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Abstract 

The evolution of the electron-beam phase space distribution in laser-

driven RF guns is studied by taking into account both the time variation 

of the RF field and space-charge effects. In particular, simple formulas are 

derived for the transverse and longitudinal emittances at the exit of the 

gun. The results are compared and found to agree well with those from 

simulation. 
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1 Introduction 

Laser-driven rf electron guns ' 1 ' are potential sources of high-current, low-

emittance, short bunch-length electron beams, which are required for many 

advanced accelerator applications, such as free-electron lasers and injectors 

for high-energy machines. In such guns the design of which was pioneered 

at los Alamos National Labora tory ' 1 ' and is currently being developed at 

several other laborator ies ' 2 , 3 ' ' 1 ' , a high-power laser beam illuminates a p.ioto-

cathode surface placed on an end wall of an rf cavity. The emitted electrons 

are accelerated immediately to a relativistic energy by the strong rf field 

in the cavity. The main advantages of this type of gun are that the time 

structure of the electron beam is controlled by the laser, eliminating the 

need for bunchers, and that the electric field in rf cavities can be made very 

strong, so that the degrading effects due to space-charge repulsion can be 

minimized. In this paper, we analyze the beam dynamics in the rf cavities 

to obtain the expressions for the transverse and longitudinal emittances of 

the electron beams emerging from laser-driven rf guns. 

A study of electron-beam dynamics in rf guns needs to take into account 

several effects, such as those due f o the time variation of the rf field over 

the duration of the acceleration period and over the duration of the electron 

pulse and those due to the space-charge repulsion. A rigorous analysis of 

these effects is probably too complicated to be useful. The goal in this 

paper is to obtain approximate and simple expressions that retain the main 

physical effects. 

In Section "2 we study the rf acceleration process. U'e simplify the calcu-



lation by assuming that only a single standing-wave component is present. 

However, contrary to what is done for long linear accelerators ' 5 ' , we do not 

neglect the contribution from the reflected wave. We solve the rf accelera

tion equation approximately after noting that the variation of the rf phase 

o — ijt — kz 4- 0o i s significant only at the beginning of the acceleration 

period. The result agrees reasonably well with exact calculations. Because 

of the time-variation of the rf field, the electron distribution occupies curved 

regions in phase-space. We calculate the longitudinal omittance associated 

with this effect. 

In Section 3 we consider the effect; of the rf acceleration on transverse 

dynamics. Given that the longitudinal electric field is uniform in the trans

verse direction, the expression for the transverse force is uniquely determined 

from Maxwell's equations. The transverse momentum imparted to an elec

tron is obtained by assuming that the electron's transverse coordinates re

main constant during acceleration by the rf field. With this approximation, 

a net transverse momentum transfer to electrons occurs only in the vicin

ity of the cavity exit. We calculate the transverse emittance which arises 

from the fact that electrons at different longitudinal positions near the exit 

receive different transverse kicks due to the variation of the rf field. 

In Section 4 we calculate the transverse and the longitudinal emittancos 

resulting from the space-charge effects. We simplify the calculation by as

suming that all electrons move with identical velocity, so that the space-

charge force is purely electrostatic in the frame of reference that moves with 

the electrons. A further simplification is achieved by noting that the influ-
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ence of the space-charge force is weighted by a factor I / 7 2 / ? , which heavily 

emphasizes the region of the cavity near the- cathode where the electrons are 

still non-relativisitic. 

Section 5 contains further discussions and conclusions. First, the paper is 

summarized by recapitulating the main formulas derived therein. Then the 

results of the analytical calculations are compared with those from numerical 

simulation. The agreement is found to be satisfactory. Finally, we conclude 

by listing some of the effects not discussed in the paper. 

Appendix A contains a discussion of the scaling behavior for the elec

trostatic field in the limit where the aspect ratio of the charge distribution 

either vanishes or becomes large. An understanding of the scaling behav

ior is important for the derivation of Section 4. In the text, the shape of 

the charge distribution was assumed to be Gaussian for the purpose of ex

plicit calculations. In Appendix B, we list the relevant formulas for the case 

where the charge distribution is uniform in a cylinder. Finally, Appendix 

C contains a discussion of the correlation between the space-charge and the 

rf effects. It is found that the correlation is not negligible for transverse 

emittance. 

2 RF Acceleration and Longitudinal Phase Space 
2 . 1 R F A c c e l e r a t i o n 

Electrons generated at the cathode are accelerated by the rf field in a cavity. 

The electric field along the axis will be assumed to be of the following simple 
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form: 

Ez = Eo cos kz sin (ut + tpo) • (1) 

Here £o is the peak accelerating field, A is the rf wavelength, k = 2 T / A , C is 

the velocity of light, u = ck, and <f>0 is the rf phase as the particle leaves the 

cathode surface z — 0 at ( — 0. The field given by Eq . ( l ) can be considered 

to be produced by a sequence of rf cells operating in the 7r-mode' 2 ' . The first 

cell is really a half cell bounded at one side by the cathode. The coordinates 

for the entrance and exit of the ( | -f n)th cell are z = (n — l /2)A/2 and 

z = (n + 1/2JA/2, respectively. See Fig. (1). 

It is convenient to introduce the following quantity 

o = u;i - kz + Qo = k J' f r-^j - l ] dz + <p0 • (2) 

Here 

7^i-"'-e=r • m 

As usual, ' is the electron's relativistic energy divided by the rest energy 

mc-, m being the electron mass. We have 

"T = -^-A[sin(<?) + s in (9 + 2A-j)] . (4) 

The rf acceleration in the cavity is completely determined by the pair of 

equations (2) and (4). We assume that electrons leave the cathode with no 

kinetic energy, thus 7 = 1 at z ~ 0. Equations (2) and (A) are often solved 

by neglecting the second term in Eq.(4). which represents the backward-

propagating wave ' 0 ' . Such an approximation is valid for electrons in long 

linear accelerators, where the effect of the reflected wave averages to zero 

In our present case, this approximation is not adequate. 



To obtain a more appropriate approximation, we first note that the inte

grand in Eq.(2) is significantly larger than zero only near the cathode surface 

where the electrons are still non-relativistic. In that region, Eq.(4) may also 

be replaced by 

d-, cE0 — = rsincio - (4.a) 
dz vac' 

From this, we obtain an approximate expression 7 for 7 

7 = l + 2as\n{<p0)kz , (5) 

where 
e£o 

(6) 2mc2k 

is a dimensionless parameter representing the strength of the accelerating 

field. With the use of (4-a), Eq.(2) can be integrated with the result 

^ = 0 1™A [ \ / 7 2 - 1 ~ (7 - 1)1 + <fe • 2a sin 0o L J 
(7) 

We now insert Eq.(7) into Eq.(4) and integrate the latter for a better ap

proximation of 7. In so doing, we neglect the variation of <p with :. The 

result is 

-/= 1 + a\kzsin0+-{coso-cos(p+ 2kz))\ . (8) 

The approximate solutions (7) and (8) of Eqs. (2) and (4) are compared 

with the exact solution in Figs. (2) and (3) for several cases with a = 1 

and different values of <?o- The agreement is good for 7 [Fig.(2)]. For <? [see 

Fig.(3)], the agreement is fair provided that Q0 is not too small. A better 

approximation to Q can be obtained by inserting Eq.(S), in which <p is given 



by Eq.(7), into Eq.(2), and integrating the latter. However, this cannot be 

done analytically, and we will not pursue this approach further in this paper. 

From Eq.(7), we see that the phase tj> has the asymptotic value 

<P — <P<=o = 7, ^ - 7 - + 0° • ( 9 ) 

2a sm ij>o 

We will show later that the transverse emittance is minimized when tj)^ is 

i r /2 . The initial phase <f>0 should then be chosen such that 

( | - « > o J s i n < p o = — • (10) 

2.2 R F Effects on Longitudinal Phase Space Distribution 

The spread in the phase Aif> is related to the spread of the longitudinal 

position by A<t> = — kAz. Therefore, particles with positive A<p are located 

in the trailing part of the electron bunch relative to those with negative A4>. 

The longitudinal phase-space is characterized by the pair (z,p7), where 

Vz = 01 (11) 

is the dimensionless longitudinal momentum. After acceleration, (3 x 1 so 

that Pz ss -j. 

From Eq.(9), we find the asymptotic bunch compression factor 

A<i^ _ t cos <fro 

Aoo 2 o s i n 2 p o 

Thus bunches will in general be compressed in length during the accelera

tion process. When 2asin 2<?o < cos <i>0, Eq.(12) predicts that the relative 

positions of particles in z will reverse. However, this reversal is a result of 



the approximation used in deriving Eq.(9), which becomes poor for small 

values of <t>o. A numerical solution does not show such a reversal. The rf 

effect on ( 0 , 7 ) phase space can be derived from Eq.(8), which we have seen 

[in Fig.(2)] to agree well with exact resul ts ' 6 ' . First, we consider the phase-

space distribution at the end of the (n + l /2 ) th cavity, where z = (2n + l )A/4 

and thus 

7 = l + a [ ( n + l / 2 ) j r s i n 0 + cos0] . (13) 

As remarked earlier, we are interested in <j& when it is about TT/2. The shape 

of the <p — 7 distribution would look like Fig.(4a) when the second term 

in Eq.(13) is dominant, while it would look like Fig. (4b) when the first 

term is dominant. In the middle of the (n + l / 2 ) t h cavity, z = nA/2, so 

Eq.(8) becomes 7 = 7rn a s i n 0 + l . Thus the phase space distribution around 

<j> = jr/2 will always look like Fig.(4b). 

We write 

p.. = (p) + Apz, z-=(z) + Az , (14) 

where {pz) and (z) are the average values of p and 2, respectively. The 

longitudinal emittance e. will be defined a s ' ' ' 

«, = v / ( (Ap , ) ' ) { (Az) '> - ( A ^ ( A r ) » = i , /<(A;>^)<(A<»p) - < A ^ < A ^ 

(15) 

where the angular brackets represent taking the average values. 

We assume that electrons are relativistic at the end of the (n + l / 2 ) th 

cavity, thus p can be replaced by 7 in Eq.(15). From Eq.(13) we obtain 

(7) + A 7 = l + c [ ( n + l/2)-5in({c.) + A0) + cos((p> + A<?)] . (16) 
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Setting {</>) = 90° to minimize the transverse emittance(see Section 3), we 

obtain by expanding Eq. (16) 

A 7 = - a A ^ - i ( 7 / - l ) ( A 0 ) 2 + | ( A 0 ) 3 + --- , (17) 

where 7/ is the value of (7} at the cavity exit. Introducing the rms quantities 

a A , = < (A 7 ) 2 ) 1 / 2 , a* = kaz = {{A4>)2y'\ 

we obtain from Eq. (17) 

o&y = aoj, = akaz . (18) 

Inserting Eq.(17) into Eq.(15) (Ap a A7), we obtain ez in the lowest order 

in A<£ 

& = j;(v-i)y/iMm±W) • (19) 

The superscript rf refers to the contribution of the time variation of the rf 

field. There is also a contribution from the space-charge effects, which will 

be considered later. The terms involving the first and the third terms in 

Eq.(17) cancel and do not appear in Eq.(19). For a Gaussian distribution, 

Eq.(19) becomes 

irJ = \/3(7/- l)tX? (20) 

3 R F Effects in Transverse Phase Space 

Let the longitudinal electric field E, be a function of only ^ and t and be in

dependent of the transverse coordinates r (radius) and 9 (angle). Assuming 

that the fields are independent of 6, we determine from Maxwell's equations 
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that<5> 

E- = -T2iLE->™AcB° = hirtE'- • w 
The radial force acting on an electron is given by 

Fr = e(ET - PcBs) . (22) 

We now assume that Ez is given by the somewhat more general expression 

than Eq.(l) 

E2 = E(z) cos kz sin (ut + $0) • (23) 

One can show from the above equations that 

Fr = eri -——(E(z) sink zcos(ut + 4>o)) - r ( -T-E{Z)\ coskzs\n(ut + <j>o) 

+ ^(—E(z))sinkzcos(ut + 4>0)\ . (24) 

The equation describing the radial motion is 

t = iLF- • (25) 

at TTIC 

Here pr is the dimensionless radial momentum 

We integrate Eq.(25) with respect to t to obtain p r . In doing so, we assume 

that the transverse deflection is small so that the radius r can be regarded 

as constant. Since the first term in Eq.(25) [with Fr given by Eq.(24)J is a 

total time derivative of an expression that vanishes on the cathode surface 

and at the outside of the cavity exit, its integral vanishes. The contribution 

of the second and third terms comes only from the region where dE{z)jdz is 
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non-vanishing, i.e, near the cavity exit. Thus the net momentum transfer in 

our approximation occurs only during the short interval that the elections 

cross the boundary between the cavity and the field-free region. We take 

E(z) to be of the form 

E(z) = e(zf-z)£0 , (2?) 

where 0 is the step function and z = Zj is the coordinate of the exit of the 

cavity. Thus, the second and third terms in Eq.(24) become delta functions 

and one obtains 

Vr — Pr 0 + akr [/3 cos kzj sin(ui + $o) ~ sin kzj cos(wi + ipo;j, (28) 

where a was introduced in Eq.(6). In the following, we assume <3T — 0 at 

t — 0, thus dropping the first term of Eq.(2S). Since 0 » 1 near the cav;.ty 

exit, Eq.(28) becomes 

pr ••= crfcrsin<J . (23^ 

Here Q is the rf phase at the exit of the cavity. Rewriting Eq.(29) in cartesian 

coordinates, we obtain 

p x = 0-yx' = (aks\n<i>)x , '30) 

where x' = dx/dz. The phase-space distribution given by Eq.(30) therefore 

consists of a collection of lines with different slopes corresponding to different 

6, as illustrated ii Fig.(5). 

The normalized transverse emittance i s ' 7 ' 

£x = V V ) M " <Px*>2 . (31) 
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From Eqs.(30) and (31) we obtain 

t'J = ak{x2)s](sm2 <?) - (sm(?)2 . (32) 

Writing <p = {<*>) + £<?, and assuming that A0 is small and symmetrically 

distributed, one obtains 

ej = akiz*)^ ((A^)2) - i((A9)4>J «**(«> + i[«A<&)") - ((A^>2]sin2(^> 

This expression is minimized when {<•>) = 90° with the value 

2 
Cj = a k ^ y/{(*W) - «A*)»)» ; {<?) = 90° (33) 

Away from the minimum, we have 

tj ~ ak{x2)J((A<p)*) | cos(0) | ; (*) # 90° . (34) 

If the distribution in A<j> is Gaussian, Eq.(33) becomes 

4 ' » ^ , (*> = 90° (35) 

In view of Eqs. (29) and (30), the transverse momentum is maximum when 

(o) = 90°. i.e., when the emittance is minimum. The rms angular divergence 

<T_> is in that case given by 

a,, = -kax . (36) 

Thus it usually will be necessary to focus the beam immediately after leaving 

the cavitv. 
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4 Space Charge Effects on Beam Emittance 
4.1 General charge distribution 

A repulsive force attributable to space charge causes the emittance to in

crease. To study this effect, we assume that all electrons are moving with 

the same velocity, u, in the z-direction. In the reference frame moving with 

the electrons, the electromagnetic interaction is completely described by a 

purely electrostatic field E'. The field components in the laboratory frame 

which give rise to the x- and z-components of the force are given by the 

Lorentz transformation 

Ex = -,EX, By = f^E'x , Ez = K 

Here, By is the magnetic field. The components of the force are 

Fx = e(Et-vBy) = ~E'x , Fz = eE'z . (37) 

In the following, we assume the charge distribution to be cylindrically sym

metric, so ihat we do not need to consider Fy separately. 

Let us now consider the behavior of F as 7 -becomes large. The field E' 

is a function of 7 since the bunch dimensions in the moving frame, d'x in the 

transverse direction and d', in the longitudinal direction, are related to the 

corresponding bunch dimensions in the laboratory frame dx and d. by 

d'x = dx , d'z = -,dz ; (38) 

that is, the bunch in the moving frame appears to be elongated by a factor 

7. In Appendix A, we have summarized the behavior of the electric field of 
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a general, stationary charge distribution in the limits when the aspect rat io 

A! = d'xjd'z becomes either much smaller or much larger than unity. When 

7 is much larger than the aspect ratio A in the laboratory frame, A' = A/j 

becomes small. From Eqs. (A. l ) and (38) it then follows, for a typical point 

within the charge distribution, 

E'x ~ 0 ( 7 " ' ) , E'z ~ 0 ( 7 ~ 2 ) for 7 > A . 

Here / ~ 0 ( 7 " ) means that / scales as 7 " times some slowly varying function 

such as ( log7) '" . From these it follows that 

F ~ 0 ( 7 ~ 2 ) for 7 > A. (39) 

For cases where A is much larger than unity, we need to consider also the 

case 1 < 7 <S A. The aspect ratio in the moving frame A' is then much 

larger than unity, in which case we find from Eq. (A.2) tha t E'x and E'z 

are both 0 ( 1 ) . To summarize these behaviors, it is convenient to write 

F = ^ f ( 7 ) • (40) 

The function i(i) behaves as follows: 

f ( 7 ) ~ 0 ( l ) , 1> A , (41) 

A - 0 ( 7 ) and / , ( 7 ) ~ 0 ( 7 2 ) , 1 < 7 < A . (42) 

The contribution to the electron's dimensionless momentum due to the 

space-charge force is given by 

(p^p,, APz) = p = — fFdt = ~ f-Lf(7)dz . (43) 
771c J mc' J -f'3 
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Let us assume for the time being that A < 1. From Eq.(41), we see that f(7) 

is a slowly varying function of 7. Since the factor l/~t2P in the integrand 

decreases rapidly as the electron accelerates (7 increases from unity), the 

function f(7) may be replaced by f(l). Also, Eq.(4.a) may be used to replace 

the z-integration by a 7-integration. Thus we obtain 

p = ̂ k , ( 1 )fS • (44) 

The integration in the above can be done analytically as follows 

pi d-y pi 1 1 f- . _! 1 

For 7/ > 1, the integral becomes jr/2. From Eqs. (37) and (40), we obtain 

f(l) = eE ' c where E 5 C is the electrostatic field due to the charge distribtion 

at rest in the laboratory frame. Thus we finally obtain 

1 * •„ . , -
£0 sin <j>a 2 

It is convenient to introduce the normalized field . 

(45) 

EK(x,y,Az) = -^- £(x,y,±z) . (46) 

Here ( I , J , A J ) is the position relative to the bunch center. The axial dis

tance of the bunch center to the cathode center is z. In the above, n0 is the 

line density at the bunch center, i.e.. 

"0 = / p(x,y,0)dxdy , 

where p(x,y,z) is the volume density of the charge distribution. The nor

malized field 6 has the dimension of an inverse length. From Eqs.(45), (46), 
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(15) and (31) we obtain 

., T 1 1 / Hi(A) ; i = x or z . (47) 
' 4 ak sin 4>o I A 

Here, a is the dimensionless rj strength parameter introduced in Eq.(6), 

/ is the peak current, IA = 4jreomc3/e = 17.000A known as the Alfven 

current, and 

iix{A) = yj(el)(xi)-{£x-xy , (48) 

n,(A) = \i(e2

z)(Az*) - (ez • Azy . (49) 

The dimensionless functions fiT(A) and ii2(A) will be referred to as the 

transverse and the longitudinal space-charge factors respectively. The an

gular brackets in the above represent (as usual) taking the average over the 

charge distribution. Thus, for example, 

(e2

z) = g Jp(z,y,Az)£l(x,y,Az)dxdydAz , 

where Q is the total charge in the bunch. 

The space-charge factors, being dimensionless, depend on the details of 

the charge distribution only through the dimensionless aspect ratio A. From 

Eqs.(A.l) and (46), it follows that 

£x.z ~ - j - O ( l ) , A - 0 . 

Thus, the space-charge factors can have at most a logarithmic singularity at 

A = 0: 

^ ( / 1 ) ~ 0 ( 1 ) , M - 4 ) ~ 0 ( l ) . (50) 
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The limiting behavior of fij{A) as A increases to infinity is as follows: 

r. I(A)~0(A- 1), n,(A) ~ 0(A'2), A-^oo . (51) 

In deriving Eq.(47), we have assumed that A < 1 so that the function 

f(7) is slowly varying in 7 for all 7 > 1. According to Eq.(42), when A > 1, 

the function f(7) in the region 1 < 7 < A does not vary slowly with 7. A 

proper analysis of the space-charge emittance in this case involves integrat

ing Eq.(43) exactly and evaluating emittances according to Eqs. (15) and 

(31). We have carried out such calculations and found that the result does 

not differ significantly from those obtained by the approximate calculations; 

the agreement was better than 50transverse emittance and better than a 

factor of two for the longitudinal emittances. We will therefore use the ap

proximate formula, Eq.(47), for all values of A. The derivation leading to 

Eq.(47), which is the main result of this section, is a refinement of a previ

ous calculation* 8 ' in that the variation of the electron energy in the cavity 

is correctly taken into account. 

4.2 Gaussian charge distribution 

We apply the general discussion in the above to the case where the charge 

density is given by 

pU-.j,,A_-) = p 0 e - l ^ i •: J , (52) 

where p 0 is the charge density at the bunch center, and ax {a.) is the rms 

beam size in the x (7.) direction. Using n 0 = 2-p 0<r^, we obtain for the 
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space-charge field'9' 

Here A is the aspect ratio 

A = ^ . (55) 

Inserting Eqs. (53) and (54) into Eqs. (48) and (49), we obtain 

rcc i-oo f 1 

^ ( A ) = 7„ d^L d c H[ ( i + c 1)(i + C2) + 2 + c 1 + c 2 p 

x [(i + a A*)(I + c>A») + 2 + (G + C2)A»]>/2 ) ( 5 6 ) 

Uo rfC(2 + 0 2 ( 2 + C4 2 ) 1 / 2 J 

' dCi / Ĉ2 
0 ^0 

Vo S Wo s ' l[(-4 2 + Ci)(-'l2 + C2) + 2A-' + (C1+C2)A2] 
_1 

'[(i + Ci)(l + C2)l :2 + (Ci + C2)] 3 / 2 K . M . ^ M . M ! , , , , , - M 3 / a } ( 5 7 > 

r /°° J "I2 

~L/o d f ( 2 ^ + 0(2 + C)3'?J 
In the limit .4 —> 0, /i r(.4) approaches the value 

^ o ) = ^ i o g r ^ a 2 ° 3 • 
and fj.2(A) diverges as (log.4)2. These behaviors are consistent with Eq.(50). 

Also, it is easy to verify that Eq.(51) is satisfied. 
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When Eq.(60) is evaluated numerically, the result can be approximated 

by the following simple expression 

^ ( A ) = 3 l 7 I • ( 5 8 ) 

Both fir{A) and fixa(A) are plotted in Fig.(6). 

Similarly, we plot in Fig.(7) the function p2(A). It can be approximated 

by 

» " l A ) = l + 4 . M + 2.9A*- ( 5 9 ) 

The calculation of the space-charge factors in the case where the charge 

is uniformly distributed in a cylinder is considered in Appendix B. 

5 Summary, Comparison and Concluding R e m a r k s 

5 . 1 S u m m a r y of t h e F o r m u l a s 

The paper can be summarized by recapitulating the main formulas as fol

lows: first, we have introduced the dimensionless parameter characterizing 

the rf field strength by 

2mc-k 

The expressions for various quantities at the exit of an (A •!- n J-cell are as 

follows: 

5.1.1 T h e p h a s e and e n e r g y of t h e e lec t ro" 1 

0 / = Oa + -r r — , (9) 
2a sin Co 

1!) 



7 = l + a [ ( n + l /2) j rs in0+cos^>] . (13) 

To minimize the transverse emittance and also to obtain maximum acceler

ation, one would normally choose tf>j = 90°. We assume that this is case in 

the following. Equation (9) determines the initial phase a>0. 

5.1.2 T h e rms energy spread <TA7 and the angular d ivergence 

<TA7 = akaz , (18) 

<JX> = — a k a r . (36) 
7 / 

Here ax and azjc are the rms width and length in time of the laser pulse. 

5.1.3 T h e e m i t t a n c e s due to the rf effect are 

^ / = v / 3(7 / - l )A- 2 <rf • (20) 

5.1.4 T h e e m i t t a n c e s due to the space-charge effect 

i = n^rffei' 1) • ( 4 7 ) 

4 ak sin<2>o 7.4 

Here 7.4 — 17000 Amp and 7 is the peak current. The transverse and the 

longitudinal space charge factors, \ix and / j . , are plotted in Figs. (6) and 

(7). 

The electron distribution is assumed to be Gaussian in the above. Ap

pendix B gives results relevant for a uniform distribution (a cylinder). 
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5.2 Comparison with Simulation 

We consider the ( j + l)-cell gun under construction at Brookhaven National 

Laboratory and compare the analysis of this paper with the numerical sim

ulation by McDonald ' 2 ' , hereafter referred to as KM. The gun parameters 

are 

eE0 = lOOA/V/m , A = 10.5cm. 

The dimensionless TJ strength a [Eq. (6)] corresponding to this case is 

a = 1.64. The optimum initial phase calculated from Eq.(9) by demanding 

that the final phase 4>j be 90° is <t>a = 71° as compared to <f>0 = 68° in KM. 

The final 7 calculated from Eq.(13) by setting n = 1, 4> = 90°, and the 

above value of a is 7/ = 8.7 as compared to 7/ = 9.2 in KM. 

The rms bunch length is a. = 0.6 mm or o$ = kas = 3.6 x 1 0 - 2 . From 

Eq.( lS) , the corresponding rms energy spread is CTE - mc-cr^-, = 30 keV 

as compared to OE = 17 keV in KM. 

The rms beam transverse size is ox = 35mm. From Eq.(36), we obtain 

the transverse angular divergence at the exit of the gun t o b e p r = akaT/-/ = 

40 mrad, which is in rough agreement with Fig.(4) in KM. 

The rf contribution to the transverse emittance from Eq.(35) is 1.1 mm-

mrad. as compared to 1.4 mm-mrad in KM (Table 1). The transverse space-

charge factor corresponding to the aspect ratio .4 = 3.5/0.6 ss 6 is, from Fig. 

(6), | i , ~ 4 x 1 0 - 2 . From Eq.(47) and using / = c x 1 nCj\pn as a 200.4, 

we obtain c " =4 mm-mrad. as compared to i" =6.2 mm-mrad obtained by 

KM. 

The longitudinal space-charge factor for .4 = 6 is about 0.01 from Fig. 
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(8). The quantity t'z

chf determined from Eq.(47) is about 1 X 1 0 - 5 cm. 

The longitudinal emittance due to the rf effect is about three times ' irger 

than the space-charge emittance. The total phase-space area is in ough 

agreement with the phase-space area indicated by Fig.(5) of KM. 

The agreement of our simple theory with the simulation calculation is 

encouraging. Further comparison is reported in reference (10). 

5 . 3 F u r t h e r R e m a r k s 

In this paper, we have developed an approximate but simple theory of elec

tron beam dynamics in laser-driven rf guns and derived formulas for various 

physically interesting quantities such as emittances. These formulas should 

be useful in selecting initial parameters for the design of the gun. 

There are several effects which are not taken into account in this sim

ple t reatment, such as field non-linearities, higher space harmonics, image-

charge effects, etc. The fact that the results of the simple theory agree 

reasonably well with those of detailed simulation suggests that those ef

fects are small. There are also contributions to the emittances from the 

photo-emission process at the cathode surface. These contributions, which 

are easy to incorporate into our expressions, are usually much smaller than 

those considered in this paper. 
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A P P E N D I C E S 

A Scaling Behavior of the Electrostatic Field for 
Limiting Charge Distribution 

In this Appendix, we derive the scaling behavior of the electric field at typ

ical points inside a stationary charge distribution. The transverse and the 

longitudinal dimensions of the charge distribution are denoted by d'xs.nd 

d'z , respectively. In the limit the aspect ratio A' = d'x/d'. (a thin, cigar-

shaped distribution) the transverse field E'x should be of the order (1/eo) X 

line density/d^ , while the longitudinal field E', should be of the order 

<3/eo/(longitudinal dimension) 2 . Thus 

E'z ~ - 0 (^ir) and E'. ~ 9-0 ( ~ V ) , A' - 0. (A. l ) 

In the other limit, where A — oo, (a thin pancake), E', is of the order 

(1/fn) X surface density while E'x ~ /(transverse dimension) 2 . Thus 

£ i ~ ^ 0 | - V ) and Ei ~ ^-0 I ~ ] , . 4 ' - c o . (A.2) 

In the above, 0(l/d'. ) for example is a quantity of order l/d'.2, except 

for a possible logarithmic factor such as ( log . - l ' ) m , m = an integer. 

B Formulas for Uniform Charge Distribution in 
a Cylinder 

The examples treated in the text are based on the Gaussian charge distri

bution. In this appendix, we list formulas for the case where the charge 

distribution is uniform in a cylinder of radius a and length L. 
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The relevant moments for the distribution are 

n2 I-2 J2 tT4 

(x2) = ̂ , ((**)') = L£-, ( (A^) = Li-. (B.I) 
Using these in Eqs. (19) and (33), we obtain 

4 ' - ^ a n d *-m<-"-1)k'L* ' ( B-2 ) 

2 i f (K- — z \ 
Sx(x,y,z)= / d<?coscilog , (B.3) 

na r Jo \K+ — z+ / 

£,(x,y,z) = - ^ f d$ {R-. - R+ + Jr2 + z\ - Jr2 + zl 
~a' Jo i v v 

{-rcos<p+ Jr2 + zl)(a- rcos<j> + R_)) 
+rcos<61og v \ . (B.4) 

( —rcos^ + v ' r 2 + z l ) ( a - r cos 04- R+) J 

Here r = \Jz2 + y2 and 

z ± = z±LJ2 i J ± = ,Jr2 + a2 - 2ra cos(6 + z | . (B.5) 

The transverse space charge factor calculated from Eqs. (B.3) and (48) 

is plotted in Fig.(B. l ) . The aspect ratio in this case is A = AjL\. It is 

about 1/-1 times that of the Gaussian case for all A except for .4 —• 0, 

where it vanishes rapidly. This is because the transverse space-charge field 

becomes linear in the limit .4 — 0. The longitudinal space-charge factor for 

the uniform charge distribution in the cylinder, calculated from Eqs. (B.4) 

and (49), is plotted in Fig.(B.'2). It is about as that of the Gaussian charge 

distribution for small A but decreases rapidly as .4 becomes large. Again, 

this is due *o the fact that the longitudinal space-charge field becomes linear 

in this limit. 



C Correlation Between the RF and the Space-
Charge Effects 

In the text , the contributions to the emittance of the rf effect and the 

space-charge effect were stated separately. When the magnitudes of these 

two contributions are comparable, the question arises as t o how these indi

vidual contributions should be combined to obtain the total emittance. It is 

tempting to argue that the rf and the space-charge effects are independent 

and therefore that the total emittance is simply effects are in fact correlated, 

and the total emittance cannot be separated into two independent parts . 

To see this for the transverse case, we write the tota* momentum px as 

where p'J and p* c are the transverse momentum due to the rf and space-

charge effects, respectively. The total emittance can then be writ ten as 

(: = \j(ilsT- + (i¥Y + i{tJ)WiJx- (C2) 

Here Jz is a dimensionless paramter characterizing the correlation given by 

Jr= - ^ { ( i W •*?)-(*-£'><* "*?)}• (C3) 

Since both p'J and p* are unique functions of the position variables. Jx in 

the above will not in general vanish. Using the explicit expressions, Eqs. 

(30) and (45). we find 

J r = - J - 7 7 7 7 - {(x-HxSr sin o ) - ( x 2 sin o)(zzx)\ (C.4) 
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Since <j> = {(p) + A<p = (4>) — kixz, we have, for example, 

{ s i n ^ i £ i ) = -Q I P(x,y,^z)sm({<p) - k&z)xEx(x,y,&z) dxdydAz (C.5) 

For {<j>) = 90°, Eq.(C.4) becomes 

„ < ( A 0 ) » ) ( x g , ) - ( x - e , ( A » ) « ) 

For the Gaussian distribution treated in Section 4.b, this becomes 

1 f°° 1 
J x = ^ M ) h d C ( 2 + o 2 ( 2 + ^ c ) 3 / 2 - ( C ' ? ) 

Figure (C . l ) gives a plot of Jx as a function of A. From the figure, we see 

that the correlation is significant and that 

0 < Jx < 1 . (C.8) 

From Eqs. (C.2) and (C.8) it follows that 

V ( f ? ) 2 + (f i c ) 2 < £ * < # + € » . (C.9) 

For the longitudinal case, we have expressions similar to Eqs. ( C . l ) , 

(C.2) and (C.3), except that x's are replaced by ^ 's . Using the expressions 

for p'.: and plc given respectively by Eqs. (17) and (-15), we obtain 

., = ok {(AzS:)((Az)<) - ( (A . - ) 3 ) ( (A*) 3 s . )} 
3 ( V - 1 ) ,< s U)v/(lA_-) ')UA-*F) ' ' 

For the Gaussian distribution considered in Section 4.b, this becomes 

^ = 3 ^ 7 ) ^ ' « C . l l , 



where 

1 f°° 1 
J , = MA)JO diV + Os/HW + o' ( C ' 1 2 ) 

From Fig. (C.2), we see that J, is large, being about unity for A < 1. 

However, the longitudinal correlation is small in general because of the factor 

o$ — hot in Eq. ( C . l l ) . 
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Figure Captions 

F i g . ( l ) Schematics of the RF laser gun 

F i g . (2) Evolution of 7 through the RF cavity for the cases a = 1.0, <j>o = 

70° (a) and a = 1.0, <po = 30° (b). The solid lines are the exact 

solutions, and the dotted lines are the approximate results obtained 

by inserting Eq.(7) into Eq.(8). 

F i g . (.3) Evolution of <p through the R F cavity for the cases a = 1.0, <j>o — 

70° (a) and a = 1.0, <j>o = 30° (b). The solid lines are the exact 

solutions, and the dotted lines are the approximate result given by 

Eq.(7). 

F i g . (4) Schematics showing distortion of the longitudinal phase space due 

to the R F field 

F i g . (5) Electron distribution in transverse phase space due to time-dependent 

focussing of the RF field 

F i g . (6) The transverse space-charge factor )ix(A). The dotted line is the 

approximation / i I a given by Eq.(61). 

F i g . (7) The longitudinal space-charge factor Hz{A) 

F i g . ( B . l ) The transverse space-charge factors pix(A) for uniform charge 

distribution in a cylinder 

F i g . (B.2) The longitudinal space-charge factors )J.Z{A) for uniform charge 

distribution in a cylinder 
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Fig. (C. 1) The transverse correlation factor JX{A) 

Fig. (C.2) The longitudinal correlation factor JZ{A) 
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