpy betavior.
This transition temperature compares with the '
present 3015.K for the intersection of the
[UOZ]—[U3O7], [UOZJ_[U20H°S]’ and [U02]~[U1/3]
solutions. It is interesting to speculate
whether the coincidence of the several solid
solutions is relevan: to the enthalpy transition
for <U02>.

The solid soiutions treated here lead to a
useful mathematical representation of the
T—x—ps2 behavior, but undoubtedly provide little
or no insight into the actual structure of the

defected fluorite lattice, as was noted in the

introduction.
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APPENDIX 1. THE NEWTON-RAPHSON TECHNIQUE

An adaptation of the Newton—Raphson tech-
nique proved invaluable for computer solution of
the value of x, i.e., the root of the equation,
at a glven ln(pgz). Writing any given expres-
sion as F(x) = 0, the technique states that, 1if

is an approximation of a root, an improved

X
i
approximation is given by
= -— ' °
=% tF(xi)/F (xi) (al)

where the prime indicates the derivative and
where t is usually unity. Here 1t was found
that allowing t = 0.01 12, but not allowing t
to grow to be greater than unlty, helped speed
convergence to the root. The derivative was

approximated by
F'(xi) = [F(xi+6) - F(xi—6)1/26 (a2)

where 6 = 0.001 x; was usually a sufficiently
small increment in X . Smaller values were
sometimes needed for rapidly changing functions.
The root was obtained when the absolute value of

1-x /xi became equal to or less than the

mulizglier of Xy in the equation for §, in this
example 0.001. The starting value, x;, was
typlcally set to a value smaller than the
expected root, and in general x; = 108 was
used. In very complex equations, however, x;
needed to be within a few percent or less of the
expected value. The convergence procaess can be
monitored during computations to insure that a
proper root i1s being determined by observing the
values of X F(xi) (which approaches zero at

convergence), and F'(xi) (which changes sign at

convergence).
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TABLE 1

U0y: 4 data base

Authors Reference Year Temperature Oxygen—-to-Metal Number of
(K) Ratio Points

Aronson and Belle 3 1958 1150-1350 2.0130-2.2030 - 52
:Blackburn 4 1958 1239-1399 2.13-2.23 45
‘Roberts and Walter 5 1960 1372—-1695 2.0094-2.2300 102
Aukrust, Forland,

and Hagemark 6 1962 1373-1673 2,0008-2.2283 53
Kiukkola 7 1962 10731473 2.0140-2.2390 44
Markin and Bones 8 1962 7351387 2.0120-2.1880 185
Markin and Bones 9 1962 923-1297 2.0000-2.0327 191
Markin, Roberts,

and Walter 10 1962 765—1350 2,0129-2.1873 44
Anthony, Kiyoura,

and Sata 11 1963 1500-2086 2.1203-2.2728 42
Chapman and Meadows 12 1964 1268-1773 2.0200-2.2200 14
Gerdanlan and Dodé 13 1965 1176-1373 2.0041-2.1852 99
Markin and McIver 14 1965 1173 2.0018-2.0770 6
Altken, Brassfield,

and Fryxell 15 1966 2023-2873 1.8702—-1.9942 17
Hagemark and Broli 16 1966 1173-1773 2.0020-2.,2250 51
Hoch and Furman 1 1966 1173 2,0070-2.0120 4
Kotlar, Gerdan'an,

and Dodée 17 1967 1355-1423 2.1977-2.2451 57
Markin, Wheeler,

and Bones 18 1968 1600-2400 1.9170-2.0750 36
Pattoret, Drowart,

and Smoes 19 1968 18072477 1.9000-2,0000 44
Tetenbaum and llunt 20 1968 2080—-2705 1.8740-2.0186 108
Thomas, Gerdanian,

and Dode 21 1968 1446-1696 2.0014-2,0427 81
A Yermann, Rauh,

and Chandrasekharaizh 22 1969 1872-252% 1.6921-1.9607 10
Wheeler 23 1971 1800—2000 1.9860—2.0000 15
Wheeler and Jones 24 1972 1950 " 1,9967—2.0062 11
Javed 25 1972 1873-2173 1.9500--2,0000 31
Marchidan and Matei 26 1972 1073-1373 2.,04006-2.2100 19
Marchidan and Matef. 27 1972 11731373 2.18 5
-Adamson and Carney 28 1974 1633-1773 2.0000—-2.0690 4
‘Saito 29 1974 973-1473 2.0410-2.1870 55
‘Marchidan and Tanasescu 30 1975 1273-13732 2.20 3
| Swanson 31 1975 1073-1569 1.9988-2.0101 41
{Chilton and Kirkham 32 1976 1518-1823 2.0001-2.1260 48
Jocher 33 1978 1073-1473 2.02 5
‘Chapman, Brynestad,

and Clark 34 1980 1933 2,0000-2.0757 8
Baranov and Godin 35 1982 976—1273 1.9991-2,0039 75
Une and “guma 36 1982 9151376 2,0000-2.1100 97
Schleifer, Naoumidis,

and Nickel 37 1983 11291370 2,0050-2.0250 43
Ugajin 38 1983 12731473 2.0008-2.0954 18

39 1983 1273-1773 2.0000-2,0690 21

Une and Oguma




FIGURE 1

The entire T-x-RT 1ln (p62) data base for
Uy 1>

FIGURE 2

The ln(ps ) dependence as a function of 1ln(x)
for <U0,4;> and of the logarithmic terms for
several solid—solution models, eqs. (10-14),
for a typical <UOp4,> data set. Coincidence
with the theoretical slope of 2 indicates the
proper solution models.

FIGURE 3

ALl of the T-x-1n(p{,) for <U0,4,> data trans-
formed to 1500 K via“egs. (20) and (25), with
abcissa values determined from eqs. (21) and
(26)., The values of x appear at the top of the
figure. The behavior predicted by the present
representations is indicated, with the [UO,]-
[U307] system giving a slope of Z and the
[U0,]1-[U,0, 5] system a slope of 4. The predic-—
tion of Blackburn's model, his eq. (17a),%8 is
also indicated. Analyzed data: ¢, AERE-Harwell,
refs. 5, 8, 10, 14, 18, 24; + all others.
Rejected data: MO, ref. 12; A, ref. 20; V¥,

ref. 31; O, ref. 32.

FIGURE 4

Several representative T—x—ln(ps ) data sets
plotted as ln(ps ) vs abcissa vafues determined
from eqs. (21) afdd (26). The values of x appear
at the top of the figure. The boundary,

eq. (28), between the two hyperstoichiometric
systems 1s indicated, and 1s consistent with the
observed change in slope for the raw data.

FIGURE 5

All of the T—x—ln(pg ) data for <UO,_> trans-
formed to 2400 K, wigh the abscissa values
determined from the 1ln term in eq. (43a). The
values of x are shown at the bottom of the
figure. The prediction of eq. (43a) 1is shown,
with a slope of -3, as is the prediction of
Blackburn's model, his eq. (11).%48 Data: O,
ref. 15; O, refs. 18, 23, 24; A, ref. 19; +,
ref. 20; O, ref. 22; v, ref. 25; x, ref. 35.



FIGURE 6
The predicted behavior for the <U0,4.> system
plotted along with the raw data base from
fig. 1. The high-temperature boundaries for
<U094+ 4> were calculated from the two—phase
equilibria involving <UO0j4+ 4> and the U-0 liquid
phase, while the dotted line at ~—250 kJ/mol is
from eq. (28), the boundary for the two <U0,4,>

representations.
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F1GURE 2

The ln(pa ) dependence as a function of In{x)
for <U0,4,> and of the logarithmic terms for

several solid-solution models, eqs. (10-14),

for a typical <UO,;,> data set. Coincidence

with the theoretical slope of 2 indicates the
proper solution models.
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FIGURE 3

All of the T—x—ln(p6 ) for <UO0,4,> data trans-
formed to 1500 K via“eqs. (20) and (25), with
abelssa values determined from eqs. (21) and
(26). The values of x appear at the top of the
figure. The behavior predicted by the present
representations 1is indicated, with the [UOz]—
[U307] system giving a slope of 2 and the
{UO,]-[U50, 5] system a slope of 4. The predic-
tion of Blackburn's model, his eq. (17a),%8 is
also indicated. Analyzed data: ¢, AERE-Harwell,
refs. 5, 8, 10, 14, 18, 24; + all others.
Rejected data: M, ref. 12; A, ref. 20; v,

ref. 31; 0, ref. 32. '
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FIGURE 4

Several representative T—x—ln(pa ) data sets
plotted as In(p{,) vs abcissa vafues determined
from eqs. (21) and (26). The values of x appear
at the top of the figure. The boundary,

eq. (28), between the two hyperstoichiometric
systems 1s indlcated, and 1s consistent with the
observed change in slope for the raw data.
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FIGURE 5

All of the T—x—ln(ps ) data for <UOy_y> trans-
formed to 2400 K, wigh the abscissa values
determined from the In term in eq. (43a).
values of x are shown at the bottom of the
figure. The prediction of eq. (43a) is shown,
with a slope of -3, as Is the prediction of
Blackburn's model, his eq. (11).%% Data: o0,
ref, 15; O, refs. 18, 23, 24; A, ref. 19; +,
ref. 20; O, ref. 22; v, ref. 25; x, ref. 35,

The
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FIGURE 6
The predicted behavior for the <U0,.,> system
plotted along with the raw data base from
fig. 1. The high-temperature boundarles for
<U0y4 4> were calculated from the two-phase
equilibria involving <UDj:i 4> and the U-0 liquid
phase, while the dotted line at ~-250 kJ/mol is
from eq. (28), the boundary for the two <00y 4>
representations.



