TITLE: COMPARISON OF EXPERIMENTAL NIGHTS DURING THE ASCOT 1980 GEYSERS FIELD STUDY USING RADON-222

AUTHOR(S): WILLIAM E. CLEMENTS

SUBMITTED TO: FOR INCLUSION IN THE SUMMARY OF PRESENTATIONS GIVEN AT THE ASCOT MODELING MEETING, TUCSON, ARIZONA FEBRUARY 5-6, 1981

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA.

Los Alamos Scientific Laboratory of the University of California LOS ALAMOS, NEW MEXICO 87545

An Affirmative Action/Equal Opportunity Employer

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MGW
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
During the ASCOT 1980 Geysers field study, radon-222 concentrations in the air were measured continuously one meter above ground level at Diamond D Ranch by Dr. Marvin H. Wilkening and colleagues from New Mexico Tech. One of the purposes of this study was to help classify drainage flow nights by looking at the behavior of radon-222 at the outflow of the Anderson Creek/Putah Creek airshed. For this purpose, radon-222 can be considered to be uniformly and constantly exhaled from the earth's surface. As cool slope and drainage winds move along the terrain, they accumulate radon and advect it down valley until morning instabilities mix it to greater depths than these shallow flows. Hence, the measured diurnal trend of radon reflects the integrated behavior of nocturnal flows in the basin and their subsequent breakup in the morning. The use of this technique to classify drainage flows has been used by Wilkening and Rust (1972).

Figure 1 shows the diurnal trend of radon-222 at Diamond D Ranch for the five experimental periods during the 1980 study. The results show the following:

Experiment 1 (September 11-12) - A rapid buildup of radon beginning about 1800 PST and leveling off rather quickly at about 2100 PST.

Experiment 2 (September 15-16) - A gradual buildup of radon from about 1700 PST until morning transition at about 0700 PST.

Experiment 3 (September 18-19) - Radon attempted to increase at about 1800 PST but was interrupted at 2000 PST. Radon levels stayed low until about 0030 PST when a gradual increase continued until morning transition.

Experiment 4 (September 19-20) - Same behavior as Experiment 2 with slightly higher concentration during the night.
Experiment 5 (September 24-25) - Similar to Experiment 1 except for a much earlier onset of radon increase. Radon levels started to increase at about 1500 MST with an abrupt interruption at 2030 PST that recovered quickly by 2130 and remained constant throughout the night.

Preliminary analysis of the above radon behavior shows the following: Experimental nights 1 and 5 indicate the strongest basin outflow conditions with night 5 having conditions beginning several hours sooner than any of the other experimental nights. Nights 2 and 4 appear to have a more gradual development of outflow conditions indicating weaker drainage on the slopes. Experimental night 3 was a poor drainage case with drainage indications not beginning until after midnight.

In summary, the radon-222 measurements at Diamond D Ranch have proven to be useful in classifying the integrated drainage flow conditions out of the contributing airsheds. This data is available continuously from September 8 through 25 and will be analyzed in the above manner to aid in classifying nocturnal conditions. The data will also be used to investigate stability, mixing depth, and transition characteristics of the drainage flow out of the basin. Modelers are encouraged to try to model the radon behavior at Diamond D Ranch by using a suggested constant area source of 0.5 pCi m$^{-2}$s$^{-1}$ throughout the air sheds involved.

Reference

Fig. 1. Diurnal trends of radon-222 one meter above ground level at Diamond D Ranch for the five experimental nights of the 1980 Geysers experiment.