Computer Programs for Eddy-Current Defect Studies

Prepared by J. R. Pate, C. V. Dod

Oak Ridge National Laboratory

Prepared for
U.S. Nuclear Regulatory Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not Intended to be exhaustive.

Refcrenced documents avallable for inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, Inspection and Investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are avallable for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents avallable from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencles and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature Items, such as books, Journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are avallable for purchase from the organization sponsorifing the publication clted.

Single coples of NRC draft reports are avallable free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Coples of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are avallable there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, If they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the Uniled States Government. Neither the United States Govemment nor any agency thereof, or any of their employees, makes any warranty, expresed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Computer Programs for Eddy-Current Defect Studies

Manuscript Completed: March 1990
Date Published: June 1990

Prepared by
J. R. Pate, C. V. Dodd

Oak Ridge National Laboratory
Operated by Martin Marietta Energy Systems, Inc.
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Prepared for
Division of Engineering
Otlice of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, IX': 20555
NRC FIN B0417

THIS PAGE

WAS INTENTIONALLY LEFT BLANK

INTRODUCTION 1
PANCAKE COIL PROGRAMS 4
PCBLDF builds a magnitude and phase lookup file 8
PCDSF calculates magnitude and phase of DSF for lattice of points 17
PCDSFPLT generates a contour plot of magnitude of DSF 25
PCFIX converts raw data to normalized impedance change 31
PCAVZSCN calculates defect impedance change, average over depth 34
PCAVVSCN calculates defect impedance change, average over volume 45
PCGRAPH plots two sets of data on same graph 59
PCINV inverts scan of pancake coil data to get depth and volume 64
PCRTSCAN converts raw voltage readings to impedance change 69
REFLECTION COIL PROGRAMS 8.2
RFBLDF builds a lookup file of magnitude and phase of DSF 87
RFDSF calculates magnitude and phase of DSF for a lattice of points 98
RFDSFPLT generates a contour plot of magnitude of DSF 107
RFAVZSCN calculates defect voltage change, average over depth 113
RFGRAPH plots two sets of data on same graph 131
RFINV inverts scan of defect using reflection coil data 137
CIRCUMFERENTIAL BORESIDE COIL PROGRAMS 143
ABBORAR calculates defect impedance change for absolute coil 144
DBDSF calculates -DSF at lattice of points for differential coil 159
DBDSFPLT generates a contour plot from DBDSF data 167
DFBORAR calculates defect impedance change, average over depth 173
CIRCUMFERENTIAL ENCIRCLING COIL PROGRAMS 188
ABENCAR calculates impedance change for absolute coil 189
DFENCAR calculates defect impedance change, average over depth 202
SUBROUTINES 218
BESO(XJOR,R) 219
BESELI(Q1,RJ1) 220
BESI (X,XIZRO,XIONE) 22.1
BESK (X,XKZRO, XKONE) 223
BESSEL(XJ1,X,R) 224
CMDBES (X,Y,ZIOR,ZIOI ,ZKOR,ZKOI ,BIIR,BIII, BK1R, BKII) 226
GRID 235
IJBSSL(A, R1, R2,I,J) 236
KJBSSL(A,R1,R2,K,J) 239
PCLKUP (DEPTH, RHSMAG,LHSPHA) 243
RFLKUP (DEPTH,RHSMAG,LHSPHA) 245
Data File REF. DAT 247
REFERENCES 248

COMPUTER PROGRAMS FOR EDDY-CURRENT DEFECT STUDIES

J. R. Pate and C. V. Dodd

Abstract

Several computer programs to aid in the design of eddycurrent tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects.

INTRODUCTION

This report contains computer programs for a number of eddy-current probes applied to various test situations. The probes analyzed and presented here are the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Both absolute and differential probes are used for the last two cases. The programs are written to run in Ryan-McFarland Fortran, although some of them have been run using Microsoft Fortran and NDP Fortran with very little change. The programs have been run on PC-AT clones, using either an Intel 80286 or 80386 microprocessor. Grafmatic plotting software from Microcompatibles is used for the contour plots and also must be installed on the machines.

The purpose of these programs is to analyze the effects of defects in conductors for the design of eddy-current tests, probes, and instrumentation. We can use them first to calculate the changes in eddy-

[^0]current readings that various types of defects produce. The defects can be treated as point defects, as point defects averaged over the depth of the actual defects, or as point defects averaged over the volume of the defects. The effect of a defect can also be inverted so that the volume and depth of the defect can be calculated from the instrument readings. In addition, we can plot the "defect sensitivity factor" (DSF) for the various probes and designs. The DSF at a point in a conductor is proportional to the coil voltage produced by a point defect at that location.

The programs were written and used for the analysis of eddy-current steam generator problems of interest to the Nuclear Regulatory Commission (NRC). Experimental measurements have been made that verify the accuracy of these programs for the NRC problems. However, they are quite general and may be used for a wide number of different eddy-current problems that have similar geometries. The programs are relatively fast running and sufficiently accurate so that eddy-current design studies of specific problems can be run with a minimum investment of time and equipment.

The accuracy of the impedance or voltage calculations for the cases without the defects is on the order of 0.005%. This is more accurate than the coils and standards can be constructed. The accuracy of the impedance change produced by the defect depends in general on the size of the defect. In addition, several different methods for calculating the defect are given. The accuracy of the theory increases as the defect size decreases, but the experimental error increases. For the optimum defect size, the accuracy of the impedance change due to the defect is on the order of 20%. However, most of the problem of eddy-current steam generator inspection is the elimination of the effect of unwanted property variations on the defect measurements, and the theory and programs listed here are well suited to study this problem.

This report is divided into five sections, one for each of the four coil types used and a fifth for common subroutines. We have attempted to make the description of each program sufficient (except for the subroutines), but it will probably be necessary to refer to an earlier program discussion in some cases. We also have given the equations that the programs are evaluating, along with the program variables used, so that the reader can more easily modify the programs for other uses.

The defect theory is based on the model of M. L. Burrows, with a correction of the sign of the term. Burrows gave an expression for both a "current defect" and a "magnetic defect," which only occurs in ferromagnetic materials. While the theory and discussion do carry the terms for ferromagnetic materials, the programs are written for nonferromagnetic materials, with a relative permeability of unity. None of the equations for the "magnetic defect" are given. The equation' for the voltage $V_{2 d}$ induced in coil 2 by the perturbation of the eddy-current flow from coil 1 due to the presence of a defect is:

$$
\frac{V_{2 \mathrm{~d}}}{I_{1}}=-\left[\frac{3}{2} \sigma \omega^{2}\left(\frac{A_{2}}{I_{2}}\right)\left(\frac{A_{1}}{I_{1}}\right)\right] \times\left[\begin{array}{ll}
\operatorname{Vol} & \alpha_{22}
\end{array}\right]
$$

where I_{1} and I_{2} are the currents flowing in coil 1 and coil 2 , respectively, and A_{1} and A_{2} are the vector potentials at the defect due to the currents flowing in the coils. The term σ is the conductivity of the material, ω is the angular frequency, Vol is the volume of the defect and α_{22} is a shape and orientation factor for the defect. It is equal to unity for a spherical defect and assumed to be unity for all the other cases in this report.

The theory and equations are presented in this report only to aid in the explanation of the computer programs. A complete and rigorous derivation is left for other work. ${ }^{2-4}$

PANCAKE COIL PROGRAMS

The programs in this section perform various functions relating to the effect of a defect in a single conducting plate on the impedance of a pancake coil. Figure 1 shows a cutaway view of a pancake coil. In general, the shorter the coil, the greater its sensitivity to the property changes in the material. Thus, short flat coils shaped like a pancake, with a small relative inner diameter, are more sensitive to defects in the conductor. This is reasonable since the turns of wire are closer to the conductor than in a long narrow solenoid. However, the theory and programs work for any shape of coil and conductor with this geometry.

Fig. 1. Cutaway view of a pancake coil above a conducting plate.

Figure 2 shows a cross section of a pancake coil above a plate. The coil has been labeled with variables relating to its geometry which are common to all of the programs in this section. The coil is above a spherical defect, located at r and z with respect to the coil and the top surface of the plate, respectively.

The basic equations for the programs are presented below, with a detailed

Fig. 2. Cross section of a pancake coil above a conducting plate.
derivation given elsewhere. The impedance change due to a small spherical defect at r, z is:
$Z_{\mathrm{nd}}(r, z)=\frac{-3\left(\omega \mu \sigma, \bar{r}^{2}\right)}{2 \pi I_{\mathrm{air}}} \operatorname{Vol}_{\mathrm{n}}\left[\int_{0}^{\infty} \frac{J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\left(e^{-\alpha \ell_{1}} e^{-\alpha \ell_{2}}\right)^{2} F\left(\alpha, \alpha_{1}, z\right)}{\alpha^{3}} \mathrm{~d} \alpha\right]^{2}$
where $J\left(r_{2}, r_{1}\right)=\int_{\alpha r_{1}}^{q r_{2}} \mathrm{x} J_{1}(x) d \mathrm{x}$
and $\quad \alpha_{1}=\left(\alpha^{2}+j \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right)^{1 / 2}$

The term $I_{\text {air }}$ is related to the air inductance of the coil and is:
$I_{\mathrm{d} \mid r}=\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{2}, r_{1}\right)\right]^{2} 2\left[\alpha\left(\ell_{2}-\ell_{1}\right)+\exp \left(-\alpha \ell_{2}+\alpha \ell_{1}\right)-1\right] d \alpha$

The term $F(\alpha, \alpha, z)$ depends on the number of planar layers of conductors. For the simple case of a semi-infinite plane beneath the coil we have:

$$
\begin{equation*}
F\left(\alpha, \alpha_{1}, z\right)=\frac{\alpha e^{\alpha_{1} z}}{\alpha+\alpha_{1}} \tag{5}
\end{equation*}
$$

We can take the square root of both sides of the equation, multiply by a weighting factor $r J_{1}(a r)$, and integrate over the signal produced as we scan across the defect:

$$
\begin{aligned}
& \int_{0}^{\infty} r J_{1}(a r) \sqrt{-Z_{n d}(r, z)} d r= \\
& {\left[\frac{3 \omega \mu \sigma_{1} \bar{r}^{2}}{2 \pi I_{\mathrm{a} \mid r}} V o I_{\mathrm{n}}\right]_{0}^{1 / 2} \int_{0}^{\infty} r J_{1}(a r) d r \int_{0}^{\infty} \frac{J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\left(e^{-\alpha \ell_{1}}-e^{-\alpha \ell)}\right) F\left(\alpha, \alpha_{1}, z\right)}{\alpha^{3}} d \alpha(6)}
\end{aligned}
$$

We shall now use the Fourier-Bessel Integral, which is:
$f(a)=\int_{0}^{\infty} r J_{1}(a r) \int_{0}^{\infty} \alpha J_{1}(\alpha r) f(\alpha) d \alpha d r$
to simplify the above equation. The result is:
$\int_{0}^{\infty} r J_{1}(a r) \sqrt{-Z_{n d}(r, z)} d r=\left[\frac{3 \omega \mu \sigma, \bar{r}^{2}}{2 \pi I_{\mathrm{alI}}} \operatorname{Vol}_{n}\right]^{1 / 2} \frac{J\left(r_{2}, r_{1}\right)\left(e^{-a l_{1}}-e^{-a \ell_{2}} F\left(a, a_{1}, z\right)\right.}{a^{4}}(8)$
We now transpose the equation and simplify the terms using some definitions:
$\sqrt{\operatorname{Vol}_{n}} e^{a_{1} z}=C M_{0} e^{i \theta}$
where

$$
\begin{align*}
& C=\sqrt{\frac{2 \pi I_{\mathrm{a} 1 r}}{3 \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}}} \frac{a^{3}}{J\left(r_{2}, r_{1}\right)\left[\exp \left(-a \ell_{1}\right)-\exp \left(-a \ell_{2}\right)\right]} \tag{10}\\
& M_{0 .}=\operatorname{Mag}\left[\left(a+a_{1}\right) \int_{0}^{\infty} \sqrt{-Z_{n d}(r, z)} r J_{1}(a r) d r\right] \tag{11}
\end{align*}
$$

and
$\theta=$ Pha $\left[\left(a+a_{1}\right) \int_{0}^{\infty} \sqrt{-Z_{n d}(r, z)} r J_{1}(a r) d r\right]$

Then the defect depth and volume can be calculated from the magnitude and phase shift of the expression and the real and imaginary parts of a_{1}, which we will call x and y.

Thus $\quad z=\theta / y$
and $\quad \operatorname{Vol}_{\mathrm{n}}=\left[C M_{0} \exp (-x \theta / y)\right]^{2}$
For the simple case of the pancake coil above the semi-infinite conducting plate, we are able to directly invert the defect signal for a spherical defect and obtain the volume and depth of the defect. However, the equations become more messy for the case of a plate of thickness c. We generate functions that cannot be solved directly so we must use a lookup table. The program PCBLDF is used for this purpose and is discussed below.

PCBLDF builds a magnitude and phase lookup file

Program PCBLDF builds a lookup file containing the magnitude and phase of the following integral

$$
\begin{align*}
& \int_{0}^{\infty} \frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right] \cdot\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right] \\
& {\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha\left(\alpha_{1}-\alpha\right) \exp \left(-\alpha_{1} z\right)}{-(\alpha-\alpha)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp (2 \alpha, c)}\right] d \alpha} \tag{15}
\end{align*}
$$

at different depths z in a conducting plate. This is similar to the equation that we had for the semi-infinite plate except the term for $F\left(\alpha, \alpha_{1}, z\right)$ has been replaced by the term in the final set of large brackets. We have replaced the semi-infinite plate with a plate of thickness c. Also, we have used a weighting term so that the data used for the inversion are concentrated near the coil windings. This allows us to use data that have a higher signal-to-noise ratio. The weighting function is unity over the dimensions of the coil, from r_{1} to r_{2}, and zero elsewhere. The result of this particular choice is that the function $J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)$ is produced.

This lookup file can be used by programs PCINV and PCRTSCAN to calculate the depth and volume of defects in the plate.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Select a value for the depth in the plate at which to calculate the integral.
4. Calculate the integral.
5. Store the depth along with the magnitude and phase of the integral at this depth.
6. Loop to 3 until the calculations have been done at points all the way through the plate.

Variables

Starred variables must be assigned by the user.
AIRIND \quad The inductance in henries of the coil in air.

FREQ ${ }^{\text {* }}$	The operating frequency in he
L^{*}	The length of the coil. The value is input in inches and normalized by the program.
L. ${ }^{*}$	The lift-off of the coil. The value is input in inches and normalized by the program.
L2	The normalized distance between the top of the coil and the plate. This value is computed by the program.
LOD*	The number of the I/o unit connected to the output data file.
LOU	The number of the I / O undt connected to the printer.
MZT*	The number of depths throughout the plate at which the program does the caliculations.
NS	The side of the plate which is nearer to the point at which the integral. is being calculated. If NS $=1$, the point is closer to the near side; if NS $=2$, the point is closer to the far side.
NZT ${ }^{\text {P }}$	The number of parts into which each defect is divided to perform the calculations.
R1*	The inner radius of the coil. The value is input in inches and normalized by the program.
R2'	The outer radius of the coil.. The value is input in inches and normalized by: the program.
R3	The mean radius of the coiil in inches.
RHSMAG	The magnitude of the integral at a certain depth in the plate.
RHSPHA	The phase in degrees of the integral at a certain depth in the plate.
RHO1 ${ }^{\text { }}$	The electrical resistivity of the plate in $\mu \Omega$ -
T1*	The thickness of the plate'. The value is input in inches and normalized by the program.
TRN*	The number of turns in the coiil..
U1 ${ }^{\circ}$	The relative magnetic permeabiliity of the plate.
WUSRR	The product of the angular frequency, the magnetic permeability, the electrical conductivity, and the square of the mean coil radius.
2D	The normalized distance from the side of the plate where the defect is located to the bottom of the defect. A negative number:.
ZD2	The normalized distance from the near side of the plate to the center of the defect. A negative number.
ZMSTEP	The normalized axial distance between the depths at which the program does the calculations.

Notes

1. Program PCBLDF assists program PCINV/ in the inversion process. The programs use the equation

$$
\begin{align*}
& \int_{r_{1}}^{r_{2}}\left[-Z_{\mathrm{nd}}(r, z)\right]^{1 / 2} d r= \tag{16}\\
& {\left[\frac{3 \omega \mu \sigma, \bar{r}^{2} V o 1_{\mathrm{n}} \alpha_{22}}{2 \pi I_{\mathrm{air}}}\right]^{1 / 2}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}} \cdot J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\right.} \\
& \left.\quad\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right]\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha\left(\alpha_{1}-\alpha\right) \exp \left(-\alpha_{1} z\right)}{-\left(\alpha-\alpha_{1}\right)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp \left(2 \alpha_{1} c\right)}\right] d \alpha\right]
\end{align*}
$$

Program PCBLDF calculates the integral on the righthand side of this equation. It is clear that since $V o l_{n}$, the defect volume, can be factored out of the right side of the equation, it has no effect on the phase of the right side of the equation. Therefore, the phase depends only upon z, the depth of the defect. So when program PCINV calculates the integral on the left-hand side, it obtains a value for the phase of this integral, and it can search the table built by program PCBLDF until it finds this phase. The depth in the table corresponding to this phase is the depth of the defect. Then, knowing the magnitude of both integrals (the magnitude of the integral on the right was calculated and stored in the file by program PCBLDF, and the magnitude of the integral was previously calculated by program PCINV), program PCINV can solve for the volume of the defect.

Integration Section of Program PCBLDF

Symbol definitions

The following are definitions of the symbols used to describe the program variables appearing in the integration section of this program. All lengths are normalized unless otherwise noted.

α	Integration variable
α_{1}	$\left(\alpha^{2}+j \omega \mu \sigma, \bar{r}^{2}\right)^{1 / 2}$
c	Plate thickness
$J\left(x_{2}, x_{1}\right)$	Integral of $\mathrm{x} J_{1}(x)$ with respect to x from $\alpha \mathrm{x}_{1}$ to $\alpha \mathrm{x}_{2}$
$J_{0}(x)$	Bessel function of the first kind of order 0
$J_{1}(x)$	Bessel function of the first kind of order 1
ℓ	Length of coill
$\ell 1$	Lift-off of coil
ℓ_{2}	Distance from top of coil to plate
μ	Relative magnetic permeability of plate
\underline{r}	Coil-to-defect radial distance
$\overline{\mathrm{r}}$	Mean radius of coil in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
σ,	Conductivity of plate
ω	Angular frequency at which circuit is driven
z	Depth to center of defect

Variables appearing in the integration section

Program variable	Symbolic equivalent
AN	α AN2
α^{2}	

AN4 α^{4}

ANJR1 $J\left(r_{1}, 0\right) / \alpha^{3}$
ANJR2 $\quad J\left(r_{2}, 0\right) / \alpha^{3}$
ANR1 αr_{1}
ANR2 $\quad \alpha r_{2}$

ARHSI
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\right.$

$$
\left.\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right]\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha\left(\alpha_{1}-\alpha\right) \exp \left(-\alpha_{1} z\right)}{-\left(\alpha-\alpha_{1}\right)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp \left(2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

ARHSR
$\operatorname{Re}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\right.$

$$
\left.\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right]\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha\left(\alpha_{1}-\alpha\right) \exp \left(-\alpha_{1} z\right)}{-\left(\alpha-\alpha_{1}\right)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp (2 \alpha, c)}\right] \mathrm{d} \alpha\right]
$$

ASTP
DCOYNT1
DCOYNZ
DEXNT1
DEXNZ
DNI
DNR
DSIYNT1
DSIYNZ

FI

FR
J01mj02
JOR1
JOR2
JANR21
NMI
NMII
NMI2
NMR
NMR1 $1 \quad \operatorname{Re}[\alpha(\alpha,+\alpha) \exp (2 \alpha, c) \exp (\alpha, z)]$
NMR2 $\operatorname{Re}\left[\alpha\left(\alpha_{1}-\alpha\right) \exp \left(-\alpha_{1} z\right)\right]$
RDEXNZ

RFAC
$\exp [\operatorname{Re}(-\alpha, z)]$
$\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right] \mathrm{d} \alpha$

RHSI

$$
\operatorname{Im}\left[\frac{1}{\alpha^{3}} \cdot T\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\right.
$$

$$
\left.\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right]\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha(\alpha,-\alpha) \exp \left(-\alpha_{1} z\right)}{-\left(\alpha-\alpha_{1}\right)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp (2 \alpha, c)}\right] d \alpha\right]
$$

RHSR

$$
\operatorname{Re}\left[\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left[\frac{J_{0}\left(\alpha r_{1}\right)-J_{0}\left(\alpha r_{2}\right)}{\alpha}\right]\right.
$$

$$
\left.\left[\exp \left(-\alpha \ell_{1}\right)-\exp \left(-\alpha \ell_{2}\right)\right]\left[\frac{\alpha\left(\alpha_{1}+\alpha\right) \exp \left(\alpha_{1}(2 c+z)\right)+\alpha\left(\alpha_{1}-\alpha\right) \exp (-\alpha, z)}{-\left(\alpha-\alpha_{1}\right)^{2}+\left(\alpha_{1}+\alpha\right)^{2} \exp \left(2 \alpha_{1} c\right)}\right] \cdot \mathrm{d} \alpha\right]
$$

SMAIR	$\int_{0}^{\infty} \frac{2(\alpha \ell+\exp (-\alpha \ell)-1)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}} \mathrm{~d} \alpha$
WUSRR2	$\left(\omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right)^{2}$
XN	$\operatorname{Re}\left[\alpha_{1}\right]$
YN	$\operatorname{Im}\left[\alpha_{1}\right]$

Notes for the integration section

I1. The program has been tested and found to be accurate enough with a step size of 0.01 and with the upper limit of the integration equal to 50.

Listing

```
    PROGRAM PCBLDF
C November 14, 1988
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 L,L1,L2,JANR21,LHSPHA
    REAL*8 NMR1A,NMR1B,NMR1,NMR2,NMR
    REAL*8 NMI1A,NMI1B,NMI1,NMI2,NMI
    REAL*8 JOR1,JOR2,J01MJ02
    DATA LOU/8/,LOD/40/,PI/3.141592653/
    DATA FREQ/500./,RHO1/4.054/,U1/1.0/
    DATA TRN/800./,T1/0.25/,ASTP/0.01/
    DATA AIRIND/6.252919E-03/,MZT/25/,NZT/1/
C TIME AND DATE ARE PRINTED
    CALL GETTIM(IHR,IMN,ISE,IFR)
    CALL GETDAT(IYR,IMO,IDA)
    IYR=IYR-1900
    WRITE (LOU , 2) IHR, IMN, ISE,IMO, IDA, IYR
    2 FORMAT(' PCBLDF TIME ',I2,':',I2,':',I2
    *,' DATE ',I2,'/',I2,'/',I2)
        WRITE(LOU,5)
    5 FORMAT(6X,'IN RAD',4X,'OT RAD',4X,'LENGTH',4X,'LIF OFF'
    *,3X,'CLADTH')
        R1=0.1000
        R2=0.4100
        L=0.1000
        L1=0.01
        R}3=0.5*(\mp@subsup{R}{}{\prime}1+R2
        WRITE(LOU , 10)R1,R2,L,L1,T1
        R1=R'1/R3
        R2=2.0-R1
        L=L/R3
        L1=L1/R3
        T1=T1/R3
        L2=L+L1
        WUSRR=0.5093979*U1*R 3*R 3*FREQ/RHO1
        WRITE(LOU,15)R1,R2,L,L1,T1
        10 FORMAT('ACT ',5(F7.4,3X))
        15: FORMAT('NOR ',5(F7.4,3X))
            WRITE(LOU , 20)R3, FREQ, RHO1,U1, WUSRR
        20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
        *' PERM=',F7.3,' WUSRR=',F9.4)
        SMAIR=AIRIND*(L*(R2-R1))**2/(0.0254*4.E-07*TRN*TRN*R3*PI*PI)
c:
    WUSRR2=WUSRR*WUSRR
    ZMSTEP=T1/MZT
    DO 1200 MZ=0,MZT
    IF(MZ.GT.(0.5*MZT)) THEN
C F'ar side defect
    NS=2
    ZM=(MZT-MZ)*ZMSTEP
```

```
    ZD=-2.*ZM
    ZD2=-MZ*ZMSTEP
    ELSE
C Near side defect
    NS=1
    ZM=MZ*ZMSTEP
    ZD=-2.*ZM
    ZD2=-2M
    END IF
        NZT=20
    ARHSR=0.
    ARHSI=0.
    DO 1180 NZ=1,NZT
    Z=(REAL(NZ)-0.5)*ZD/NZT
    IF(NS.EQ.2)Z=-T1-Z
    C Z=-T1-(FLOAT(NZ)-0.5)*ZD/FLOAT(NZT)
    SRHSR=0.
    SRHSI=0.
    AN=0.
    DO 1150 K=1,5000
    AN=AN+ASTP
    AN2=AN*AN
    AN4=AN2*AN2
    C WRITE (0,37)K,AN
    37 FORMAT(I3,F8.2,F8.2,F8.2)
    XN=DSQRT (0.5*(AN2+DSQRT(AN4+WUSRR2)))
    YN=WUSRR/(2.*XN)
    C Definitions of often-used quantities
        DEXNT1=DEXP (2*XN*T1)
        DEXNZ=DEXP(XN*Z)
        RDEXNZ=1/DEXNZ
        DSIYNT1=DSIN(2*YN*T1)
        DSIYNZ=DSIN(YN*Z)
        DCOYNT1=DCOS (2*YN*T1)
        DCOYNZ=DCOS (YN*Z)
    C Real part of the first term of the numerator.
        NMR1A=AN* (XNIAN)*DEXNT1*DCOYNT1
        NMR1A=NMR1A -AN*YN*DEXNT1*DSIYNT1
        NMR1A=NMR1A*DEXNZ*DCOYNZ
        NMR1B=AN*YN*DEXNT1*DCOYNT1
        NMR1B=NMR1B+AN*(XN+AN})*DEXNT1*DSIYNT1
        NMR1B=NMR1B*DEXNZ*DSIYNZ
        NMR1=NMR1A -NMR1B
C Imaginary part of the first term of the numerator.
    NMI1A=AN*YN*DEXNT1*DCOYNT1
    NMLIA=NMIIA +AN*(XN+AN})*DEXNT1*DSIYNT1
    NMI1A=NMIIA*DEXNZ*DCOYNZ
    NMI1B=AN* (XN+AN})*DEXNT1*DCOYNT1
    NMI1B=NMIIB-AN*YN*DEXNT1 *DSIYNT1
    NMI1B=NMI1B*DEXNZ*DSIYNZ
    NMI1=NMIIA+NMIIB
```

C Real part of the second term of the numerator. NMR $2=A N *(X N-A N) * R D E X N Z * D C O Y N Z$ NMR2 $=$ NMR $2+\mathrm{AN} *$ YN $*$ RDEXNZ $2 *$ DSIYNZ
C Imaginary part of the second term of the numerator. NMI $2=A N * Y N * R D E X N Z * D C O Y N Z$ NMI $2=$ NMI $2-\mathrm{AN} *(\mathrm{XN}-\mathrm{AN}) * \mathrm{RDEXNZ} * \mathrm{DSIYNZ}$
C Real part of the denominator. $\mathrm{DNR}=-(\mathrm{AN}-\mathrm{XN}) *(\mathrm{AN}-\mathrm{XN})+\mathrm{YN} * \mathrm{YN}$ $\mathrm{DNR}=\mathrm{DNR}+\mathrm{DEXNT} 1 *((\mathrm{XN}+\mathrm{AN}) *(\mathrm{XN}+\mathrm{AN})-(\mathrm{YN} * \mathrm{YN})) * \mathrm{DCOYNT} 1$ DNR=DNR-DEXNT1*(2*YN* (XN+AN))*DSIYNT1
C Imaginary part of the denominator. DNI $=2 * \mathrm{YN} *(\mathrm{AN}-\mathrm{XN})$
DNI $=$ DNI + DEXNT $1 *(2 *(\mathrm{XN}+\mathrm{AN}) * \mathrm{YN}) *$ DCOYNT1
DNI $=$ DNI + DEXNT1* $((X N+A N) *(X N+A N)-Y N * Y N) * D S I Y N T 1$
C
NMR $=$ NMR1 + NMR2
$\mathrm{NMI}=\mathrm{NMI} 1+\mathrm{NMI} 2$
$\mathrm{FR}=(\mathrm{NMR} * \mathrm{DNR}+\mathrm{NMI} * \mathrm{DNI}) /(\mathrm{DNR} * \mathrm{DNR}+\mathrm{DNI} * \mathrm{DNI})$
$\mathrm{FI}=(\mathrm{NMI} * \mathrm{DNR}-\mathrm{NMR} * \mathrm{DNI}) /(\mathrm{DNR} * \mathrm{DNR}+\mathrm{DNI} * \mathrm{DNI})$
CALL BESSEL(ANJR2,AN,R2)
CALL BESSEL(ANJR1,AN,R1)
JANR21=ANJR2-ANJR1
ANR1=AN*R1
CALL BESO(JOR1,ANRI)
ANR2=AN*R2
CALL BESO(JOR2,ANR2)
J01MJ02=J0R1-JOR2
RFAC $=$ JANR $21 \times J 01$ MJ $02 *(\operatorname{DEXP}(-\operatorname{AN} * L 1)-\operatorname{DEXP}(-\operatorname{AN} * L 2)) *$ ASTP $/$ AN
RHSR=RFAC $*$ FR
RHSI $=$ RFAC $*$ FI
C $\operatorname{WRITE}(0,1149)$ AN , RHSR, RHSI
1149 FORMAT(F9.3,3X, D11.3,3X, D11.3)
SRHSR=SRHSR+RHSR
SRHSI=SRHSI+RHSI
1150 CONTINUE
ARHSR=ARHSR+SRHSR
ARHSI=ARHSI + SRHSI
1180 CONTINUE
ARHSR=ARHSR/NZT
ARHSI=ARHSI/NZT
RHSMAG=DSQRT (ARHSR*ARHSR+ARHSI*ARHSI)
RHS PHA=ATAN2 (ARHSI , ARHSR) $* 180 . /$ PI
TWRITE (LOD , 1205) ZD2, RHSMAG, RHSPHA
WRITE(LOU, 1205) ZD2, RHSMAG, RHSPHA
WRITE $(0,1205)$ ZD2 , RHSMAG , RHSPHA
1200 CONTINUE
1205 FORMAT(F6.3,1X, D11.3,1X,F7.2)
STOP
END

PCDSF calculates mag. and phase of DSF for lattice of points

Program PCDSF calculates the magnitude and phase of the defect sensitivity factor of a pancake coil at a lattice of points throughout a plate. It stores the calculations so that they can be plotted by program PCDSFPLT. In Fig. 3 we show a pancake coil above a conducting plate, with the plate divided into a lattice of points.

ORNL-DWG 90-8087

Fig. 3. Pancake coil with the conductor divided into a lattice of points.

The defect sensitivity factor for the pancake coil above a conducting plate at a point r, z in the plate is:
$\operatorname{DSF}(r, z)=\frac{-3\left(\omega \mu \sigma_{1} \vec{r}^{2}\right)}{2 \pi I_{\mathrm{a} \text { ir. }}}\left[\int_{0}^{\infty} \frac{J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\left(e^{-\alpha \ell_{1}} e^{-\alpha \ell_{2}}\right)^{2} F\left(\alpha, \alpha_{1}, z\right)}{\alpha^{3}} \mathrm{~d} \alpha\right]^{2}$
The various terms in the equation are explained in Eqs. (2), (3), (4), and (15). Since the points to be calculated are in a regular lattice, and the terms in the numerical integration are factorable, a considerable amount of computation time can be saved by performing the computations that vary
over the r dimension and the z dimension separately for each value of α. The values of the different factors that depend only on r or z are computed once and stored in an array. Then for the different locations the array values are multiplied and then summed to compute the integral. The output from this program is stored in the data file PCDSF.DAT.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Write the information about the coil and plate geometry to a file.
4. Do the parts of the integration which are independent of the position of the point.
5. Choose a value for the axial coordinate of the position of the point. Do the parts of the integration that depend only upon this coordinate.
6. Choose a value for the radial coordinate of the position of the point. Complete the integration for this point.
7. Loop to 6 until done.
8. Loop to 5 until done.
9. Write the results to a data file.

Variables

DELTAR ${ }^{\circ}$	The normalized radial distance between adjacent points at which the program calculates the defect sensitivity factor.
DELTAZ	The normalized axial distance between adjacent points at which the program calculates the defect sensitivity factor.
DSFI	The imaginary part of the defect sensitivity factor.
DSFM	The magnitude of the defect sensitivity factor.
DSFP	The phase in radians of the defect sensitivity factor.
DSFR	The real part of the defect sensitivity factor.
FREQ*	The operating frequency in hertz.
L°	The length of the coil. The value is input in inches and normalized by the program
L1 ${ }^{\circ}$	The lift-off of the coil. The value is input in inches and normalized by the program.
LOD ${ }^{\text {* }}$	The number of the I/O unit connected to the output data file.
LOU	The number of the I / O unit connected to the printer.
NRT*	The total number of points in the radial direction at which the defect sensitivity factor is to be calculated.
NZT ${ }^{\text { }}$	The total number of points in the axial direction at which the defect sensitivity factor is to be calculated.
$1{ }^{\circ}$	The inner radius of the coil. The value is input

R2	in inches and normalized by the program:
R3	The outer radius of the coil. The value is input
in inches and normalized by the program.	

Notes

1. The integration in this program is very similar to the integration in program PCAVZSCN. Program PCAVZSCN calculates the impedance change in a pancake coil due to a defect, but in order to do this, it must calculate the defect sensitivity factor. The main difference between the programs is that program PCDSF calculates the defect sensitivity factor at different depths in the plate while program PCAVZSCN calculates the average defect sensitivity factor over a range of depths.

Sample output

Output sent to printer:

PCDSF TIME		$7: 44: 26$	DATE $8 / 9 / 89$		
	IN RAD	OT RAD	LENGTH	LIFTOFF	CLADTH
ACT	0.1000	0.4250	0.0500	0.0100	0.2500
NOR	0.3810	1.6190	0.1905	0.0381	0.9524

RBAR $0.2625 \mathrm{FREQ}=6.000000 \mathrm{E}+02 \quad \mathrm{RHO}=4.0540 \quad \mathrm{PERM}=1.000 \quad \mathrm{WUSRR}=5.1950$
NORM IMPD:RL 0.190682 IM 0.777969 AIR IND $1.099840 \mathrm{E}-02$

Partial listing of output stored on PCDSF.DAT:
$40 \quad 40$
$0.05000 \quad 0.02442$
$0.38095 \quad 1.61905$
$0.19048 \quad 0.03810$
0.95238
$1 \quad 1 \quad 0.17513 \mathrm{D}-03 \quad 0.24106 \mathrm{D}+01$
$1 \quad 2 \quad 0.16525 \mathrm{D}-03 \quad 0.23596 \mathrm{D}+01$
$1 \quad 3 \quad 0.15496 \mathrm{D}-03 \quad 0.23083 \mathrm{D}+01$
$1 \quad 4 \quad 0.14450 \mathrm{D}-03 \quad 0.22563 \mathrm{D}+01$
$1 \quad 5 \quad 0.13407 \mathrm{D}-03 \quad 0.22037 \mathrm{D}+01$
$\begin{array}{llll}1 & 6 & 0.12385 \mathrm{D}-03 & 0.21504 \mathrm{D}+01\end{array}$

1	7	$0.11397 \mathrm{D}-03$	$0.20963 \mathrm{D}+01$
1	8	$0.10454 \mathrm{D}-03$	$0.20413 \mathrm{D}+01$
1	9	$0.95618 \mathrm{D}-04$	$0.19856 \mathrm{D}+01$
1	10	$0.87259 \mathrm{D}-04$	$0.19292 \mathrm{D}+01$

Listing

PROGRAM PCDSF
C VERSION November 16, 1988
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L, L1
DIMENSION S1 (6), S2(6), ERR(6), SMZDFR(100,40) , SMZDFI (100,40) , RJ (100)
DATA LOU/8/,PI/3.141592653/,LOD/39/
DATA S1/0.005,0.02,0.05,0.1,0.5,2./
DATA $\mathrm{S} 2 / 1.0,2.0,5.0,10.0,50.0,200.0 /$
DATA ERR/0.1,0.01,0.001,1.E-4,1.E-5,1.E-6/
DATA FREQ/600./,RHO1/4.054/,U1/1.0/,NRT/40/,NZT/40/
DATA TRN/1000./,T1/0.250/,DELTAR/0.05/
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR,IMN,ISE,IFR)
CALL GETDAT(IYR,IMO,IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE, IMO, IDA, IYR
2 FORMAT('PCDSF TIME ',I2,':',I2,':',I2, *' DATE ', I2,'/', I2,'/', I2)
WRITE(LOU,5)
5 FORMAT(5X,'IN RAD',4X,'OT RAD',4X,'LENGTH',4X,'LIFTOFF'
*, 3X, 'CLADTH')
COIL P250A
$\mathrm{R} 1=0.100$
R2 $=0.425$
$\mathrm{L}=0.050$
$\mathrm{L}=0.01$
$\mathrm{R} 3=0.5 *(\mathrm{R} 1+\mathrm{R} 2)$
WRITE(LOU, 10)R1,R2,L,L1,T1
R1=R1/R3
$\mathrm{R} 2=2.0-\mathrm{R} 1$
$\mathrm{L}=\mathrm{L} / \mathrm{R} 3$
L1 $=\mathrm{L} 1 /$ R3
$\mathrm{T} 1=\mathrm{T} 1 / \mathrm{R} 3$
DELTAZ $=$ T1/(NZT-1)
WUSRR $=0.5093979 *$ U $1 * R 3 * R 3 \times$ FREQ $/$ RHO
C Open the file for input data for PCDSFPLT.
OPEN(LOD , FILE=' PCDSF. DAT' , STATUS='NEW')
WRITE(LOU, 15)R1, R2, L, L1, T1
WRITE (LOD, 16) NRT, NZT
WRITE(LOD, 17) DELTAR, DELTAZ
WRITE(LOD, 17)R1, R2
WRITE(LOD, 17)L, LI
WRITE(LOD, 18)T1
10 FORMAT('ACT ',5(F7.4,3X)).
15 FORMAT('NOR ',5(F7.4,3X))
16 FORMAT(I8,1X,I8).
17 FORMAT(F12.5,1X,F12.5)
18 FORMAT(F12.5)
WRITE(LOU, 20)R3, FREQ, RHO1, U1, WUSRR

```
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F9.4)
        SMAIR=0.0
        SMIMPR=0.0
    SMIMPI=0.0
    DO 25 NR=1,NRT
    DO 25 NZ=1,NZT
    SMZDFR(NR,NZ)=0.0
    25 SMZDFI(NR,NZ)=0.0
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
    30 RI9=SMAIR
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 95 I=1,ISTEPS
    X=X+Sl(JKL)
    CALL BESSEL(XJR2,X,R2)
    CALL BESSEL(XJR1,X,R1)
    XL=X*L
    IF(XL.GT.5.0E-3) GO TO 60
    Al=XL*XL* (0.5-XL/6.0)
    GO TO 80
    60 IF(XL.GT.75.0) GO TO 70
    A1=XL+DEXP(-XL)-1.0
    GO TO 80
    70 A1=XL-1.0
    80 CFAC=S1(JKL)*(XJR2-XJR1)*(XJR2-XJR1)
    SMAIR=SMAIR+CFAC*2.*A1
    IF(X*L1.GT.75.)GO TO 95
    XX=X*X
    X1=DSQRT(0.5*(XX+DSQRT(XX*XXX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/(2.*X1*U1*U1)
    A2=XL-A1
    A3=DEXP(-X*L1)
    APBR=(X+X1)*(X+X1)-Y1*Y1
    APBI=2.*Y1*(X+X1)
    AMBR=(X-X1)*(X-X1)-Y1*Y1
    AMBI=-2.*Y1*(X-X1)
    A2BR=0.0
    A2BI=-2.*X1*Y1
    ZNUR=A2BR
    ZNUI=A2BI
    DENR=APBR
    DENI=APBI
    DNCJ=DENR*DENR+DENI*DENI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
    DO }91\textrm{NZ}=1,\textrm{NZT
    FZD=-(NZ-1)*T1/(NZT-1)
    ZDR=X1*U1*FZD
```

```
    IF(ZDR.LT.-60.0)GO TO 93
    ZDI=Y1*U1*FZD
    XPDR=DEXP(ZDR)
    CSDI=DCOS(ZDI)*XPDR
    SNDI=DSIN(2DI)*XPDR
    XX1=X*X1+XX
    XY1=X*Y1
    X1X=X*X1-XX
    ZNDR=XX1*CSDI -XY1*SNDI
    ZNDI-XXI*SNDI+XY1*CSDI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*(2*TH+ZDEFECT))
    TZR=X1*U1*(2.*T1+FZD)
    IF(TZR.GT.60.)GO TO 87
    TZI=Y1*U1*(2.*T1 +FZD)
    XPZR=DEXP(-TZR)
    CSZI=DCOS(TZI)*XPZR
    SNZI=DSIN(TZI)*XPZR
    ZNDR=XX1*CSDI -XY1*SNDI+X1X*CSZI+XY1*SNZI
    ZNDI=XX1*SNDI +XY1*CSDI +XY1*CSZI-X1X*SNZI
C SECTION THAT MULTIPLIES BY DEXP(-ALPHAl* 2*CLADTH)
    TR=2.*X1*U1*T1
    IF(TR.GT.60.)GO TO }8
    TI=2.*Y1*U1*T1
    XPTR=DEXP(-TR)
    CSTI=DCOS(TI)*XPTR
    SNTI=DSIN(TI)*XPTR
    DENR=APBR-AMBR*CSTI-AMBI*SNTI
    DENI=APBI -AMBI*CSTI+AMBR*SNTI
    ZNUR=A2BR-A2BR*CSTI -A2BI*SNTI
    ZNUI=A2BI -A2BI*CSTI +A2BR*SNTI
    DNCJ=DENR*DENR+DENI*DENI
    87 ZDRL=(ZNDR*DENR+ZNDI*DENI)/DNCJ
    ZDIM=(DENR*ZNDI - ZNDR*DENI)/DNCJ
    DFAC=A2*A 3*S1(JKL)*(XJR2-XJR1)
C LOOP OVER THE R VARIATION FOR THE DEFECT
    DO YU NK=1,NRT
    IF(NZ.GT.1)GO TO }8
    RD=(FLOAT(NR) -.5)*DELTAR
    XRD=X*RD
    CALL BESEL1(XRD,RJ1)
    RJ (NR)=RJ1
    89 SMZDFR(NR,NZ)=SMZDFR(NR,NZ)+RJ (NR)*2DRL*DFAC
90 SMZDFI (NR,NZ)=SMZDFI (NR,NZ)+RJ (NR)*ZDIM*DFAC
9 1 ~ C O N T I N U E ~
93 ZRL=(ZNUR*DENR+ZNUI*DENI)/DNCJ
    ZIM=(DENR*ZNUI - ZNUR*DENI)/DNGJ
    SMIMPR=SMIMPR+A2*A2*A 3*A 3*ZRL*CFAC
    SMIMPI=SMIMPI +A 2*A 2*A 3*A 3*2IM*CFAC
95 CONTINUE
    B1=B2
    B2=B2+S2(JKL)
```

```
    CHECK=(SMAIR-RI9)/SMAIR
    IF(ABS (CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
    135 Q6=0.0254*4.0E-7*TRN*TRN*R3*PI*PI*SMAIR/(L*(R2-R1))**2.
    ZNIM=(SMIMPR+SMAIR)/SMAIR
    ZNRL=-SMIMPI/SMAIR
    WRITE(LOU,140)ZNRL, ZNIM,Q6
140 FORMAT(' NORM IMPD:RL',F10.6,' IM',F10.6,
    *' AIR IND',1PE13.6)
    DO 200 NR=1,NRT
    RD=(FLOAT (NR) -. 5)*DELTAR
    DO 220 NZ=1,NZT
    AVZDFR=SMZDFR(NR,NZ)
    AVZDFI=SMZDFI (NR,NZ)
    DSFR=-1.5*WUSRR*(AVZDFR*AVZDFR-AVZDFI*AVZDFI)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*2.0*AVZDFR*AVZDFI/(SMAIR*PI)
    DSFM=DSQRT (DSFR*DSFR+DSFI*DSFI)
    DSFP=DATAN2(DSFI,DSFR)
    WRITE(LOD , 221)NR,NZ,DSFM,ḊSFP
220 CONTINUE
221 FORMAT(I5, 2X, I5, 2X,D11.5, 2X,D11.5)
200 CONTINUE
1001 STOP 'JOB '
    END
```

PCDSFPLT generates a contour plot of magnitude of DSF

Program PCDSFPLT generates a contour plot of the magnitude of the defect sensitivity factor for a pancake coil using calculations performed and stored by program PCDSF. The cross section of the coil and the coil axis are also drawn on the plot with the same scale as the contours, to show their relative positions. Only a small change in the program is necessary to compute and plot contours of the phase of the defect sensitivity factor. There are two lines with the label 140, and one is commented out. With the first line in, the magnitude contours are plotted, and with the second line the phase contours are plotted. Both use the same data file from PCDSF.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Open the file created by program PCDSF.
4. Read in the information about the coil and the plate from the file. 5. Calculate the position of the data points in the normalized coordinate system.
5. Set the label flags for the contours.
6. Read the data stored by program PCDSF into array DSFMA.
7. Specify the values of the magnitude of the defect sensitivity factor where the contours are to be drawn.
8. Call the PRINTMATIC contour initialization routines.
9. Draw the contours.
10. Draw the coil and the plate.

Variables

Starred variables must be set by the user.
CNM ${ }^{\text {P }} \quad$ Array giving the values of the magnitude of the defect sensitivity factor at which contours are to be drawn.
DELTAR The normalized distance in the radial direction between adjacent data points.
DELTAZ The normalized distance in the axial direction between adjacent data points.
DSFMA Array containing the values of the magnitude of the defect sensitivity factor which were read in from the data file.
DSFMMAX The maximum value of the magnitude of the defect sensitivity factor.
DSFMMIN The minimum value of the magnitude of the defect sensitivity factor.
L The normalized length of the coil.
L1 The normalized lift-off of the coil.
LBM ${ }^{\circ}$ Array which tells the program which of the

	contours are to be labeled with their values. If all elements of LBM are zero, none of the contours
will be labeled.	

Notes

1. The coordinate system set up and used by this program has its origin at the intersection of the coil axis and the near side of the plate. One unit of distance in the coordinate system is equal to one mean radius of the driver coil.
2. The array DSFMA must be dimensioned to exactly NRT by NZT. Each time the value of NRT or NZT is changed in program PCDSF, the statement dimensioning the array in program PCDSFPLT must be changed also.
3. The statements in this program which seem to do nothing but write variables to the screen actually have a more important function. Due to a bug in either the PRINTMATIC routines or in RM/FORTRAN, the PRINTMATIC routine DLINE, which is supposed to draw a straight line, refuses to work. It was discovered by accident that putting a WRITE statement near the call to the routine corrects the problem.
4. Program PCDSFPLT does not actually send anything to the printer; it merely creates a file whose name is given by the program variable NAME. If the value of NAME is 'filename.ext', then to print the file created by program PCDSFPLT, enter

DPRINT filename.ext
DPRINT.EXE is a program supplied by PRINTMATIC. For this particular program the variable NAME is set to PCDSF.FIL, so to make a plot one would type:

DPRINT PCDSF.FIL

Sample output

An example of the contour plot of the magnitude of the defect sensitivity factor is shown in Fig. 4.

Fig. 4. Plot of the magnitude of the defect sensitivity factor.

Listing

PROGRAM PCDSFPLT
C VERSION November 16, 1988
C Program to generate a contour plot of the magnitude of the
C . defect sensitivity factor of a pancake coil.
CHARACTER*80 NAME
IMPLICIT REAL*4 (A-H,O-Z)
REAL*4 DSFMA $(40,40)$
REAL*4 XX(40), YY(40)
REAL*4 CNM(10), CNP(10)
REAL*4 L, L1
INTEGER*2 LBM(10)
INTEGER*2 I1, J1, I2, J2
DATA XSCALE/1.0/,NC/9/
DATA IDEF/2/, LOE/40/
C Open the file created by program PCDSF.
OPEN(LOE, FILE=' PCDSF.DAT', STATUS='OLD')
C Read in the coil information.
READ (LOE, *) NRT, NZT
READ(LOE, *)DELTAR, DELTAZ
READ (LOE, *)R1, R2 ${ }^{-}$
$\operatorname{READ}($ LOE,$*) \mathrm{L}, \mathrm{L} 1$
$\operatorname{READ}($ LOE,$*)$ T 1
C Calculate the position of the data points in the
C normalized coordinate system.
DO $110 \mathrm{I}=0$, (NRT-1)
$\mathrm{XX}(\mathrm{I}+1)=$ REAL $(\mathrm{I}) *$ DELTAR
110 CONTINUE
DO $120 \mathrm{I}=0$, (NZT-1)
$\mathrm{YY}(\mathrm{I}+1)=-((\mathrm{NZT}-\mathrm{I}-1) *$ DELTAZ $)$
120 CONTINUE
C Set the label flags for the contours.
DO $130 \mathrm{I}=1,10$
$\operatorname{LBM}(\mathrm{I})=0$
130 CONTINUE
C Read in the data stored by program PCDSF.
140 READ (LOE, *, END=150)NR, NZ, DSFM
c 140 READ (LOE, *, END=150)NR,NZ, DUM, DSFM
NZ $=$ NZT-NZ +1
IF (DSFM.GT.DSFMMAX) DSFMMAX=DSFM
IF (DSFMMIN.EQ.0:) DSFMMIN=DSFM
IF (DSFM.LT. DSFMMIN) DSFMMIN=DSFM
DSFMA (NR,NZ) =DSFM
GO TO 140
C Specify the values at which the contours are to be drawn.
150 VARMAG=DSFMMAX-DSFMMIN
CNTDIF=VARMAG/(NC+1)
DO $160 \mathrm{I}=1$, NC
CNM (I) $=$ DSFMMAX $-I *$ CNTDIF
160 CONTINUE
c
Draw the plate.
write ($0, *$) ${ }^{2} 2$
$\mathrm{Xl}=0$.
$\mathrm{Y} 1=0$.
CALL DRTOI (X1, Y1, I1, J1)
$\mathrm{X} 2=2$.
$\mathrm{Y} 2=-\mathrm{T} 1$
CALL DRTOI (X2, Y2, $12, \mathrm{~J} 2$)
write (0,*) j2
CALL DLINE (I1,J1,I2,J1)
write(0,*)j2
CALL DLINE (I1,J2, $12, \mathrm{~J} 2)$
write ($0, *$) ${ }^{2} 2$
C Draw the coil.
$\mathrm{X} 1=\mathrm{R} 1$
$\mathrm{Y} 1=\mathrm{L} 1$
CALL DRTOI (X1, Y1, I1, J1)
$\mathrm{X} 2=\mathrm{R} 2$
$\mathrm{Y} 2=\mathrm{L}+\mathrm{L} 1$
CALL DRTOI (X2,Y2,I2,J2)
write ($0, *$) J2
CALL DLINE(I1,J1,I2,J1)
CALL DLINE(I1,J2,12,J2)
CALL DLINE (I1, J1, I1, J2)
$\operatorname{WRITE}(0, *) \mathrm{I} 2, \mathrm{~J} 1, \mathrm{I} 2, \mathrm{~J} 2$
CALL DLINE (I2,J1, I2, J2)
$\operatorname{WRITE}(0, *) \mathrm{I} 2, \mathrm{~J} 1, \mathrm{I} 2, \mathrm{~J} 2$
C Draw the coil axis.
$\operatorname{WRITE}(0, *) I 1, J 1$
$\mathrm{X} 1=0$.
$\mathrm{Yl}=-\mathrm{Tl}$
CALL DRTOI (X1, Y1, I1, J1)
$\mathrm{X} 2=0$.
$\mathrm{Y} 2=0.6$
CALL DRTOI (X2, Y2, I2, J2)
WRITE($0, *$) I1, J1, I2, J2
CALL DDASH (I1, J1, I2 , J2, 1, 10, 10)
CALL DRTOT (-0.1.0.7,I1, J1)
CALL DFONT (4, 'COIL', I1, J1, 1)
CALL DRTOI ($-0.1,0.62, \mathrm{I} 1, \mathrm{~J} 1$)
CALL DFONT(4,'AXIS',I1,J1,1)

CALL DFINIS
write (0,*)j2
stop
END

PCFIX converts raw data to normalized impedance change

Program PCFIX converts raw pancake coil experimental data into the normalized impedance change in the pancake coil due to a defect. The raw data are read directly from voltmeters as the coil is moved over the surface of a plate by a program such as MIZSCN2. The voltmeters are connected to the vertical and horizontal channels of the Zetec MIZ-17. The MIZ-17 makes relative readings of the x and y components of the coil impedance. By comparing the measured change for a known amount of liftoff to the calculated change, both the phase (rotation) and gain of the signal are corrected. The values of the voltage readings with and without the lift-off must be measured and typed into the program.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Calculate the constant by which the raw readings must be multiplied to convert them to the values of the normalized impedance change in the coil.
4. Read in a data point.
5. Subtract the reading taken on a part of a plate with no defects from the raw reading.
6. Multiply the reading by the constant obtained in 3 .
7. Loop to 4 until done.
8. Average the readings taken on opposite sides of the defect.
9. Write out the results.

PD	in the raw reading due to additional lift-off. The difference between the phase of the calculated change in the normalized impedance and the phase of the change in the raw reading due to additional
lift-off.	

Notes

1. The raw readings taken directly from the voltmeters by a program such as MIZSCN2 differ from the normalized impedance change in the coil by both an additive and a multiplicative constant. To determine the additive constant, we need only take readings on a part of the plate with no defects. This reading is subtracted from the raw readings. To determine the multiplicative constant, we find both the calculated and the experimental changes in readings due to a certain amount of additional lift-off. All subsequent raw readings are then multiplied by the ratio of the calculated value to the measured value. This directly normalizes the readings, and includes any amplification factors in the instrument.
2. This program averages the readings which precede the defect with those which follow the defect. The defect signal is supposed to be symmetric about the center of the defect. Any asymmetry should be due to random noise or to changes in the plate which we are not interested in. Averaging the signal will reduce the effect that such changes have on our results.

Listing

```
    PROGRAM PCFIX
    VERSION November 21, 1988
C PROGRAM TO CONVERT RAW EXPERIMENTAL DATA TAKEN BY
C PANCAKE COILS INTO THE NORMALIZED IMPEDANCE CHANGE IN
C THE PANCAKE COIL DUE TO A DEFECT.
    DIMENSION VRA(250),VIA(250),ZMAG(250), ZPHA(250)
    REAL OFFSET
    REAL LOM,LOP,LOR,LOI
        DATA LOD/39/,LOE/38/
        DATA PI/3.141592653/
        DATA FREQ/500/
        DATA ZEROR/-7.6/,ZEROI/-2.2/
        DATA RLOR/-9.5/,RLOI/-0.5/,ZLOR/-7.77/,ZLOI/-2.14/
        DATA CLOM/0.020030/,CLOP/2.44/
        OPEN(LOE, FILE='AARAWN2.DAT',STATUS='OLD')
        OPEN(LOD,FILE='AAEXPN2.DAT',STATUS='NEW')
        LOR=RLOR-ZLOR
        LOI=RLOI - ZLOI
        I=1
        11 READ(LOE,*,END=30)X,VRA(I),VIA(I)
C WRITE(0,*)VRA(I),VIA(I)
    I=I+1
    GOTO 11
    30 I=I-1
    IMAX=I
    J=1
    LOM=SQRT(LOR*LOR+LOI*LOI)
    LOP=ATAN2(LOI, LOR)
    SF=CLOM/LOM
    PD=CLOP-LOP
        35 IF(I.LT.J) GO TO 200
            VR=0.5*(VRA(I)+VRA(J))
            VI=0.5*(VIA(I)+VIA(J))
            VR=VR-ZEROR
            VI=VI-ZEROI
            ZMAG(I)=SQRT(VR*VR+VI*VI)*SF
            ZPHA(I)=(ATAN2(VI,VR)+PD)*180./PI
        75 FORMAT(E11.4,1X,F9.3)
            I=I-1
            J=J+1
            GO TO 35
    200 I=I+1
            DO 300 J-I,IMAX
            WRITE(LOD,75)ZMAG(J), ZPHA(J)
    300 CONTINUE
            STOP
            END
```

PCAVZSGN calculates defect impedance change, average over depth
Program PCAVZSCN calculates the change in the impedance of a pancake coil due to the presence of a defect in a conducting plate. It does the calculations for a number of different radial distances between the coil axis and the center of the defect, and it has the ability to divide the defect into smaller parts centered on the axis of the defect and to perform the calculations for each part separately, a method of treating the defect that usually gives more accurate results. The assumption is made that the defect has a constant cross section as the depth is varied, such as in a flat bottomed hole. If this is not the case, a weighted average with depth should be used. The output from PCAVZSCN is stored in the file PCAVZSCN. DAT.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Begin the integration loops, calculating the expressions that are independent of the position of the defect.
4. Assign a value to FZD, the center of the part of the defect we wish to work with.
5. Do the calculations that depend only on the axial position of the defect.
6. Select a value for $R D$, the radial distance between the coil and the part of the defect we are working with.
7. Complete the integration.
8. Loop to 6 until done.
9. Loop to 4 until done.
10. Write the results of the calculations to a file.

Variables

DELTAR*	The normalized radial distance between adjacent data points.
DFDEP ${ }^{*}$	The distance from the side of the plate where the defect is located to the bottom of the defect in inches.
DFDIAM*	The diameter of the defect in inches.
DFM	The magnitude of the change in the normalized impedance of the coil due to the defect.
DFP	The phase of the change in the normalized impedance of the coil due to the defect.
DSFI	The imaginary part of the defect sensitivity factor of the coil.
DSFR	The real part of the defect sensitivity factor of the coil.
FREQ ${ }^{*}$	The operating frequency in hertz.
L'	The length of the coil. The value is input in inches and normalized by the program.
L1 ${ }^{\circ}$	The lift-off of the coil. The value is input in

	nches and normalized by the program.
LOD ${ }^{\text {a }}$	The number of the I/O unit connected to the output data file.
LOU	The number of the I / O unit connected to the printer.
NRT ${ }^{*}$	The number of different radial distances between the coil axis and the center of the defect at which the calculations are performed.
NS*	The side of the plate where the defect is located. If $N S=1$, the defect is on the near side; if $N S=2$, the defect is on the far side.
NZT ${ }^{\text { }}$	The total number of parts into which the defect is divided along its axis when the calculations are performed.
Q6	The inductance of the coil in air.
R1 ${ }^{\circ}$	The inner radius of the coil. The value is input in inches and normalized by the program.
R2*	The outer radius of the coil. The value is input in inches and normalized by the program.
R3	The mean radius of the coil in inches.
RD	The normalized radial distance from the axis of the coil to the center of the defect.
RHO1 ${ }^{\circ}$	The electrical resistivity of the plate in $\mu \Omega$ cm .
T1 ${ }^{\circ}$	The thickness of the plate. The value is input in inches and normalized by the program.
TRN*	The number of turns in the coil.
U1	The relative magnetic permeability of the plate.
VOLN	The normalized volume of the defect.
WUSRR	The product of the angular frequency, the relative magnetic permeability, the electrical conductivity, and the square of the mean coil radius.
2D	The normalized distance from the side of the plate where the defect is located to the bottom of the defect. A negative number.
LNDFI	The illaginary part of tho ohange in the normalized impedance of the coil due to the defect.
2NDFR	The real part of the change in the normalized impedance of the coil due to the defect.
ZNIM	The imaginary part of the normalized coil impedance with no defects present.
ZNRL	The real part of the normalized coil impedance with no defects present.

Notes

1. Variable NZT controls the number of parts into which the defect is divided to perform the calculations. Since the theory upon which this program is based is more accurate for small defects, it is desirable to work with the defect in parts rather than as a whole.

Integration Section of Program PCAVZSCN

Symbol definitions

The following are definitions of the symbols used to describe the program variables appearing in the integration section of this program. All lengths are normalized unless otherwise noted.

α	Integration variable
α_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2}$
α_{22}	Defect shape and orientation factor
β_{1}	$\left(\alpha^{2}+j \omega \mu \bar{r}^{2}\right)^{1 / 2} / \mu$
c	Plate thickness
$J\left(x_{2}, x_{1}\right)$	Integral of xJ (x) with respect to x from αx_{1} to αx_{2}
$J_{1}(x)$	Bessel function of the first kind of order 1
ℓ	Length of coil
l_{1}	Lift-off of coil
μ	Relative magnetic permeability of plate
$\frac{r}{r}$	Coil-to-defect radial distance
r_{1}	Mean radius of coil in inches
r_{2}	Inner radius of coil
σ	Outer radius of coil
Vol	Conductivity of plate
ω	Normalized volume of defect
z	Angular frequency at which circuit is driven

Variables appearing in the integration section

Program variable	Symbolic equivalent $\alpha \ell+\exp (-\alpha \ell)-1$
A1	$1-\exp (-\alpha \ell)$
A2	$\operatorname{Im}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A2BI	$\operatorname{Re}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A3	$\exp \left(-\alpha \ell_{1}\right)$
AMBI	$\operatorname{Im}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
AMBR	$\operatorname{Re}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
APBI	$\operatorname{Im}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
APBR	$\operatorname{Re}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
AVZDFI	$\{$ See note I3.\}
AVZDFR	$\{$ See note I3.\}
B1	$\{$ See note I2.\}
B2	$\{$ See note I2.\}

CFAC
CHECK
CSDI
CSTI
CSZI
DENI
DENR
DFAC
ERR
FZD
ISTEPS
RI9
RJ1
S1
S2

SMAIR

SMIMPI

SMIMPR
$\left[J\left(r_{2}, r_{1}\right)\right]^{2}$
(See note 12.$)$
$\operatorname{Re}[\exp (\alpha, z)]$
$\operatorname{Re}[\exp (-2 \alpha, c)]$
$\operatorname{Re}\left[\exp \left(-\alpha_{1}(2 c+z)\right)\right]$
$\operatorname{Im}\left[\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)\right]$
$\operatorname{Re}\left[\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)\right]$
$\frac{1}{\alpha^{3}}(1-\exp (-\alpha \ell)) \exp \left(-\alpha \ell_{1}\right) J\left(r_{2}, r_{1}\right) \mathrm{d} \alpha$
(See note 12.$)$
z (See note I4.)
(See note I2.)
(See note I2.)
$J_{1}(\alpha r)$
$\mathrm{d} \boldsymbol{\alpha}$
(See note I2.)
$\int_{0}^{\infty} \frac{2(\alpha \ell+\exp (-\alpha \ell)-1)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}} \mathrm{~d} \alpha$
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{(1-\exp (-\alpha \ell))^{2} \exp \left(-2 \alpha \ell_{1}\right)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}}\right.$

$$
\left.\left[\frac{\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}{ }^{2}\right) \exp \left(-2 \alpha_{1} c\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

$\operatorname{Re}\left[\int_{0}^{\infty} \frac{(1-\exp (-\alpha \ell))^{2} \exp \left(-2 \alpha \ell_{1}\right)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}}\right.$

$$
\left.\left[\frac{\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}^{2}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]
$$

SMZDFI
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}}(1-\exp (-\alpha \ell)) \exp \left(-\alpha \ell_{1}\right) J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\right.$

$$
\left.\alpha\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

SMZDFR

SNDI
SNTI
SNZI
TI
TR
TZI
TZR
X
X1
X1X
XJR1
XJR2
XL
XPDR
XPTR
XPZR
XRD
XX
XX1
XY1
Y1
ZDI
$\operatorname{Im}\left[\exp \left(\alpha_{1} z\right)\right]$
$-\operatorname{Im}[\exp (-2 \alpha, c)]$
$-\operatorname{Im}\left[\exp \left(-\alpha_{1}(2 c+z)\right)\right]$
$\operatorname{Im}[2 \alpha, c]$
$\operatorname{Re}[2 \alpha, c]$
$\operatorname{Im}\left[\alpha_{1}(2 c+z)\right]$
$\operatorname{Re}\left[\alpha_{1}(2 c+z)\right]$
α
$\operatorname{Re}\left[\beta_{1}\right]$
$\operatorname{Re}\left[\alpha\left(\beta_{1}-\alpha\right)\right]$
$J\left(r_{1}, 0\right)$
$J\left(r_{2}, 0\right)$
$\alpha \ell$
$\exp \left[\operatorname{Re}\left(\alpha_{1} z\right)\right]$
$\exp [\operatorname{Re}(-2 \alpha, c)]$
$\exp \left[\operatorname{Re}\left(-\alpha_{1}(2 c+z)\right)\right]$
αr
α^{2}
$\operatorname{Re}\left[\alpha\left(\alpha+\beta_{1}\right)\right]$
$\operatorname{Im}\left[\alpha\left(\alpha+\beta_{1}\right)\right]=\operatorname{Im}\left[\alpha\left(\beta_{1}-\alpha\right)\right]$
$\operatorname{Im}\left[\beta_{1}\right]$
$\operatorname{Im}[\alpha, z]$

Notes for the integration section

I1. A number of the variables in the integration section are not always assigned their exact values but are approximated in certain cases to save time. For example, rather than calculate the exponential of a very small number that has its argument subtracted from it, the Maclaurin series expansion is sometimes used. Also, the exponential of a very large negative number is usually treated as zero.

I2. Several variables appear in the integration section of the program which play no part in the calculations being done. They are merely there to do such things as to determine the maximum step size which can be used while still accurately calculating the integrals.

I3. Variables $A V Z D F R$ and AVZDFI are the averages of the elements in arrays SMZDFR and SMZDFI, respectively. For improved accuracy, the defect is divided into NZT parts to perform the calculations. The NZT elements of each array contain the calculations for these NZT parts. These elements are averaged to give the total effect of all of these parts on the impedances of the coils.

I4. The variable FZD is the normalized depth from the near side of the plate to the center of the part of the defect with which the program is working. It is not the depth of the center of the actual defect.

Sample output

Printer output of program PCAVZSCN:

| PCAVZSCN 20 | | POINTS USED | FAR | SIDE DEFECT | TIME $8:$ | $9: 55$ | DATE | $8 / 9 / 89$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | IN RAD | OT RAD. | LENGTH | LIFTOFF | CLADTH | DF DEP | | |
| ACT | 0.1000 | 0.4100 | 0.1000 | 0.0100 | 0.2500 | -0.0780 | | |
| NOR | 0.3922 | 1.6078 | 0.3922 | 0.0392 | 0.9804 | -0.3059 | | |

RBAR 0.2550 FREQ $=5.000000 \mathrm{E}+02 \mathrm{RHO}=4.0540$ PERM=1.000 WUSRR=4.0853 NORM IMPD:RL 0.155825 IM 0.832098 AIR IND 6.252919E-03 VOLN 2.1905E-02

Partial listing of file PCAVZSCN.DAT:
0.1550D-06 54.632
$0.1390 \mathrm{D}-05 \quad 54.602$
0.3832D-05 54.540
0.7428D-05 54.448
0.1210D-04 54.322
0.1774D-04 54.162
0.2423D-04 53.966
0.3143D-04 53.733
0.3919D-04 53.459
0.4733D-04 53.144

Listing

PROGRAM PCAVZSCN

c. VERSION August 9, 1989

C PROGRAM TO CALCULATE THE NORMALIZED IMPEDANCE CHANGE
C FOR A DEFECT IN A SINGLE PLANAR CONDUGTOR. THE DEFECT IS
C Calculated at an array of points rather than a single point
and averaged over the depth. the calculations are stepped in the
R DIRECTION, AND THE MAGNITUDE AND PHASE IS STORED IN A DATA FILE.
CHARACTER SIDE(2)*4
IMPLICIT REAL*8 (A-H,O-Z)
REAL* 8 L, L1
CHARACTER*1 FF
DIMENSION S1(6),S2(6), $\operatorname{ERR}(6), \operatorname{SMZDFR}(200,40), \operatorname{SMZDFI}(200,40), \operatorname{RJ}(200)$
DATA LOU/8/,PI/3.141592653/,NZT/20/,NRT/40/
DATA S1/.005,.02,.05,.1,.5,2./
DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-6/
DATA FREQ/500./,RHO1/4.054/,U1/1.0/,T1/0.250/
DATA TRN/800./,SIDE/'NEAR',' FAR'/,DELTAR/0.05/
DATA LOD/39/,DFDIAM/0.0770/,DFDEP/0.0780/,NS/2/
$\mathrm{FF}=\mathrm{CHAR}$ (12)
OPEN(IOD, FILE=' PCAVZSCN. DAT', STATUS='NEW')
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN,ISE,IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRI'TE(LOU, 2)NZT, SIDE(NS), IHR, IMN, ISE, IMO, IDA , IYR
2 FORMAT('PCAVZSCN ',I3,' POINTS USED ',A4,' SIDE DEFECT',
1: IIME ',I2,':',12,':',I',' DATE ',I2,'/',I2,'/',I2)
WRITE(LOU,5)
5 FORMAT(5X,'IN RAD',4X,'OT RAD',4X,'LENGTH',4X,'LIFTOFF'
*,3X,'CLADTH',4X,'DF DEP')
COIL P250A
$\mathrm{Rl}=0.1000$
R2 $=0.4100$
$\mathrm{L}=0.1000$
$\mathrm{t} .1=0.01$
$R 3=.5 *(R 1+R 2)$
ZD=-DFDEP
WRITE(LOU , 10) R1, R2, L, L1, T1, ZD
R1=R1/R3
$\mathrm{R} 2=2.0-\mathrm{R} 1$
$\mathrm{L}=\mathrm{L} / \mathrm{R} 3$
L1 $=\mathrm{L} 1 /$ R3
2D=2D/R3
$\mathrm{T} 1=\mathrm{T} 1 / \mathrm{R} 3$
C VOLN $=0.1666667 * \operatorname{PI} *($ DFDIAM $/ R 3) *($ DFDIAM $/ R 3) *($ DFDIAM $/ R 3)$
VOLN=PI*DFDIAM*DFDIAM*DFDEP $/(4 . * R 3 * R 3 * R 3)$
WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
WRITE(LOU, 15)R1,R2,L,L1,T1, ZD


```
    10 FORMAT('ACT ',7(F7.4,3X))
    15 FORMAT('NOR ',7(F7.4,3X))
    18 FORMAT(' CYL FLAW: DIAM=',F7.4,', DEPTH=',F7.4)
        WRITE(LOU, 20)R3, FREQ, RH01,,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ=',1PE13.6,' RHO=',0PF9.4,
        *' PERM=',F7.3,'. WUSRR=',F9.4)
        SMAIR=0.0
        SMIMPR=0.0
        SMIMPI=0.0
        DO 25 NR=1,NRT
        DO 25 NZ=1,NZT
        SMZDFR(NR,NZ)=0.0
    25 SMZDFI (NR,NZ)=0.0
        B1=0.0
        B2=S2(1)
        DO. 100 JKL=1,6
    30 RI9=SMAIR
        X=Bl-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
        ISTEPS=DNINT((B2-B1)/S1(JKL))
        DO 95 I=1,ISTEPS
        X=X+S1(JKL)
        CALL BESSEL(XJR2,X,R2)
        CALL BESSEL(XJR1,X,R1)
        XL=X*L
        IF(XL.GT.5.0E-3) GO TO 60
        Al=XL*XL*(0.5-XL/6.0)
        GO TO 80
60 IF(XL.GT.75.0) GO TO 70
        Al=XL+DEXP(-XL)-1.0
        GO TO 80
70 Al=XL-1.0
80 CFAC=S1(JKL)*(XJR2-XJR1)*(XJR2-XJR1)
        SMAIR=SMAIR+CFAC*2.*A1
        IF(X*L1.GT.75.)GO T0 95
        XX=X*X
        X1=DSQRT(0.5*(XX+DSQRT (XX*XX+WUSRR*WUSRR)))/U1
        Y1=WUSRR/(2.*X1*U1*U1)
        A2=XL-A1
        A3=DEXP(-X*L1)
        APBR=(X+X1)*(X+X1)-Y1*Y1
        APBI=2.*Y1*(X+X1)
        AMBR=(X-X1)*(X-X1)-Y1*Y1
        AMBI=-2.*Y1*(X-X1)
        A2BR=0.0
        A2BI=-2.*X1*Y1
        ZNUR=A2BR
        ZNUI=A2BI
        DENR=APBR
        DENI=APBI
        DNCJ=DENR*DENR+DENI*DENI
```


43
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
DO $91 \mathrm{NZ}=1$, NZT
C NEAR SIDE DEFECT CALCULATION
FZD $=($ FLOAT (NZ) -.5$) *$ ZD/FLOAT (NZT)
C FAR SIDE DEFECT CALCULATION
IF (NS.EQ.2) FZD $=-T 1-F Z D$
2DR=X1*U1*FZD
IF(ZDR.LT.-60.0)GO TO 93
ZDI $=\mathrm{Y} 1 * \mathrm{U} 1 *$ FZD
$\mathrm{XPDR}=\mathrm{DEXP}$ (ZDR)
CSDI $=D C O S(2 D I) * X P D R$
SNDI=DSIN(ZDI) *XPDR
$\mathrm{XX} 1=\mathrm{X} * \mathrm{X} 1+\mathrm{XX}$
$\mathrm{XY} 1=\mathrm{X} * \mathrm{Y} 1$
$\mathrm{XlX}=\mathrm{X} * \mathrm{XI}-\mathrm{XX}$
ZNDR=XX1*CSDI-XY1*SNDI
ZNDI $=\mathrm{XXI}$ *SNDI $+\mathrm{XY1}$ *CSDI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1* ($2 *$ TH+ZDEFECT))
$\mathrm{TZR}=\mathrm{X} 1 * \mathrm{Ul} *(2 . * \mathrm{~T} 1+\mathrm{FZD})$
IF(TZR.GT.60.)GO TO 87
TZI $=\mathrm{Y} 1 * \mathrm{Ul} *(2 . * \mathrm{~T} 1+\mathrm{FZD})$
XPZR=DEXP (-TZR)
CSZI=DCOS (TZI) *XPZR
SNZI=DSIN(TZI)*XPZR
ZNDR $=X X 1 *$ CSDI $-X Y 1 * S N D I+X 1 X * C S Z I+X Y 1 * S N Z I$
ZNDI $=\mathrm{XXI} *$ SNDI $+\mathrm{XY} 1 *$ CSDI $+X Y 1 * C S Z I-X I X * S N Z I$
G SECTION THAT MULTIPLIES BY DEXP (-ALPHA1* $2 *$ CLADTH)
$\mathrm{TR}=2 . * \mathrm{X} 1 * \mathrm{U} 1 * \mathrm{~T} 1$
IF(TR.GT.60.)GO TO 87
$\mathrm{TI}=2 . * \mathrm{Y} 1 * \mathrm{U} 1 * \mathrm{~T} 1$
$\operatorname{XPTR}=\mathrm{DEXP}(-\mathrm{TR})$
CSTI $=$ DCOS (TI) $*$ XPTR
SNTI=DSIN(TI)*XPTR
DENR $=A P B R-A M B R * C S T I-A M B I * S N T I$
DENI $=\mathrm{APBI}-\mathrm{AMBI} * \mathrm{CSTI}+\mathrm{AMBR} *$ SNTI
ZNUR=A2BR-A2BR*CSTI- 12 BI *SNTI
$\mathrm{ZNUI}=\mathrm{A} 2 \mathrm{BI}-\mathrm{A} 2 \mathrm{BI} * \mathrm{CSTI}+\mathrm{A} 2 \mathrm{BR} * \mathrm{SNTI}$
DNCJ=DENR*DENR+DENI*DENI
87 ZDRL=(ZNDR*DENR+ZNDI*DENI) $/$ DNCJ
ZDIM=(DENR*ZNDI-ZNDR*DENI)/DNCJ
DFAC $=\mathrm{A} 2 * \mathrm{~A} 3 * \mathrm{~S} 1$ (JKL) $*$ (XJR2-XJR1)
C LOOP OVER THE R VARIATION FOR THE DEFECT
DO 90 NR $=1$, NRT
IF(NZ.GT.1)GO TO 89
RD $=($ FLOAT (NR) -.5$) *$ DELTAR
$\mathrm{XRD}=\mathrm{X} * \mathrm{RD}$
CALL BESEL1 (XRD,RJ1)
RJ (NK) =RJ 1
$89 \operatorname{SMZDFR}(N R, N Z)=S M Z D F R(N R, N Z)+R J(N R) * 2 D R L * D F A C$
$90 \operatorname{SMZDFI}(N R, N Z)=S M Z D F I(N R, N Z)+R J(N R) * Z D I M * D F A C$
91 CONTINUE

```
    93 ZRL=(ZNUR*DENR+ZNUI*DENI)/DNCJ,
        ZIM=(DENR*ZNUI - ZNUR*DENI)/DNCJ
        SMIMPR=SMIMPR+A2*A 2*A 3*A 3*ZRL*CFAC
        SMIMPI=SMIMPI+A2*A2*A 3*A 3*ZIM*CFAC
    95 CONTINUE
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SMAIR-RI9)/SMAIR
        IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
    135 Q6=0.0254*4.0E-7*TRN*TRN*R3*PI*PI*SMAIR/(L*(R2-R1))**2
        ZNIM=(SMIMPR+SMAIR)/SMAIR
        ZNRL=-SMIMPI/SMAIR
        WRITE(LOU, 140) ZNRL, ZNIM, Q6, VOLN
    140 FORMAT(' NORM IMPD:RL',F10.6,' IM',F10.6,
        *' AIR IND',1PE13.6,' VOLN',1PE11.4)
    150 FORMAT(' NORM CHG:RL ',OPF10.6,' IM',OPF10.6,
    *' MAG ',OPF10.6,' PHA ',OPF7.2)
    160 FORMAT(' NORM DSF:RL',1PE11.4,' IM',1PE11.4,' VOLN',1PE11.4)
        DO 200 NR=1,NRT
        RD=(FLOAT (NR) - 5)*DELTAR
C AVERAGE OVER DEFECT POINTS AT DIFFERENT DEPTHS
        AVZDFR=0.0
        AVZDFI=0.0
        DO 220 NZ=1,NZT
        AVZDFR=AVZDFR+SMZDFR(NR,NZ)
    220 AVZDFI=AVZDFI+SMZDFI(NR,NZ)
    AVZDFR=AVZDFR/FLOAT(NZT)
    AVZDFI=AVZDFI/FLOAT(NZT)
    DSFR=-1.5*WUSRR*(AVZDFR*AVZDFR-AVZDFI*AVZDFI)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*2.0*AVZDFR*AVZDFI/(SMAIR*PI)
    ZNDFR=VOLN*DSFR
    ZNDFI=VOLN*DSFI
    DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
    DFP=ATAN2(DSFI,DSFR)*180./PI
    200 WRITE(LOD,178)DFM, DFP
    178 FORMAT(D1.1.4,1X,F8.3)
1001 STOP
    END
```

PCAVVSCN calculates defect impedance change, average over volume

Program PCAVVSCN calculates the change in the impedance of a pancake coil due to the presence of a flat-bottomed hole in a conducting plate. It first calculates the defect sensitivity factor for a lattice of points that extends from the coil axis to the outer edge of the coil field, as shown in Fig. 3. Although this method of averaging over the dimensions of the defect is not mathematically correct, it usually gives more accurate results than assuming that the defect is a point or only averaging over the defect depth. Once the defect sensitivity factor has been computed, the defect can be considered to be at any radial location with respect to the coil and its average effect calculated by summing over the defect sensitivity factor values at the different radial positions multiplied by the volume of that particular element. In Fig. 5 we show the relationship of a flat-bottomed hole to the coil center, looking down on the plate.

Fig. 5. Top view of flat-bottomed hole referenced to the coil axis.

The defect signal is first averaged over the defect depth in a manner similar to the PCAVZSCN program. Then the arc length AL is multiplied by the real and imaginary value of the average defect signal and this is summed as the distance from the coil axis RD is stepped from one side of
the defect to the other. This is repeated for different values of the distance from the coil axis to the defect center, SD. This simulates the coil scanning across the defect. It should be noted that the defect sensitivity factor integration does not have to be repeated as $S D$ increases or if another size defect is used if the lattice of points is fine enough. However, rather than choose the lattice fine enough to cover all defect depths presently stored in PCAVVSCN, we have set the program up so that it will compute a new lattice for each defect depth.

The arc length is calculated by the expression:

$$
\begin{equation*}
\mathrm{AL}=2 \mathrm{RD}\left[\cos ^{-1}\left(\frac{\mathrm{SD}^{2}+\mathrm{RD}^{2}-\mathrm{DR}^{2}}{2 \mathrm{RD} \mathrm{SD}}\right)\right] \tag{18}
\end{equation*}
$$

unless the defect encloses the coil origin. In this case, the arc length is:

$$
\mathrm{AL}=2 \pi \mathrm{RD}
$$

as long as RD is less than $D R$ - SD. Then the expression in Eq. (18) should be used.

The defect volume can also be calculated by multiplying the arc length AL by the incremental step in RD. A comparison of the volume calculated by this method shows an agreement to within 0.1% if the lattice is fine enough to have 40 points across the defect. A lattice of 20 points will give an error of 0.3\%.

The defect signal is averaged over the defect volume using the expression:

$$
\begin{equation*}
\mathrm{AVZDR}+j \mathrm{AVZDI}=\sum_{N R} \frac{\mathrm{AL}(\operatorname{AVZDFR}(\mathrm{NR})+j A V Z D F I(\mathrm{NR}))}{\sum_{N R} A L} \tag{19}
\end{equation*}
$$

The division by the summation of the arc length in Eq. (19) helps reduce any errors in the computation of the defect volume and furnishes the proper normalization. The limit of the summation is only done for NR values that lie within the defect.

The output for the program is written on the file FORT9.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Begin the integration loops, calculating the expressions that are independent of the position of the defect.
4. Assign a value to FZD, the center of the part of the defect we wish to work with.
5. Do the calculations that depend only upon the axial position of the defect.
6. Select a value for $R D$, the radial distance between the coil and the part of the defect we are working with.
7. Complete the integration.
8. Loop to 6 until done.
9. Loop to 4 until done.
10. Write the results of the calculations to a file.

Variables

ANG The angle of half the arc length AL, θ in Figure 5.

DELTAR \quad The normalized radial distance between adjacent
DFDEP \quad The distance from the side of the plate where the defect is located to the bottom of the defect in inches.
DFDIAM ${ }^{*}$ The diameter of the defect in inches.
DFM The magnitude of the change in the normalized impedance of the coil due to the defect.
DFP The phase of the change in the normalized impedance of the coil due to the defect.
DR The normalized defect radius.
DRR The normalized defect radius best described by the NDT points.
DSFI The imaginary part of the defect sensitivity factor of the coil.
DSFR The real part of the defect sensitivity factor of the coil.
FREQ* The operating frequency in hertz.
$L^{\text {. }} \quad$ The length of the coil. The value is input in inches and normalized by the program.
L1. The lift-off of the coil. The value is input in inches and normalized by the program.
LOD ${ }^{*} \quad$ The number of the I / O unit connected to the output data file.
LOU The number of the $1 / O$ unit connected to the printer.
NDF The number denoting the particular defect in the array of defects.
NDT The number of radial points across the defect.
NRD The integer that denotes the radial location at which the defect sensitivity is calculated.
NRT The total number of radial points at which the defect sensitivity calculations are performed.
NRTT The total number of points in the radial direction at which the averaged impedance change is calculated. Presently set to $2 / 3$ of NRT.
NS \quad The side of the plate where the defect is located. If NS=1, the defect is on the near side; if NS=2, the defect is on the far side.
NZT \quad The total number of parts into which the defect is divided along its axis when the calculations are performed.

Q6	The inductance of the coil in air. The inner radius of the coil. The value is input
in inches and normalized by the program.	
The outer radius of the coil. The value is input	

Notes

1. Variable NZT controls the number of parts into which the defect is divided to perform the calculations. Since the theory upon which this program is based is more accurate for small defects, it is desirable to work with the defect in parts rather than as a whole.

Integration Section of Program PCAVVSCN

Symbol definitions

The following are definitions of the symbols used to describe the program variables appearing in the integration section of this program. All lengths are normalized unless otherwise noted.

α	Integration variable
α_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2}$
α_{22}	Defect shape and orientation factor
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2} / \mu$
c	Plate thickness
$J\left(x_{2}, x_{1}\right)$	Integral of $x J_{1}(x)$ with respect to x from αx_{1} to αx_{2}
$J_{1}(x)$	Bessel function of the first kind of order 1
l	Length of coil
l_{1}	Lift-off of coil
μ	Relative magnetic permeability of plate
r	Coil-to-defect radial distance
r	Mean radius of coil in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
σ_{1}	Conductivity of plate
Vol	Normalized volume of defect
ω	Angular frequency at which circuit is driven
z	Depth to center of defect

Variables appearing in the integration section

Program variable	Symbolic equivalent
A1	$\alpha \ell+\exp (-\alpha \ell)-1$
A2	$1-\exp (-\alpha \ell)$
A2BI	$\operatorname{Im}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A2BR	$\operatorname{Re}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A3	$\exp \left(-\alpha \ell_{1}\right)$
AMBI	$\operatorname{Im}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
AMBR	$\operatorname{Re}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
APBI	$\operatorname{Im}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
APRR	$\operatorname{Re}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
AVZDFI (NR)	\{See note I3.\}
AVZDFR(NR)	(See note I3.)
B1	(See note 12.$\}$
B2	(See note 12.)

CFAC
CHECK
CSDI
CSTI
CSZI
DENI
DENR
DFAC
ERR
FZD
ISTEPS
RI9
RJI
S1
S2

SMAIR

SMIMPI

$$
\begin{aligned}
\operatorname{Im} & {\left[\int_{0}^{\infty} \frac{(1-\exp (-\alpha \ell))^{2} \exp \left(-2 \alpha \ell_{1}\right)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}}\right.} \\
& {\left.\left[\frac{\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}{ }^{2}\right) \exp \left(-2 \alpha_{1} c\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right] }
\end{aligned}
$$

SMIMPR
$\operatorname{Re} \int_{0}^{\infty} \frac{(1-\exp (-\alpha, l))^{2} \exp \left(-2 \alpha l_{1}\right)\left[J\left(r_{2}, r_{1}\right)\right]^{2}}{\alpha^{6}}$

SMZDFI

SMZDFR
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}}(1-\exp (-\alpha \ell)) \exp \left(-\alpha \ell_{1}\right) J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\right.$

$$
\left.\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

$\operatorname{Re}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}}(1-\exp (-\alpha \ell)) \exp \left(-\alpha \ell_{1}\right) J\left(r_{2}, r_{1}\right) J_{1}(\alpha r)\right.$

$$
\left.\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

SNDI
SNTI
SNZI
TI
TR
TZI
TZR
X
X1
X1X
XJR1
XJR2
XL
XPDR
$\operatorname{Im}\left[\exp \left(\alpha_{1} z\right)\right]$
$-\operatorname{Im}[\exp (-2 \alpha, c)]$
$-\operatorname{Im}\left[\exp \left(-\alpha_{1}(2 c+z)\right)\right]$
$\operatorname{Im}[2 \alpha, c]$
$\operatorname{Re}[2 \alpha, c]$
$\operatorname{Im}\left[\alpha_{1}(2 c+z)\right]$
$\operatorname{Re}\left[\alpha_{1}(2 c+z)\right]$
α
$\operatorname{Re}\left[\beta_{1}\right]$
$\operatorname{Re}\left[\alpha\left(\beta_{1}-\alpha\right)\right]$
$J\left(r_{1}, 0\right)$
$J\left(r_{2}, 0\right)$
$\alpha \ell$
$\exp [\operatorname{Re}(\alpha, z)]$

XPTR	$\exp [\operatorname{Re}(-2 \alpha, c)]$
XPZR	$\exp \left[\operatorname{Re}\left(-\alpha_{1}(2 c+z)\right)\right]$
XRD	αr
XX	α^{2}
XX1	$\operatorname{Re}\left[\alpha\left(\alpha+\beta_{1}\right)\right]$
XY1	$\operatorname{Im}\left[\alpha\left(\alpha+\beta_{1}\right)\right]=\operatorname{Im}[\alpha(\beta,-\alpha)]$
Y1	$\operatorname{Im}\left[\beta_{1}\right]$
ZDI	$\operatorname{Im}\left[\alpha_{1} z\right]$
ZDIM	$\operatorname{Im}\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right.$
Z.DR	$\operatorname{Re}\left[\alpha_{1} z\right]$
ZDRL	$\operatorname{Re}\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right.$
ZIM	$\operatorname{Im}\left[\frac{\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}{ }^{2}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right]$
ZNDI	$\operatorname{Im}\left[\alpha\left(\alpha+\beta_{1}\right) \exp (\alpha, z)\right]$
ZNDR	$\operatorname{Re}\left[\alpha\left(\alpha+\beta_{1}\right) \exp (\alpha, z)\right]$
ZNUI	$\operatorname{Im}\left[\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}^{2}\right) \exp (-2 \alpha, c)\right]$
ZNUR	$\operatorname{Re}\left[\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}{ }^{2}\right) \exp (-2 \alpha, c)\right]$
ZRL	$\operatorname{Re}\left[\frac{\left(\alpha^{2}-\beta_{1}{ }^{2}\right)-\left(\alpha^{2}-\beta_{1}{ }^{2}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right]$

Notes for the integration section

I1. A number of the variables in the integration section are not always assigned their exact values but are approximated in certain cases to save time. For example, rather than calculate the exponential of a very small number, the Maclaurin series expansion is sometimes used. Also, the exponential of a very large negative number is usually treated as zero.

I2. Several variables appear in the integration section of the program which play no part in the calculations being done. They are merely there to do such things as to determine the maximum step size which can be used while still accurately calculating the integrals.

I3. Variables AVZDFR(NR) and AVZDFI(NR) are the averages of the elements in arrays $\operatorname{SMZDFR}(N Z, N R)$ and $S M Z D F I(N Z, N R)$, respectively, summed over NZT. For improved accuracy, the defect is divided into NZT parts over the depth of the defect, to perform the calculations. The NZT elements of each
array contain the calculations for these NZT parts. In addition, the defect is divided into NRTT parts in the radial direction. The contributions from these elements are averaged to give the total effect of all of these parts on the impedances of the coils.

I4. The variable FZD is the normalized depth from the near side of the plate to the center of the part of the defect with which the program is working. It is not the depth of the center of the actual defect.

Sample output

Partial printer output of program PCAVVSCN:

Listing

PROGRAM PCAVVSCN
C VERSION August 9, 1989
C PROGRAM TO CALCULATE THE NORMALIZED IMPEDANCE CHANGE FOR A FLAT
C BOTTOM HOLE IN A SINGLE PLANAR CONDUCTOR. THE DEFECT IS
C CALCULATED AT AN ARRAY OF POINTS RATHER THAN A SINGLE POINT
C THE DEFECT SIGNAL IS AVERAGED OVER BOTH THE R AND Z DIMENSIONS.
C THE CALCULATIONS ARE STEPPED IN THE R DIRECTION, AS THE DEFECT IS
C SCANNED BY THE PROBE.
C DIA NS . 221 . 188 . 158 . 129 . 097 . 076 FS . 222.189 .158 . 129.098 . 077
C DEP NS . 221 . 188 . 157 . 128 . 096 . 078 FS . 221.188 . 156 . 128 . 096.078
CHARACTER SIDE(2)*4
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,L1,L2
DIMENSION DFDIAM (12), DFDEP (12), NSIDE(12)
DIMENSION S1(6),S2(6), ERR(6),RJ (200)
DIMENSION SMZDFR (20,200), $\operatorname{SMZDFI}(20,200), \operatorname{AVZDFR}(200), \operatorname{AVZDFI}(200)$
DATA LOU/8/,LOD/9/,PI/3.141592653/,NZT/20/,NDF/7/,NRT/150/
DATA S1/.005,.02,.05,.1,.5,2./
DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-6/
DATA FREQ/500./, RHO1/4.09/, U1/1.0/
DATA TRN/800./,T1/0.254/,SIDE/'NEAR',' FAR'/,DELTAR/0.02/
DATA DFDIAM/
*. $221, .188, .158, .129, .097, .076, .222, .189, .158, .129, .098 ; .077 /$
DATA DFDEP/
*. 221,. $188, .157, .128, .096, .078, .221, .188, .156, .128, .096, .078 /$
DATA NSIDE/1,1,1,1,1,1,2,2,2,2,2,2/
NS=NSIDE (NDF)
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR,IMN,ISE,IFR)
CALL GETDAT (IYR,IMO,IDA)
IYR=IYR-1900
WRITE(LOU, 2)NZT, SIDE(NS), IHR, IMN, ISE, IMO, IDA, IYR
2 FORMAT('PCAVVSCN', I3,' POINTS USED ',A4,' SIDE DEFECT',
*' TIME ', I2,':', I2,':',I2,' DATE ', I2,'/',I2,'/',I2)
WRITE (LOU, 5)
5 FORMAT (5X,'IN RAD', 4X,'OT RAD',4X,'LENGTH', 2X,'0-LIFTOFF'
*, 2X,'L.O. VAR', 3X,'CLADTH',4X,'DF DEP')
C COIL P255A
$\mathrm{R} 1=0.100$
$R 2=0.410$
$\mathrm{L}=0.100$
C COIL P371A $\quad \mathrm{R} 1=0.275 \quad \mathrm{R} 2=0.4665 \quad \mathrm{~L}=0.265$
$\mathrm{L} 1=0.01$
$\mathrm{L} 2=0.02$
$R 3=.5 *(R 1+R 2)$
ZD=-DFDEP (NDF)
WRITE (LOU , 10) R1, R2 , L, L1 , L2 , T1, ZD
$R 1=R 1 / R 3$

```
        R2=2.0-R1
        L=L/R3
        L1=L1/R3
        L2=L2/R3
        2D=2D/R3
        T1=T1/R3
C VOLN=0.1666667*PI*(DFDIAM(NDF)/R3)*(DFDIAM(NDF)/R3)*(DFDIAM(NDF)/R3)
    VOLN=PI*DFDIAM(NDF)*DFDIAM(NDF)*DFDEP(NDF)/(4.*R3*R3*R3)
            DR=DFDIAM(NDF)*0.5/R3
            WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
            WRITE(LOU,15)R1,R2,L.,L1,L2,T1,ZD
        10 FORMAT('ACT ',7(F7.4,3X))
    15 FORMAT('NOR ',7(F7.4,3X))
C WRITE(LOU,18) DFDIAM(NDF),DFDEP(NDF)
    18 FORMAT(' CYL FLAW: DIAM=',F7.4,', DEPTH=',F7.4)
    WRITE(LOU, 20)R3, FREQ, RHO1,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
        *' PERM=',F7.3,' WUSRR=',F9.4)
            SMAIR=0.0
            SMIMPR=0.0
            SMIMPI=0.0
            SMIMPR1=0.0
            SMIMPIL=0.0
            DO 25 NR=1,NRT
            DO 25 NZ=1,NZT
            SMZDFR(NZ,NR)=0.0
    25 SMZDFI(NZ,NR)=0.0
            B1=0.0
            B2=S2(1)
            DO 100 JKL=1,6
    30 RI9=SMAIR
        X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 95 I=1,ISTEPS
    X=X+S1(JKL)
    CALL BESSEL(XJR2,X,R2)
    CALL BESSEL(XJR1,X,R1)
    XL=X*L
    IF(XL.GT.5.0E-3) GO TO 60
    Al=XL*XL*(0.5-XL/6.0)
    GO TO 80
    60 IF(XL.GT.75.0) GO TO 70
        Al=XL+DEXP(-XL)-1.0
        GO TO 80
    70 Al=XL-1.0
    80 CFAC=S1(JKL)*(XJR2-XJR1)*(XJR2-XJR1)
    SMAIR=SMAIR+CFAC*2.*A1
    IF(X*Ll.GT.75.)GO TO 95
    XX=X*X
```

$\mathrm{XI}=\mathrm{DSQRT}(0.5 *(\mathrm{XX}+\mathrm{DSQRT}(\mathrm{XX} * \mathrm{XX}+\mathrm{WUSRR} * W U S R R))) / \mathrm{Ul}$
$\mathrm{Y} 1=\mathrm{WUSRR} /(2 . * \mathrm{X} 1 * \mathrm{U} 1 * \mathrm{U} 1)$
A2=XL-A1
A3 $=\mathrm{DEXP}(-\mathrm{X} * \mathrm{~L} 1)$
$\mathrm{A} 4=\mathrm{DEXP}(-\mathrm{X} * \mathrm{~L} 2)$
APBR $=(\mathrm{X}+\mathrm{X} 1) *(\mathrm{X}+\mathrm{X} 1)-\mathrm{Y} 1 * \mathrm{Y} 1$
APBI $=2 . * Y 1 *(X+X 1)$
AMBR $=(\mathrm{X}-\mathrm{X} 1) *(\mathrm{X}-\mathrm{X} 1)-\mathrm{Y} 1 * \mathrm{Y} 1$
AMBI $=-2 . * Y 1 *(\mathrm{X}-\mathrm{X} 1)$
A2BR=0.0
$\mathrm{A} 2 \mathrm{BI}=-2 . * \mathrm{X} 1 * \mathrm{Y} 1$
ZNUR=A2 BR
ZNUI=A2BI
DENR=APBR
DENI=APBI
DNCJ $=$ DENR*DENR + DENI $*$ DENI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
DO $91 \mathrm{NZ}=1$, NZT
C NEAR SIDE DEFECT CALCULATION
FZD $=($ FLOAT (NZ) -.5$) * Z D / F L O A T(N Z T)$
C FAR SIDE DEFECT CALCULATION
IF (NS.EQ.2)FZD=-T1-FZD
ZDR=X1*U1*FZD
IF (ZDR.LT.-60.0) GO TO 93
ZDI $=\mathrm{Y} 1 *$ U1 $*$ FZD
XPDR=DEXP (ZDR)
CSDI $=$ DCOS (ZDI) $*$ XPDR
SNDI $=$ DSIN(ZDI) *XPDR
$\mathrm{XX1}=\mathrm{X} * \mathrm{X} 1+\mathrm{XX}$
$\mathrm{XY} 1=\mathrm{X} * \mathrm{Y} 1$
$\mathrm{X} 1 \mathrm{X}=\mathrm{X} * \mathrm{X} 1-\mathrm{XX}$
ZNDR=XX1*CSDI-XY1*SNDI
ZNDI=XX1*SNDI+XY1*CSDI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*(2*TH+ZDEFECT))
$\mathrm{TZR}=\mathrm{Xl} * \mathrm{Ul} *(2 . * \mathrm{Tl}+\mathrm{FZD})$
IF (TZR.GT.60.)GO TO 87
TZI $=\mathrm{Y} 1 * \mathrm{Ul} *(2 . * T 1+\mathrm{FZD})$
XPZR=DEXP (-TZR)
CSZI=DCOS (TZI) *XPZR
SNZI=DSIN(TZI)*XPZR
ZNDR $=\mathrm{XX1} * \mathrm{CSDI}-\mathrm{XY} 1 *$ SNDI $+\mathrm{X} 1 \mathrm{X} * \mathrm{CSZI}+\mathrm{XY} 1 *$ SNZI
ZNDI $=\mathrm{XX1}$ *SNDI $+\mathrm{XY} 1 * \mathrm{CSDI}+\mathrm{XY} 1 * \mathrm{CSZI}-\mathrm{X1X*SNZI}$
C SECTION THAT MULTIPLIES BY DEXP (-ALPHA1* $2 \times$ CLADTH)
TR=2.*X1*U1*T1
IF(TR.GT.60.) GO TO 87
$\mathrm{TI}=2 . * \mathrm{Y} 1 * \mathrm{U} 1 * T 1$
XPTR=DEXP (-TR)
$\operatorname{CSTI}=\mathrm{DCOS}(T I) * X P T R$
SNTI=DSIN(TI)*XPTR
DENR $=$ APBR - AMBR $* C S T I-A M B I * S N T I$
DENI $=A P B I-A M B I * C S T I+A M B R * S N T I$

```
        ZNUR=A2BR-A2BR*CSTI-A2BI*SNTI
        ZNUI=A2BI-A2BI*CSTI +A2BR*SNTI
        DNCJ=DENR*DENR+DENI*DENI
    87 ZDRL=(ZNDR*DENR+ZNDI*DENI)/DNGJ
    ZDIM=(DENR*ZNDI -ZNDR*DENI)/DNCJ
    DFAC=A2*A3*S1(JKL)*(XJR2-XJR1)
C LOOP OVER THE R VARIATION FOR THE DEFECT
    DO }90\mathrm{ NR=1,NRT
    IF(NZ.GT.1)GO TO 89
    RD=(FLOAT(NR)-.5)*DELTAR
    XRD=X*RD
    CALL BESELl(XRD,RJI)
    RJ(NR)=RJ1
        89 SMZDFR(NZ,NR)=SMZDFR(NZ,NR)+RJ (NR)*ZDRL*DFAC
        90 SMZDFI (NZ,NR)=SMZDFI (NZ,NR)+RJ (NR)*ZDIM*DFAC
        91 CONTINUE
        93 ZRL=(ZNUR*DENR+ZNUI*DENI)/DNCJ
        ZIM=(DENR*ZNUI-ZNUR*DENI)/DNCJ
        SMIMPR=SMIMPR +A 2*A 2*A 3*A 3*ZRL*CFAC
        SMIMPI=SMIMPI +A 2*A 2*A }3*A3*ZIM*CFAC
        SMIMPR1=SMIMPR1+A2*A2*A4*A4*ZRL*CFAC
        SMIMPI1=SMIMPI1+A2*A2*A4*A4*ZIM*CFAC
        95 CONTINUE
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SMAIR-RI9)/SMAIR
        IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
        100 CONTINUE
        135 Q6=0.0254*4.0E-7*TRN*TRN*R3*PI*PI*SMAIR/(L*(R2-R1))**2
        ZNIM=(SMIMPR+SMAIR)/SMAIR
        ZNRL=-SMIMPI/SMAIR
        ZNIM1=(SMIMPR1+SMAIR)/SMAIR
        ZNRLl=-SMIMPIl/SMAIR
        ZLOR=ZNRL1-ZNRL
        ZLOI=ZNIM1-ZNIM
        PLO=ATAN2(ZLOI,ZLOR)*180./PI
        WRITE(LOU,140)ZNRL, ZNIM, Q6,VOLN
        WRITE(LOU,145) PLO
    145 FORMAT(' LIFT-OFF PHASE= ',OPF7.2)
C WRITE(LOU,160)DSFR,DSFI,VOLN
    140 FORMAT(' NORM IMPD:RL',F10.6,' IM',F10.6,
        *' AIR IND',1PE13.6,' VOLN',1PE11.4)
    150 FORMAT(' NORM CHG:RL ',OPF10.6,' IM',OPF10.6,
        *' MAG ',OPF10.6,' PHA ',OPF7.2)
    160 FORMAT(' NORM DSF:RL',1PE11.4,' IM',1PE11.4,' VOLN',1PE11.4)
        DO 200 NR=1,NRT
C AVERAGE OVER DEFECT POINTS AT DIFFERENT DEPTHS
        AVZDFR(NR)=0.0
        AVZDFI(NR)=0.0
        DO 220 NZ=1,NZT
        AVZDFR(NR)=AVZDFR(NR)+SMZDFR(NZ,NR)
```

```
    220 AVZDFI(NR)=AVZDFI(NR)+SMZDFI(NZ,NR)
        AVZDFR(NR)=AVZDFR(NR)/FLOAT(NZT)
        AVZDFI(NR)=AVZDFI(NR)/FLOAT(NZT)
    200 CONTINUE
C AVERAGE OVER THE DEFECT AT DIFFERENT R VALUES
C SD=LOCATION OF DEFECT CENTER
C RD=FIELD POINT WHERE DEFECT IMPEDANCE CHANGE IS CALCULATED
C DR=DEFECT RADIUS - ALL DIMENSIONS ARE NORMALIZED
    WRITE(LOU,*)' R(NOR) MAG PHASE'
    NDT=2.0*DR/DELTAR
    DRR=FLOAT (NDT)*DELTAR*0.5
C START SD AT O IF NDT EVEN, 1ST HALF STEP IF NDT ODD."
    SD=FLOAT(MOD(NDT, 2))*.5*DELTAR
    NRTT=2*NRT/3
    DO 400 NR=1,NRTT
    AVZDR=0.0
    AVZDI=0.0
    SUML=0.0
    RD=SD-DRR+DELTAR*. }
    DO 300 ND=1,NDT
    AL=0.0
    IF(RD.LT.0.0)GO TO 290
    NRD=(0.50001+RD/DELTAR)
    IF(RD.LT.DR-SD) AL=2.*3.14159*RD
    IF(RD.LT.DR-SD) GO TO 280
    ANG=(SD*SD+RD*RD - DR*DR)/(2.*RD*SD)
    AL=2.*RD*ACOS (ANG)
    280 CONTINUE
    290 RD=RD+DELTAR
        SUML=SUML+AL
        AVZDR=AVZDR+AVZDFR(NRD)*AL
        AVZDI=AVZDI+AVZDFI (NRD)*AL
    300 CONTINUE
    AVZDR=AVZDR/SUML
    AVZDI=AVZDI/SUML
    DSFR=-1.5*WUSRR*(AVZDR*AVZDR-AVZDI*AVZDI)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*2.0*AVZDR*AVZDI/(SMAIR*PI)
    ZNDFR=VOLN*DSFR
    ZNDFI=VOLN*DSFI
    DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
    DFP=ATAN2(DSFI,DSFR)*180./PI
    WRITE(LOU, 380)SD, DFM, DFP
    WRITE(LOD, 390)DFM, DFP
    380 FORMAT(F7.3,F10.6,F7.2)
    390 FORMAT(E12.5,F7.2)
    SD=SD+DELTAR
    4 0 0 ~ C O N T I N U E ~
1000 STOP 'JOB '
    END
```


PCGRAPH plots two sets of data on same graph

Program PCGRAPH plots two sets of data on the same graph and sends the output to the screen and the printer. It is normally used to compare the calculated and the experimental values of the impedance change of a pancake coil due to a defect at different distances from the defect. The initial plot is made on the CRT and then the program sends the data on the screen to the printer.

Summary

1. Dimension arrays and declare variabile types.
2. Initialize variables.
3. Open the files containing the data:.
4. Read in the data and convert them to: a form usable by the graphics subroutines.
5. Graph the data on the screen.
6. Send the contents of the screen to the printer.

Variables

CX An array containing the real parts of one set of the data to be plotted.
CY An array containing the imaginary parts of one set of the data to be plotted.
DFDEP ${ }^{\circ} \quad$ The depth to the bottom of the defect in inches.
DFDIAM \quad The diameter of the defect in inches.
EX An array containing the real parts of one set of the data to be plotted.
EY An array containing the imaginary parts of one set of the data to be plotted.
FF Character variable containing the form-feed character.
FREQ* The operating frequency in hertz.
GIM Factor by which the imaginary parts of the data to be graphed are multiplied to make the graphs as large as possible.
GRL Factor by which the real parts of the data to be graphed are multiplied to make the graphs as large as possible.
$L^{*} \quad$ The length of the coil. The value is input in inches and normalized by the program.
L1. The lift-off of the coil. The value is input in inches and normalized by the program.
LOEC \quad The number of the I / O unit connected to the file containing the calculated data.
LOEE \quad The number of the I / O unit connected to the file containing the experimental data.
LOU The number of the I / O unit connected to the printer.

MODE	The screen graphics mode to be used. Mode 16 is the EGA high resolution mode.
OIM	A number which must be added to the imaginary parts of the data to be graphed in order to move the origin to the desired place on the screen.
ORL	A number which must be added to the real parts of the data to be graphed in order to move the origin to the desired place on the screen.
R1 ${ }^{\circ}$	The inner radius of the coil. The value is input in inches and normalized by the program.
R2*	The outer radius of the coil. The value is input in inches and normalized by the program.
R3	The mean radius of the coil in inches.
RHO1 ${ }^{\circ}$	The electrical resistivity of the plate in $\mu \Omega$ cm.
T1*	The thickness of the plate. The value is input in inches and normalized by the program.
TRN*	The number of turns in the coil.
U1*	The relative magnetic permeability of the plate.
VOLN	The normalized volume of the defect.
WUSRR	The product of the angular operating frequency, the magnetic permeability of the plate, the electrical conductivity of the plate, and the square of the coil mean radius.
2D	The normalized depth to the bottom of the defect. A negative number.

Listing
FROGRAM PCGRAPH
CHARACTER*1 FF
DIMENSION CX(200), CY(200), EX(200), EY(200)
REAL GRL, GIM, L, L1
DATA LOU/8/,LOEE/38/,LOEC/39/
DATA PI/3.141592653/,MODE/16/
DATA ORL/330/,OIM/50/
DATA FREQ/500./,RHO1/4.054/,U1/1.0/,TRN/800./
DATA DFDIAM/0.1881/,DFDEP/0.1881/
$\mathrm{FF}=\mathrm{CHAR}$ (12)
CALL GETTIM (IHR,IMN,ISE,IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE, IMO, IDA , IYR
2 FORMAT(' PCGRAPH TIME ', I2,':',I2,':',I2
*,' DATE ', I2,'/', I2,'/', I2,
)
OPEN (LOEE , FILE = ' QEXPN2. DAT', STATUS = 'OLD')
OPEN (LOEC , FILE = ' OCALN2. DAT', STATUS='OLD')
WRITE(LOU,*)' NEAR SIDE DEFECT'
WRITE(LOU,5)
5 FORMAT(5X,'IN RAD',4X,'OT RAD',4X,'LENGTH',4X,'LIFTOFF'
*,3X,'CLADTH',4X,'DF DEP',4X,'DFDIAM')
$\mathrm{R} 1=0.1000$
$\mathrm{R} 2=0.4100$
$\mathrm{L}=0.1000$
$\mathrm{L}=0.010$
$\mathrm{Tl}=0.250$
$R 3=0.5 *(R 1+R 2)$
ZD=-DFDEP
WRITE(LOU , 10)R1, R2, L, L1, T1, ZD, DFDIAM
10 FORMAT('ACT:',7(F7.4,3X))
$\mathrm{R} 1=\mathrm{R} 1 / \mathrm{R} 3$
$\mathrm{R} 2=2.0-\mathrm{R} 1$
$\mathrm{L}=\mathrm{L} / \mathrm{R} 3$
L1 $=\mathrm{L} 1 / \mathrm{R} 3$
$\mathrm{Tl}=\mathrm{T} 1 / \mathrm{R} 3$
ZD=ZD/R3
DFDIAM=DFDIAM/R3
WRITE (LOU , 15) R1, R2, L, L1, T1, ZD , DFDIAM
15 FORMAT('NOR:',7(F7.4,3X))
VOLN $=$ PI $*$ DFDIAM $*$ DFDIAM $*$ DFDEP $/(4 . * R 3 * R 3 * R 3)$
WUSRR-0.5093979*U1*R3*R3*FREQ/RHO1
WRITE (LOU , 18)R3, RHO1, U1, WUSRR
18 FORMAT(' RBAR', F7.4,' RHO $=$ ', 0PF7.4, *' PERM=',F7.3,' WUSRR=',F9.4)
CALL QSMODE (MODE)
CALL GRID
11 CXMAX=0.
$C Y M A X=0$.

```
    EXMAX=0.
    EYMAX=0.
    EMMAX=0.
    CMMAX=0 .
    I=1
20 READ(LOEE , * , END=29) EMAG , EPHA
    EPHA=EPHA*PI/180.
    EX(I)=EMAG*COS (EPHA)
    EY(I)=EMAG*SIN(EPHA)
    IF(EX(I).GT.EXMAX) EXMAX=EX(I)
    IF(EY(I).GT.EYMAX) EYMAX=EY(I)
    IF(EMAG.GT.EMMAX) THEN
    EMMAX=EMAG
    EPMMAX=EPHA
    END IF
    I=I+1
    G0 TO 20
29 EX(I)=999.
    I=1
30 READ(EOEC,*,END=40)CMAG,CPHA
    CPHA=CPHA*PI/180.
    CX(I)=CMAG*COS (CPHA)
    CY(I) =CMAG*SIN(CPHA)
    IF(CX(I).GT. CXMAX).CXMAX=CX(I)
    IF(CY(I).GT.CYMAX)CYMAX=CY(I)
    IF(CMAG..GT.CMMAX) THEN
    CMMAX=CMAG
    CPMMAX=CPHA
    END IF
    I=I+1
    GO TO 30
40 CX(I) =999.
    EGIM=300.//EXMAX
    EGRL=300./EYMAX
    IF(EGIM.GT.EGRL) THEN
    EGIM=EGRL
    ELSE
    EGRL=EGIM
    END IF
    CGIM=300./CXMAX
    CGRL=300./CYMAX
    IF(CGIM..GT..CGRL) THEN
    CGIM=CGRI
    ELSE
    CGRL=CGIM
    END TF
    IF(EGIM.GT.CGIM) THEN
    GIM=CGIM
    GRI=CGRI
    ELSE
    GTM=EGMM
```

```
        GRL=EGRL
        END IF
        EPMMAX=EPMMAX*180./PI.
        CPMMAX=CPMMAX*180./PI
        WRITE(LOU, *)
        WRITE(LOU,*)' MAX MAG PHA AT MAX MAG'
        WRITE(LOU, 52) EMMAX, EPMMAX
        WRITE (LOU, 53) CMMAX, CPMMAX
    52 FORMAT(' EXP: ',D11.4,7X,F7.3)
    53 FORMAT(' CAL: ',D11.4,7X,F7.3)
        IR1=GRL*EX(1)+ORL
        IM1=GIM*EY(1)+OIM
        I=2
    50 IF(EX(I).GT.900) GO TO 59
    IR2=GRL*EX(I)+ORL
    IM2=GIM*EY(T)+OIM
    CALL QLINE(IR1,IM1,IR2,IM2,15)
    IR1=IR2
    IM1=IM2
    I=I+1
    GO TO 50
    59 IR1=GRL*CX(1)+ORL
    IM1=GIM*CY(1)+OIM
    I=2
    60 IF(CX(I).GT.900) GO TO 70
    IR2=GRL*CX(I)+ORL
    IM2=GIM*CY(I)+OIM
    CALL QLINE(IR1,IM1,IR2,IM2,11)
    IR1=IR2
    IM1=IM2
    I=I+1
    GO TO 60
    7 0 ~ C O N T I N U E
    WRITE(LOU ,*)
    WRITE(LOU,*)
    WRITE(LOU,*)
    CALL PRTSC
    WRITE(LOU,*)FF
1000 END
```

PGINV inverts scan of pancake coil data to get depth and volume

Program PCINV calculates the depth and volume of a defect given the change in the impedance of a pancake coil as it scans past the defect. The program works with experimental data stored in a file by program PCFIX or with calculated data stored by program PCAVZSCN, and it uses a lookup file built by program PCBLDF. The program calculates the integral of minus the impedance change in the coil due to the defect with respect to the radial distance between the coil axis and the defect from the inner radius of the coil to the outer radius of the coil. It then compares the phase of this complex integral with the phases stored in a lookup file by program PCBLDF. When the phase of the integral matches the phase in the lookup file, the program reads the corresponding depth and magnitude from the lookup file. The depth is equal to the depth of the defect, and the magnitude can be used to find the volume of the defect. The defect is assumed to have the shape of a flat-bottomed hole.

Summary

1. Declare variable types.
2. Initialize variables.
3. Open the file containing the experimental data, read in the data, and calculate the integral.
4. Find the depth and magnitude in the lookup file corresponding to the phase of the integral.
5. Calculate the inverted defect depth and volume based on the experimental data.
6. Open the file containing the calculated data, read in the data, and calculate the integral.
7. Find the depth and magnitude in the lookup file corresponding to the phase of the integral.
8. Calculate the inverted defect depth and volume based on the calculated data.

Variables

AIR'IND*	e
DELRDC	The normalized distance between adjacent calculated data points.
DELRDE	The normalized distance between adjacent experimental data points.
DEPTH	The inverted depth of the center of the defect. A negative number.
DFDEP ${ }^{\text {P }}$	The actual depth of the defect in inches.
DFDIAM*	The actual diameter of the defect in inches.
DFM	The magnitude of the change in the impedance of the coil due to the defect.
DFP.	The phase of the change in the impedance of the coil due to the defect.
FREQ*	The operating frequency in hertz

L.	The length of the coil. The value is input in inches and normalized by the program. The lift-off of the coil. The value is input in inches and normalized by the program.
LI	

Listing

PROGRAM PCINV

C VERSION July 27, 1988
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L, L1, L2, JANR21, LHSPHA
REAL*8 NMR1A, NMR1B, NMR1,NMR2,NMR
REAL*8 NMI1A, NMI1B, NMI1, NMI2,NMI
DATA LOEE/38/,LOEC/39/,LOU/8/,PI/3.141592653/
DATA FREQ/500./,RH01/4.054/,U1/1.0/,DFDIAM/0.1881/,DFDEP/0.1881/
DATA DELRDE/0.0392/,DELRDC/0.05/,TRN/800./,T1/0.25/
DATA AIRIND/6.252919E-03/
OPEN(LOEE, FILE='QEXPN2.DAT', STATUS='OLD')
OPEN (LOEC, FILE='OCALN2.DAT' , STATUS $=$ ' OLD')
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR,IMN,ISE,IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE, IMO, IDA, IYR
2 FORMAT(' PCINV TIME ',I2,':',I2,':',I2
*,' DATE ',I2,'/',I2,'/',I2)
WRITE(LOU,5)
5 FORMAT(6X,'IN RAD',4X,'OT RAD',4X,'LENGTH',4X,'LIF OFF'
*,3X,'CLADTH',4X,'DF RAD',4X,'DF DEP')
R1 $=0.1000$
R2 $=0.4100$
$\mathrm{L}=0.1000$
$\mathrm{L} 1=0.01$
$\mathrm{R} 3=.5 *(\mathrm{R} 1+\mathrm{R} 2)$
RDE=R3*DELRDE*. 5
RDC=R3*DELRDC*. 5
ZD $=-0.5 *$ DFDEP
WRITE(LOU, 10)R1, R2, L, L1 , T1, RD, ZD
R1=R1/R3
$\mathrm{R} 2=2.0-\mathrm{R} 1$
$\mathrm{L}=\mathrm{L} / \mathrm{R} 3$
L1=L1/R3
RDE=RDE/R3
RDC=RDC/R3
2D=2D/R3
T1=T1/R3
$\mathrm{L} 2=\mathrm{L}+\mathrm{L} 1$
VOLN $=$ PI $*$ DFDIAM $*$ DFDIAM $*$ DFDEP $/(4 . * R 3 * R 3 * R 3)$
WUSRR $=0.5093979 * \mathrm{U} 1 * \mathrm{R} 3 * \mathrm{R} 3 * \mathrm{FREQ} / \mathrm{RHO1}$
WRITE(LOU, 15)R1, R2, L, L1, T1, RD, ZD
10 FORMAT('ACT , , 7(F7.4,3X))
15 FORMAT('NOR ',7(F7.4,3X))
WRITE(LOU , 20) R3, FREQ, RHO1, U1, WUSRR
20 FORMAT(' RBAR',F7.4,' FREQ $=$ ',1PE13.6,' RHO=', OPF9.4, *' $\operatorname{PERM}=$ ',F7.3,' $\mathrm{WUSRR}='$, F9.4)
28 CONTINUE

```
        WRITE(LOU,*)
        WRITE(LOU,*)
        WRITE(LOU,278)
        WRITE(LOU, 279) ZD,VOLN
    278 FORMAT(' DEPTH VOLIJME')
    279 FORMAT('ACTUAL: ',F12.5,1X,E14.5)
        SMAIR=AIRIND*(L* (R2-R1))**2/(0.0254*4.E-07*TRN*TRN*R 3*PI*PI)
        SIVR=0.0
        SIVI=0.0
        M=0
    70 READ(LOEE,*,END=78)DFM,DFP
        IF(RDE.LT.R1)GOTO }7
        IF(RDE.GT.R2)GOTO 78
C WRITE(0,*)RDE,DFM,DFP
        DFP=DFP*(PI/180.)
        XFACT=DSQRT(DFM)*DELRDE
        SIVI=SIVI -XFACT*DCOS (0.5*DFP)
        SIVR=SIVR+XFACT*DSIN(0.5*DFP)
        LHSPHA=ATAN2(SIVI,SIVR)
        XMAG=SQRT(SIVR*SIVR+SIVI*SIVI)
        76 RDE=RDE+DELRDE
        GO TO 70
        7 8 \text { CONTINUE}
        LHSPHA=LHSPHA*180./PI
        WRITE(LOU,*)LHSPHA
        CALL NDEP(DEPTH,RHSMAG,LHSPHA)
        VOLl = (2*SMAIR*PI)*(XMAG*XMAG) /((3*WUSRR)*(RHSMAG*RHSMAG))
        WRITE(LOU, 379)DEPTH,VOL1
    379 FORMAT('INV EXP: ',F12.5,1X,E14.5)
    79 SIVR=0.0
        SIVI=0.0
        M=0
    80 READ(LOEC,*,END=88)DFM,DFP
        IF(RDC.LT.R1)GOTO }8
        IF(RDC.GT.R2)GOTO }8
        DFP=DFP*(PI/180.)
        M=M+1
        XFACT=DSQRT(DFM)*DELRDC
        SIVI=SIVI -XFACT*DCOS (0.5*DFP)
        SIVR=SIVR+XFACT*DSIN(0.5*DFP)
        LHSPHA=ATAN2(SIVI,SIVR)
        XMAG=SQRT(SIVR*SIVR+SIVI*SIVI)
    86 RDC=RDC+DELRDC
        GO TO 80
    8 CONTINUE
        LHSPHA=LHSPHA*180./PI
C WRITE(LOU,*)LHSPHA
        CALL NDEP(DEPTH,RHSMAG,LHSPHA)
```

VOLI $=(2 * S M A I R * P I) *(X M A G * X M A G) /((3 * W U S R R) *(R H S M A G * R H S M A G))$ WRITE (LOU, 479) DEPTH, VOL1
479 FORMAT('INV CAL: ',F12.5,1X,E14.5)
END

PCRTSCAN converts raw voltage readings to impedance change

Program PCRTSCAN converts raw experimental voltage readings taken by a pancake coil scanning across a plate into the impedance change in the coil due to a defect. The program can then use this array of impedance changes to locate defects in the plate and to calculate the depth and volume of the defects. The program locates the defects by constructing three windows, a "zero" window and two windows directly under the coil windings. These two windows are located from R1 to R2 on either side of the coil axis, and a running sum of the magnitude of the impedance change, referenced to the zero window, is kept for each of these windows. A dot product is performed between the impedance change in these two windows, and the defect center is located at the maximum value of this product. The "zero" window is shifted so that it will be in a clean region of the sample, but on either side of the defect. In Fig. 6 we show the magnitude of the impedance change plotted for a scan of six defects on the near side of the plate.

Figure 6 Magnitude of impedance change measured with a pancake coil for near side defects.

The defects have a diameter approximately equal to the depth of the defect, so that the defect volume falls off as the depth cubed. In Fig. 7 we show a similar plot for defects on the far side of the plate. Note that the noise has increased such that the last two defects have not been located using the present noise cut-off level. However, these are very low volume defects compared to those normally detected by eddy-current tests. Relative to the wall thickness, the ASME Section XI 40\% standard defect has a volume 94 times greater than the 39% defects in the test
plate. The defects were chosen to be relatively small so that better agreement would be obtained with the theory.

The original version of PCRTSCAN read data directly from voltmeters connected to the MIZ17, but later versions, such as the present listing, read the data taken from the MIZ17 and stored in a data file.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Get the voltage readings with additional lift-off and convert these readings to the impedance change caused by the additional lift-off.
4. Take enough readings to fill up both of the active windows and the region between the windows.
5. Average the first $N Z$ readings taken on the plate and use this average value as the voltage in the absence of defects.
6. Calculate the integrals in the active windows and solve for the depth and volume of a possible defect centered between the active windows.
7. Check to see if a defect is located between the active windows. If there is a defect, find and record its depth and volume.
8. Advance the zero window one point. Check to see if the entire zero window is out of the range of defects. If it is, average the values in the zero window to find the new value of the voltage in the absence of defects.
9. Advance the active windows one point.
10. Go to 6 until the entire plate has been scanned.
11. Graph the results.

Variables

AIRIND \quad The inductance of the coil in air
CLOM ${ }^{\circ}$ The magnitude of the calculated value of the change in the impedance of the coil due to additional lift-off.
CLOP' The phase in radians of the calculated value of the change in the impedance of the coil due to additional lift-off.
DEFECT An array which contains the position of each defect located by the program. It contains the distance in inches from each defect to the point where the scan began.
DELR The normalized distance between adjacent data points.
DELTAX The distance between adjacent data points in inches.
DEPA An array containing the inverted depths at each point along the plate.
DP The dot product of the integrals from the two active windows.
FF A character variable containing the form feed character.
FREQ \quad The operating frequency in hertz.
HA1 Tle number uf the first data poine in the firot active window.
HA2 The number of the first data point in the second active window.
HZ The number of the first data point in the zero window.
ICP Flag which is set when a defect is located and is reset when the dot product of the integrals in the t.wn artive windows stops decreasing. This flag must be 0 for the program to signal that it has found a defect.
$L^{\circ} \quad$ The length of the coil. The value is input in inches and normalized by the program.
L1' The lift-off of the coil. The value is input in inches and normalized by the program.
L2 The distance from the top of the coil to the plate.
LA1 The number of the last data point in the first active window.
LA2 The number of the last data point in the second active window.
LHSMAG The magnitude of the average of the integrals from the two active regions.
LHSPHA The phase in degrees of the average of the

	integrals from the two
LOD ${ }^{\text { }}$	The number of the I/O unit connected to the lookup file built by program PCBLDF.
LOE ${ }^{\text {P }}$	The number of the I / O unit connected to the file containing the raw experimental data.
LOU	The number of the $I / 0$ unit connected to the printer.
L2	The number of the last data point in the zero window.
NA	The number of data points in each active window.
ND	The number of defects located by the program.
NE	The number of data points in the region between the active windows.
NZ ${ }^{\circ}$	The number of data points in the zero window.
R1*	The inner radius of the coil. The value is input in inches and normalized by the program.
R2*	The outer radius of the coil. The value is input in inches and normalized by the program.
R3	The mean radius of the coil in inches.
RAWI	An array containing the imaginary parts of the raw readings taken at each point across the plate.
RAWR	An array containing the real parts of the raw readings taken at each point across the plate.
RHO1 ${ }^{\circ}$	The electrical resistivity of the plate in $\mu \Omega$ cm.
SACTI	The imaginary part of the average of the integrals from the two active regions.
SACTR	The real part of the average of the integrals from the two active regions.
SCFAC	The ratio of the magnitude of the calculated change in the normalized impedance to the magnitude of the change in the raw reading due to additional lift-off.
SCPHA	The difference between the phase of the calculated change in the normalized impedance and the phase of the change in the raw reading due to additional lift-off.
TACTI1	The imaginary part of the integral over the region spanned by the first active window.
TACTI2	The imaginary part of the integral over the region spanned by the second active window.
TACTR1	The real part of the integral over the region spanned by the first active window.
TACTR2	The real part of the integral over the region spanned by the second active window.
TRN*	The number of turns in the coil.
U1	The relative magnetic permeability of the plate.
VLOI'	The imaginary part of the experimental reading taken with additional lift-off.
VLOM	The magnitude of the experimental reading taken with additional lift-off.

VLOP	The phase of the experimental reading taken with additional lift-off.
VLOR ${ }^{*}$	The real part of the experimental reading taken with additional lift-off.
VOLA	An array containing the inverted volume at each point along the plate.
VTOL	The maximum amount of drift in the readings in the zero window that the program will tolerate for it to re-zero the readings.
WUSRR	The product of the angular frequency, the magnetic permeability, the electrical conductivity, and the square of the mean coil radius.
ZEROI	The value of the imaginary part of the voltage on a section of the plate with no defects.
ZEROR	The value of the real part of the voltage on a section of the plate with no defects.
ZEROY	The difference between the number 20 and the number of data points since the program last found a zero point on the plate. If it has been more than 20 points since the last time the program found a zero, $\mathrm{ZEROY}=0$.

Notes

1. For the program to signal that it has found a defect, four conditions must be satisfied:
(a) The inversion of the preliminary data must result in a defect which is inside the plate.
(b) The scalar product of the integrals from the two active windows must decrease twice consecutively after having increased.
(c) The scalar product of the integrals from the two active windows must be greater than 4.0E-04.
(d) No zero can have been detected within the last 20 readings.
Some of these criteria may be unnecessary.
2. If the program is too sensitive to zeros, that is, if it finds zeros in places it should not, it can be made less sensitive by increasing the value of $N Z$ or by decreasing the value of VTOL. Conversely, if the program fails to find a zero in a clean region of the plate, it may be made more sensitive to such regions by decreasing $N Z$ or by increasing VTOL.
3. When the program locates a defect, it searches until it finds the next zero on the plate, and it averages the zeros on both sides of the defect. While this makes the inversion more accurate, it also makes it possible that the program will overlook a defect. If there are two defects on the plate which are not separated by a region that the program recognizes as clean, the program will not detect the second defect.
4. The program averages the first $N Z$ readings and uses this as the value on the clean part of the plate until it finds a clean section of the plate. If the very first region presented to the program has a defect in it, the results will be unpredictable and very likely undesirable because the program uses the very first reading in its calculation of SCFAC and SCPHA which are used to convert all subsequent readings to the normalized impedance change of the coil.
```
Listing
    PROGRAM PCRTSCAN
C VERSION September 12, 1988
    IMPLICIT REAL*8 (A-H,O-Z)
    INTEGER HZ,HA1,HA2
    REAL*8 L,Ll,L2
    REAL*8 LHSPHA,LHSMAG
    REAL*8 RAWR(1500),RAWI(1500)
    REAL*8 TMZR(20),TMZI(20)
    REAT.*8 ZMAGA(1500), ZPHAA(1500)
    REAL*8 DEPA(1500),VOLA(1500)
    REAL*8 DEFECT(100)
    CHARACTER*1 FF
    DATA LOU/8/,LOD/38/,LOE/40/
    DATA PI/3.141592653/
    DATA R1/0.1000/,R2/0.4100/,L/0.1000/,TRN/800./,L1/0.010/
    DATA FREQ/500./,RHO1/4.054/,U1/1.0/,T1/0.250/
    DATA DELTAX/0.01/,AIRIND/6.252919E-03/,VTOL/0.02/
    DATA CLOM/0.020030/,CLOP/2.44/
    FF=CHAR(12)
    K=0
    OPEN(LOE, FILE='TEMP.DAT',STATUS='OLD')
    R3=0.5*(R1+R2)
    L2=L+L1
    R1=R1/R3
    R2=R2/R3
    L=L/R3
    L1=L1/R3
    L2=L2/R3
    T1=T1/R3
    DELR=DELTAX/R3
    WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
    SMAIR=AIRIND*(L*(R2-R1))**2/(0.0254*4.E-07*TRN*TRN*R 3*PI*PI)
C NZ = Number of points in the zero window
C NA = Number of points in each active window
C NE = Number of points in the eye
    NZ=15
    NA=(R2-R1)/DELR
    NE=(2*R1)/DELR
    LZ=1
    HZ=NZ
    LAl=NZ+1
    HAl=NZ+NA
    LA2=NZ+NA+NE+1
    HA2=NZ+NA+NE+NA
    GO TO 201
C Initialize scanner
    CALL INITSC
C Take readings with liftoff
    XX1=1.0
```

```
            YY1=2.0
            DELTAX=0.0
            CALL GDAT(XX1,YY1,DELTAX,VLOR,VLOI)
            PAUSE 'PUT SHIM UNDER COIL; PRESS RETURN'
            XXl=1.0
            YYl=2.0
            DELTAX=0.01
            DO 200 J=1,10
            CALL GDAT(XX1,YY1;DELTAX,VLOR,VLOI)
            TVLOR=TVLOR+VLOR
            TVLOI=TVLOI+VLOI
    200 CONTINUE
    201 CONTINUE
            VLOR=0.1*TVLOR
C VLOI=0.1*TVLOI
C PAUSE 'REMOVE SHIM; PRESS RETURN'
            VLOR=-1.74
            VLOI=-0.31
            XX1=0.0
            YYl=1.0
            DELTAX=0.01
C Fill the active windows and the region between the active
C windows with data so that the scan can get started.
            DO 300 J=1,HA2
C CALL GDAT(XX1,YY1,DELTAX,VR,VI)
            READ(LOE,*)XX1,VR,VI
            RAWR(J)=VR
            RAWI (J)=VI
    300 CONTINUE
            TZEROR=0.
            TZEROI=0.
C Find the zero to be used until another comes along.
            DO 400 J=LZ,HZ
            TZEROR=TZEROR+RAWR(J)
            TZEROI=TZEROI+RAWI (J)
    400 CONTINUE
            ZEROR=TZEROR/NZ
            ZEROI=TZEROI/NZ
C Calculate the factors for converting the raw readings
C to the impedance change in the coil.
            VLOR=VLOR-ZEROR
            VLOI=VLOI - ZEROI
            VLOM=DSQRT(VLOR*VLOR+VLOI*VLOI)
            VLOP=DATAN2(VLOI,VLOR)
            SCFAC=CLOM/VLOM
            SCPHA=CLOP-VLOP
    450 TACTR1=0.
            TACTIl=0.
            TACTR2=0.
            TACTI2=0.
C Calculate the integral for the first active window.
```

```
            DO 500 J=LA1,HA1
            VR=RAWR(J)-ZEROR
            VI=RAWI (J)-ZEROI
            ZMAG=DSQRT(VR*VR+VI*VI)*SCFAC
            ZPHA=(DATAN2(VI,VR)+SCPHA)
            ZMAGA(J)=ZMAG
            ZPHAA(J)=ZPHA
            XFACT=DSQRT(ZMAG)*DELR
            RZR=XFACT*DSIN(0.5*2PHA)
            RZI=-XFACT*DCOS(0.5*ZPHA)
            TACTR1=TACTR1+RZR
            TACTI1=TACTI1+RZI
    500 CONTINUE
C Calculate the integral for the second active window.
            DO }600\mathrm{ J=LA2,HA2
            VR=RAWR(J)-ZEROR
            VI=RAWI (J) - ZEROI
            ZMAG=DSQRT(VR*VR+VI*VI)*SCFAC
            ZPHA=(DATAN2(VI,VR)+SCPHA)
            ZMAGA(J)=ZMAG
            ZPHAA(J)=ZPHA
            XFACT=DSQRT(ZMAG)*DELR
            RZR=XFACT*DSIN(0.5*ZPHA)
            RZI=-XFACT*DCOS(0.5*ZPHA)
            TACTR2=TACTR2+RZR
            TACTI2=TACTI2+RZI
    6 0 0 ~ C O N T I N U E ~
G. Average the integrals from the two active windows.
    SACTR=0.5*(TACTR1+TACTR2)
    SACTI-0.5*(TACTI1+TACTI2)
    LHSPHA=DATAN2(SACTI, SACTR)*180./PI
    LHSMAG=DSQRT(SACTR*SACTR+SACTI*SACTI)
    K=K+1
C Invert the integrals.
    CALL NDEP(DEPTH,RHSMAG,IHSPHA,T1,L1, L2,R1,R2,WUSRR,U1)
    VOL1=(2*SMAIR*PI)*(LHSMAG*LHSMAG)/((3*WUSRR)*(RHSMAG*RHSMAG))
    DEPA(K)=DEPTH
    WRITE(0,*)DEPTH,VOT.1.
    IF(DEPTH.EQ.0) THEN
    VOLA(K)=0
    ELSE
    VOLA (K)=VOL1
    END IF
    DP=TACTR1*TACTR2+TACTI1*TACTI2
    WRITE (0,*)' ',DP,PRDP
    IF(DEPTH.NE.O.) THEN
    IF((DP.LT.PRDP).AND.(DP.GT.4.E-04).AND.(PRDP.LT.PRPRDP)) THEN
    IF((ZEROY.EQ.O.).AND.(ICP.EQ.0)) THEN
C A defect has been found.
    XX=XX1-R2*R3-2.*DELTAX
        WRITE(LOU, 29)XX, DEPTH, VOL1
```

```
        WRITE(0,*)'D'
        ND=ND+1
        DEFECT(ND)=XX
C Find the next zero and recalculate.
        ITP=HA2
        DO 610 KN=1,NZ
        ITP=ITP+1
        READ(LOE ,* , END=1000) XX1,VR,VI
        IF(VR.EQ.999)GO TO 1000
        RAWR(ITP)=VR
        RAWI (ITP)=VI
        WRITE(0,*)XXI
        TMZR(KN)=VR
        TMZI (KN)=VI
    610 CONTINUE
    615 TZEROR2=0.
    TZERO:12=0.
C Check to see if the entire zero window is out of the range
C of defects.
    DO 620 KN=1,NZ
        IF(ABS (ABS (TMZR(KN)) -ABS (TMZR(8))).GT.VTOL)GO TO 630
        IF(ABS (ABS (TMZR(KN))-ABS (TMZR(8))).GT.VTOL)GO TO }63
        TZEROR2=TZEROR2+TMZR(KN)
        TZEROI2=TZEROI2+TMZI (KN)
    620 CONTINUE
        ZEROR2=TZEROR2/NZ
        ZEROI2=TZEROI2/NZ
        GO TO 640
C The zero window is not out of the range of defects.
C Advance the window one step and retest.
    6.3.0 ITP=ITP+1
        READ(LOE,*,END=1000) XX1,VR,VI
        RAWR(ITP)=VR
        RAWI (ITP)=VI
        DO 635 KN=1,NZ-1
        TMZR(KN)=TMZR (KN+1)
        TMZI (KN)=TMZI (KN+1)
    63.5 CONTINUE
        TMZR(NZ)=VR
        TMZI (NZ)=VI
        GO TO 615
C The zero window is out of the range of defects.
C. Average the leading and trailing zero.
    640 ZEROR=(ZEROR+ZEROR2)/2.
            ZEROI=(ZEROI+ZEROI2)/2.
            TACTR1=0.
            TACTI 1=0 .
            TACTR2=0.
            TACTI2=0.
C Reconvert the raw readings from the first active window to
C the impedance changes in the coil using the new value for zero.
```

```
        DO 650 KN=LA1,HA1
        VR=RAWR (KN) - ZEROR
        VI=RAWI (KN)
        ZMAG=DSQRT(VR*VR+VI*VI)*SCFAC
        ZPHA=(DATAN2(VI,VR)+SCPHA)
        ZMAGA(KN)=ZMAG
        ZPHAA(KN)=ZPHA
C Recalculate the integral for the first active window using
C the new data.
        XFACT=DSQRT(ZMAG)*DELR
        RZR=XFACT*DSIN(0.5*ZPHA)
        RZI=-XFACT*DCOS(0.5*Z.PHA)
        TACTR1=TACTR1+RZR
        TACTIl=TACTIl+RZI
    6 5 0 ~ C O N T I N U E ~
C Reconvert the raw readings from the second active window to
C the impedance changes in the coil using the new value for zero.
        DO 660 KN=LA2,HA2
        VR=RAWR(KN)}-2ERO
        VI=RAWI (KN)-ZEROI
        ZMAG=DSQRT(VR*VR+VI*VI)*SCFAC
        ZPHA=(DATAN2(VI,VR)+SCPHA)
        ZMAGA(KN)=ZMAG
        ZPHAA(KN)=2PHA
C Recalculate the integral for the second active window using
C the new data.
        XFACT=DSQRT(ZMAG)*DELR
        RZR=XFACT*DSIN(0.5*ZPHA)
        RZI=-XFACT*DCOS(0.5*ZPHA)
        TACTR2=TACTR2+RZR
        TACTI2=TACTI2+RZI
    6 6 0 \text { CONTINUE}
C Average the new integrals.
        SACTR=0.5*(TACTR1+TACTR2)
        SACTI=0.5*(TACTI1+TACTI2)
        LHSPHA=DATAN2(SACTI,SACTR)*180./PI
        LHSMAG=DSQRT(SACTR*SACTR+SACTI*SACTI)
C Invert once again.
    CALL NDEP(DEPTH,RHSMAG,LHSPHA,T1,L1,L2,R1,R2,WUSRR,U1)
    VOL1=(2*SMAIR*PI)*(LHSMAG*LHSMAG)}/((3*WUSRR)*(RHSMAG*RHSMAG))
    DEPA(K)=DEPTH
    IF(DEPTH.EQ.0)THEN
    VOLA(K)=0
    ELSE
    VOLA(K)=VOL1
    END IF
C Print the results of the inversion.
    WRITE(LOU, 29)XX,DEPTH,VOL1
    HA2=ITP
    LA2=ITP-NA+1
    HAI=ITP-NA-NE
```

```
        LA1=HA1 -NA+1
        END IF
        ICP=1
    ELSE
C No defect was found.
        ICP=0
        END IF
        END IF
        PRPRDP=PRDP
        PRDP=DP
C WRITE(LOD, 29)XX1, DEPTH,VOL1
C WRITE (0,29)XX1,DEPTH,VOL1
        29 FORMAT(F8.4,2X,D11.4,2X,D11.4)
C Advance all of the windows one step and continue looking
C for defects.
            LZ=LZ+1
            HZ=HZ+1
            LA1=LA1+1
            HA1=HA1+1
            LA2=1A2 +1
            HA2=HA2+1
C CALL GDAT(XX1,YY1,DELTAX,VR,VI)
C Get the next raw data reading.
            READ(LOE,* , END=1000) XXI,VR,VI
            IF(VR.EQ.999.)GO TO 1000.
            WRITE(0,*)XX1
            RAWR(HA2)=VR
            RAWI (HA2)=VI
C Shift the readings in the zero window down one step in the array.
            DO 700 KN=1,NZ-1
            TMZR (KN)=TMZR (KN+1)
            TMZI (KN)=TMZI (KN+1)
    7 0 0 ~ C O N T T N U E
C Assign the new reading to the highest element in the zero array.
            TMZR.(NZ)=RAWR(HA2)
            TMZI(NZ)=RAWI (HA2)
            ZZEROY=ZEROY-1.
            HF(ZEROY.LT.0.)ZEROY=0.
C Check to see if the entire zero window is out of the range of defects.
            DO 710 KN=1,NZ
            IF(ABS (ABS (TMZR(KN))-ABS (TMZR (8))).GT.VTOL)GO TO 780
            IF(ABS (ABS (TMZI(KN)) -ABS(TMZI (8))).GT.VTOL)GO TO 780
    710 CONTINUE
C The zero window is out of the range of defects.
            ZEROY=20.
            WRITE(%,*)'Z'
            TZEROR=0.
            TZEROI=0.
C Average the readings in the zero window to find the new zero.
            DO 7:20 KN=1,NZ
            TZEROR=TZEROR+TMZR(KN)
```

```
            TZEROI=TZEROI+TMZI (KN)
        720 GONTINUE
            ZEROR=TZEROR/NZ
            ZEROI=TZEROI/NZ
        7 8 0 \text { GOTO 450}
    1000 CONTINUE
C Graph the results of the scan.
            DO 1020 K=1,1200
            IF (ABS (ZMAGA(K)).GT . ZMAGMX) ZMAGMX=ABS (ZMAGA (K))
            IF(ABS(ZPHAA (K)).GT . ZPHAMX) ZPHAMX=ABS (ZPHAA (K))
    1020 CONTINUE
C WRITE(LOU,*)FF
C WRITE(LOU,*)'MAX MAG ',ZMAGMX
C WRITE(LOU,*)'MAX PHA ',ZPHAMX
    CALL QSMODE(16)
    DO 1025 K=1,ND
    IY1=1
    IY2=350
    IX1=DEFECT(K)*600./12.
            IX2=IX1
            CALL QLINE(IX1, IY1, IX2,IY2,7)
    1025 CONTINUE
            IX1=0
            IYl=ZMAGA(1)*150./ZMAGMX+150
            DO 1030 K=2,1200
            IX2=K/2
            IY2=ZMAGA(K)*150./ZMAGMX+150
            OALL QLINE(IX1,IY1;IY2,IY2,7)
            IX1=IX2
            IY1=IY2
    1030 CONTINUE
C CALL PRTSC
C WRITE(LOU,*)FF
            PAUSE
            CALL QSMODE(16)
            IX1=0
            IY1=ZPHAA (1)*150./ZPHAMX +150
            DO 1040 K=2,1200
            IX2=K/2
            IY2=2PHAA (K)*150/ZPHAMX +150
            CALL QLINE(IX1,IY1,IX2,IY2,7)
            IX1=IX2
            IYl=IY2
    1040 CONTINUE
C CALL PRTSC
    1090 END
```


REFLECTION COIL PROGRAMS

The programs in this section perform various functions relating to the effect of a defect in a single conducting plate on the induced voltage in the pickup coils of a reflection probe. A reflection probe above a conducting plate is shown in Fig. 8. The probe consists of a large driver coil with two pick-up coils mounted at either end. The pick-up coils are connected in opposition so that their signal cancels out with the probe in air. When the probe is placed on a conductor, the field can be considered to be equal to the field reflected back from the conductor.

Fig. 8. Cutaway of a reflection probe above a conducting plate.

The electrical connections for the reflection coil circuit are shown in Figure 9. The voltage output from this circuit $V_{\text {out }}$ is given by:

$$
\begin{align*}
V_{\text {out }}= & -j \omega M V_{0} R_{9} A \div\left\{\left(\omega C_{6} R_{0}-j\right)\left(\omega C_{7} R_{9}-j\right)(\omega M)^{2}+\right. \\
& {\left.\left[\left(\omega C_{6} R_{0}-j\right)\left(Z_{0}+R_{6}\right)-j R_{0}\right]\left[\left(\omega C_{7} R_{9}-j\right)\left(Z_{P U}+R_{7}\right)-j R_{9}\right]\right\} } \tag{20}
\end{align*}
$$

where A is the amplifier gain and the rest of the terms are defined in Fig. 9.

[^1]Fig. 9. Simplified circuit diagram for an eddy-current reflection type probe.

Fig. 10 shows a cross section of the reflection coil above the metal plate with the dimensions labeled as they are used in the equations and the programs. The programs are based on the signal from a small spherical defect, as shown in the figure.

As we can see from Eq. (20), we must calculate the impedance of both the driver and pick-up coils, as well as the mutual coupling between the two. The equations for the driver coil impedance, including the change due to the defect, is:

$$
\begin{align*}
& Z_{0}=\frac{\omega \pi \mu_{0} N_{3}^{2} R_{5}}{\left(r_{2}-r_{1}\right)^{2} \ell_{3}^{2}}\left\{j \int_{0}^{\infty} \frac{1}{\alpha^{6}} J^{2}\left(r_{2}, r_{1}\right)\left\{2\left(\alpha \ell_{3}+e^{-\alpha \ell_{3}}-1\right)+\left(1-e^{-\alpha \ell_{3}}\right)^{2} e^{-2 \alpha \ell_{6}} F\left(\alpha, \alpha_{1}, c\right)\right\} d \alpha\right. \\
&\left.\frac{-V o 1_{n} \alpha_{22} 3 \omega \mu \sigma \bar{r}^{2}}{8 \pi}\left[\int_{0}^{\infty} \frac{e^{-\alpha \ell_{6}}}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left(1-e^{-\alpha \ell_{3}}\right) J_{1}(\alpha r) F\left(\alpha, \alpha_{1}, z\right) d \alpha\right]^{2}\right\} \tag{21}
\end{align*}
$$

where $F\left(\alpha, \alpha_{1}, z\right)=2 \alpha\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right]$

Fig. 10. Cross section of a reflection coil above a conducting plate with a spherical defect.
and $\quad F\left(\alpha, \alpha_{1}, c\right)=\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp \left(-2 \alpha_{1} c\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right]$
and $\quad \beta_{1}=\quad\left(\alpha^{2}+j \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right)^{1 / 2} / \mu$
The dimensions for the coil are shown in Fig. 10. For the pick-up coil impedance we have:

$$
\begin{align*}
& Z_{\mathrm{P}}=\frac{\omega \pi \mu_{0} N_{4}^{2} R_{5}}{\left(r_{4}-r_{3}\right)^{2} \ell_{4}^{2}} \times\left\{j \int_{0}^{\infty} \frac{J^{2}\left(r_{4}, r_{3}\right)}{\alpha^{6}}\right. \tag{25}\\
& \left\{-4\left(\alpha \ell_{4}+e^{-\alpha \ell_{4}}-1\right)+\left(1-e^{-\alpha\left(l_{3}-\ell_{4}-2 l_{5}\right)}\right)^{2}\left(1-e^{-\alpha \ell_{4}}\right)^{-2} e^{-2 \alpha\left(l_{6}+\ell_{5}\right)} F\left(\alpha, \alpha_{1}, c\right) e^{-\alpha\left(l_{3}-2 \ell_{4}-2 l_{5}\right)}\right\} d \alpha \\
& \left.-\frac{V o l_{n} \alpha_{22} 3 \omega \mu \sigma \bar{r}^{2}}{8 \pi}\left[\int_{0}^{\infty} \frac{e^{-\alpha\left(l_{6}+\ell_{5}\right)}}{\alpha^{3}} J\left(r_{4}, r_{3}\right)\left(1-e^{-\alpha\left(l_{3}-l_{4}-2 l_{5}\right)}\right)\left(1-e^{-\alpha \ell_{4}}\right) J_{1}(\alpha r) F(\alpha, \alpha, z) d \alpha\right]^{2}\right\}
\end{align*}
$$

and for the mutual impedance between the driver and pickup coils we have:
$j \omega M=\frac{\omega \pi \mu_{0} N_{3} N_{4} R_{5}}{\left(r_{2}-r_{1}\right) \ell_{3}\left(r_{4}-r_{3}\right) \ell_{4}} \times$
$\left\{\int_{0}^{\infty} \frac{J\left(r_{2}, r_{1}\right) J\left(r_{4}, r_{3}\right)}{\alpha^{6}}\left(1-e^{-\alpha \ell_{3}}\right)\left(1-e^{-\alpha\left(l_{3}-l_{4}-2 l_{5}\right)}\right)\left(1-e^{-\alpha \ell_{4}}\right) e^{-\alpha\left(2 \ell_{6}+l_{5}\right)} F\left(\alpha, \alpha_{1}, c\right) d \alpha\right.$. $\frac{-V o I_{n} \alpha_{22} 3 \omega \mu \sigma \bar{r}^{2}}{8 \pi}\left[\int_{0}^{\infty} \frac{e^{-\alpha \ell_{6}}}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left(1-e^{-\alpha \ell_{3}}\right) J_{1}(\alpha r) F\left(\alpha, \alpha_{1}, z\right) d \alpha\right] \times$

$$
\left.\left[\int_{0}^{\infty} \frac{e^{-\alpha\left(l_{6}+l_{5}\right)} \alpha^{3}}{} J\left(r_{4}, r_{3}\right)\left(1-e^{-\alpha\left(l_{3}-l_{4}-2 l_{5}\right)}\right)\left(1-e^{-\alpha \ell_{4}}\right) J_{1}(\alpha r) F\left(\alpha, \alpha_{1}, z\right) d \alpha\right]\right\}
$$

These are the basic programs used for the calculation of the change in magnitude and phase of the eddy-current signal due to a defect for a reflection probe. In Eqs. (21), (25), and (26) the terms multiplied by j are the normal values without the defect, while the terms multiplied by $V o I_{n}$ are the changes due to the defect. If the values of driving and input impedance, R_{0} and R_{9}, are large and the circuit is operated well below resonance, the major change due to a defect will be in the term for M. Most of the tests run are usually designed for these conditions.

The program RFDSF calculates the defect sensitivity factor of a reflection coil at points throughout a conducting plate, and program RFDSFPLT produces a contour plot of these calculations. Program RFAVZSCN does the theoretical calculations for the change in the induced voltage in a pickup coil due to a defect in a conducting plate, and program RFFIX converts raw experimental data to the change in induced voltage in the coil. Program RFGRAPH can plot the data from these two programs side-by-side so the theoretical predictions for a defect can be compared to the actual data. Finally, programs RFBLDF and RFINV can take data stored by either RFAVZSCN
or RFFIX and solve for the depth and volume of the defect that produced that data. These programs and their discussion closely parallel the programs for the pancake coils in the previous section.

RFBLDF builds a lookup file of magnitude and phase of DSF

Program RFBLDF builds a lookup file containing the magnitude and phase of the integral of the defect sensitivity factor of a reflection coil with respect to r, the radial distance from the coil axis to the point where the calculations are performed, from the inner radius of the pickup coil to the outer radius of the driver coil at different depths in a plate. This lookup file can be used by program RFINV to calculate the depth and volume of defects. (See note \#2.)

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Select a value for the depth in the plate at which the calculations are to be performed.
4. Select a value for the radial distance between the coil axis and the point at which the calculations are to be performed.
5. Find the defect sensitivity factor at this point.
6. Loop to 4 until done.
7. Calculate the integral of the defect sensitivity factor over the range of r and write the result to a data file.
8. Loop to 3 until done.

Variables

NOTE: Most of the variables which occur inside the integration loops are uninteresting because they do not correspond to anything physical and because they should never require user intervention. Therefore, these variables will not be discussed here. For a detailed description of these variables, see the documentation of program RFAVZSCN. For a discussion of the major differences between the integration section of program RFBLDF and the integration section of program. RFAVZSCN, see note \#1.

Starred variables must be set by the user.

C6 ${ }^{\circ}$	The total shunt capacitance in farads of the driving circuit.
C7 ${ }^{\circ}$	The total shunt capacitance in farads of the pickup circuit.
DELTAR	The normalized radial distance between successive data points.
FREQ ${ }^{\circ}$	The operating frequency in hertz.
GAIN*	Gain of pickup amplifier.
L3	The normalized length of the driver coil.
L4	The normalized length of the pickup coil.
L5	The normalized distance of recess of the pickup coil.
L6	The normalized lift-off of the driver coil.
LOD ${ }^{\text { }}$	The number of the I / O unit connected to the output

LOU	data file. The number of the I / O unit connected to the printer.
MZT ${ }^{\text { }}$	The number of depths throughout the plate at which the program does calculations. Increasing this number usually improves the accuracy of the inversion somewhat because it brings the interpolated points closer together, so the variation of the magnitude and phase of the integral between the points is more nearly linear. (See note \#4.)
NPROBE*	Character variable which contains the name of the reflection probe to be used in the calculations.
NRT	```The total number of points in the radial direction at which calculations are performed. (See note #4.)```
NS	The side where the defect is located. If NS $=1$, the defect is on the near side; if $N S=2$, the defect is on the far side. The value of NS is assigned according to the location of the center of the defect. If the center of the defect is nearer the near side of the plate, NS is set equal to 1 . If the center of the defect is nearer the far side of the plate, NS is set equal to 2 .
NZT	The number of parts each defect is divided into along its axis to perform the calculations. (See note \#4.)
RO*	Output series resistance of driving amplifier in ohms.
R1	The normalized inner radius of the driver coil.
R2	The normalized outer radius of the driver coil.
R3	The normalized inner radius of the pickup coil.
R4	'lhe normalized outer radius of the pickup coil.
R5	The mean radius of the driver coil in inches.
R6	DC resistance of the driver coil in ohms.
R7	DC resistance of both pickup coils in ohms.
R9*	Input shunt resistance of pickup amplifier in ohms.
RD	The radial distance from the axis of the coil to the point where the calculations are being done.
RHO1*	The resistivity of the plate in $\mu \Omega-\mathrm{cm}$.
RHSI	The imaginary part of the integral of the defect sensitivity factor with respect to RD from R3 to R2.
RHSM	The magnitude of the integral of the defect sensitivity factor with respect to RD from R3 to R2.
RHSP	The phase in radians of the integral of the defect sensitivity factor with respect to RD from R3 to R2.
RHSR	The real part of the integral of the defect

	sensitivity factor with respect to RD from R3 to R2.
T1 ${ }^{\text {- }}$	The thickness of the plate. It is input in inches and normalized by the program.
TD	The density of turns in the driver coil.
TNDR	The number of turns in the driver coil.
TNPU	The number of turns in each pickup coil.
TP	The density of turns in the pickup coil.
U1 ${ }^{\circ}$	The relative magnetic permeability of the plate.
VIN*	Output voltage of driving amplifier in volts.
W	The angular operating frequency.
ZD	The normalized distance from the side of the plate where the defect is located to the bottom of the defect. A negative number.
2D2	The normalized distance from the near side of the plate to the center of the defect. A negative number.
2DTIO	The imaginary part of the self impedance of the driver coil with no defects present.
2DTR0	The real part of the self impedance of the driver coil with no defects present.
ZMSTEP	The normalized axial distance between the depths at which the program does the calculations.
ZMTDI	The imaginary part of the change in the mutual impedance between the driver coil and the pickup coil due to a defect.
ZMTDR	The real part of the change in the mutual impedance between the driver coil and the pickup coil due to a defect.
ZMTIO	The imaginary part of the mutual impedance between the driver coil and the pickup coil with no defects present.
ZMTR0	The real part of the mutual impedance between the driver and pickup coils with no defects present.
ZPTIO	The imaginary part of the self impedance of the pickup coil with no defects present.
2PTR0	The real part of the self impedance of the pickup coil with no defects present.

Notes

1. The integration in this program is very similar to the integration in program RFAVZSCN, but some very minor differences do exist. Most of these come from the fact that this program calculates only the defect sensitivity factor, which does not depend on the volume of the defect, and program RFAVZSCN calculates the voltage change due to the defect, which does depend on the volume of the defect. While it is necessary to calculate the defect sensitivity factor to calculate the voltage change due to the defect, program RFAVZSCN never calculates the defect
sensitivity factor as a separate quantity. Thus, some of the variables in RFAVZSCN which have the same name as variables in program RFBLDF have the defect volume as an extra factor.
2. The way that program RFINV uses the output of this program to calculate the depth and volume of a defect is very simple. Program RFINV takes either experimental data stored by program RFFIX or calculated data stored by program RFAVZSCN to find the integral of the voltage change due to the defect with respect to r from the inner radius of the pickup coil to the outer radius of the driver coil. The phase of this integral depends only upon the depth of the defect, and it is a single valued function of the depth of the defect. (See note \#3.) The phase of the integral of the defect sensitivity factor will be the same as the phase of the voltage change due to the defect, because the defect sensitivity factor differs from the voltage change only by a constant real factor. Therefore, program RFINV can search through the file created by program RFBLDF until it finds the depth corresponding to the phase it obtained when it calculated the integral. This will be the depth of the defect. Then program RFINV can divide the integral it calculated by the integral calculated by program RFBLDF. Since the phases of the integrals are equal, the factors which contain the phase will cancel, and the program needs only to divide the magnitude of one integral by the other. The result of this division is the constant factor by which the two integrals differ, which is equal to the defect volume multiplied by α_{22}, the defect shape and orientation factor. We normally assume that α_{22} is equal to 1 , so the program is left with the defect volume.
3. One of the necessary assumptions for the reflection coil inversion programs to work is that the phase of the integral calculated by this program depends only upon the depth of the defect and that it is therefore independent of the defect volume. This is not exactly true. The expression for the defect sensitivity factor contains terms in the denominator which do depend slightly on the defect volume, and since this volume dependence cannot be factored out, it has a small effect on the phase of the integral. However, the error introduced by this slight volume dependence is not significant, as shown by the accuracy of the inversion of data calculated by program RFAVZSCN, which considers the dependence of the phase on the volume. The error for these inversions is typically less than one percent.
4. The selection of the point in the plate about which the calculations are done is complex in the program. The outside position determining loop runs from 0 to MZT. This loop sets the value of the depth of the center of the defect by assigning values to variables $Z D$ and $Z D 2$. It also determines whether a defect is on the near side of the plate or on the far side of the plate. The next position determining loop, which occurs inside this one, runs from 1 to NRT. It sets the value for the radial distance from the coil axis to the center of the defect by assigning a value to variable RD. The final position determining loop lies inside both of these, and it runs from 1 to NZT. This loop is present for the purpose of dividing the large defect located at cylindrical coordinates

RD and ZD2 into a number of smaller defects so that more accurate calculations can be obtained for the entire defect. In the case of a near side defect, the large defect is divided into NZT smaller defects centered at even intervals along the axis of the large defect between the bottom of the defect and the near side of the plate. In the case of a far side defect, the large defect is divided into NZT smaller defects centered at even intervals along the axis of the large defect between the bottom of the defect and the far side of the plate.

Listing

C VERSION November 7, 1988
CHARACTER NPROBE*6,COTL*6
IMPLICIT REAL*8 (A-H,O-Z).
COMPLEX*16 ZMT, ZDT,ZPT, Z0, Z6, Z7, Z9
COMPLEX*16 ZMTO, ZPTO, ZDT0,,RHSC, EBW
REAL*8 L3,L4,L5,L6
DIMENSION S1(6),S2(6), ERR(6)
DIMENSION $\operatorname{SDDR}(120), \operatorname{SDDI}(120), \operatorname{SDPR}(120), \operatorname{SDPI}(120)$
DATA LOU/8/, PI/3.141592653/, LOD/39/
DATA S1/0.005,0.02,0.05,0.1,0.5,2./
DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
DATA ERR/0.1,0.01,0.001,1.E-4,1.E-5,1.E-6/
DATA RHO1/4.054/, U1/1.0/,MZT/10/,NRT/100/,NZT/1/
DATA T1/0.250/,NPROBE/'250A '/
DATA R0/3050./,R9/1.0D6/,C6/15.E-11/,C7/15.E-11/
DATA FREQ/500./,GAIN/1./,VIN/1.100/
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN, ISE,IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU, 2) IHR, IMN, ISE, IMO, IDA, IYR
2 FORMAT('RFBLDF TIME ',I2,':',I2,':',I2
*,' DATE ', I2,'/',I2,'/',I2)
$\mathrm{W}=2.0 \times \mathrm{PI} \times \mathrm{FREQ}$
FNZT=FLOAT (NZT)
OPEN (28, FILE='REF.DAT', STATUS='OLD')
$10 \operatorname{READ}(28,11) \operatorname{COIL}, \mathrm{R} 5, \mathrm{R} 1, \mathrm{R} 2, \mathrm{~L} 3, \mathrm{R} 3, \mathrm{R} 4, \mathrm{~L} 4, \mathrm{~L} 5, \mathrm{~L} 6$ *, R6, R7, TNDR, TNPU
11 FORMAT (A6, 9F8.4, F10.4, F11.4, 2F8.1)
$\operatorname{IF}(\operatorname{COIL} . E Q . ' E N D \quad$ ') $\operatorname{WRITE}(0, *)$ ' COIL NOT FOUND'
IF (COIL.EQ.'END ') GO TO 1040
IF (COIL.NE.NPROBE) GO TO 10
L6 $=\mathrm{L} 6+0.010 / \mathrm{R} 5$
WRITE (LOU , 3)NPROBE , T1
3 FORMAT('PROBE ',A6,' PLATE THICKNESS',F7.4)
WRITE(LOU,5)
5 FORMAT('COIL IN RAD OT RAD LENGTH OLO/REC TURNS',
*' COIL RES CKT: RES CAP')
WRITE(LOU, 14)R1, R2, L3, L6, TNDR ,R6, R0, C6
WRITE (LOU , 15) R3, R4, L4, L5, TNPU, R7, R9, C7
14 FORMAT('DRIVER ', 4(F7.4,1X),F8.1,3(1PE10.3))
15 FORMAT('PICKUP ', 4(F7.4,1X),F8.1,3(1PE10.3))
WUSRR $=0.5093979 * U 1 * R 5 * R 5 * F R E Q / R H O 1$
WRITE (LOU , 20) R5, FREQ, RHO1, U1, WUSRR
20 FORMAT('RBAR', F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
*' PERM=',F7.3,' WUSRR=',F9.4)
WRITE $(0,23)$ NPROBE , T1, FREQ
23 FORMAT('PROBE ', A6,' PLATE THK', F7.4,' FREQ=', F8.1)

```
    WRITE(LOU,*)
    WRITE(LOU,24)
    24 FORMAT('DEPTH ., MAGNITUDE PHASE')
    T1=T1/R5
    ZMSTEP=T1/MZT
    DELTAR=(R2-R3)/NRT
    TD=TNDR/((R2-R1)*L3)
    TP=TNPU/((R4-R3)*L4)
    ZDF=6.300475E-7*FREQ*TD*TD*R5
    ZPF=6.300475E-7*FREQ*TP*TP*R5
    ZMF=6.300475E-7*FREQ*TD*TP*R5
    DMF=0.1193662*WUSRR
    DO 1020 MZ=0,MZT
    WRITE(0,*)'MZ ',MZ
    IF(MZ.GT.(0.5*MZT)) THEN
C Far side defect
    NS=2
    ZM=(MZT-MZ)*ZMSTEP
    ZD=-2.*ZM
    ZM=MZ*ZMSTEP
    ZD2=-ZM
    ELSE
C Near side defect
    NS=1
    ZM=MZ*ZMSTEP
    ZD=-2.*ZM
    ZD2=-ZM
    END IF
    RD-n3 (0.5*DELTAR)
    SRHSR=0.
    SRHSI=0.
    DO 1010 NR=1,NRT
    WRITE(0,*)MZ,NR
    RD=RD+DELTAR
    SAIR1=0.0
    SAIR2=0.0
    SZDR=0.0
    SZDI=0.0
    SZPR=0.0
    SZPI=0.0
    SZMR=0.0
    SZMI=0.0
    DO 25 NZ=1,NZT
    SDDR(NZ)=0.0
    SDDI (NZ)=0.0
    SDPR(NZ)=0.0
    SDPI (NZ)=0.0
25 CONTINUE
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
```

```
    30 RI9=SAIR1
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S1(JKL)
    CALL BESSEL(XJR2,X,R2)
    CALL BESSEL(XJR1,X,R1)
    CALL BESSEL(XJR4,X,R4)
    CALL BESSEL(XJR3,X,R3)
    R21=XJR2-XJR1
    R43=XJR4-XJR3
    XL3=X*L3
    IF(XL3.GT.5.0E-3) GO TO 60
    A1=XL3*XL3*(0.5-XL3/6.0)
    GO TO 80
    60 IF(XL3.GT.75.0) GO TO 70
    Al=XL3+DEXP(-XL3)-1.0
    GO TO 80
    70 Al=XL3-1.0
    80 A3=XL3-A1
    SFD=S1(JKL)*R21*R21
    SFP=S1(JKL)*R43*R43
    SFM=S1(JKL)*R21*R43
    SAIR1=SAIR1+SFD*2.0*A1
    XI4=X*I4
    IF(XL4.GT.5.0E-3) GO TO 81
    A2=XL4*XL4*(0.5-XL4/6.0)
    GO TO }8
    81 IF(XL4.GT.75.0) GO TO 82
    A2=XL4+DEXP(-XL4)-1.0
    GO TO 83
    82 A2=XL4-1.0
    83 A4=XL4-A2
    A13=1.0-A3
    A14=1.0-A4
    A5=DEXP(-X*L5)
    XL8=X*(L3-2.*I4-2.*L5)
    IF(XL8.GT.75.)A8=0.
    IF(XL8.LE.75.)A8=DEXP(-XL8)
    SAIR2=SAIR2+SFP*(4.0*A2-2.0*A4*A4*A8)
    IF(X*L6.GT.75.)GO TO 90
        CALCULATION OF GAMMA FACTORS
    XX=X*X
    X1=DSQRT(0.5*(XX+DSQRT(XX*XX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/(2.*X1*U1*U1)
    A6=DEXP(-X*L6)
    XL7=X*(L3-L4-2.*L5)
    IF(XL7.GT.75.)A7=1.0
    IF(XL7.LE.75.)A7=1.0-DEXP(-XL7)
    A9=A4*A5*A6*A7
```

```
    APBR=(X+X1)*(X+X1)-Y1*Y1
    APBI=2.*Y1*(X+X1)
    AMBR=(X-X1)*(X-X1)-Y1*Y1
    AMBI=-2.*Y1*(X-XI)
    A2BR=0.0
    A2BI=-2.*X1*Y1
    ZNUR=A2BR
    ZNUI=A2BI
    DENR=APBR
    DENI=APBI
    DNCJ=DENR*DENR+DENI*DENI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
DO }88\textrm{NZ}=1,\textrm{NZT
C NEAR SIDE DEFECT CALCULATION
    FZD=(FLOAT (NZ) -. 5)*2D/FNZT
C FAR SIDE DEFECT CALCULATION
    IF(NS.EQ.2)FZD=-T1-FZD
    ZDR=X1*U1*FZD
    IF(ZDR.LT.-60.0)GO TO }8
    ZDI=Y1*U1*FZD
    XPDR=DEXP(ZDR)
    CSDI=DCOS(ZDI)*XPDR
    SNDI=DSIN(ZDI)*XPDR
    XRD=X*RD
    CALL BESEL1(XRD,RJ1)
    XX1=X*X1+XX
    XY1=X*Y1
    X1X=X*X1-XX
    ZNDR=XX1*CSDI - XY1*SNDI
    ZNDI=XX1*SNDI +XY1*CSDI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*( }2*\mathrm{ TH+ZDEFECT))
    TZR=X1*U1*(2.*T1+FZD)
    IF(TZR.GT.60.)GO TO }8
    TZI=Y1*U1*(2.*T1+FZD)
    XPZR=DEXP(-TZR)
    CSZI=DCOS(TZI)*XPZR
    SNZI=DSIN(TZI)*XPZR
    ZNDR=XX1*CSDI-XY1*SNDI+X1X*CSZI+XY1*SNZI
    ZNDI=XX1*SNDI+XY1*CSDI+XY1*CSZI -X1X*SNZI
    SECTION THAT MULTIPLIES BY DEXP(-ALPHA1* **CLADTH)
    TR=2.*X1*U1*T1
    IF(TR.GT.60.)GO TO }8
    TI=2.*Y1*U1*T1
    XPTR=DEXP(-TR)
    CSTII=DCOS(TI)*XPTR
    SNTI=DSIN(TI)*XPTR
    DENR=APBK-AMBR*CSTI -AMBI*SNTI
    DENI=APBI -AMBI*CSTI +AMBR*SNTI
    ZNUR=A2BR-A2BR*CSTI-A2BI*SNTI
    ZNUI=A2BI -A2BI*CSTI +A2BR*SNTI
    DNCJ=DENR*DENR+DENI*DENI
```

```
    87 ZDRL=(ZNDR*DENR+ZNDI*DENI)/DNCJ
    ZDIM=(DENR*ZNDI-2NDR*DENI)/DNCJ
C SUM DEFECT SENSITIVITY FACTORS FOR THE DRIVER & PICKUP COILS
    SDDR(NZ)=SDDR(NZ)+A3*A6*RJ1*2*ZDRL*R21*S1(JKL)
    SDDI (NZ) =SDDI (NZ) +A 3*A6*RJ 1*2*ZDIM*R21*S1(JKL)
    SDPR(NZ)=SDPR(NZ)+A9*RJ 1*2*ZDRL*R43*S1(JKL)
    SDPI (NZ)}=\operatorname{SDPI}(NZ)+A9*RJ1*2*ZDIM*R43*S1(JKL)
    88 CONTINUE
    89 2RL=(ZNUR*DENR+ZNUI*DENI)/DNCJ
        ZIM=(DENR*ZNUI-ZNUR*DENI)/DNCJ
        SZDI=SZDI+A3*A3*A6*A6*ZRL*SFD
        SZDR=SZDR-A 3*A 3*A6*A6*ZIM*SFD
        SZPI=SZPI+A9*A9*ZRL*SFP
        SZPR=SZPR-A9*A9*ZIM*SFP
        SZMI=SZMI+A3*A6*A9*ZRL*SFM
        SZMR=SZMR-A3*A6*A9*ZIM*SFM
        90 CONTINUE
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SAIR1-RI9)/SAIR1
        IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
C COMPUTATION OF DRIVER INDUCTANCE
        Q6=ZDF*SAIR1/W
C DEFINE COMPLEX QUANTITIES THAT ARE CONSTANT
    Z0=DCMPLX(O.ODO,-R0)
    Z6=DCMPLX(W*C6*RO,-1.0D0)
    Z7=DGMPLX(W*C7*R9,-1.0D0)
    Z9=DCMPLX(0.0D0,-R9)
C AVERAGE DEFECT VALUES OVER DEPTH
    ADDR=0.0
    ADDI=0.0
    ADPR=0.0
    ADPI=0.0
    BO 125 NZ=1,NZT
    ADDR=ADDR+SDDR(NZ)/FNZT
    ADDI=ADDI+SDDI(NZ)/FNZT
    ADPR=ADPR+SDPR(NZ)/FNZT
    ADPI=ADPIT+SDPI (NZ)/FNZT
    125 CONTINUE
    135 ZDTRO=ZDF*SZDR
        ZDTIO=ZDF*(SAIR1+SZDI)
        ZPTR0=ZPF*SZPR
        ZPTIO=ZPF*(SAIR2+SZPI)
        ZMTRO=ZMF*SZMR
        ZMTIO=ZMF*SZMI
        ZMTDR=-ZMF*DMF*(ADDR*ADPR-ADDI*ADPI)
        ZMTDI=-2MF*DMF*(ADDI*ADPR+ADDR*ADPI)
C DEFINE COMPLEX QUANTITIES, DO COMPLEX CIRCUIT CALCULATIONS
        ZDT=DCMPLX(ZDTR,ZDTI)
        ZPT=DCMPLX(ZPTR,ZPTI)
```

```
            ZMT=DCMPLX(ZMTR,ZMTI)
    1000 CONTINUE
            SRHSR=ZMTDR*DELTARISRIISR
            SRHSI=ZMTDI*DELTAR+SRHSI
    180 FORMAT(F6.3,1X,D11.3,1X,F7.2)
C }181\mathrm{ FORMAT(F6.3,2X,D11.3,3X,F7.2)
    1010 CONTINUE
            EBW=Z6*Z7*ZMT0*ZMT0+(Z6*(ZDT0+R6)+Z0)*(Z7*(ZPT0+R7)+Z9)
            RHSC=VIN*R9*GAIN*DCMPLX(SRHSR,SRHSI)/EBW
            RHSR=REAL(RHSC)
            RHSI=DIMAG (RHSC)
            RHSM=DSQRT(RHSR*RHSR+RHSI*RHSI)
            RHSP=DATAN2(RHSI,RHSR)*180./PI
            WRITE(LOD , 180) ZD2, RHSM, RHSP
            WRITE(LOU, 180) ZD2, RHSM, RHSP
            WRITE(0,180) ZD2, RHSM, RHSP
1020 CONTINUE
1040 END
```

RFDSF calculates mag. and phase of DSF for a lattice of points

Program RFDSF calculates the magnitude and phase of the defect sensitivity factor of a reflection coil at a lattice of points throughout a conducting plate, as shown in Fig. 11.

Fig. 11. Reflection probe above a conducting plane with a lattice of points.

The defect sensitivity is the mutual coupling term between the driver coil and pickup coils due to the defect in Eq. (26), and is given by:

$$
\begin{align*}
& \operatorname{DSF}(r, z)=\frac{3 \omega \mu \sigma \bar{r}^{2}}{8 \pi}\left[\int_{0}^{\infty} \frac{e^{-\alpha \ell_{6}} \alpha^{3}}{} J\left(r_{2}, r_{1}\right)\left(1-e^{-\alpha \ell_{3}}\right) J_{1}(\alpha r) F\left(\alpha, \alpha_{1}, z\right) d \alpha\right] \times \\
& \left.\left[\int_{0}^{\infty} \frac{e^{-\alpha\left(l_{6}+l_{5}\right)} \alpha^{3}}{} J\left(r_{4}, r_{3}\right)\left(1-e^{-\alpha\left(l_{3}-\ell_{4}-2 \ell_{5}\right)}\right)\left(1-e^{-\alpha \ell_{4}}\right) J_{1}(\alpha r) F\left(\alpha, \alpha_{1}, z\right) d \alpha\right]\right\} \tag{27}
\end{align*}
$$

As we can see from the circuit equation, (20), the mutual impedance term is not exactly equal to the voltage change due to the defect, but it is the dominant term. The defect sensitivity magnitudes and phases are stored in a file named FORT40 so they can be plotted by program RFDSFPLT.

Summary

1. Dimension arrays and declare variable types. Initialize variables.
2. Write the coil and plate information to a data file.
3. Select a point at which to calculate the defect sensitivity factor by choosing a value for $R D$, the radial distance from the axis of the coil, and for 2 D , the distance of the point from the near side of the plate.
4. Perform the integration necessary to calculate the defect sensitivity factor at this point.
5. Store the calculations in a file.
6. Loop to 3 until done.

Variables

NOTE: Most of the variables which occur inside the integration loops are uninteresting because they do not correspond to anything physical and because they should never require user intervention. Therefore, these variables will not be discussed here. For a detailed description of these variables, see the documentation of program RFAVZSCN. For a discussion of the major differences between the integration section of program RFDSF and the integration section of program RrAVZSCN, see note \#1.

Starred variables must be set by the user.

C6.	The total shunt capacitance in farads of the driving circuit. The total shunt capacitance in farads of the
CELTAR	pickup circuit.
The normalized distance in the radial direction	
between adjacent data points.	
The normalized distance in the axial direction	
between adjacent data points.	

L5	The normalized distance of recess of the pickup coil.
L6	The normalized lift-off of the driver coil.
LOD*	The channel on which the output data file is opened.
NPROBE*	Character variable which contains the name of the reflection probe which is to be used in the calculations.
NRT ${ }^{*}$	The total number of points in the radial direction at which the defect sensitivity factor is calculated.
NZT*	The total number of points in the axial direction at which the defect sensitivity factor calculated.
R0'	Output series resistance of driving amplifier in ohms.
R1	The normalized inner radius of the driver coil.
R2	The normalized outer radius of the driver coil.
R3	The normalized inner radius of the pickup coil
R4	The-normalized outer radius of the pickup coil.
R5	The mean radius of the driver coil in inches.
R6	DC resistance of the driver coil in ohms.
R7	DC resistance of the pickup coil in ohms.
R9*	The amplifier input impedance.
RHO1*	The resistivity in $\mu \Omega-\mathrm{cm}$ of the plate.
T1 ${ }^{\text { }}$	The thickness of the plate. When it first occurs,
	it is in inches, but it is normalized by the program.
TD	The density of turns in the driver coil.
TP	The density of turns in the pickup coil.
TNDR	The number of turns in the driver coil.
TNPU	The number of turns in the pickup coil.
U1*	The relative magnetic permeability of the plate.

Notes

1. The integration in this program is very similar to the integration in program RFAVZSCN, but some very minor differences do exist. Most of these come from the fact that this program calculates only the defect sensitivity factor, which does not depend on the volume of the defect, and program RFAVZSCN calculates the voltage change due to the defect, which does depend on the volume of the defect. While it is necessary to calculate the defect sensitivity factor to calculate the voltage change due to the defect, program RFAVZSCN never calculates the defect sensitivity factor as a separate quantity. Thus, some of the variables in RFAVZSCN which have the same name as variables in program RFDSF have an extra factor of the defect volume. This program does carry and calculate some quantities that are not directly used by this program but are used by similar programs. The calculation of these variables does not add any significant running time to the program.

Sample output

Printer output of program RFDSF:
RFDSF TIME 9:24:38 DATE 8/9/89
PROBE 250A PLATE THIK 0.2500
COIL IN RAD OT RAD LENGTH OLO/REC TURNS COIL RES CKT: RES CAP DRIVER $0.7500 \quad 1.2500 \quad 0.6000 \quad 0.0600 \quad 2350.0 \quad 5.310 \mathrm{E}+023.050 \mathrm{E}+038.470 \mathrm{E}-11$ PICKUP 0.3500 $0.7000 \quad 0.2000 \quad 0.00003450 .05 .147 E+031.000 E+068.450 \mathrm{E}-11$ RBAR 0.2500 FREQ $=5.000000 \mathrm{E}+02 \mathrm{RHO}=4.0540 \mathrm{PERM}=1.000 \mathrm{WUSRR}=3.9267$

Partial listing of file FORT40:

25	20	
0.08000	0.05263	
0.75000	1.25000	
0.35000	0.70000	
0.60000	0.20000	
0.06000	0.00000	
1.00000		
1	$0.11353 D-04$	$-0.46336 D+00$
2	$0.97720 D-05$	$-0.53972 D+00$
3	$0.81151 D-05$	$-0.61645 D+00$
4	$0.65622 D-05$	$-0.69443 D+00$
5	$0.52051 D-05$	$-0.77420 D+00$
6	$0.40726 D-05$	$-0.85603 D+00$
7	$0.31569 D-05$	$-0.94004 D+00$
8	$0.24324 D-05$	$-0.10262 D+01$.
9	$0.18679 D-05$	$-0.11143 D+01$
10	$0.14326 D-05$	$-0.12040 D+01$

Listing

```
    PROGRAM RFDSF
C VERSION August 7, 1989
C PROGRAM CALCULATES THE CHANGE IN MAGNITUDE AND PHASE DUE TO A DEFECT
C AT A LATTICE OF LOCATIONS IN THE R AND Z DIMENSIONS IN A PLATE
    CHARACTER NPROBE*6,COIL*6
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 L3,L4,L5,L6
    COMPLEX DEN,Z0,Z6,Z7,Z9,ZDT,ZPT,ZMT,DSFC
    DIMENSION S1(6),S2(6),ERR(6),RJ(120)
    DIMENSION SDDR(120,40),SDDI (120,40),SDPR(120,40),SDPI (120,40)
    DATA LOU/8/,PI/3.141592653/,LOD/40/
    DATA S1/.005,.02,.05,.1,.5,2./
    DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
    DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-6/
    DATA RHO1/4.054/,U1/1.0/,NRT/25/,N2T/20/
    DATA T1/0.250/,NPROBE/'250A '/
    DATA R0/3050./,R9/1.0D6/,C6/8.47E-11/,C7/8.45E-11/
    DATA FREQ/500./,VIN/1.1/,GAIN/1./,DELTAR/0.08/
    TIME AND DATE ARE PRINTED
    CALL GETTIM(IHR,IMN,ISE,IFR)
    CALL GETDAT(IYR,IMO,IDA)
    IYR=IYR-1900
    WRITE(LOU, 2) IHR,IMN,ISE,IMO,IDA,IYR
    2 FORMAT('RFDSF TIME ',I2,':',I2,':',I2
    *,' DATE ',I2,'/',I2,'/',I2)
        W=2.0*PI*FREQ
        OPEN(28,FILE='REF.DAT',STATUS='OLD')
    10 READ(28,11)COIL,R5,R1,R2,L3,R3,R4,L4,L5,L6
    *,R6,R7,TNDR,TNPU
    11 FORMAT(A6,9F8.4,F10.4,F11.4,2F8.1)
        IF(COIL.EQ.'END ')WRITE(0,*)' COIL NOT FOUND'
        IF(COIL.EQ.'END ')GO TO 1020
        IF(COIL.NE.NPROBE)GO TO 10
        L6=L6+0.010/R5
        WRITE(LOU, 3)NPROBE ,T1
    3 FORMAT('PROBE ',A6,' PLATE THIK',F7.4)
        WRITE(LOU,5)
    5 FORMAT('COIL IN RAD OT RAD LENGTH OLO/REC TURNS',
    *' COIL RES CKT: RES CAP')
        WRITE(LOU, 14)R1,R2, L3,L6,TNDR,R6,R0,C6
        WRITE(LOU,15)R3,R4,L4,L5,TNPU,R7,R9,C7
    14 FORMAT('DRIVER ',4(F7.4,1X),F8.1,3(1PE10.3))
    15 FORMAT('PICKUP ',4(F7.4,1X),F8.1,3(1PE10.3))
        WUSRR=0.5093979*U1*R5*R5*FREQ/RHO1
        WRITE(LOU , 20)R5, FREQ, RHO1, U1 , WUSRR
    20 FORMAT('RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F9.4)
        WRITE(0,23)NPROBE,T1, FREQ
    23
        FORMAT('PROBE ',A6,' PLATE THK',F7.4,' FREQ=',E12.4)
```

```
    TD=TNDR/((R2-R1)*L3)
    TP=TNPU/((R4-R3)*L4)
    ZDF=6.300475E-7*FREQ*TD*TD*R5
    ZPF=6.300475E-7*FREQ*TP*TP*R5
    ZMF=6.300475E-7*FREQ*TD*TP*R5
    DDF=0.1193662*WUSRR
    DPF=0.1193662*WUSRR
    DMF=0.1193662*WUSRR
    T1=T1/R5
    ZFT=-T1
    DELTAZ=T1/(NZT-1)
    WRITE(LOD,7)NRT,NZT
    WRITE(LOD, 8)DELTAR, DELTAZ
    WRITE(LOD, 8)R1,R2
    WRITE(LOD, 8)R3,R4
    WRITE(LOD , 8)L3,L4
    WRITE(LOD, 8)L6,L5
    WRITE(LOD , 9)T1
    7 FORMAT(I8,1X,I8)
    8 FORMAT(F12.5,1X, F12.5)
    9 FORMAT(F12.5)
        SAIR1=0.0
        SAIR2=0.0
        SZDR=0.0
        SZDI=0.0
        SZPR=0.0
        SZPI=0.0
        SZMR=0.0
        SZMI=0.0
        DO 27 NR=1,NRT
        DO 25 NZ=1,NZT
        SDDR(NR,NZ)=0.0
        SDDI (NR,NZ)=0.0
        SDPR(NR,NZ)=0.0
    25 SDPI (NR,NZ)=0.0
    27 CONTINUE
        B1=0.0
        B2=S2(1)
        DO 100 JKL=1,6
    30 RI9=SAIR1
        X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 95 I=1,ISTEPS
    X=X+S1(JKL)
    CALL BESSEL(XJR2,X,R2)
    CALL BESSEL(XJRI,X,R1)
    CALL BESSEL(XJR4,X,R4)
    CALL BESSEL(XJR3,X,R3)
    R21=XJR2-XJR1
    R43=XJR4-XJR3
```

```
    XL3=X*L3
    IF(XL3.GT.5.0E-3) GO TO 60
    Al=XL3*XL 3*(0.5-XL3/6.0)
    GO TO 80
    60 IF(XL3.GT.75.0) GO TO 70
    Al=XL3+DEXP(-XL3)-1.0
    GO TO 80
    70 Al=XL3-1.0
    80 A3=XL3-A1
    SFD=S1(JKL)*R21*R21
    SFP=S1(JKL)*R43*R43
    SFM=S1(JKL)*R21*R43
    SAIR1=SAIR1+SFD*2.0*A1
    XL4=X*L4
    IF(XL4.GT.5.0E-3) GO TO 81
    A2=XL4*XL4*(0.5-XL4/6.0)
    GO TO 83
    81 IF(XL4.GT.75.0) GO TO }8
    A2=XL4+DEXP(-XL4)-1.0
    GO TO 83
    82 A2=XL4-1.0
    83 A4=XL4-A2
    A13=1.0-A3
    A14=1.0-A4
    A5=DEXP(-X*L5)
    XL8=X*(L3-2.*L4-2.*L5)
    IF(XL8.GT.75.)A8=0.
    IF(XL8.LE.75.)A8=DEXP(-XL8)
    SAIR2=SAIR2+SFP*(4.0*A2-2.0*A4*A4*A8)
    IF(X*L6.GT.75.)GO TO 95
        CALCULATION OF GAMMA FACTORS
    XX=X*X
    X1=DSQRT (0.5*(XX+DSQRT (XX*XX+WUSRR*WUSRR)))/U1
    Yl=WUSRR/(2.*Xl*U1*U1)
    A6=DEXP(-X*L6)
    XL7=X*(L3-L4-2.*L5)
    IF(XL7.GT.75.)A7=1.0
    IF(XL7.LE.75.)A7=1.0-DEXP(-XL7)
    A9=A4*A5*A6*A7
    APBR=(X+X1)*(X+X1) - Y1*Y1
    APBI=2.*Y1*(X+X1)
    AMBR=(X-X1)*(X-X1)-Y1*Y1
    AMBI=-2.*Y1*(X-X1)
    A2BR=0.0
    A2BI=-2.*XI*Y1
    ZNUR=A2BR
    ZNUI=A2BI
    DENR=APBR
    DENI=APBI
    DNCJ=DENR*DENR+DENI*DENI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
```

```
        DO }91\textrm{NZ}=1,NZ
        FZD=(NZ-1)*ZFT/(NZT-1)
        ZDR=X1*U1*FZD
        IF(ZDR.LT.-60.0)GO TO 93
        ZDI=Y1*U1*FZD
        XPDR=DEXP(ZDR)
        CSDI=DCOS (ZDI)*XPDR
        SNDI=DSIN(ZDI)*XPDR
        XX1=X*X1+XX
        XY1=X*Y1
        X1X=X*X1-XX
        ZNDR=XX1*CSDI -XY1*SNDI
        ZNDI=XX1*SNDI+XY1*CSDI
        C SECTION THAT MULTIPLIES BY DEXP(ALPHA.1* (2*TH+ZDEFECT))
        TZR=X1*U1*(2.*T1+FZD)
        IF(TZR.GT.60.)GO TO 87
        TZI=Y1*U1*(2.*T1+FZD)
        XPZR=DEXP(-TZR)
        CSZI=DCOS(TZI)*XPZR
        SNZI=DSIN(TZI)*XPZR
        ZNDR=XXI*CSDI -XY1*SNDI +X1X*CSZI +XY1*SNZI
        ZNDI=XXI*SNDI+XY1*CSDI +XY1*CSZI-X1X*SNZI
    SECTION THAT MULTIPLIES BY DEXP(-ALPHA1* 2*CLADTH)
    TR=2.*X1*U1*T1
    IF(TR.GT.60.)GO TO }8
    TI=2.*Y1*U1*T1
    XPTR=DEXP(-TR)
    CSTT=DROS (TT)*XPTR
    SNTI=DSIN(TI)*XPTR
    DENR-APBR-AMBR*CSTI -AMBI*SNTI
    DENI=APBI -AMBI*CSTI +AMBR*SNTI
    ZNUR=A2BR-A2BR*CSTI -A2BI*SNTI
    ZNUI=A2BI-A2BI*CSTI +A2BR*SNTI
        DNCJ=DENR*DENR+DENI*DENI
    87 ZDRL=(ZNDR*DENR+ZNDI*DENI)/DNCJ
    ZDIM=(DENR*ZNDI - ZNDR*DENI)/DNCJ
    C LOOP OVER THE R VARIATION FOR 'IHE DEFEC'\Gamma
    DO 90 NR=1,NRT
    IF(NZ.GT.1) GO TO }8
    RD=FLOAT(NR)*DELTAR
    XRD=X*RD
    CALL BESEL1(XRD,RJ1)
    RJ (NR)=RJ 1
C SUM DEFECT SENSITIVITY FACTORS FOR THE DRIVER & PICKUP COILS
89 SDDR(NR,NZ)=SDDR (NR,NZ) +A 3*A6*RJ (NR)*2*ZDRL*R21*S1(JKL)
    SDDII (NR,NZ)=SDDI (NR,NZ)+A3*A6*RJ (NR)*2*ZDIM*R'21*S 1(JKL)
    SDPR (NR,NZ)=SDPR(NR,NZ) +A9*RJ (NR)* 2*ZDRL*R43*S1 (JKL)
90 SDPI(NR,NZ)=SDPI(NR,NZ)+A9*RJ (NR)*2*ZD.IM*R43*S1(JKL)
9 1 ~ C O N T I N U E ~
93 ZRL=(ZNUR*DENR+ZNUI*DENI)/DNCJ
    ZIM=(DENR*ZNUI - ZNUR*DENI)/DNCJ
```

```
        SZDI=SZDI+A3*A3*A6*A6*ZRL*SFD
        SZDR=SZDR-A3*A3*A6*A6*ZIM*SFD
        SZPI=SZPI+A9*A9*ZRL*SFP
        SZPR=S2PR-A9*A9*ZIM*SFP
        SZMI=SZMI +A 3*A6*A9*ZRL*SFM
        SZMR=SZMR-A 3*A6*A9*ZIM*SFM
    95 CONTINUE
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SAIR1-RI9)/SAIR1
        IF (ABS (CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
        DO 130 NR=1,NRT
        DO 125 NZ=1,NZT
        DSFR=DMF*(SDDR(NR,NZ)*SDPR(NR,NZ)-SDDI (NR,NZ)*SDPI (NR,NZ))
        DSFI=DMF* (SDDI (NR,NZ)*SDPR(NR,NZ)+SDDR(NR,NZ)*SDPI (NR,NZ)
        DSFM=SQRT(DSFR*DSFR+DSFI*DSFI)
        DSFP=DATAN2(DSFI,DSFR)
        WRITE(LOD , 126)NR,NZ,DSFM,DSFP
    125 CONTINUE
    130 CONTINUE
    126 FORMAT(I4,1X,I4,1X,D14.5,1X,D12.5)
1010 CONTINUE
1020 STOP
    END
```


RFDSFPLT generates a contour plot of magnitude of DSF

Program RFDSFPLT generates a contour plot of the magnitude of the defect sensitivity factor for a reflection coil using calculations performed and stored by program RFDSF.

Summary

1. Declare arrays and variable types. Initialize variables.
2. Open the file created by program RFDSF.
3. Read in the information about the coil and the plate from the data file.
4. Calculate the position in the normalized coordinate system (see note \#1) of the data points which are about to be read in.
5. Set the label flags for the contours.
6. Read the data stored by program RFDSF into array DSFMA.
7. Specify the values of the magnitude of the defect sensitivity factor where the contours are to be drawn.
8. Call the PRINTMATIC contour initialization routines.
9. Draw the contours.
10. Draw the coils and the plate.

Variables

Starred variables must be set by the user.

CNM ${ }^{\text {- }}$	Real array which contains the values of the magnitude of the defect sensitivity factor on the contour lines. It is used as input for routine DCNTOUR.
DELTAR	The normalized distance in the radial direction between adjacent data points.
DELTAZ	The normalized distance in the axial direction between adjacent data points.
DSFMA	Two-dimensional real array which is used to hold the values of the magnitude of the defect sensitivity factor which are read in from a data file. Array DSFMA is used as input for routine DINIT.
L3	The normalized length of the driver coil.
L4	The normalized length of the pickup coil
L5	The normalized distance of recess of the pickup coil.
1.6	The normalized lift-off of the driver coil.
LBM ${ }^{\text {- }}$	Integer array that specifies which of the contours are to be labeled with their values. If all elements of LBM are zero, none of the contours will be labeled. Array LBM is used as input for routine DCNTOUR.
LOE ${ }^{\text {a }}$	The channel on which the file created by prog

$\left.\left.\begin{array}{ll}\text { NAME. } & \begin{array}{l}\text { RFDSF is opened. } \\ \text { Character variable which contains the name of the } \\ \text { file that program RFDSFPLT uses for output. NAME }\end{array} \\ \text { is used as input for routine DCNTOUR. }\end{array}\right] \begin{array}{l}\text { Specifies the number of contours to be drawn. The } \\ \text { value of NC must be less than or equal to 10. It }\end{array}\right\}$

Notes

1. The coordinate system set up and used by this program has its origin at the intersection of the coil axis and the near side of the plate. One unit of distance in the coordinate system is equal to one mean radius of the driver coil.
2. The array DSFMA must be dimensioned to exactly NRT by NZT. Each time the value of NRT or NZT is changed in program RFDSF, the statement dimensioning the array in program RFDSFPLT must be changed also.
3. The statements in this program which seem to do nothing but write variables to the screen actually have a more important function. Due to a bug in either the PRINTMATIC routines or in RM/FORTRAN, the PRINTMATIC routine DLINE, which is supposed to draw a straight line, sometimes refuses to work. It was discovered by accident that putting a WRITE statement near the call to the routine corrects the problem.
4. Program RFDSFPLT does not actually send anything to the printer; it merely creates a file whose name is given by the program variable NAME. If the value of NAME is 'filename.ext', then to print the file created by program RFDSFPLT, enter

DPRINT filename.ext
DPRINT.EXE is a program supplied by PRINTMATIC.

Sample Output

Fig. 12 shows a typical plot generated by program RFDSFPLT.

Fig. 12. Contour map of a the defect sensitivity factor for a reflection probe above a conducting plate.

Listing

PROGRAM RFDSFPLT
C VERSION October 31, 1988
C Program to generate a contour plot of the magnitude of the
C defect sensitivity factor of a reflection coil.
C
CHARACTER*80 NAME
IMPLICIT REAL*4 (A-H,O-Z)
REAL*4 DSFMA $(25,20)$
REAL*4 XX(25),YY(20)
REAL*4 CNM (10)
REAL*4 L3, L4, L5, L6
INTEGER*2 LBM(10)
INTEGER*2 I1,J1, I2,J2
DATA XSCALE/1.0/,NC/9/
DATA IDEF/2/,LOE/40/
C
C Open the file created by program RFDSF and read in the
C coil and plate information.
C
OPEN(LOE , FILE=' FORT40', STATUS='OLD')
READ (LOE,*)NRT,NZT
READ (LOE, *) DELTAR, DELTAZ
READ (LOE, *) R1, R2
READ (LOE , *)R3, R4
READ (LOE, *) L3, L4
READ (LOE , *) L6, L5
READ (LOE, *) T1
C
C. Calculate the position of the data points in the
C normalized coordinate system.
C
D0 $110 \mathrm{I}=1$, NRT
$X X(I)=$ REAL $(I) * D E L T A R$
110 CONTINUE
DO $120 \mathrm{I}=0$, NZT-1
$Y Y(I+1)=-(((N Z T-1)-\operatorname{REAL}(I)) * D E L T A Z)$
120 CONTINUE
C
C. Set the label flags for the contours.

C:
D0: $130 \mathrm{I}=1,10$
$\operatorname{LBM}(I)=0$
130 CONTINUE
C
C: Read in the data stored by program RFDSF.
C
140. READ (LOE , *, END=150)NR,NZ, DSFM
$\mathrm{NZ}=\mathrm{NZT}-\mathrm{NZ}+1$
IF (DSFM. GT . DSFMMAX) DSFMMAX=DSFM

```
            IF(DSFMMIN.EQ.O.)DSFMMIN=DSFM
            IF(DSFM.LT.DSFMMIN)DSFMMIN=DSFM
            DSFMA(NR,NZ)=DSFM
            GO TO 140
C
C Specify the values at which the contours are to be drawn
C
    150 VARMAG=DSFMMAX-DSFMMIN
        CNTDIF=VARMAG/(NC+1)
        DO 160 I=1,NC
        CNM(I)=DSFMMAX-I*CNTDIF
    160 CONTINUE
C
C
C
    Call the necessary initialization routines.
        NAME = 'RFDSF.FIL'
        CALL DINIT(NAME)
        CALL DPLOT(0.7,1.,6.3,6.,-0.1,2.,-1.,1.,0.,0.)
        CALL DCTRDEF(1,1,1,1,1)
    C
    C
    C
    Draw the contours.
        CALL DCNTOUR(XSCALE,XX,YY,DSFMA,CNM,LBM,NRT,NZT,NC,IDEF)
    C
C Draw the plate.
C
        write(0,*)j2
        X1=0.
        Y1=0.
        X2=2.
        Y2=-T1
        CALL DRTOI(X1,Y1,I1,J1)
        CALL DRTOI(X2,Y2,I2,J2)
        write(0,*)j2
        CALL DLINE(I1,J1,I2,J1)
        write(0,*)j2
        CALL DLINE(I1,J2,I2,J2)
        write(0,*)j2
C
C Draw the driver coil.
C
    X1=R1
    Y1=L6
    X2=R2
    Y2=L3+L6
    CALL DRTOI(X1,Y1,I1,J1)
    CALL DRTOI(X2,Y2,I2,J2)
    write(0,*)j2
    CALL DLINE(I1,J1,I2,J1)
    CALL DLINE(I1,J2,I2,J2)
    CALL DLINE(I1,J1,I1,J2)
```

```
    WRITE(0,*)I2,J1,I2,J2
    CALL DLINE(I2;J1,I2,J2)
    WRITE (0,*)I2 , J1, I2 ,J2
C Draw the pickup coils.
c
C Draw the coil axis.
C
    X1=0.
    Y1=-1.
    X2=0.
    Y2=0.9
    CALL DRTOI(X1,Y1,I1,J1)
    CALL DRTOI(X2,Y2,I2,J2)
    CALL DDASH(I1,J1,I2,J2,1,10,10)
    CALL DRTOI(-0.1,1.0,I1,I2)
    CALL DFONT(4,'COIL',I1,I2,1)
    CALL DRTOI(-0.1,0.92,I1,I2)
    CALL DFONT(4,'AXIS',I1,I2,1)
C
C Terminate the program.
C
CALL DFINIS
    write(0,*)j2
    stop
    END
```

RFAVZSCN calculates defect voltage change, average over depth

Program RFAVZSCN calculates the change in the induced voltage in a pickup coil due to the presence of a defect in a plate. It does the calculations for a number of different coil-to-defect distances (see note \#l), and it has the ability to divide the defect into a number of parts along the depth of the defect, centered on the axis of symmetry of the defect and to perform the calculations for each part separately, averaging the results to achieve better agreement with experimental results than if the defect were treated as a whole (see note \#2). The program will scan the coil across the defect in the r direction and calculate the magnitude and phase of the defect. It is now set up to scan from the inner edge of the pickup coil, r_{3}, to the outer edge of the driver coil, r_{2}. It can be easily changed to any other set of values that are desired. The statement that controls the defect starting and ending point is:

$R D=R 3+D E L T R * F L O A T(N R)$

This statement must be changed at both its occurrences in the program. The step size, DELTR, is calculated by:
DELTR=(R2-R3)/NRT

The new values for the start and end of the scan should be placed in these equations.

A large section of the program is concerned with doing integrations to find the impedance of the coils. The details of the integration have been placed in a separate section at the end of the discussion.

The output from this program is stored in the file FORT39.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Calculate the coil impedances in the absence of defects.
4. Select a value for $R D$, the radial distance between the coil axis and the center of the defect.
5. Do the integrals to calculate the change in coil impedance due to the defect.
6. Calculate the change in voltage due to the defect from the impedance changes.
7. Write the results to a data file.
8. Loop to 4 until. done.

Variables

Starred variables must be set by the user.
C6. The total shunt capacitance in farads of the driving circuit.
C7 The total shunt capacitance in farads of the pickup circuit.
DELTR \quad The normalized distance in the radial direction between adjacent data points.
DFDEP \quad The depth to the bottom of the defect in inches. DFDIAM \quad The diameter of the defect in inches.
DVVI The imaginary part of the change in induced voltage in the pickup coil due to the defect.
DVVR . The real part of the change in induced voltage in the pickup coil due to the defect.
FNZT Same as variable NZT, but a real variable instead of an integer.
FREQ \quad The operating frequency in hertz.
GAIN \quad Gain of pickup amplifier.
L3 The normalized length of the driver coil.
L4 The normalized length of the pickup coil.
L5 The normalized distance of recess of the pickup coil.
L6 The normalized lift-off of the driver coil.
LOD ${ }^{\circ} \quad$ The channel on which the output data file is opened.
NPROBE \quad Character variable which contains the name of the reflection probe which is to be used in the calculations.
NRT ${ }^{\circ} \quad$ The total number of points in the radial direction at which the defect sensitivity factor is calculated.
NS ${ }^{*} \quad$ The side of the plate where the defect is located. If NS $=1$, the defect is on the near side; if NS $=2$, the defect is on the far side.
NZT The number of parts into which the defect is divided along its axis to do the calculations.
PHA The phase of the change (not the change of the phase) of the induced voltage in the pickup coil due to the defect.
R0 ${ }^{\circ} \quad$ The output series resistance of the driving amplifier in ohms.
R1 The normalized inner radius of the driver coil.
R2 The normalized outer radius of the driver coil.
R3 The normalized inner radius of the pickup coil.
R4. The normalized outer radius of the pickup coil.
R5 The mean radius of the driver coil in inches.
R6 DC resistance of the driver coil in ohms.
R7 DC resistance of the pickup coil in ohms.
R9 \quad The input shunt resistance of pickup amplifier in

	ohms.
RD	The normalized distance in the radial direction from the axis of the coil to the center of the defect. (See note \#1.)
RHO1 ${ }^{\circ}$	The resistivity of the plate in $\mu \Omega-\mathrm{cm}$.
T1 ${ }^{\circ}$	The thickness of the plate. It is input in inches and normalized by the program.
TD	The density of turns in the driver coil.
TMAG	The magnitude of the change (not the change of the magnitude) in induced voltage in the pickup coil due to the defect.
TNDR	The number of turns in the driver coil.
TNPU	The number of turns in the pickup coil.
TP	The density of turns in each pickup coil.
U1 ${ }^{\circ}$	The relative magnetic permeability of the plate.
VIN*	Output voltage of driving amplifier in volts.
VOLN	The normalized volume of the defect.
VVOI	The imaginary part of the induced voltage in the pickup coil in the absence of defects.
VVOR	The real part of the induced voltage in the pickup coil in the absence of defects.
VV1I	The imaginary part of the induced voltage in the pickup coil in the presence of a defect.
VV1R	The real part of the induced voltage in the pickup coil in the presence of a defect.
W	The angular frequency at which the circuit is driven.
ZD	The normalized distance from the near surface of the plate to the center of the defect. It is a negative number.
2DTI	The imaginary part of the total self impedance of the driver coil.
2DTR	The real part of the total self impedance of the driver coil.
ZMTI	The imaginary part of the total mutual impedance between the driver and pickup coil.
LMTR	The real part of the total mutual imperance. between the driver and pickup coil.
ZPTI	The imaginary part of the total self impedance of the pickup coil.
ZPTR	The real part of the total self impedance of the pickup coil.

Notes

1. When this program begins, the radial distance RD between the coil axis and the center of the defect is initialized to the value of R3, the pickup coil inner radius, and when the calculations for this value of RD have been completed, the program increases the value of RD and repeats the calculations until RD is equal to R2, the driver coil outer radius. The
reason that the calculations are done over this interval is that this is the region where the defect signal is strongest, so the signal-to-noise ratio for experimental readings is highest in this region, and, therefore, the experimental readings and calculated readings agree most closely in this region.
2. Variable NZT controls the number of parts into which the defect is divided to perform the calculations. Since the theory upon which this program is based is more accurate for small defects, it is desirable to work with the defect in parts rather than as a whole.

Integration Section of Program RFAVZSCN

Symbol definitions

The following are definitions of the symbols used to describe the program variables appearing in the integration section of this program. All lengths are normalized by dividing by the mean radius of the driver coil unless otherwise noted.

α α_{1}	Integration variable $\left(\alpha^{2}+j \omega \mu \sigma_{1} \overline{\mathbf{r}}^{2}\right)^{1 / 2}$
α^{22}	Defect shape and orientation factor
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma, \bar{r}^{2}\right)^{1 / 2} / \mu$
c	Plate thickness
$J\left(x_{2}, \mathrm{x}_{1}\right)$	Integral of $\mathrm{x} J_{1}(\mathrm{x})$ with respect to x from $\alpha \mathrm{x}_{1}$ to $\alpha \mathrm{X}_{2}$
$J_{1}(x)$	Bessel function of the first kind of order 1
ℓ_{3}	Length of driver coil
ℓ_{4}	Length of pickup coil
ℓ_{5}	Distance of recess of pickup coil
l_{6}	Lift-off of driver coil
μ	Relative magnetic permeability of plate
N_{3}	Number of turns in the driver coil
N_{4}	Number of turns in each pickup coil.
\underline{r}	Coil-to-defect radial distance
\underline{r}	Mean radius of driver coil in inches
r_{1}	Inner radius of driver coil
r_{2}	Outer radius of driver coil
r_{3}	Inner radius of pickup coil
r_{4}	Outer radius of pickup coil
σ	Conductivity of plate
Vol ${ }_{n}$	Normalized volume of defect
ω	Angular frequency at which circuit is driven
z	Depth to center of defect

Variables appearing in the integration section

Program variable	Symbolic equivalent $\alpha \ell_{3}+\exp \left(-\alpha \ell_{3}\right)-1$ (See note I1.)
A13	$\exp \left(-\alpha \ell_{3}\right)$
A14	$\exp \left(-\alpha \ell_{4}\right)$
A2	$\alpha \ell_{4}+\exp \left(-\alpha \ell_{4}\right)-1$
A2BI	$\operatorname{Im}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A2BR	$\operatorname{Re}\left[\alpha^{2}-\beta_{1}{ }^{2}\right]$
A3	$1-\exp \left(-\alpha \ell_{3}\right)$

A4
A5
A6
A7

A8

A9
ADDI
ADDR
ADPI
ADPR
AMBI
AMBR
APBI
APBR
B1
B2
CHECK
CSDI
CSTI
CSZI

DDF

DENI
DENR

DMF

DPF

ERR
ISTEPS
R21
R43
RI9
$1-\exp \left(-\alpha \ell_{4}\right)$
$\exp \left(-\alpha \ell_{5}\right)$
$\exp \left(-\alpha \ell_{6}\right)$
$1-\exp \left[-\alpha\left(l_{3}-l_{4}-2 l_{5}\right)\right]$
$\{$ See note I1.\}
$\exp \left[\begin{array}{c}\left.-\alpha\left(\ell_{3}-2 \ell_{4}-2 \ell_{5}\right)\right] \\ \{\text { See note I1. }\}\end{array}\right.$
$\left[1-\exp \left(-\alpha \ell_{4}\right)\right] \exp \left(-\alpha \ell_{5}-\alpha \ell_{6}\right)\left[1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right]\right.$
\{See note \#I3.\}
(See note \#I3.)
(See note \#I3.)
\{See note \#I3.\}
$\operatorname{Im}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
$\operatorname{Re}\left[\left(\alpha-\beta_{1}\right)^{2}\right]$
$\operatorname{Im}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
$\operatorname{Re}\left[\left(\alpha+\beta_{1}\right)^{2}\right]$
(See note 12 .)
(See note I2.)
\{See note I2.\}
$\operatorname{Re}[\exp (\alpha, z)]$
$\operatorname{Re}[\exp (2 \alpha, c)]$
$\operatorname{Re}\left[\exp \left(-\alpha_{1}(z+2 c)\right]\right.$
$\frac{3}{8 \pi} \alpha_{22} \operatorname{Vol}_{n} \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}$
$\operatorname{Im}\left[\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)\right]$
$\operatorname{Re}\left[\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp p\left(-2 \dot{\alpha_{1}} c\right)\right]$
$\frac{3}{8 \pi} \alpha_{22} \quad \operatorname{Vol} 1_{n} \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}$
$\frac{3}{8 \pi} \alpha_{22}$ Vol $l_{n} \omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}$
(See note I2.)
(See note I2.)
$J\left(r_{2}, r_{1}\right) / \alpha^{3}$
$J\left(r_{4}, r_{3}\right) / \alpha^{3}$
\{See note I 2.$\}$

RJ1
S1
S2

SAIR1

SAIR2

SDDI

SDDR

SDPI
$J_{1}(\alpha r)$
$\mathrm{d} \boldsymbol{\alpha}$
(See note 12.$\}$

$$
\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{2}, r_{1}\right)\right]^{2} 2\left[\alpha \ell_{3}+\exp \left(-\alpha \ell_{3}\right)-1\right] \mathrm{d} \alpha
$$

$$
\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{4}, r_{3}\right)\right]^{2}\left[4\left(\alpha \ell_{4}+\exp \left(-\alpha \ell_{4}\right)-1\right)+\right.
$$

$$
\left.-2\left(1-\exp \left(-\alpha \ell_{4}\right)\right)^{2} \exp \left(-\alpha\left(\ell_{3}-2 \ell_{4}-2 l_{5}\right)\right)\right] \mathrm{d} \alpha
$$

$$
\begin{aligned}
& \operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left(1-\exp \left(-\alpha \ell_{3}\right)\right) J_{1}(\alpha r)\left(\exp \left(-\alpha \ell_{6}\right)\right)\right. \\
& \left.\quad 2 \alpha\left[\frac{\left(\alpha+\beta_{1}\right) \exp (\alpha, z)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]
\end{aligned}
$$

$$
\operatorname{Re}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)\left(1-\exp \left(-\alpha \ell_{3}\right)\right) J_{1}(\alpha r)\left(\exp \left(-\alpha \ell_{6}\right)\right)\right.
$$

$$
\left.2 \alpha\left[\frac{\left(\alpha+\beta_{1}\right) \exp \left(\alpha_{1} z\right)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]
$$

$$
\operatorname{Im}\left[\int _ { 0 } ^ { \infty } \frac { 1 } { \alpha ^ { 3 } } \left[J\left(r_{4}, r_{3}\right)\left(1-\exp \left(-\alpha \ell_{4}\right)\right) \exp \left(-\alpha\left(l_{5}+l_{6}\right)\right)\right.\right.
$$

$$
2 \alpha\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right) J_{1}(\alpha r)\right]
$$

$$
\left.\left[\frac{\left(\alpha+\beta_{1}\right) \exp (\alpha, z)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]
$$

SDPR

SFD

SFM

SFP
SNDI
SNTI
SNZI

SZDI

2DR
$\operatorname{Re}\left[\int_{0}^{\infty} \frac{1}{\alpha^{3}}\left[J\left(r_{4}, r_{3}\right)\left(1-\exp \left(-\alpha \ell_{4}\right)\right) \exp \left(-\alpha\left(\ell_{5}+\ell_{6}\right)\right)\right.\right.$

$$
2 \alpha\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 l_{5}\right)\right) J_{1}(\alpha r)\right]
$$

$$
\left.\left[\frac{\left(\alpha+\beta_{1}\right) \exp (\alpha, z)-\left(\alpha-\beta_{1}\right) \exp \left(-\alpha_{1}(2 c+z)\right)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

$\operatorname{Im}[\exp (\alpha, z)]$
$\operatorname{Im}[\exp (2 \alpha, c)]$
$-\operatorname{Im}\left[\exp \left(-\alpha_{1}(z+2 c)\right)\right]$
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left(1-\exp \left(-\alpha \ell_{3}\right)\right)^{2} \exp \left(-2 \alpha \ell_{6}\right)\left(J\left(r_{2}, r_{1}\right)\right)^{2}\right.$
$\left.\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]$
$\begin{aligned}-\operatorname{Re} & {\left[\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left(1-\exp \left(-\alpha \ell_{3}\right)\right)^{2} \exp \left(-2 \alpha \ell_{6}\right)\left(J\left(r_{2}, r_{1}\right)\right)^{2}\right.} \\ & {\left.\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] d \alpha\right] . }\end{aligned}$

SZMI

$$
\begin{gathered}
\operatorname{Im}\left[\int _ { 0 } ^ { \infty } \frac { 1 } { \alpha ^ { 6 } } \left[J\left(r_{4}, r_{3}\right) J\left(r_{2}, r_{1}\right)\left(1-\exp \left(-\alpha \ell_{3}\right)\right) \exp \left(-\alpha\left(2 \ell_{6}+l_{5}\right)\right)\right.\right. \\
\left(1-\exp \left(-\alpha \ell_{4}\right)\right)\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right]\right. \\
{\left[\begin{array}{l}
\left.\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right] \\
-\operatorname{Re}\left[\int _ { 0 } ^ { \infty } \frac { 1 } { \alpha ^ { 6 } } \left[J\left(r_{4}, r_{3}\right) J\left(r_{2}, r_{1}\right)\left(1-\exp \left(-\alpha \ell_{3}\right)\right) \exp \left(-\alpha\left(2 \ell_{6}+\ell_{5}\right)\right)\right.\right. \\
\left.\left[\frac{\left(1-\exp \left(-\alpha \ell_{4}\right)\right)\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right]\right.}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp (-2 \alpha, c)}\right] \mathrm{d} \alpha\right]
\end{array}\right.}
\end{gathered}
$$

SZMR

SZPI
$\operatorname{Im}\left[\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{4}, r_{3}\right)\right]^{2}\left(1-\exp \left(-\alpha \ell_{4}\right)\right)^{2} \exp \left(-2 \alpha\left(\ell_{5}+\ell_{6}\right)\right)\right.$
$\left.\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right)\right)^{2}\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]$

SZPR
$-\operatorname{Re}\left[\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{4}, r_{3}\right)\right]^{2}\left(1-\exp \left(-\alpha \ell_{4}\right)\right)^{2} \exp \left(-2 \alpha\left(l_{5}+l_{6}\right)\right)\right.$

$$
\left.\left(1-\exp \left(-\alpha\left(\ell_{3}-\ell_{4}-2 \ell_{5}\right)\right)\right)^{2}\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{1}\right)^{2}-\left(\alpha-\beta_{1}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right] \mathrm{d} \alpha\right]
$$

TI
TR
TZI
TZR
X
X1

IIII [2u, c]
$\operatorname{Re}[2 \alpha, c]$
$\operatorname{Im}\left[\alpha_{1}(2 c+z)\right]$
$\operatorname{Re}\left[\alpha_{1}(2 c+z)\right]$
α
$\operatorname{Re}\left(\beta_{1}\right)$

ZPF

ZRL

$$
\begin{aligned}
& \frac{\omega \pi \mu_{0} N_{4}{ }^{2}}{\left(r_{4}-r_{3}\right)^{2} \ell_{4}^{2}} \\
& \operatorname{Re}\left[\frac{\left(\alpha-\beta_{1}\right)\left(\alpha+\beta_{1}\right)-\left(\alpha-\beta_{\mathrm{r}}\right)\left(\alpha+\beta_{\mathrm{t}}\right) \exp (-2 \alpha, c)}{\left(\alpha+\beta_{\mathrm{t}}\right)^{2}-\left(\alpha-\beta_{\mathrm{r}}\right)^{2} \exp \left(-2 \alpha_{1} c\right)}\right]
\end{aligned}
$$

Notes for the integration section
Il. A number of the variables in the integration section are not always assigned their exact values but are approximated in certain cases to save time. For example, rather than calculate the exponential of a very small number, the Maclaurin series expansion is sometimes used. Also, the exponential of a very large negative number is usually treated as zero.

I2. Several variables appear in the integration section of the program which play no part in the calculations being done. They are merely there to do such things as to determine the maximum step size which can be used while still accurately calculating the integrals.
13. Variables ADDR, ADDI, ADPR, and ADPT are the averages of the elements in arrays SDDR, SDDI, SDPR, and SDPI,, respectively. For improved accuracy, the defect is divided into NZT parts to perform the calculations. The NZT elements of each array contain the calculations for these NZT parts. These elements are averaged: to give the total effect of all of these parts on the impedances of: the coils.

Sample output

Printer output of program RFAVZSCN:
RFAVZSCN 20 POINTS USED TIME 9:42:19 DATE 8/9/89
PROBE 250A PLATE THIK 0.2500
COIL IN RAD OT RAD LENGTH OLO/REC TURNS COIL RES CKT: RES CAP
DRIVER $0.75001 .25000 .60000 .06002350 .05 .310 \mathrm{E}+023.050 \mathrm{E}+031.500 \mathrm{E}-10$
PICKUP $0.35000 .70000 .20000 .00003450 .0 \quad 5.147 \mathrm{E}+031.000 \mathrm{E}+061.500 \mathrm{E}-10$
RBAR 0.2500 FREQ- $5.000000 \mathrm{E}+02 \mathrm{RHO}=4.0540$ $\mathrm{PERM}=1.000 \mathrm{WUSRR}=3.9267$
NEAR SIDE DEFECT: DIAM $=0.2215$, DEPTH $=0.2215$
GAIN 1. DVR VOLT 1.1000 NOR DEF VOL 5.4625E-O1 DVR AIR IND 6.734812E-02

Partial listing of file FORT39:

0.359	$0.212 \mathrm{D}-03$	125.01
0.368	$0.221 \mathrm{D}-03$	125.06
0.377	$0.230 \mathrm{D}-03$	125.11
0.386	$0.239 \mathrm{D}-03$	125.15
0.395	$0.248 \mathrm{D}-03$	125.19
0.404	$0.256 \mathrm{D}-03$	125.23
0.413	$0.265 \mathrm{D}-03$	125.26

$0.422 \quad 0.273 \mathrm{D}-03 \quad 125.28$
$0.431 \quad 0.282 \mathrm{D}-03 \quad 125.30$
$0.440 \quad 0.290 \mathrm{D}-03 \quad 125.31$

Listing

```
    PROGRAM RFAVZSCN
C VERSION August 8, 1989
C Program to calculate the change in induced voltage in
C a pickup coil due to a defect in a conducting plate.
    CHARACTER SIDE(2)*4,NPROBE*6,COIL*6
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 L3,L4,L5,L6
    COMPLEX ZMT,ZDT,ZPT,Z0,Z6,Z7,Z9,VOUT,V0,V1
    DIMENSION S1(6),S2(6),ERR(6),RJ(120)
    DIMENSION SDDR(120,40),SDDI (120,40),SDPR(120,40),SDPI (120,40)
    DATA LOU/8/,PI/3.141592653/,LOD/39/
    DATA S1/.005,.02,.05,.1,.5,2./
    DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
    DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-6/
    DATA RHO1/4.054/,U1/1.0/,DFDIAM/0.2215/,DFDEP/0.2215/
    DATA NRT/100/,NZT/20/
    DATA T1/0.250/,NPROBE/'250A '/,SIDE/'NEAR',' FAR'/,NS/1/
    DATA R0/3050./,R9/1.0D6/,C6/15.E-11/,C7/15.E-11/
    DATA FREQ/500./,GAIN/1./,VIN/1.100/,RSUM/0.0/,DELTR/0.005/
C TIME AND DATE ARE PRINTED
    CALL GETTIM(IHR,IMN,ISE,IFR)
    CALL GETDAT(IYR, IMO,IDA)
    IYR=IYR-1900
    WRITE(LOU,2) NZT,IHR,IMN,ISE,IMO,IDA,IYR
2 FORMAT('RFAVZSCN ',I3,' POINTS USED TIME ',I2,':',I2,':',I2
    *,' DATE ',I2,'/',I2,'/',I2)
    W=2.0*PI*FREQ
    FNZT=FLOAT(NZT)
    OPEN(28,FILE='REF.DAT',STATUS='OLD')
10 READ (28,11)COIL,R5,R1,R2,L3,R3,R4,L4,L5,L6
    *,R6,R7,TNDR,TNPU
11 FORMAT(A6, 9F8.4,F10.4, F11.4, 2F8.1)
    IF(COIL.EQ.'END ')WRITE(0,*)' COIL NOT FOUND'
    TF(COTL.EQ.'END ')GO TO 1020
    IF(COIL.NE.NPROBE)GO TO 10
    L6=L6+0.010/R5
    WRITE(LOU, 3)NPROBE,T1
3 FORMAT('PROBE ',A6,' PLATE THIK',F7.4)
    WRITE(LOU,5)
    5 FORMAT('COIL IN RAD OT RAD LENGTH OLO/REC TURNS',
    *' COIL RES CKT: RES CAP')
    WRITE(LOU, 14)R1,R2,L3,L6,TNDR,R6,R0,C6
    WRITE(LOU,15)R3,R4,L4,L5,TNPU,R7,R9,C7
14 FORMAT('DRIVER ',4(F7.4,1X),F8.1,3(1PE10.3))
15 FORMAT('PICKUP ',4(F7.4,1X),F8.1,3(1PE10.3))
    WUSRR=0.5093979*U1*R5*R5*FREQ/RHO1
    WRITE(LOU, 20)R5, FREQ, RH01,U1,WUSRR
20 FORMAT('RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F9.4)
```

```
C WRITE(LOD,23)NPROBE,T1,FREQ,SIDE(NS),DFDIAM,DFDEP
    WRITE (0,23)NPROBE,T1, FREQ,SIDE(NS),DFDIAM, DFDEP
    23 FORMAT('PROBE ',A6,' PLATE THK',F7.4,' FREQ=',1PE8.1,1X,A4,
    *' SIDE',OPF6.4,' DIA',F6.4,' DEEP')
        DELTR=(R2-R3)/NRT
        RD=R3
        ZD=-DFDEP
        TD=TNDR/((R2-R1)*L3)
        TP=TNPU/((R4-R3)*L4)
        ZDF=6.300475E-7*FREQ*TD*TD*R5
        ZPF=6.300475E-7*FREQ*TP*TP*R5
        ZMF=6.300475E-7*FREQ*TD*TP*R5
C VOLN=0.1666667*PI*(DFDIAM(NRUN)/R5)*(DFDIAM(NRUN)/R5)*(DFDIAM/R5)
    VOLN=PI*DFDIAM*DFDIAM*DFDEP/(4.*R5*R5*R5)
    DDF=0.1193662*VOLN*WUSRR
    DPF=0.1193662*VOLN*WUSRR
    DMF=0.1193662*VOLN*WUSRR
    WRITE(LOU,18)SIDE(NS),DFDIAM,DFDEP
    18 FORMAT(A4,* SIDE DEFECT: DIAM=',F7.4,', DEPTH=',F7.4)
    ZD=-DFDEP/R'5
    Tl=T1/R5
    SAIR1=0.0
    SAIR2=0.0
    SZDR=0.0
    SZDI=0.0
    SZPR=0.0
    SZPI=0.0
    SZMR=0.0
    SZMI=0.0
    DO 27 NR=1,NRT
    DO 25 NZ=1,NZT
    SDDR(NR,NZ)=0.0
    SDDI(NR,NZ)=0.0
    SDPR(NR,NZ)=0.0
    25 SDPI (NR,NZ)=0.0
    27 continue
    B1=0.0
    B2=S2(1)
    D0 100 JKL=1,6
    30 RI9=SAIR1
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 95 I=1,ISTEPS
    X=X+S1(JKL)
    CALL BESSEL(XJR2,X,R2)
    CALL BESSEL(XJR1,X,R1)
    CALL BESSEL(XJR4,X,R4)
    CALL BESSEL(XJR3,X,R3)
    R21=XJR2-XJR1
    R43=XJR4-XJR3
```

```
    XL3=X*L3
    IF(XL3.GT.5.0E-3) GO TO 60
    A1=XL3*XL3*(0.5-XL3/6.0)
    GO TO 80
    60 IF(XL3.GT.75.0) GO TO 70
    A1=XL3+DEXP(-XL3)-1.0
    GO TO 80
    70.Al=XL3-1.0
    80 A3=XL3-A1
    SFD=S1(JKL)*R21*R21
    SFP=S1(JKL)*R43*R43
    SFM=S1(JKL)*R21*R43
    SAIR1=SAIR1+SFD*2.0*A1
    XL4=X*L4
    IF(XL4.GT.5.0E-3) GO TO 81
    A2=XL4*XL4*(0.5-XL4/6.0)
    GO TO 83
81 IF(XL4.GT.75.0) GO TO 82
    A2=XL4+DEXP(-XL4)-1.0
    GO TO 83
82 A2=XL4-1.0
83 A4=XL4-A2
    A13=1.0-A3
    A14=1.0-A4
    A5=DEXP(-X*L5)
    XL8=X*(L3-2.*L4-2.*L5)
    IF(XL8.GT.75.)A8=0.
    IF(XL8,LE.75, )A8=DEXP(-XL8)
    SAIR2=SAIR2+SFP*(4.0*A2-2.0*A4*A4*A8)
    IF(X*L6.GT.75.)GO TO 95
        CALCULATION OF gAMMA FACTORS
    XX=X*X
    X1=DSQRT(0.5*(XX+DSQRT(XX*XX+WUSRR*WUSRR)))/U1
    Yl=WUSRR/(2.*X1*U1*U1)
    A6=DEXP(-X*L6)
    XL7=X*(L3-L4-2.*L5)
    IF(XL7.GT.75.)A7=1.0
    IF(XL7.LE.75.)A7=1.0-DEXP(-XL7)
    A9=A4*A5*A6*A7
    APBR=(X+X1)*(X+X1) - Y1*Y1
    APBI=2.*Y1* (X+Xl)
    AMBR=(X-X1)*(X-X1)-Y1*Y1
    AMBI=-2.*Y1*(X-X1)
    A2BR=0.0
    A2BI=-2.*X1*Y1
    ZNUK=A2BR
    ZNUI=A2BI
    DENR=APBR
    DENI=APBI
    DNCJ=DENR*DENR+DENI*DENI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1*ZDEFECT)
```

DO $91 \mathrm{NZ}=1$, NZT
C NEAR SIDE DEFECT CALCULATION
FZD $=($ FLOAT (NZ) -.5$) *$ ZD/FNZT
C FAR SIDE DEFECT CALCULATION
IF (NS.EQ.2) FZD=-T1-FZD
ZDR=X1*U1*FZD
IF(ZDR.LT.-60.0)GO TO 93
ZDI $=\mathrm{Y} 1 * \mathrm{U} 1 *$ FZD
XPDR=DEXP (ZDR)
CSDI $=$ DCOS (ZDI) $*$ XPDR
SNDI $=$ DSIN (ZDI) $)$ XPDR
$\mathrm{XXI}=\mathrm{X} * \mathrm{XI}+\mathrm{XX}$
$\mathrm{XY} 1=\mathrm{X} * \mathrm{Y} 1$
$\mathrm{XIX}=\mathrm{X} * \mathrm{X} 1-\mathrm{XX}$
ZNDR $=\mathrm{XXI} * \mathrm{CSDI}-\mathrm{XY} 1 *$ SNDI
ZNDI $=\mathrm{XX} 1 *$ SNDI $+\mathrm{XY} 1 *$ CSDI
C SECTION THAT MULTIPLIES BY DEXP(ALPHA1* ($2 *$ TH+ZDEFECT))
$\mathrm{TZR}=\mathrm{X} 1 * \mathrm{U} 1 *(2 . * T 1+\mathrm{FZD})$
IF (TZR.GT.60.)GO TO 87
$\mathrm{TZI}=\mathrm{Y} 1 * \mathrm{U} 1 *(2 . * \mathrm{~T} 1+\mathrm{FZD})$
$\mathrm{XPZR}=\mathrm{DEXP}(-\mathrm{TZR})$
CSZII=DCOS(TZI)*XPZR
SNZI=DSIN(TZI)*XPZR
$\mathrm{ZNDR}=\mathrm{XXI} * \mathrm{CSDI}-\mathrm{XY} 1 * \mathrm{SNDI}+\mathrm{X} 1 \mathrm{X} * \mathrm{CSZI}+\mathrm{XY} 1 *$ SNZ I
ZNDI $=\mathrm{XXI} *$ SNDI $+\mathrm{XY} 1 *$ CSDI $+\mathrm{XYI} *$ CSZI $-\mathrm{XIX} *$ SNZI
C SECTION THAT MULTIPLIES BY DEXP (-ALPHA1 $* 2 *$ CLADTH)
$\mathrm{TR}=2 . . \times \mathrm{X} 1 * \mathrm{U}: 1 \times \mathrm{T} 1$
IF(TR.GT-60.)GO TO 87
$\mathrm{TI}=2 . * \mathrm{Yl} * \mathrm{U} 1 * \mathrm{~T} 1$
KPTR=DEXP (-TR)
CSTI $=$ DCOS (TI) $* \times$ XPTR
SNTI $=\operatorname{DSIN}(T I) * X P T R$
DENR=APBR-AMBR*CSTI-AMBI*SNTI
DENI $=$ APBI - AMBI $*$ CSTI + AMBR*SNTI
$\mathrm{ZN} \cdot \mathrm{R}=\mathrm{A} 2 \mathrm{BR}-\mathrm{A} 2 \mathrm{BR} * \mathrm{CSTI}-\mathrm{A} 2 \mathrm{BI} * \mathrm{SNTI}$
$\mathrm{ZNUI}=\mathrm{A} 2 \mathrm{BI}-\mathrm{A} 2 \mathrm{BI} * \mathrm{CSTI}+\mathrm{A} 2 \mathrm{BR} * \mathrm{SNTI}$
DNGJ $=$ DENR*DENR + DENI $*$ DENI
87 ZDRL $=($ ZNDR*DENR+ZNDI*DENI $) / D N C J$
ZDIM $=($ DENR $*$ ZNDI - ZNDR $*$ DENI $) /$ DNCJ
C LOOP' OVER THE R VARIATION FOR THE DEFECT
DO 90 NR=1,NRT
IF(NZ.GT.1) GO TO 89
RR $\mathrm{D}=\mathrm{R} 3$ + $\mathrm{DELTR} *$ FLOAT (NR)
$\mathrm{XRD}=\mathrm{X} * \mathrm{RD}$
CALL BESEL1 (XRD,RJ1)
RJ (NR) $=$ RJ 1
$\operatorname{SDDI}(\mathrm{NR}, \mathrm{NZ})=\operatorname{SDDI}(\mathrm{NR}, \mathrm{NZ})+\mathrm{A} 3 * A 6 * \mathrm{RJ}(\mathrm{NR}) * 2 * \mathrm{ZDIM} * \mathrm{R} 21 * \mathrm{~S} 1(\mathrm{JKL})$
$\operatorname{SBPR}(N R, N Z)=\operatorname{SDPR}(N R, N Z)+A 9 * R J(N R) * 2 * Z D R L * R 43 * S 1$ (JKL)
90 SDPI (NR,NZ) $=\operatorname{SDPI}(\mathrm{NR}, \mathrm{N} Z)+\mathrm{A} 9 * \mathrm{RJ}(\mathrm{NR}) * 2 * \mathrm{ZDIM} * \mathrm{R} 43 * \mathrm{~S} 1$ (JKL)

```
    9 1 ~ C O N T I N U E ~
    93 ZRL=(ZNUR*DENR+ZNUI*DENI)/DNCJ
        ZIM=(DENK*ZNUI - ZNUR*DENI)/DNCJ
        SZDI=SZDI +A 3*A3*A6*A6*ZRL*SFD
        SZDR=SZDR-A 3*A 3*A6*A6*ZIM*SFD
        SZPI=SZPI+A9*A9*ZRL*SFP
        SZPR=SZPR -A9*A9*ZIM*SFP
        SZMI=SZMI+A3*A6*A9*ZRL*SFM
        SZMR=SZMR -A 3*A6*A9*ZIM*SFM
        95 CONTINUE
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SAIR1-RI9)/SAIR1
        IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
C COMPUTATION OF DRIVER INDUCTANCE
    Q6=ZDF*SAIR1/W
        WRITE(LOU,120)GAIN,VIN, VOLN,Q6
    120 FORMAT('GAIN',F10.0,' DVR VOLT',F7.4,' NOR DEF.VOL',1PE11.4,
    *' DVR AIR IND',1PE13.6)
C DEFINE COMPLEX QUANTITIES THAT ARE CONSTANT
    ZO=DCMPLX(0.ODO,-R0)
    Z6=DCMPLX(W*C6*R0, -1.0D0)
    Z7=DCMPLX(W*C7*R9,-1.0D0)
    Z9=DCMPLX(0.0D0,-R9)
    SCAN PAST THE DEFECT IN THE R DIRECTION
    DO 1010 NR=1,NRT
    RD=R3+DELTR*FLOAT(NR)
    D=0.
    AVERAGE DEFE.CT VALUES OVER DEPTH
    ADDR=0.0
    ADDI=0.0
    ADPR=0.0
    ADPI=0.0
    DO 125 NZ=1,NZT
    ADDR=ADDR+SDDR(NR,NZ)/FNZT
    ADDI=ADDI+SDDI (NR,NZ)/FNZT
    ADPR=ADPR+SDPR(NR,NZ)/FNZT
    125 ADPI=ADPI+SDPI (NR,NZ)/FNZT
    135 ZDTR=ZDF*(SZDR-D*DDF*(ADDR*ADDR-ADDI*ADDI))
        ZDTI=2DF*(SAIR1+SZDI - D*DDF*2.*ADDR*ADDI)
        ZPTR=ZPF*(SZPR-D*DPF*(ADPR*ADPR-ADPI*ADPI))
        ZPTI=ZPF*(SAIR2+SZPI-D*DPF*2.*ADPR*ADPI)
        ZMTR=ZMF*(SZMR-D*DMF* (ADDR*ADPR-ADDI*ADPI))
        ZMTI=ZMF*(SZMI -D*DMF*(ADDI*ADPR+ADDR*ADPI))
C DEFINE CUMPLEX QUANTITIES, DO COMPLEX CIRCUIT CALCULATIONS
    ZDT=DCMPLX(ZDTR,ZDTI)
    ZPT=DCMPLX(ZPTR,ZPTI)
    ZMT=DCMPLX(ZMTR,2MTI)
    VOUT=(-ZMT*VIN*GAIN*R9)/
    *(Z6*Z7*ZMT*ZMT+(Z6*(ZDT+R6)+Z0)*(Z7*(ZPT+R7)+Z9))
```

```
            IF(D.EQ.0)VO=VOUT
            IF(D.EQ.1)Vl=VOUT
            IF(D.EQ.1.)GO TO 1000
    C REPEAT CALCULATIONS WITH DEFECT
            D=1.0
            GO TO 135
    1000 CONTINUE
            VVOR=REAL(VO)
            VVOI=AIMAG(V0)
            VV1R=REAL(V1)
            VVII=AIMAG(V1)
            DVVR=VV1R-VVOR
            DVVI=VV1I-VVOI
            TTSR=TTSR-DVVR*DELTR
            TTSI=TTSI-DVVI*DELTR
            TMAG=DSQRT(DVVR*DVVR+DVVI*DVVI)
            PHA=(ATAN2(DVVI,DVVR))*180./PI
C WRITE (0,180)RD,TMAG,PHA
            WRITE(LOD, 180)RD,TMAG, PHA
        180 FORMAT(F6.3,1X,D11.3,1X,F7.2)
    1010 CONTINUE
C WRITE(LOU,*)TTSR,TTSI
            TTMAG=DSQRT(TTSR*TTSR+TTSI*TTSI)
            TTPHA=DATAN2(TTSI,TTSR)*180./PI
C WRITE(LOU,*)'MAG ',TTMAG
C WRITE(LOU,*)'PHA ',TTPHA
    1020 STOP 'JOB '
            END
```


RFGRAPH plots two sets of data on same graph

Program RFGRAPH plots two sets of data on the same graph and sends the output to the screen and to the printer. It is normally used to compare the calculated and experimental change in the induced voltage in a pickup coil due to a defect as the coil is scanned past the defect.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Open the data files containing the input data.
4. Read in and scale the data.
5. Plot the data to the screen.
6. Send the contents of the screen to the printer.

Variables

C6 ${ }^{\circ}$	The total shunt capacitance in farads of the driving circuit.
C7 ${ }^{\circ}$	The total shunt capacitance in farads of the pickup circuit.
CGIM	The factor by which the imaginary parts of the calculated data points can be multiplied to make the graph as large as possible on the screen.
CGRL	The factor by which the real parts of the calculated data points can be multiplied to make the graph as large as possible on the screen.
CMMAX	The maximum value of the magnitude of the calculated data points.
CPMMAX	The value of the phase for the experimental data point which has the largest magnitude.
CXMAX	The maximum value of the real parts of the calculated data points.
CYMAX	The maximum value of the imaginary parts of the calculated data points.
DFDEP*	The depth to the bottom of the defect in inches.
DFDIAM ${ }^{\text {- }}$	The diameter of the defect in inches.
EGIM	The factor by which the imaginary parts of the experimental data points can be multiplied to make the graph as large as possible on the screen.
EGRL	The factor by which the real parts of the experimental data points can be multiplied to make the graph as large as possible on the screen.
EMMAX	The maximum value of the magnitude of the experimental data points.
EPMMAX	The value of the phase for the experimental data point which has the largest magnitude.
EXMAX	The maximum value of the real parts of the experimental data points.

EYMAX	The maximum value of the imaginary parts of the experimental data points.
FREQ ${ }^{\circ}$	The operating frequency in hertz.
GAIN*	Gain of pickup amplifier.
GIM	The factor by which the imaginary parts of both sets of data are multiplied to obtain the largest possible graph.
GRL	The factor by which the real parts of both sets of data are multiplied to obtain the largest possible graph.
L3	The normalized length of the driver coil.
L4	The normalized length of the pickup coil.
L5	The normalized distance of recess of the pickup coil.
L6	The normalized lift-off of the driver coil.
LOEC*	The number of the I / O unit connected to the file containing the calculated data.
LOEE*	The number of the $1 / 0$ unit connected to the file containing the experimental data.
LOU	The number of the $1 / 0$ unit connected to the printer.
MODE	The screen mode to be used. Mode 16 is the EGA high resolution mode.
NPROBE*	Character variable which contains the name of the reflection probe which is to be used in the calculations.
NS*	The side of the plate where the defect is located. If NS $=1$, the defect is on the near side; if NS $=2$, the defect is on the far side.
OIM	The number which is added to the imaginary parts of all data points to move the origin to the desired location.
ORL	The number which is added to the real parts of all data points to move the origin to the desired location.
R0*	The output series resistance of the driving amplifier in ohms.
R1	The normalized inner radius of the driver coil.
R2	The normalized outer radius of the driver coil.
R3	The normalized inner radius of the pickup coil.
R4	The normalized outer radius of the pickup coil.
R5	The mean radius of the driver coil in inches.
R6	DC resistance of the driver coil in ohms.
R7	DC resistance of the pickup coil in ohms.
R9*	The input shunt resistance of pickup amplifier in ohms.
RHO1*	The resistivity of the plate in $\mu \Omega-\mathrm{cm}$.
T1*	The thickness of the plate. It is input in inches and normalized by the program.
TNDR	The number of turns in the driver coil.
TNPU	The number of turns in the pickup coil.

Ul \quad The relative magnetic permeability of the plate.
vin* WUSRR Output voltage of driving amplifier in volts. The product of the angular frequency, the magnetic permeability, the electrical conductivity, and the square of the mean coil radius.

Listing

PROGRAM RFGRAPH
C VERSION November 10, 1988
C Program to graph experimental and calculated reflection
C coil data.
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 GRL,GIM, L3, I4,L5,L6
REAL CX(200), CY(200), EX(200), EY(200)
CHARACTER SIDE (2)*4, NPROBE*6, COIL*6
CHARACTER*1 FF
DATA LOU/8/,PI/3.141592653/,LOEE/38/,LOEC/39/
DATA RHO1/4.054/,U1/1.0/,DFDIAM/0.2215/,DFDEP/0.2215/,NS/1/
DATA T1/0.250/,NPROBE/'250A '/,SIDE/'NEAR',' FAR'/
DATA R0/3050./,R9/1.0D6/,C6/15.E-11/,C7/15.E-11/
DATA FREQ/500./,GAIN/1./, VIN/1.100/
DATA MODE/16/,ORL/330/,OIM/50/
$\mathrm{FF}=\mathrm{CHAR}$ (12)
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN, ISE, IFR)
CALL GETDAT (IYR, IMO,IDA)
IYR=IYR-1900
WRITE(LOU, 102) IHR, IMN, ISE, IMO, IDA, IYR
102 FORMAT('RFGRAPH TIME ',I2,':',I2,':',I2
*,' DATE ', I2,'/',I2,'/',I2)
OPEN(28,FILE='REF.DAT', STATUS=' OLD')
$110 \operatorname{READ}(28,111)$ COIL, R5,R1,R2;L3,R3,R4,L4,L5,L6
*,R6,R7,TNDR,TNPU
111 FORMAT (A6, 9F8.4, F10.4, F11.4, 2F8.1)
IF (COIL.EQ.'END ') WRITE $(0, *)^{\prime}$ COIL NOT FOUND'
IF (COIL.EQ.'END ')GO TO 1000
IF (COIL. NE.NPROBE) GO TO 110
L6-L6+0.010/R5
WRITE(LOU, 103) NPROBE,T1
103 FORMAT('PROBE ', A6,' PLATE THICKNESS', F7.4)
WRITE(LOU,105)
105 FORMAT('COIL IN RAD OT RAD LENGTH OLO/REC TURNS',
*' COIL RES CKT: RES CAP')
WRITE(LOU,114)R1,R2,L3,L6,TNDR,R6,R0,C6
WRITE(LOU, 115)R3,R4, L4, L5, TNPU, R7, R9, C7
114 FORMAT('DRIVER' ',4(F7.4,1X),F8.1,3(1PE10.3))
115 FORMAT('PICKUP ',4(F7.4,1X),F8.1,3(1PE10.3))
WUSRR=0.5093979*U1*R5*R5*FREQ/RHO1
WRITE(LOU, 120)R5, FREQ, RHO1, U1, WUSRR
120 FORMAT('RBAR',F7.4,' FREQ $=$ ',1PE13.6,' RHO=',0PF9.4,
*' PERM=',F7.3,' WUSRR=',F9.4)
C Open the files containing the data.
OPEN(LOEE, FILE='RFF3EX2.500', STATUS=' OLD')
OPEN(LOEC, FILE='RFF3CAL. 500', STATUS='OLD')
CALL QSMODE (MODE)
CALL GRID

```
11 CXMAX=0.
    CYMAX=0.
    EXMAX=0.
    EYMAX=0.
    EMMAX=0.
    CMMAX=0.
    I=1
20 READ(LOEE,*,END=29)EMAG,EPHA
    EPHA=EPHA*PI/180.
    EX(I)=EMAG*COS (EPHA)
    EY(I)-EMAG*SIN(EPHA)
    IF(ABS(EX(I)).GT. EXMAX)EXMAX=ABS(EX(I))
    IF(ABS(EY(I)).GT.EYMAX) EYMAX=ABS(EY(I))
    IF(EMAG.GT.EMMAX) THEN
    EMMAX=EMAG
    EPMMAX=EPHA
    END IF
    I=I+1
    GO TO 20
29 EX(I)=999.
    I=1
30 READ(LOEC,*,END=40)XTMP,CMAG,CPHA
    CPHA=CPHA*PI/180.
    CX(I)=CMAG*COS (CPHA)
    CY(I)=CMAG*SIN(CPHA)
    IF(ABS(CX(I)).GT.CXMAX) CXMAX=ABS (CX(I))
    IF(ABS (CY(I)).GT.CYMAX)CYMAX=ABS (CY(I))
    IF(CMAG,GT,GMMAX) THEN
    CMMAX=CMAG
    CPMMAX=CPHA
    END IF
    I=I+1
    GO TO 30
40 CX(I)=999.
    EGIM=300./EXMAX
    EGRL=300./EYMAX
    1F(EGIM.GT.EGRL) THEN
    EGIM=EGRL
    ELSE
    EGRL=EGIM
    END IF
    CGIM=300./CXMAX
    CGRL=300./CYMAX
    IF(CGIM.GT.CGRL) THEN
    CGIM=CGRL
    ELSE
    CGRL=CGIM
    END IF
    IF(EGIM.GT.CGIM) THEN
    GIM=CGIM
    GRL=CGRL
```

```
        ELSE
        GIM=EGIM
        GRL=EGRL
        END IF
        EPMMAX=EPMMAX*180./PI
        CPMMAX=CPMMAX*180./PI
        WRITE(LOU,*)
        WRITE(LOU,*)' MAX MAG . PHA AT MAX MAG'
    WRITE(LOU, 52) EMMAX, EPMMAX
    WRITE(LOU, 53)CMMAX, CPMMAX
    52 FORMAT(' EXP: ',D11.4,7X,F7.3)
    53 FORMAT(' CAL: ',D11.4,7X,F7.3)
    IR1=GRL*EX(1)+ORL
    IM1=GIM*EY(1)+OIM
    I=2
    50 IF(EX(I).GT.900) GO TO 59
    IR2=GRL*EX(I)+ORL
    IM2=GIM*EY(I)+OIM
    IF((IR1.GT.0).AND.(IR1.LT.600)) THEN
    IF((IR2.GT.0).AND.(IR2.LT.600)) THEN
    IF((IM1.GT.0).AND.(IM1.LT.350)) THEN
    IF((IM2.GT.0).AND.(IM2.LT.350)) THEN
    CALL QLINE(IR1,IM1,IR2,IM2,15)
    END IF
    END IF
    END IF
    END IF
    IR1=IR2
    IM1=IM2
    I=I+1
    GO TO 50
    59 IR1=GRL*CX(1)+ORL
    IM1=GIM*CY(1)+OIM
    I=2
    60 IF(CX(I).GT.900) GO TO 70
    IR2=GRL*CX(I)+ORL
    IM2=GIM*CY(I)+OIM
    CALL QLINE(IR1,IM1,IR2,IM2,11)
    IR1=IR2
    IM1=IM2
    I=I+1
    GO TO 60
    70 CONTINUE
    WRITE(LOU,*)
    WRITE(LOU,*)
    WRITE(LOU,*)
    CALL PRTSC
    WRITE(LOU,*)FF
1000 END
```


RFINV inverts scan of defect using reflection coil data

Abstract

Program RFINV calculates the depth and volume of a defect given the change in induced voltage in a pickup coil caused by the defect. The program works with either experimental data stored in a file by program RFFIX or with calculated data stored by program RFAVZSCN, and it uses a lookup file built by program RFBEDF. The program calculates the integral of the change in induced voltage in the pickup coil due to the presence of a defect with respect to the radial distance between the coil axis and the center of the defect from the inner radius of the pickup coil to the outer radius of the driver coil and then finds the magnitude and phase of this complex integral. It opens a lookup file which contains a list of phases along with the magnitude and depth corresponding to these phases. When the program finds in the lookup file the phase it calculated when doing the integral, the depth corresponding to this phase is the depth of the defect, and the magnitude in the lookup file can be used with the magnitude obtained by doing the integral to find the volume of the defect.

Summary

1. Declare variable types.
2. Initialize variables.
3. Open the file containing the experimental data, read in the data, and calculate the integral.
4. Find the depth and magnitude in the lookup file corresponding to the phase of the integral.
5. Calculate the inverted defect depth and volume based on the experimental data.
6. Open the file containing the calculated data, read in the data, and calculate the integral.
7. Find the depth and magnitude in the lookup file corresponding to the phase of the integral.
8. Calculate the inverted defect depth and volume based on the calculated data.

Variables

Starred variables must be set by the user.

C6	The total shunt capacitance in farads of the driving circuit.
C7	The total shunt. rapasitance in farads of the pickup circuit.
DELRDC'	The normalized distance in the radial direction between data points from the calculated datafile.
	The normalized distance in the radial direction between data points from the experimental data
DELTR'	file. The radial distance in inches between points in the experimental data file.

PTH	The inverted normalized depth of the center of the defect.
DFDEP*	The actual depth to the bottom of the defect in inches.
DFDIAM ${ }^{\text {- }}$	The actual diameter of the defect in inches.
DFM	The magnitude of the change in induced voltage in the pickup coil at a point due to the defect.
DFP	The phase of the change in induced voltage in the pickup coil at a point due to the defect.
FREQ ${ }^{\text { }}$	The frequency in hertz at which the circuit is driven.
L3	The normalized length of the driver coil.
L4	The normalized length of the pickup coil
L5	The normalized distance of recess of the pickup coil.
L6	The normalized lift-off of the driver coil.
LHSMAG	The magnitude of the integral calculated by the program.
LHSPHA	The phase of the integral calculated by the program.
LOEC ${ }^{\circ}$	The channel on which the file containing the calculated data is opened.
LOEE ${ }^{\text {- }}$	The channel on which the file containing the experimental data is opened.
NPROBE*	Character variable containing the name of the reflection coil being used.
NS ${ }^{\text { }}$	The side of the plate where the defect is located. If $N S=1$, the defect is on the near side; if $N S=2$, the defect is on the far side.
R ${ }^{\text {a }}$	The series resistance of the driver circuit.
R1	The normalized inner radius of the driver coil.
R2	The normalized outer radius of the driver coil.
R3	The normalized inner radius of the pickup coil.
R4	The normalized outer radius of the pickup coil.
R5	The mean radius of the driver coil in inches.
R6	DC resistance of the driver coil in ohms.
R7	DC resistance of the pickup coil in ohms.
R9*	The amplifier input impedance.
RDC	The normalized radial distance between the coil and defect for the calculated inversion section of the program.
RDE	The normalized radial distance between the coil and defect for the experimental inversion section of the program.
RHO1 ${ }^{\circ}$	The resistivity of the plate in $\mu \Omega-\mathrm{cm}$.
RHSMAG	The magnitude in the lookup file corresponding to the phase of the integral calculated by the program.
T1'	The thickness of the plate. It is input in inches and then normalized by the program.
TNDR	The number of turns in the driver coil.

TNPU The number of turns in each pickup coil.
Ul \quad The relative magnetic permeability of the plate.
VOLI The inverted normalized volume of the defect.
VOLN The actual normalized volume of the defect.
2D The actual normalized depth of the center of the defect.

Notes

1. If the user wants the program to perform only the inversion of calculated data, he should remove the ' c ' which comments out the statement 'goto 79' just before statement number 70 in the program. If the user wants the program to perform only the inversion of experimental data, he should remove the ' c ' which comments out the statement 'goto 89' just before statement number 80 in the program.

Listing

PROGRAM RFINV
C VERSION November 7, 1988
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER SIDE (2)*4, NPROBE*6,COIL*6
REAL*8 L, L1, L2, LHSPHA
REAL*8 L3,L4,L5,L6
DATA LOEE/38/,LOEC/39/,LOU/8/,PI/3.141592653/
DATA RHO1/5.72/, U1/1.0/.
DATA DFDIAM/0.0765/,DFDEP/0.0780/,NS/1/
DATA NPROBE/'250A '/,SIDE/'NEAR',' FAR'/
DATA R0/3050./,R9/1.0D6/,C6/8.47E-11/,C7/8.45E-11/
DATA FREQ/1.0E3/,DELTR/0.005/
DATA T1/0.2500/
OPEN (LOEE, FILE='RFN6EX2.500', STATUS=' OLD')
OPEN (LOEC, FILE='RFN6CAL.500',STATUS='OLD')
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN, ISE, IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE, IMO, IDA , IYR
2 FORMAT(' RFINV TIME ', I2,':', I2,':', I2
*,' DATE ', I2,'/', I2,'/', I2)
$\operatorname{OPEN}\left(28\right.$, FILE='REF.DAT', STATUS $\left.={ }^{\prime} \mathrm{OLD}^{\prime}\right)$
$10 \operatorname{READ}(28,11) \operatorname{COIL}, \mathrm{R} 5, \mathrm{R} 1, \mathrm{R} 2, \mathrm{~L} 3, \mathrm{R} 3, \mathrm{R} 4, \mathrm{~L} 4, \mathrm{~L} 5, \mathrm{~L} 6$
*,R6, R7, TNDR, TNPU
11 FORMAT(A6, 9F8.4, F10.4, F11.4, 2F8.1)
IF (COIL.EQ.'END ') WRITE ($0, *$)' COIL NOT FOUND'
IF (COIL.EQ.'END ') GO TO 89
IF (COIL.NE.NPROBE)GO TO 10
L6=L6+0.010/R5
WRITE (LOU, 3)NPROBE,T1
3 FORMAT('PROBE ',A6,' PLATE THICKNESS',F7.4)
WRITE (LOU,5)
5 FORMAT('COIL IN RAD OT RAD LENGTH OLO/REC TURNS',
*' COIL RES CKT: RES CAP')
WRITE(LOU,14)R1,R2,L3,L6,TNDR, R6,R0, C6
WRITE (LOU, 15) R3, R4, L4, L5 , TNPU, R7, R9, C7
14 FORMAT('DRIVER ',4(F7.4,1X),F8.1,3(1PE10.3))
15 FORMAT('PICKUP ',4(F7.4,1X),F8.1,3(1PE10.3))
WUSRR $=0.5093979 *$ Ul $*$ R $5 * R 5 *$ FREQ/RHO1
WRITE (LOU, 20) R5, FREQ, RHO1, U1, WUSRR
20 FORMAT('RBAR', F7.4,' FREQ $=$ ',1PE13.6,' RHO=', OPF9.4, *' PERM=',F7.3,' WUSRR=',F9.4)
WRITE (LOD , 23) NPROBE, T1, FREQ, SIDE(NS) , DFDIAM, DFDEP
WRITE $(0,23)$ NPROBE, T1, FREQ, SIDE (NS) , DFDIAM, DFDEP
23 FORMAT('PROBE ',A6.,' PLATE THK', F7.4,' FREQ=',1PE8.1,1X,A4,
*' SIDE',OPF6.4,' DIA',F6.4,' DEEP')
DELRDC=0.01*(R2-R3)
DELRDE=DELTR/R5
$\mathrm{RDE}=0$.
$\mathrm{T} 1=\mathrm{T} 1 / \mathrm{R} 5$
ZD $=-$ DFDEP $/(2 * R \zeta)$
IF (NS.EQ.2) $\mathrm{ZD}=-\mathrm{Tl}-\mathrm{ZD}$
RDE=RDE/R5
$\mathrm{L} 2=\mathrm{L}+\mathrm{L} 1$
VOLN $=$ PI $*$ DFDIAM $*$ DFDIAM $*$ DFDEP $/(4 . * R 5 * R 5 * R 5)$
WUSRR $=0.5093979 * \mathrm{U} 1 * \mathrm{R} 5 * \mathrm{R} 5 * \mathrm{FREQ} / \mathrm{RHO} 1$
WRITE (LOU , *)
WRITE(LOU,*)
WRITE(LOU,26)
WRITE (LOU, 27) ZD, VOLN
26 FORMAT(' DEPTH VOLUME')
27 FORMAT(' Actual: ', F8.5,2X,F8.5)
28 CONTINUE
SIVR=0.0
SIVI $=0.0$
$\mathrm{M}=0$
c GO TO 79
70 READ (LOEE,*, END=78) DFM, DFP
IF (RDE.LT.R3) GOTO 76
IF (RDE.GT.R2) GOTO 78
DFP=DFP* (PI/180.)
$\mathrm{XFACT}=\mathrm{DFM} \times \mathrm{DELRDE}$
SIVI $=$ SIVI $-X F A C T * D S I N(D F P)$
SIVR=SIVR-XFACT*DCOS (DFP)
LHSPHA=ATAN2 (SIVI, SIVR)
XMAG=SQRT (SIVR*SIVR+SIVI*SIVI)
76 RDE=RDE+DELRDE
GO TO 70
77 FORMAT(' Exp Inv: ', F8.5, 2X, F8.5)
78 CONTINUE
LHSPHA=LHSPHA*180./PI
CALL RFLKUP (DEPTH, RHSMAG, LHSPHA)
VOL1=XMAG/RHSMAG
WRITE (LOU , 77) DEPTH, VOL1
79 SIVR=0.0
SIVI $=0.0$
$\mathrm{M}=0$
c
GO TO 89
80 READ (LOEC , *, END=88) RDC , DFM, DFP
IF (RDC.LT.R3) GOTO 86
IF (RDC.GT.R2) GOTO 88
$\mathrm{DFP}=\mathrm{DFP} *(\mathrm{PI} / \mathrm{I} 80$.
$\mathrm{M}=\mathrm{M}+1$
$X{ }^{\prime} A C C^{\prime}=\mathrm{DFM} \times \mathrm{DELRO}$
SIVI =SIVI -XFACT*DSIN (DFP)
SIVR=SIVR-XFACT*DCOS (DFP)
LHSPHA=ATAN2 (SIVI, SIVR)
$X M A G=S Q R T(S I V R * S I V R+S I V I * S I V I)$
86 GO TO 80

87 FORMAT(' Cal Inv: ', F8.5; 2X, F8.5)
88 CONTINUE
LHSPHA=LHSPHA*180./PI
CALL RFLKUP (DEPTH;RHSMAG,LHSPHA)
VOL1=XMAG/RHSMAG
WRITE(LOU, 87)DEPTH, VOL1
89 END

CIRCUMFERENTIAL BORESIDE COIL PROGRAMS

The programs in this section perform functions relating to the effect of a defect in a single conducting tube on a circumferential coil. The types of circumferential coils dealt with are absolute boreside and differential boreside. Fig. 13 shows a differential probe in a tube.

Fig. 13. Differential probe in the bore of a tube.

Calculations of the normalized impedance change in these coils due to a defect in a single conducting tube are done by programs ABBORAR and DFBORAR. The other pair of programs in this section, DBDSF and DBDSFPLT, work together to calculate and plot the contours of the magnitude of the defect sensitivity factor of a differential boreside coil.

ABBORAR calculates defect impedance change for absolute coil

The program ABBORAR calculates the change in the normalized impedance of an absolute boreside coil due to the presence of a defect in a single conducting tube, as shown in Fig. 14. It performs the calculations for a number of different axial distances between the center of the coil and the defect, and it can divide the defect into a number of parts and calculate the effect of each part separately.

Fig. 14. Cross section of a coil in the bore of a tube with a defect present.

The normalized impedance for a coil inside a cylindrical conductor, with no defect present, is:
$Z_{\mathrm{n}}=\frac{j}{I_{\mathrm{a} \cdot \mathrm{r}}} \int_{\mathrm{i}}^{\infty}\left[\frac{8}{\pi \alpha^{6}} I^{2}\left(r_{2}, r_{1}\right)\left\{\frac{K_{1}(\alpha, a) D_{4}-I_{1}\left(\alpha_{1} a\right) D_{1}}{I_{1}(\alpha a)\left(D_{1} D_{2}+D_{3} D_{4}\right)}-\frac{K_{1}(\alpha a)}{I_{n}(\alpha a)}\right\} \sin ^{2}\left(\frac{\alpha \ell}{2}\right)+I_{\mathrm{air}}\right] d \alpha$
and for the change in the normalized impedance due to the defect we have:
$Z_{\mathrm{nd}}(I, z)=\frac{-3\left(\omega \mu \sigma_{1} \bar{r}^{2}\right) V o I_{n}}{2 \pi I_{\mathrm{a} \mid \mathrm{r}}}\left[\int_{0}^{\infty} \frac{I\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{4}-I_{1}\left(\alpha_{1} r\right) D_{1}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) 2 \cos (\alpha z) d \alpha\right]^{2}$
where:

$$
\begin{align*}
& D_{1}=\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta, b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right) \tag{30}\\
& D_{2}=\beta_{1} a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}\left(\alpha_{1} a\right) \tag{31}\\
& D_{3}=\alpha a I_{0}(\alpha a) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}(\alpha a) \tag{32}\\
& D_{4}=\beta_{1} b I_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b) \tag{33}\\
& I\left(r_{2}, r_{1}\right)=\int_{\alpha r_{1}}^{\alpha r_{2}} x I_{1}(x) d x \tag{34}\\
& \alpha_{1}=\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2} \tag{35}\\
& \beta_{1}=\left(\mu_{0} / \mu_{1}\right)\left(\alpha^{2}+j \omega \mu_{1} \sigma_{1} \bar{r}^{2}\right)^{1 / 2}
\end{align*}
$$

and
The term $I_{\text {air }}$ is related to the air inductance of the coil and is:

$$
\begin{equation*}
I_{\mathrm{a} \mid \mathrm{r}}=\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{2}, r_{1}\right)\right]^{2} 2[\alpha \ell+\exp (-\alpha \ell)-1] d \alpha \tag{37}
\end{equation*}
$$

where $J\left(r_{2}, r_{1}\right)=\int_{\alpha r_{1}}^{\alpha r_{2}} x \cdot T_{1}(x) d x$
In the computer program, the outer conductor is taken to be air and given a conductivity of zero and a relative permeability of unity. The term β_{2} therefore reduces to α. The term is carried as β_{2} in the derivation and equations for completeness.

Varlables

A number of the variables which occur mainly inside the integration loops do not correspond to anything physical. These variables are described in a section at the end. Starred variables must be assigned by the user.

A	The normalized inner radius of the tube..
B	The normalized outer radius of the tube.
DELTAZ	The normalized axial distance between the points
at which the calculations are done.	

	the coil due to the defect. The imaginary part of the defect sensitivity
factor of the coil.	

2D The axial distance between the center of the coil and the defect.
2NDFI The imaginary part of the normalized impedance change in the coil due to the defect.
ZNDFR The real part of the normalized impedance change in the coil due to the defect.
ZNIM The imaginary part of the normalized impedance of the coil when no defects are present.
ZNRL The real part of the normalized impedance of the coil when no defects are present.

Integration Section of Program ABBORAR

Symbol definitions

The following are definitions of the symbols used to describe the program variables which appear in the integration section of the program. All lengths are normalized unless otherwise noted.

α	Integration variable
a	Inner radius of the tube
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2} \mu$
b	Outer radius of the tube
$I\left(x_{2}, x_{1}\right)$	Integral of $x I_{1}(x)$ with respect to x from αx_{1} to αx_{2}
$I_{0}(x)$	Modified Bessel function of the first kind of order 0
$I_{1}(x)$	Modified Bessel function of the first kind of order 1
$J\left(x_{2}, x_{1}\right)$	Integral of $x J_{1}(x)$ with respect to x from $\alpha x_{,}$to αx_{2}
$J_{1}(x)$	Bessel function of the first kind of order 1
$K_{0}(x)$	Modified Bessel function of the second kind of order 0
$K_{1}(x)$	Modified Bessel function of the second kind of order 1
ℓ	Length of the coil
μ	Relative magnetic permeability of the tube
σ_{1}	Electrical conductivity of the tube
r	Radial distance between center of coil and defect
r	Coil mean radius in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
z	Axial distance between defect and coil center
ω	Angular operating frequency

Program variable	Symbolic equivalent
A1	$\alpha \ell+\exp (-\alpha \ell)-1$
BIOA	$I_{0}(\alpha a)$
BIOB	$I_{0}(\alpha b)$
BIIA	$I_{1}(\alpha a)$
BIIB	$I_{1}(\alpha b)$
BIIIA	$\operatorname{Im}\left[I_{1}(\alpha, a)\right]$
BIIIB	$\operatorname{Im}\left[I_{1}(\alpha, b)\right]$
BI1IR	$\operatorname{Im}\left[I_{1}\left(\alpha_{i} r\right)\right]$
BIIRA	$\operatorname{Re}\left[I_{1}(\alpha, a)\right]$
BIIRB	$\operatorname{Re}\left[I_{1}(\alpha, b)\right]$
BIIRR	$\dot{\operatorname{Re}}\left[I_{1}\left(\alpha_{1} r\right)\right]$
BKOA	$K_{0}(\alpha a)$

BKOB	$K_{0}(\alpha b)$
BK1A	K, ($\alpha a)$
BK1B	$K_{1}(\alpha b)$
BKIIA	$\operatorname{Im}\left[K_{1}(\alpha, a)\right]$
BK1IB	$\operatorname{Im}\left[K_{1}(\alpha, b)\right]$
BK1IR	$\operatorname{Im}\left[K_{1}(\alpha, r)\right]$
BK1RA	$\operatorname{Re}\left[K_{1}\left(\alpha_{1}, a\right)\right]$
BK1RB	$\operatorname{Re}\left[K_{1}(\alpha, b)\right]$
BK1RR	$\operatorname{Re}\left[K_{1}(\alpha, r)\right]$
DDI	$\begin{gathered} \operatorname{Im}\left\{\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right. \\ {\left[\beta_{1} a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+} \\ {\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]} \\ \left.\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right) \end{gathered}$
DDR	$\begin{gathered} \operatorname{Re}\left(\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right. \\ {\left[\beta_{1} a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+} \\ {\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]} \\ \left.\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right) \end{gathered}$

DFR

DI1
DI2
DI3
DI4
DNI

DNR
$\operatorname{Re}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]-\right.$

$$
\begin{aligned}
& \left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right\} \\
\div & \left\{\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right. \\
& {\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+} \\
& {\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right] } \\
& {\left.\left[\rho_{1} b I_{0}\left(u_{1} b\right) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}\left(\alpha_{1} b\right)\right]\right\} }
\end{aligned}
$$

$\operatorname{Im}\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta, b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]$
$\operatorname{Im}\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}\left(\alpha_{1} a\right)\right]$
$\operatorname{Im}\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta, a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\operatorname{Im}\left[\beta, b I_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]$
$\operatorname{Im}\left\{K_{1}(\alpha, r)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}\left(\alpha_{1} b\right)\right]-\right.$ $\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right\}$
$\operatorname{Re}\left(K_{1}\left(\alpha_{1} r\right)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}\left(\alpha_{1} b\right)\right]-\right.$ $\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right\}$

DR1
DR2
DR3
DR4
S1
SNI

SNR

SSR
$\operatorname{Re}\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]$
$\operatorname{Re}\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]$
$\operatorname{Re}\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\operatorname{Re}\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]$
$d \alpha$

$$
\begin{gathered}
\operatorname{Im}\left(-I_{1}\left(\alpha_{1} a\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b \dot{K}_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
\left.K_{1}\left(\alpha_{1} a\right)\left[\beta, b I_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}\left(\alpha_{1} b\right)\right]\right\} \\
\operatorname{Re}\left(-I_{1}(\alpha, a)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
\left.\left.K_{0} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Re} \frac{1}{I_{1}(\alpha a)}\left[-I_{1}(\alpha, a)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
& \left.K_{1}(\alpha, a)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right] \\
& {\left[\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right.} \\
& {\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+} \\
& {\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]} \\
& \left.\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right]^{-1}-\frac{K_{1}(\alpha a)}{I_{1}(\alpha a)}
\end{aligned}
$$

X
X1
X1A
X1B
X1R
XA
XB
XF2

XFACT
α.
$\operatorname{Re}\left[\alpha_{1}\right]$
$\operatorname{Re}[\alpha, a]$
$\operatorname{Re}[\alpha, b]$
$\operatorname{Re}[\alpha, r]$
αa
αb

$$
\frac{2}{\pi} \frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2) d \alpha
$$

$$
\frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2)
$$

XFACT2	$\frac{2}{\pi} \frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2) \cos (\alpha z) d \alpha$
XIR21	$\frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right)$
	$\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)$
XJR21	$\alpha \ell$
XL	α^{2}
XX	α^{4}
XXXX	$\operatorname{Im}[\alpha]$,
Y1	$\operatorname{Im}[\alpha, a]$
Y1A	$\operatorname{Im}[\alpha, b]$
Y1B	$\operatorname{Im}[\alpha, r]$
Y1R	$\operatorname{Im}\left[\alpha, a I_{0}(\alpha, a)\right]$
ZIOIA	$\operatorname{Im}\left[\alpha, b I_{0}(\alpha, b)\right]$
ZIOIB	$\operatorname{Im}\left[\alpha, r I_{0}(\alpha, r)\right]$
ZIOIR	$\operatorname{Re}\left[\alpha, a I_{0}(\alpha, a)\right]$
ZIORA	$\operatorname{Re}\left[\alpha, b I_{0}(\alpha, b)\right]$
ZIORB	$\operatorname{Re}\left[\alpha, r I_{0}(\alpha, r)\right]$
ZIORR	$\operatorname{Im}\left[\alpha, a K_{0}(\alpha, a)\right]$
ZKOIA	$\operatorname{Im}\left[\alpha, b K_{0}(\alpha, b)\right]$
ZKOIB	$\operatorname{Im}\left[\alpha, r K_{0}(\alpha, r)\right]$
ZKOIR	$\operatorname{Re}\left[\alpha, a K_{0}(\alpha, a)\right]$
ZKORA	$\operatorname{Re}\left[\alpha, b K_{0}(\alpha, b)\right]$
ZKORB	$\operatorname{Re}\left[\alpha, r K_{0}(\alpha, r)\right]$
ZKORR	

Sample output

The program ABBORAR calculates the defect signal averaged over the depth of the defect at different distances along the tube. The program can plot the defect imperance as the tube is scanned and pick out the maximum amplitude. Below we show a sample run where the maximum signal is print.en.

ABBORAR TIME 8:53:41 DATE 8/16/89

IN RAD OT RAD LENGTH RAD CLR WALLTH \% WALL TUB IR TUB OR $\begin{array}{lllllllll}\text { ACT } & 1.2000 & 1.5000 & 0.2650 & 0.0575 & 0.2200 & 45.45 & 1.5575 & 1.7775\end{array}$

| NOR | 0.8889 | 1.1111 | 0.1963 | 0.0426 | 0.1630 | 45.45 | 1.1537 | 1.3167 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | RBAR 1.3500 FREQ $=4.000000 \mathrm{E}+02 \mathrm{RHO}=3.8400$ PERM=1.000 WUSRR=96.7060

NORM IMPD:RL 0.110847 IM 0.589927 AIR IND 1.693801E-02
NORM DSF:RL 1.4332E-01 IM 3.3396E-02, VOLN 3.1922E-04 MAXIMUM MAG 0.5544D-04 PHA AT MAX MAG 18.91 OD DEFECT

Partial listing of file FORT39:

0.000	$0.5544 \mathrm{D}-04$	18.91
0.001	$0.5544 \mathrm{D}-04$	18.91
0.002	$0.5544 \mathrm{D}-04$	18.91
0.003	$0.5543 \mathrm{D}-04$	18.91
0.004	$0.5543 \mathrm{D}-04$	18.90
0.005	$0.5542 \mathrm{D}-04$	18.90
0.006	$0.5541 \mathrm{D}-04$	18.89
0.007	$0.5540 \mathrm{D}-04$	18.88
0.008	$0.5538 \mathrm{D}-04$	18.87
0.009	$0.5536 \mathrm{D}-04$	18.86
0.010	$0.5535 \mathrm{D}-04$	18.85

Listing

```
    PROGRAM ABBORAR
C VERSION August 16, 1989
C
C Program to calculate the normalized impedance change in
C an absolute boreside circumferential coil due to a defect
C in a single tube as the coil scans past the defect. The
C program averages the effect of the defect over the depth
C of the defect.
C
C Z=0.0 AT CENTER OF COIL.
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 L
    CHARACTER*1 FF
    DIMENSION S1(6),S2(6), ERR(6)
    DIMENSION CX(0:200),CY(0:200),XFACT2(200)
    DIMENSION SMZDFRA(0:200,30),SMZDFIA(0:200,30)
    DATA LOU/8/,PI/3.141592653/,LOD/39/,LOE/38/
    DATA S1/.005,.02,.05,.1,.1,.5/
    DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
    DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-10/
    DATA FREQ/4.0E2/,RHO1/3.84/,U1/1.0/
    DATA TRN/400./,ISIDE/1/
    DATA MODE/16/NZT/100/,NRT/20/
    DATA OIM/50/,ORL/330/
    FF=CHAR (12)
C OPEN(LOD,FILE='BORSCN.DAT',STATUS='NEW')
c OPEN(LOE,FILE='BORDAT.DAT',STATUS='OLD')
    11 XMAX=0.
    YMAX=0
    DFMMAX=0.
    DO }14\textrm{NZ}=1,NZ
    DO }12\mathrm{ NR=1,NRT
    SMZDFRA(NZ,NR)=0.
    SMZDFIA(NZ,NR)=0.
    1 2 \text { CONTINUE}
    14 CONTINUE
        READ(LOE,*, END=1001)DFDIAM, DFDEP
    TIME AND DATE ARE PRINTED
    dfdiam=0.1
    dfdep=0.1
    CALL GETTIM(IHR,IMN,ISE,IFR)
    CALL GETDAT(IYR,IMO,IDA)
    IYR=IYR-1900
    WRITE(LOU, 2)IHR,IMN, ISE,IMO,IDA,IYR
    2 FORMAT(' ABBORAR TIME ',I2,':',I2,':'
    *,I2,' DATE ',I2,'/',I2,'/',I2)
    WRITE(LOU,5)
    5 FORMAT(5X,'IN RAD',2X,'OT RAD',2X,'LENGTH',2X,'RAD CLR'
    *,1X,'WALLTH',2X,'% WALL',2X,'TUB IR',2X,'TUB OR')
```

```
    R1=1.2
    R2=1.5
    L=0.265
    RCL=0.0575
    Tl=. 220
    POW=(DFDEP/T1)*100.
    A=R2+RCL
    B=A+T1
    RDT=-DFDEP
    R3=0.5*(R1+R2)
    WRITE(LOU , 10)R1,R2,L,RCL,T1, POW , A , B
    R1=R1/R3
    R2=2.0-R1
    L=L/R3
    RCL=RCL/R3
    RDT=RDT/R3
    T1=T1/R3
    A=A/R3
    B=B/R3
    DELTAZ=0.5*L/NZT
        VOLN=0.1666667*PI*(DFDIAM/R3)*(DFDIAM/R3)*(DFDIAM/R3)
    VOLN=PI*DFDIAM*DFDIAM*DFDEP/(4.*R 3*R 3*R 3)
    WUSRR=0.5093979*U1*R 3*R 3*FREQ/RHO1
    WRITE(LOU, 15)R1, R2, L, RCL, T1, POW, A, B
    10 FORMAT('ACT ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    15 FORMAT('NOR ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    WRITE(LOU , 20)R3, FREQ, RHO1, U1, WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
        *' PERM=',F7.3,' WUSRR=',F11.4)
        CALL QSMODE(MODE)
        CALL GRID
        SMAIR=0.0
        SMIMPR=0.0
        SMIMPI=0.0
        SMZDFR=0.0
        SMZDFI=0.0
    C AIR=0.
    C AUR=0.
C AUI=0.
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
    30 RI9=SMAIR
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S1(JKL)
    CALL IJBSSL(X,R1,R2,XIR21,XJR21)
    XL=X*L
```

```
        IF(XL.GT.5.0E-3) GO TO 60
    Al=XL*XL* (0.5-XL/6.0)
    GO TO 80
60 IF(XL.GT.75.0) GO TO 70
    AI=XL+DEXP(-XL)-1.0
    GO TO 80
70 Al=XL-1.0
80 SMAIR=SMAIR+2.*XJR21*XJR21*A1*S1((JKL)
    IF(X.GT..160.)GO TO 90
    XX=X*X
    XXXX=XX*XX
    X1=DSQRT(0.5*(XX+DSQRT(XXXX+WUSRR*WUSRR)):)/U1
    Y1=WUSRR/(2*XI*U1*U1)
    XA=X*A
    XB=X*B
    XlA=X1*A
    Y1A=Y1*A
    X1B=X1*B
    Y1B=Y1*B
    CALL CMDBES(X1A,Y1A,ZIORA,ZIOIA, ZKORA,,ZKOIA, BI1RA, BI1IA
    *,BKlRA, BK1IA)
    CALL CMDBES(X1B,Y1B,ZIORB,ZIOIB,,ZKORB, ZKOIB,BI1RB,BI1IB
    *,BK1RB,BK1IB)
    CALL BESI(XA,BIOA,BIIA)
    CALL BESK(XA,BKOA,BK1A)
    CALL BESI(XB,BIOB,BI1B)
    CALL BESK(XB,BKOB,BK1B)
    DR1=YB*BY.OB*BK.1RB-ZY.ORB*BK.1B/U1
    DI1 = XB*BKOB*BK1IB-2KOIB*BK1B/U1.
    DR2=ZIORA*BI1A/U1-XA*BIOA*BI1RA
    DI2=ZIOIA*BIIA/U1-XA*BIOA*BIIIA.
    DR3=XA*BIOA*BK1RA+ZKORA*BI1A/U1
    DI3=XA*BIOA*BK1IA+ZKOIA*BI1A/U1
    DR4=ZIORB*BK1B/U1+XB*BKOB*BI1RB
    DI4}=\textrm{ZIOIB}*\textrm{BK1B}/\textrm{U}1+XB*BKOB*BIIIB
    DDR=DR1*DR2-DI1*DI2+DR3*DR4-DI 3*DI4
    DDI=DR1*DI2+DR2*DI1+DR3*DI4+DR4*DI`3
    SNR=-BI1RA*DR1+BI1IA*DI1+BK1RA*DR4-BK1IA*DI4
    SNI=-BI1IA*DR1-BI1RA*DI1+BK1RA*DI4*BK1IA*DR4
    DEN=DDR*DDR+DDI*DDI
    SSR=((SNR*DDR+SNI*DDI)/DEN - BKIA )/BIIA
    SSI=(SNI*DDR-SNR*DDI)/(BI1A*DEN)
    XFACT=XIR21*DSIN(XL/2.)
    SMIMPR=SMIMPR+8.*XFACT*XFACT*S1(JKL)*SSR/PI
    SMIMPI=SMIMPI +8.*XFACT*XFACT*S 1 (JKL)*SSI/PI
    XF2=2.*XFACT*S1(JKL)/PI
    DO }89\mathrm{ NR=1,NRT
    write(0,*)rdt
    RD=(REAL(NR)-0.5)*(RDT/REAL(NRT))
    write(0,*)rd,rdt
```

```
c pause
        IF(ISIDE.EQ.1) THEN
        RD=B+RD
        ELSE
        RD=A-RD
        END IF
        rd=1.3333
        X1R=X1*RD
        Y1R=Y1*RD
    CALL CMDBES(X1R,Y1R,ZIORR,,ZIOIR,ZKORR,ZKOIR,BI1RR,BI1IR
    *,BK1RR,BK1IR)
    DNR=BK1RR*DR4-BK1IR*DI4-BI1RR*DR1+BI1IR*DI1
    DNI=BK1IR*DR4+BK1RR*DI4-BIIIR*DR1-BI1RR*DII
    DFR=(DNR*DDR+DNI*DDI)/DEN
    DFI=(DNI*DDR-DNR*DDI)/DEN
    DO }88\textrm{NZ}=0,NZ
    IF(NR.GT.1)GO TO 87
    ZD=DELTAZ*NZ
    XFACT2 (NZ)=XF2*DCOS (X*ZD.)
    87 SMZDFRA(NZ,NR)=SMZDFRA(NZ,NR)+XFACT2(NZ)*DFR
    SMZDFIA(NZ,NR)=SMZDFIA(NZ,NR)+XFACT2(NZ)*DFI
    8 8 ~ C O N T I N U E ~
    8 9 \text { CONTINUE}
    90 CONTINUE
    B1=B2
    B2=B2+S2(JKL)
    CHECK=(SMAIR-RI9)/SMAIR
    IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
    DO }990\mathrm{ NZ=0,NZT
    2D=DELTAZ*NZ
    SMZDFR=0.
    SMZDFI=0.
    DO 120 NR=1,NRT
    SMZDFR=SMZDFR+SMZDFRA(NZ,NR)
    SMZDFI=SMZDFI+SMZDFIA(NZ,NR)
    120 CONTINUE
    SMZDFR=SMZDFR/NRT
    SMZDFI=SMZDFI/NRT
C WRITE(LOU ,*)NZ,SMZDFR,SMZDFI
    DSFR=-1.5*WUSRR*(SMZDFR*SMZDFR-SMZDFI*SMZDFI)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*2.0*SMZDFR*SMZDFI/(SMAIR*PI)
    135 Q6=0.0254*4.0E-7*TRN*TRN*R3*PI*PI*SMAIR/(L*(R2-R1))**2
    ZNIM=SMIMPR/SMAIR+1.0
    ZNRL=-SMIMPI/SMAIR
    ZNDFR=VOLN*DSFR
    ZNDFI=VOLN*DSFI
    IF(NZ.EQ.0) WRITE(LOU,140)ZNRL,ZNIM,Q6
```

```
            DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
            DFP=ATAN2(DSFI,DSFR)
            CX(NZ)=DFM*COS (DFP)
            CY(NZ)=DFM*SIN(DFP)
            DFP=DFP*(180./PI)
            IF(ABS(CX(NZ)).GT.XMAX) XMAX=ABS(CX(NZ))
            IF(ABS(CY(NZ)).GT.YMAX) YMAX=ABS (CY(NZ))
            IF(DFM.GT.DFMMAX) THEN
            DFMMAX=DFM
            DFPMMAX=DFP
            END IF
            WRITE(LOD, 162) ZD , DFM, DFP
    990 CONTINUE
            write(0,*)'rd ', rd
            GIM=300./YMAX
            GRL=300./XMAX
            IF(GIM.GT.GRL) THEN
            GIM=GRL
            ELSE
            GRL=GIM
            END IF
            IM1=GIM*CY(0)+OIM
            IR1=GRL*CX(0)+ORL
                    C WRITE(LOU,150)ZNDFR,ZNDFI,DFM,DFP
            WRITE(LOU,160)DSFR,DSFI, VOLN
            WRITE(LOU, 164)DFMMAX, DFPMMAX
            IF(ISIDE.EQ.1) THEN
            WRITE(LOU,*)' OD DEFECT'
            ELSE
            WRITE(LOU,*)' ID DEFECT'
            END IF
            DO 1000 NZ=1,NZT
            IM2=GIM*CY(NZ)+OIM
            IR2=GRL*CX(NZ)+ORL
            CALL QLINE(IR1,IM1,IR2,IM2,15)
            IR1=IR2
            IM1=IM2
    1000 CONTINUE
            WRITE(LOU ,*)
            WRITE(LOU,*)
            CALL PRTSC
            WRITE(LOU, *)FF
c GO TO 11
    140 FORMAT(' NORM IMPD:RL',F10.6,' IM',F10.6,
            *' AIR IND',1PE13.6)
C 150 FORMAT(' NORM CHG:RL ',OPF10.6,' IM',OPF10.6,
C *' MAG',OPF10.6,' PHA ',OPF7.2)
    160 FORMAT(' NORM DSF:RL',1PE11.4,' IM',1PE11.4,' VOLN',1PE11.4)
    161 FORMAT(' 2D MAG PHA')
```

162 FORMAT(F6.3,5X,D11.4,5X,F7.2)
164 FORMAT(' MAXIMUM MAG ',D11.4,' PHA AT MAX MAG ',F7.2,
) 1001 END

DBDSF calculates DSF at lattice of points for differential coil

Program DBDSF calculates the defect sensitivity factor of a differential boreside coil at a two-dimensional lattice of points throughout the wall of a conducting tube. The differential probe is shown in Fig. 15.

Fig.. 15. Cross section of a differential coil in the bore of a tube with a defect present.

The distance to the defect is measured from the center of the coil assembly, and the center-to-center distance of the coils is denoted c. The impedance difference between the two matched coils is:

$$
\begin{equation*}
Z_{\mathrm{nd}}=Z_{1 \mathrm{~d}}-Z_{2 \mathrm{~d}} \tag{39}
\end{equation*}
$$

Substituting in from Eq. (29) for the impedance change of each coil, removing the normalized defect volume to get the defect sensitivity factor and using some trigonometric identities gives for the defect sensitivity factor:

$$
\begin{aligned}
D S F(r, z)= & \frac{-3\left(\omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right)}{2 \pi I_{\mathrm{air}}} \\
& \times\left[\int_{0}^{\infty} \frac{I\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}(\alpha, r) D_{4}-I_{1}(\alpha, r) D_{1}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \sin \left(\frac{\alpha c}{2}\right) \sin (\alpha z) 4 \mathrm{~d} \alpha\right] \\
& \times\left[\int_{0}^{\infty} \frac{I\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{4}-I_{1}\left(\alpha_{1} r\right) D_{1}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \cos \left(\frac{\alpha c}{2}\right) \cos (\alpha z) 4 d \alpha\right]
\end{aligned}
$$

The definitions of the various terms in Eq. (40) are given in Eqs. (30) through (38) in the discussion of the absolute boreside coil. The function and variable names are essentially the same as they are for the absolute coil and will not be repeated here. The program DBDSF stores the calculated values in the data file FORT40 so they can be plotted by program DBDSFPLT.

Variables

A	The normalized inner
B	The normalized outer radius of
C^{-}	The axial distance between the centers of the two coils. The value is input in inches and normalized by the program.
DELTAR	The normalized radial distance between the points at which the calculations are done.
DELTAZ'	The normalized axial distance between the points at which the calculations are done.
DSFI	The imaginary part of the defect sensitivity factor of the coil.
DSFM	The magnitude of the defect sensitivity factor of the coil.
DSFP	The phase of the defect sensitivity factor of the coil.
DSFR	The real part of the defect sensitivity factor of the coil.
FREQ ${ }^{*}$	The operating frequency in hertz..
L'	The length of each coil. The value is input in inches and normalized by the program.
LOD ${ }^{\text {P }}$	The number of the $I / 0$ unit connected to the output data file.
LOU	The number of the I / O unit connected to the printer.
NRT ${ }^{\text {P }}$	The total number of points in the radial direction at which the defect sensiitivity factor is calculated.
NZT ${ }^{*}$	The total number of points: in the axial direction at which the defect sensirivity factor is

\(\left.$$
\begin{array}{ll}\text { R1. } & \begin{array}{l}\text { calculated. } \\
\text { The inner radius of each coil. The value is input }\end{array}
$$

in inches and normalized by the program.\end{array}\right]\)| The outer radius of each coil. The value is input |
| :--- |
| in inches and normalized by the program. |

Sample output
A listing of the printer output is shown below:
DBDSF TIME 9:59:28 DATE 8/16/89
IN RAD OT RAD LENGTH RAD CLR WALLTH C TO C TUB IR TUB OR
$\begin{array}{llllllllll}\text { ACT } & 1.2400 & 1.4900 & 0.2650 & 0.0575 & 0.2200 & 0.5150 & 1.5475 & 1.7675\end{array}$
$\begin{array}{lllllllll}\text { NOR } & 0.9084 & 1.0916 & 0.1941 & 0.0421 & 0.1612 & 0.3773 & 1.1337 & 1.2949\end{array}$
RBAR 1.3650 $\mathrm{FREQ}=4.000000 \mathrm{E}+02 \mathrm{RHO}=3.8400 \mathrm{PERM}=1.000$ WUSRR $=98.8670$
A partial listing of the file FORT40 is given below:
$50 \quad 40$
$0.02500 \quad 0.00403$
0.04212
$0.90842 \quad 1.09158$
$0.37729 \quad 0.19414$
$1.13370 \quad 1.29487$
$0 \quad 0 \quad 0.00000 \mathrm{D}+00 \quad 0.00000 \mathrm{D}+00$
$0 \quad 1 \quad 0.00000 \mathrm{D}+00 \quad 0.00000 \mathrm{D}+00$
........... (zero for all of first row)....
$100.24266 \mathrm{D}-01 \quad 0.33487 \mathrm{D}+00$
$1 \quad 1 \quad 0.25157 \mathrm{D}-01 \quad 0.33978 \mathrm{D}+00$
$1 \quad 2 \quad 0.26086 \mathrm{D}-01 \quad 0.34774 \mathrm{D}+00$
$1 \quad 3 \quad 0.27053 \mathrm{D}-01 \quad 0.35864 \mathrm{D}+00$

1	4	$0.28061 \mathrm{D}-01$	$0.37238 \mathrm{D}+00$
1	5	$0.29113 \mathrm{D}-01$	$0.38887 \mathrm{D}+00$
1	6	$0.30213 \mathrm{D}-01$	$0.40800 \mathrm{D}+00$
1	7	$0.31364 \mathrm{D}-01$	$0.42968 \mathrm{D}+00$
1	8	$0.32570 \mathrm{D}-01$	$0.45382 \mathrm{D}+00$
1	9	$0.33836 \mathrm{D}-01$	$0.48031 \mathrm{D}+00$
1	10	$0.35166 \mathrm{D}-01$	$0.50906 \mathrm{D}+00$

Listing

PROGRAM DBDSF

C. VERSION August 16, 1989

C PROGRAM TO CALCULATE THE DEFECT SENSITIVITY FACTOR OF A
C DIFFERENTIAL BORESIDE COIL AT AN ARRAY OF POINTS THROUGHOUT
C THE CROSS SECTION OF A TUBE WALL.
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L
DIMENSION S1(6),S2(6), ERR(6),XFACT1(0:50), XFACT2(0:50)
DIMENSION SMZDFR1A($0: 50,0: 40)$,SMZDFI1A($0: 50,0: 40$)
DIMENSION SMZDFR2A (0:50,0:40), SMZDFI2A (0:50,0:40)
DATA LOU/8/, PI/3.141592653/, LOD/40/
DATA S1/.005,.02,.05,.1,.1,.5/
DATA S $2 / 1.0,2.0,5.0,10.0,50.0,200.0 /$
DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-10/
DATA FREQ/4.0E2/,RH01/3.84/,U1/1.0/
DATA TRN/400./,DELTAZ/0.025/
C NOTE: If the value of either NZT or NRT is changed, the
C statements to dimension the arrays DSFMA, XX, and YY in
C program DBDSFPLT must be changed so that the arrays are
C dimensioned to exactly the new values.
DATA NZT/50/,NRT/40/
11 DO $14 \mathrm{NZ}=0$, NZT
DO $12 \mathrm{NR}=0$, NRT
$\operatorname{SMZDFR1A(NZ,NR)=0.~}$
SMZDFI1A (NZ,NR) $=0$.
SMZDFR2A (NZ,NR) $=0$.
SMZDFI2A(NZ,NR)=0.
12 CONTINUE
14 CONTINUE
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR,IMN,ISE,IFR)
CALL GETDAT (IYR,IMO,IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR , IMN , ISE , IMO, IDA, IYR
2 FORM Λ T(' DBDSF TIME ', I2,':',I2,':'
*,I2,' DATE ', I2,'/', I2,'/', I2)
WRITE (LOU, 5)
5 FORMAT (5X, 'IN RAD', 2X, 'OT RAD', 2X, 'LENGTH', 2X, 'RAD CLR'
*,1X,'WALLTH', 2X,'C TO C',2X,'TUB IR',2X,'TUB OR')
R1=1. 24
$\mathrm{R} 2=1.49$
$\mathrm{L}=0.265$
$C=0.515$
RCL-0.0575
$\mathrm{Tl}=0.22$
$\mathrm{A}=\mathrm{R} 2+\mathrm{RCL}$
$\mathrm{B}=\mathrm{A}+\mathrm{Tl}$
RDT $=-\mathrm{T} 1$
$\mathrm{R} 3=0.5 *(\mathrm{R} 1+\mathrm{R} 2)$

```
    WRITE(LOU,10)R1,R2,L,RCL,T1,C,A,B
    R1=R1/R3
    R2=2.0-R1
    L=L/R3
    C=C/R3
    RCL=RCL/R3
    RDT=RDT/R3
    T1=T1/R3
    DELTAR=T1/NRT
    A=A/R3
    B=B/R3
    WRITE(LOD,7)NZT,NRT
    WRITE(LOD , 8)DELTAZ, DELTAR
    WRITE(LOD,9)RCL
    WRITE(LOD, 8)R1,R2
    WRITE(LOD, 8)C,L
    WRITE(LOD,8)A,B
    7 FORMAT(I8,1X,I8)
    8 FORMAT(F12.5,1X,F12.5)
    9 FORMAT(F12.5)
    WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
    WRITE(LOU,15)R1,R2,L,RCL,T1,C,A,B
    10 FORMAT('ACT', 5(F7.4,1X),3(F7.4,1X))
    15 FORMAT('NOR ',5(F7.4,1X),3(F7.4,1X))
    WRITE(LOU, 20)R3, FREQ, RHO1,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F11.4)
    SMAIR=0.0
    SMIMPR=0.0
    SMIMPI=0.0
    SMZDFR1=0.0
    SMZDFI1=0.0
    SMZDFR2=0.0
    SMZDFI2=0.0
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
30 RI9=SMAIR
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S1(JKL)
    CALL IJBSSL(X,R1,R2,XIR21,XJR21)
    XL=X*L
    IF(XL.GT.5.OE-3) GO TO 60
    Al=XL*XL*(0.5-XL/6.0)
    GO TO 80
60 IF(XL.GT.75.0) GO TO 70
    A1=XL+DEXP(-XL)-1.0
    GO TO 80
```

```
70 Al=XL-1.0
80 SMAIR=SMAIR+2.*XJR21*XJR21*A1*S1(JKL)
        IF(X.GT.160.)GO TO 90
    XX=X*X
    XXXX=XX*XX
    X1=DSQRT(0.5*(XX+DSQRT(XXXX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/(2*X1*U1*U1)
    XA=X*A
    XB=X*B
    X1A=X1*A
    Y1A=Y1*A
    X1B=X1*B
    Y1B=Y1*B
    CALL CMDBES(X1A,Y1A,ZIORA,ZIOIA,ZKORA,ZKOIA,BI1RA,BIIIA
*,BK1RA,BK1IA)
    CALL CMDBES(X1B,Y1B,ZIORB,ZIOIB,ZKORB,ZKOIB,BI1RB,BI1IB
*,BK1RB,BK1IB)
    CALL BESI(XA,BIOA,BI1A)
    CALL BESK(XA,BKOA,BK1A)
    CALL BESI(XB,BIOB,BI1B)
    CALL BESK(XB,BKOB,BK1B)
    DR1-XB*BKOB*BK1RB-ZKORB*BK1B/U1
    DI1=XB*BKOB*BK1IB-ZKOIB*BK1B/U1
    DR2=ZIORA*BI1A/U1-XA*BIOA*BI1RA
    DI2=ZIOIA*BI1A/U1-XA*BIOA*BIIIA
    DR3=XA*BIOA*BK1RA+ZKORA*BI1A/U1
    DI3=XA*BIOA*BK1IA +ZKOIA*BI1A/U1
    DR4=ZIORB*BK1B/U1+XB*BKOB*BI1RB
    DI4=ZIOIB*BK1B/U1+XB*BKOB*BIIIB
    DDR=DR1*DR2-DI1*DI2+DR3*DR4-DI 3*DI4
    DDI=DR1*DI2+DR2*DI1+DR3*DI4+DR4*DI3
    SNR=-BI1RA*DR1+BI1IA*DII+BK1RA*DR4-BK1IA*DI4
    SNI=-BI1IA*DR1-BI1RA*DI1+BK1RA*DI4+BK1IA*DR4
    DEN=DDR*DDR+DDI*DDI
    SSR=((SNR*DDR+SNI*DDI)/DEN - BKIA)/BIIA
    SSI=(SNI*DDR-SNR*DDI)/(BI1A*DEN)
    XFACT=XIR21*DSIN(XL/2.)
    SMIMPR=SMIMPR+8.*XFACT*XFACT*S1(JKL)*SSR/PI
    SMIMPI=SMIMPI+8.*XFACT*XFACT*S1(JKL)*SSI/PI
    XF=4.*XFACT*S1(JKL)/PI
    XF1=XF*DSIN (0.5*X*C)
    XF2=XF*DCOS (0.5*X*C)
    DO }89\mathrm{ NR=0,NRT
    RD=(REAL(NR))*(RDT/REAL(NRT))
    RD=B+RD
    X1R=X1*RD
    Y1R=Y1*RD
```

CALL CMDBES (X1R,Y1R,ZIORR,ZIOIR,ZKORR,ZKOIR,BI1RR,BI1IR
*, BK1RR, BK1IR)

```
            DNR=BK1RR*DR4-BK1IR*DI4-BI1RR*DR1+BI1IR*DI1
            DNI=BK1IR*DR4+BK1RR*DI4-BIIIR*DR1-BIIRR*DII
            DFR=(DNR*DDR+DNI*DDI)}/\textrm{DEN
            DFI=(DNI*DDR-DNR*DDI)}/DE
            DO }88\textrm{NZ}=0,NZ
            IF(NR.GT.1)GO TO 87
            ZD=DELTAZ*NZ
            XFACT1(NZ)=XF1*DSIN(X*ZD)
            XFACT2(NZ)=XF2*DCOS (X*ZD)
    87 SMZDFR1A(NZ,NR)=SMZDFR1A(NZ,NR)+XFACT1(NZ)*DFR
            SMZDFI1A(NZ,NR)=SMZDFI1A(NZ,NR)+XFACT1(NZ)*DFI
            SMZDFR2A(NZ,NR)=SMZDFR2A(NZ,NR)+XFACT2(NZ)*DFR
            SMZDFI2A(NZ,NR)=SMZDFI2A(NZ,NR)+XFACT2(NZ)*DFI
    8 8 \text { CONTINUE}
    8 9 ~ C O N T I N U E ~
    90 CONTINUE
            B1=B2
            B2=B2+S2(JKL)
            CHECK=(SMAIR-RI9)/SMAIR
            IF(ABS (CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
            DO 990 NZ=0,NZT
            ZD=DELTAZ*NZ
            SMZDFR1=0.
            SMZDFI1=0.
            SMZDFR2=0.
            SMZDFI2=0 .
            DO 120 NR=0,NRT
            SMZDFR1=SMZDFR1A(NZ,NR)
            SMZDFI1=SMZDFI1A(NZ,NR)
            SMZDFR2=SMZDFR2A(NZ,NR).
            SMZDFI2=SMZDFI2A(NZ,NR)
            DSFR=-1.5*WUSRR*(SMZDFR1*SMZDFR2-SMZDFI1*SMZDFI2)/(SMAIR*PI)
            DSFI=-1.5*WUSRR*(SMZDFR1*SMZDFI2+SMZDFR2*SMZDFI1)/(SMAIR*PI)
            DSFM=DSQRT(DSFR*DSFR+DSFI*DSFI)
            DSFP=DATAN2(DSFI,DSFR)
            WRITE(LOD , 126)NZ,NR,DSFM,DSFP
C
            WRITE(0,126)NZ,NR,DSFM,DSFP
        120 CONTINUE
        126 FORMAT(I5,1X,I5,1X,D12.5,1X,D12.5)
        9 9 0 ~ C O N T I N U E ~
    1000 CONTINUE
    1001 END
```


DBDSFPLT generates a contour plot from DBDSF data

Program DBDSFPLT generates a contour plot of the magnitude of the defect sensitivity factor for a differential boreside coil using calculations performed and stored by the program DBDSF in the file FORT40.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Open the file created by program DBDSF.
4. Read in the information about the coil and tube from the file.
5. Calculate the position of the data points in the normalized coordinate system.
6. Set the label flags for the contours.
7. Read the data stored by program DBDSF into array DSFMA.
8. Specify the values of the magnitude of the defect sensitivity factor where the contours are to be drawn.
9. Call the PRINTMATIC contour initialization routines.
10. Draw the contours.
11. Draw the coil and tube.

Variables

\(\left.$$
\begin{array}{ll}\text { A } & \begin{array}{l}\text { The normalized inner radius of the tube. } \\
\text { B }\end{array}
$$

C The normalized outer radius of the tube.\end{array}\right]\)| The center-to-center spacing between the coils. |
| :--- |
| Array giving the values of the magnitude of the |
| defect sensitivity factor at which contours are |
| to be drawn. |
| The normalized distance in the radial direction |
| between adjacent data points. |
| The normalized distance in the axial direction |
| between adjacent data points. |

at which calculations were performed.
R1 The normalized inner coil radius.
R2 The normalized outer coil radius.
RCL The normalized distance between the outside of the coil and the inside of the tube.
$\mathrm{XX} \quad$ Array describing the axial location of the data points in the normalized coordinate system.
YY Array describing the radial location of the data points in the normalized coordinate system.

Notes

1. Program DBDSFPLT does not actually send anything to the printer; it merely creates a file whose name is given by the program variable NAME. If the value of NAME is 'filename.ext', then to print the file created by program DBDSFPLT, enter

DPRINT filename.ext
DPRINT.EXE is a program supplied by PRINTMATIC. For this particular program the variable NAME is set to PCDSF.FIL so to make a plot one would type:

DPRINT DBDSF.FIL

Sample output

We show a plot of the data from DBDSF plotted using DBDSFPLT in Fig. 16. The phase contours can be plotted rather than the magnitude by using the second statement with label 140 and commenting the first one out.

Fig. 16. Contour plot of the magnitude of the defect sensitivity factor for a differential boreside probe.

Listing

PROGRAM DBDSFPLT
C VERSION October 25, 1988
C Program to generate a contour plot of the magnitude of the
C defect sensitivity factor of a differential boreside coil.
C
CHARACTER*80 NAME
IMPLICIT REAL*4 (A-H, O-Z)
REAL*4 DSFMA 51,41)
REAL*4 XX(51), YY(41)
REAL*4 CNM(10)
REAL*4 L
INTEGER*2 LBM(10)
INTEGER*2 I1,J1,I2,J2
DATA XSCALE/1.0/,NC/9/
DATA IDEF/2/,LOE/40/
C
C Open the file created by program DBDSF and read in
C the coil and tube information.
C
OPEN(LOE , FILE=' FORT40', STATUS=' OLD')
READ(LOE,*)NZT,NRT

```
        write(0,*)nzt,nrt
        READ(LOE,*)DELTAZ,DELTAR
        READ(LOE,*)RCL
        READ(LOE,*)R1,R2
        READ(LOE,*)C,L
        READ (LOE,*)A,B
C
C Calculate the position of the data points in normalized units
C
        DO 110 I=1,NZT+1
        XX(I)=REAL(I - 1)*DELTAZ
    110 CONTINUE
        DO 120 I=0,NRT
        YY(I+1)=-((REAL(NRT) -REAL(I))*DELTAR)
    120 CONTINUE
C
C Set the label flags for the contours
C
        DO 130 I=1,10
        LBM(I)=0
    130 CONTINUE
C
C Read the data stored by program DBDSF
C
    NI=0
        DSFMMAX=0.
    140 READ(LOE,*,END=150)NZ,NR,DSFM
c 140 READ(LOE,*,END=150)NZ,NR,DUM,DSFM
        NI=NI+1
        IF(DSFM.GT.DSFMMAX)DSFMMAX=DSFM
        IF(NI.EQ.1)DSFMMIN=DSFM
        IF(DSFM.LT.DSFMMIN)DSFMMIN=DSFM
        DSFMA(NZ+1,NR+1)=DSFM
        GO TO 140
C
C Specify the values of the magnitude of the defect
C sensitivity factor where the contours are to be drawn.
C
    150 VMG=DSFMMAX-DSFMMIN
            CNDF=VMG/(NC+1)
            WRITE (0,*)DSFMMAX
            WRITE (0,*)DSFMMIN
            WRITE (0,*)VMG
            WRITE(0,*)CNDF
            DO 160 I=1,NC
            CNM (I)=DSFMMAX - I*CNDF
            WRITE(0,*)CNM(I)
    160 CONTINUE
            PAUSE
C
C Call the necessary initialization routines
```

```
C
    NAME='DBDSF.FIL'
    CALL DINIT(NAME)
    CALL DPLOT(1.,1.,8.,4.,0.,0.8,-0.2,0.2,0.,0.)
    CALL DCTRDEF(1,1,1,1,1)
C
C Draw the contours
    nzt=nzt+1
    nrt=nrt+1
    CALL DCNTOUR(XSCALE,XX,YY,DSFMA,CNM,LBM,NZT,NRT,NC,IDEF)
C
C Draw the tube
C
    X1=0.
    Y1=0.
    X2=0.8
    Y2=-(B-A)
    write(0,*)j2
    GALL DRTOI. X1,Y1,I1,J1)
    GALL DRTOT(X2,Y2,I2,J2)
    write(0,*)I1,J1,I2,J1
    CALL DLINE(I1,J1,I2,J1)
    write(0,*)I1,J1,I2,J1
    CALL DLINE(I1,J2,I2,J2)
    write(0,*)j2
C
C Draw the coil
C
    X1=0.5*(C-L)
    Y1=RCL
    X2=0.5* (C+L)
    Y2=RCL+R2-R1
    CALL DRTOI(X1,Y1,I1,J1)
    CALL DRTOI(X2,Y2,I2,J2)
    write(0,*)j2
    CALL DLINE(I1,J1,I2,J1)
    CALL DLINE(I1,J2,12,J2)
    CALL DLINE(I1,J1,I1,J2)
    write(0,*)I2,J1,I2,J2
    CALL DLINE(I2,J1,I2,J2)
    write(0,*)I2,J1,I2,J2
C
C Draw a dotted line on the plane between the coils
C
    X1=0.
    Y1=0.
    X2=0.
    Y2=-(B-A)
    CALL DRTOI(X1,Y1,I1,J1)
    CALL DRTOI(X2,Y2,I2,J2)
```

CALL DDASH (I1, J1, I2, J2, 1, 10,10)
CALL DFINIS
write(0,*)j2
STOP
END

DFBORAR calculates defect impedance change, average over depth

Program DFBORAR calculates the change in the normalized impedance of a differential boreside coil due to the presence of a defect in a single conducting tube, as shown in Fig. 15. The equations computed are the same as those for the defect sensitivity factor, with the defect volume included. The distance to the defect is measured from the center of the coil assembly, and the center-to-center distance of the coils is denoted c. The impedance difference between the two matched coils is:

$$
\begin{equation*}
Z_{\mathrm{nd}}=Z_{1 \mathrm{~d}}-Z_{2 \mathrm{~d}} \tag{41}
\end{equation*}
$$

Substituting in from Eq. (29) for the impedance change of each coil and using some trigonometric identities gives for the normalized impedance difference:

$$
\begin{align*}
Z_{\mathrm{nd}}(r, z)= & \frac{-3\left(\omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right) V o I_{\mathrm{n}}}{2 \pi I_{\mathrm{a} \mid \mathrm{r}}} \tag{42}\\
& \times\left[\int_{0}^{\infty} \frac{I\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{4}-I_{1}\left(\alpha_{1} r\right) D_{1}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \sin \left(\frac{\alpha \epsilon}{2}\right) \sin (\alpha z) 4 \mathrm{~d} \alpha\right] \\
& \times\left[\int_{0}^{\infty} \frac{I\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{4}-I_{1}\left(\alpha_{1} r\right) D_{1}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \cos \left(\frac{\alpha c}{2}\right) \cos (\alpha z) 4 d \alpha\right]
\end{align*}
$$

The definition of the various terms in Eq. (42) are given in Eqs. (30) through (38) in the discussion of the absolute boreside coil. It performs the calculations for a number of different axial distances between the center of the coil and the defect, and it can divide the defect into a number of parts and calculate the effect of each part separately. The effect of the defect is averaged over the depth of the defect, and the defect is moved from the probe center ($z=0$) outward in the positive z direction.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Begin the integration. Calculate the expressions that are independent of the position of the defect.
4. Select a value for the radial distance between the defect and the center of the coil. Do the calculations which depend only upon this component of the position.
5. Select a value for the axial distance between the defect and the center of the coil. Complete the calculations.
6. Loop to 5 until done.
7. Loop to 4 until done.
8. Output the results.

Variables

A number of the variables which occur mainly inside the integration loops do not correspond to anything physical. These variables are described in a section at the end. Starred variables must be assigned by the user.
$\left.\begin{array}{ll}\text { A } & \begin{array}{l}\text { The normalized inner radius of the tube. }\end{array} \\ \text { B } & \begin{array}{l}\text { The normalized outer radius of the tube. }\end{array} \\ \text { The axial distance between the centers of the two } \\ \text { coils. The value is input in inches and }\end{array}\right]$

R2.	The outer radius of each coil. The value is input in inches and normalized by the program.
R3	

Notes

1. The program variable RD does not give the radial distance between the actual defect and the center of the coil; it gives the radial distance between the part of the defect with which the program is working at any time and lite center of the coil.

Integration Section of Program DFBORAR

Symbol definitions

The following are definitions of the symbols used to describe the program variables which appear in the integration section of the program. All lengths are normalized unless otherwise noted.

α	Integration variable
a	Inner radius of the tube
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2} / \mu$
b	Outer radius of the tube
c	Distance between the coil centers
$I_{(}\left(x_{2}, x_{1}\right)$	Integral of $x I_{1}(x)$ with respect to x from αx_{1} to αx_{2}
$I_{0}(x)$	Modified Bessel function of the first kind of order 0
$I_{1}(x)$	Modified Bessel function of the first kind of order 1
$J\left(x_{2}, x_{1}\right)$	Integral of xJ, (x) with respect to x from αx_{1} to αx_{2}
$J_{1}(x)$	Bessel function of the first kind of order 1
$K_{0}(x)$	Modified Bessel function of the second kind of order 0
$K_{1}(x)$	Modified Bessel function of the second kind of order 1
ℓ	Length of the coil
μ	Relative magnetic permeability of the tube
r	Radial distance between center of coil and defect
r	Coil mean radius in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
σ_{1}	Electrical conductivity of the tube
t_{1}	Thickness of the tube
z	Axial distance between defect and probe center
ω	Angular operating frequency

Variables appearing in the integration section

Program variable	Symbolic equivalent
A1	$\alpha \ell+\exp (-\alpha \ell)-1$
BIOA	$I_{0}(\alpha a)$
BIOB	$I_{0}(\alpha b)$
BIIA	$I_{1}(\alpha a)$
BI1B	$I_{1}(\alpha b)$
BILIA	$\operatorname{Im}\left[I_{1}(\alpha, a)\right]$
BIIIB	$\operatorname{Im}\left[I_{1}(\alpha, b)\right]$
BIIIR	$\operatorname{Im}\left[I_{1}\left(\alpha_{1} r\right)\right]$
BI1RA	$\operatorname{Re}\left[I_{1}\left(\alpha_{1}, a\right)\right]$
BTIRB	$\operatorname{Re}\left[I_{1}\left(\alpha_{1} b\right)\right]$

BIIRR
BK.OA
BKOB
BK1A
BK1B
BK1IA
BKIIB
BK1IR
BK1RA
BK1RB
BKIRR
DDI

DDR

DFR

DI1
DI2
DI3
DI4
DNI
$\operatorname{Re}\left[I_{1}(\alpha, r)\right]$
$K_{0}(\alpha a)$
$K_{0}(\alpha b)$
$K_{1}(\alpha a)$
$K_{1}(\alpha b)$
$\operatorname{Im}\left[K_{1}(\alpha, a)\right]$
$\operatorname{Im}[K,(\alpha, b)]$
$\operatorname{Im}\left[K_{1}\left(\alpha_{1} r\right)\right]$
$\operatorname{Re}[K,(\alpha, a)]$
$\operatorname{Re}[K,(\alpha, b)]$
$\operatorname{Re}\left[K_{1}\left(\alpha_{1} r\right)\right]$

$$
\operatorname{Im}\left\{\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right.
$$

$\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+$
$\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\left.\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right)$
$\operatorname{Re}\left\{\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right.$
$\left[\beta_{1} a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+$
$\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\left.\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right)$
$\operatorname{Re}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]-\right.$ $\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta, b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right\}$
$\div\left\{\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right.$
$\left[\beta, a I_{0}(\alpha, a) I_{1}(\dot{\alpha} a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]+$
$\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta, a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\left.\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right\}$
$\operatorname{Im}\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]$
$\operatorname{Im}\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]$
$\operatorname{Im}\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\operatorname{Im}\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]$
$\operatorname{Im}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]-\right.$ $\left.I_{1}(\alpha, r)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta, b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right\}$

DNR
$\operatorname{Re}\left\{K_{1}(\alpha, r)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]-\right.$

$$
\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]\right\}
$$

$\operatorname{Re}\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta, b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]$
$\operatorname{Re}\left[\beta, a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right]$
$\operatorname{Re}\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right]$
$\operatorname{Re}\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]$
$d \alpha$

$$
\begin{gathered}
\operatorname{Im}\left(-I_{1}(\alpha, a)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}(\alpha, b)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
\left.K_{1}(\alpha, a)\left[\beta, b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right) \\
\operatorname{Re}\left(-I_{1}\left(\alpha_{1} a\right)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
\left.K_{1}(\alpha, a)\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right)
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Re} \frac{1}{I_{1}(\alpha a)}\left[-I_{1}(\alpha, a)\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)\right]+\right. \\
&\left.K_{1}\left(\alpha_{1} a\right)\left[\beta_{1} b I_{0}\left(\alpha_{1} b\right) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}\left(\alpha_{1} b\right)\right]\right] \\
& {\left[\left[\beta_{2} b K_{0}\left(\alpha_{2} b\right) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)\right]\right.} \\
& {\left[\beta_{1} a I_{0}(\alpha, a) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a) I_{1}(\alpha, a)\right] } \\
& {\left[\alpha a I_{0}(\alpha a) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}(\alpha a)\right] } \\
& {\left.\left[\beta_{1} b I_{0}(\alpha, b) K_{1}\left(\alpha_{2} b\right)+\beta_{2} b K_{0}\left(\alpha_{2} b\right) I_{1}(\alpha, b)\right]\right]^{-1}-\frac{K_{1}(\alpha a)}{I_{1}(\alpha a)} }
\end{aligned}
$$

α
$\operatorname{Re}\left[\alpha_{1}\right]$
$\operatorname{Re}[\alpha, a]$
$\operatorname{Re}[\alpha, b]$
$\operatorname{Re}[\alpha, r]$
αa
αb
$\frac{4}{\pi} \frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2) d \alpha$

XFI

XFACT1

XFACT2

XIR21

XJR21
XL
xX
Xxxx
Y1
Y1A
Y1B
Y1R
2IOIA
ZIOIB
ZTOTR
Z.TORA
$\alpha \ell$
,
$\operatorname{Im}[\alpha, r]$
$\operatorname{Im}\left[\alpha, a I_{0}(\alpha, a)\right]$

ZIORB
$\operatorname{Im}\left[\alpha, b I_{0}(\alpha, b)\right]$

ZIORR
$\operatorname{Tm}\left[\alpha_{1} r T_{0}\left(\alpha_{1} r\right)\right]$

ZKOIA
zKOIB
$\operatorname{Re}\left[\alpha, a I_{0}(\alpha, a)\right]$

ZKOIR
ZKORA
$\operatorname{Re}\left[\alpha, b I_{0}(\alpha, b)\right]$

ZKORB
$\operatorname{Re}\left[\alpha, r I_{0}(\alpha, r)\right]$
$\operatorname{Im}\left[\alpha_{1} a K_{0}(\alpha, a)\right]$
KOIB
$\operatorname{Im}\left[\alpha, b K_{0}(\alpha, b)\right]$
$\operatorname{Tm}\left[\kappa_{1} r K_{0}\left(\mu_{1} r\right)\right]$

ZKORR
$\operatorname{Re}\left[\alpha, a K_{0}(\alpha, a)\right]$
$\operatorname{Re}\left[\alpha, b K_{0}(\alpha, b)\right]$
$\operatorname{Re}\left[\alpha, r K_{0}(\alpha, r)\right]$

Sample output

The program DFBORAR calculates the defect signal averaged over the depth of the defect at different distances along the tube. The program can plot the defect impedance as the tube is scanned and pick out the maximum magnitude. Below we show the printer output of a sample run where the maximum signal is printed.

Partial listing of output defect axial position (ZD), defect magnitude (DFM) and defect phase (DFP) that is sent to LOD file (either FORT39 or BORSCN. DAT) :

0.010	$0.4270 \mathrm{D}-05$	30.24
0.020	$0.8517 \mathrm{D}-05$	30.27
0.030	$0.1272 \mathrm{D}-04$	30.31
0.040	$0.1684 \mathrm{D}-04$	30.36
0.050	$0.2088 \mathrm{D}-04$	30.42
0.060	$0.2479 \mathrm{D}-04$	30.49
0.070	$0.2857 \mathrm{D}-04$	30.55
0.080	$0.3218 \mathrm{D}-04$	30.60
0.090	$0.3560 \mathrm{D}-04$	30.64
0.100	$0.3881 \mathrm{D}-04$	30.66

If the proper plotting software has been installed, a plot of this data is made on the CRT and a hard copy can be obtained, as shown in Fig. 17. The plot forms one-half the normal Lissajous pattern one gets in an eddycurrent test with a differential bobbin coil. The second half can be obtained by reflecting the signal in the $-z$ direction, since the signal is anti-symmetric. The phases and magnitudes given in this report are referenced to the X axis being zero phase and measured counterclockwise from X axis, which is standard for mathematics and electrical engineering. Standard eddy-current practice is to measure the phase shift in a clockwise direction from the -X axis. Furthermore, the phase is rotated until the probe wobble/fill factor/lift-off variations lie in a horizontal direction.

ORNL-DWG 90-8097

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

Fig. 17. Plot of defect signal on complex impedance plane as the defect is moved from the probe center in the plus z direction.

Listing

PROGRAM DFBORAR
C . VERSION August. 16, 1989
C Program to calculate the normalized impedance change
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L
CHARACTER*1 FF
DIMENSION S1(6),S2(6), ERR(6)
DIMENSION CX(200), CY(200), XFACT1(200),XFACT2(200)
DIMENSION SMZDFR1A $(200,30), \operatorname{SMZDFI1A}(200,30)$
DIMENSION SMZDFR2A $(200 ; 30)$, SMZDFI2A $(200,30)$
DATA LOU/8/,PI/3.141592653/,LOD/39/,LOE/38/
DATA S1/.005,.02,.05,.1,.1,.5/
DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
DATA ERR/: 1, . 01, . 001,1:E-4,1.E-5,1.E-10/
DATA FREQ/ 4.0E2/,RHO1/3.84/,U1/1.0/
DATA TRN/400./,ISIDE/1/,DELTAZ/0.01/
DATA MODE/16/,NZT/100/,NRT/20/
DATA OIM/50/, ORL/330/.
$\mathrm{FF}=\mathrm{CHAR}$ (12)
C OPEN (LOD, FILE=' BORSCN. DAT', STATUS='NEW')
c OPEN(LOE, FILE=' BORDAT. DAT', STATUS='OLD')
$11 \mathrm{XMAX}=0$.
YMAX=0.
DFMMAX $=0$.
DO $14 \mathrm{NZ}=1, \mathrm{NZT}$
DO 12 NR=1,NRT
SMZDFR1A(NZ,NR)=0.
SMZDFIIA(NZ,NR)=0.
SMZDFR2A(NZ,NR)=0.
SMZDFI2A(NZ,NR)=0.
12 CONTINUE
14 CONTINUE
c READ(LOE , * END=1001)DFDIAM, DFDEP
dfdiam=0.1
dfdep $=0.1$
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN,ISE, IFR)
CALL GETDAT(IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE, IMO, IDA , IYR
2 FORMAT(' DFBORAR TIME ',I2,':',I2,':'
*, I2,' DATE ', I2,'/', I2,'/', I2)
WRITE(LOU, 5)
5 FORMAT(5X,'IN RAD',2X,'OT RAD',2X,'LENGTH',2X,'RAD CLR'
*,1X,'WALLTH', 2X,'\% WALL', 2X,'C TO C', $2 \mathrm{X},{ }^{\prime}$ TUB IR', $2 \mathrm{X},{ }^{\prime}$ TUB OR')

```
    R1=1.24
    R2=1.49
    L=0.265
    C=0.515
    RCL=0.0575
    Tl=0.22
    POW=(DFDEP/T1)*100.
    A=R2+RCL
    B=A+T1
    RDT=-DFDEP
    R3=0.5*(R1+R2)
    WRITE(LOU,10)R1,R2,L,RCL,T1,POW,C,A,B
    R1-R1/R3
    R2=2.0-R1
    L=L/R3
    C=C/R3
    RCL=RCL/R3
    RDT=RDT/R3
    T1=T1/R3
    A-A/R3
    B-B/R3
    VOLN=0.1666667*PI*(DFDIAM/R3)*(DFDIAM/R3)*(DFDIAM/R3)
    VOLN=PI*DFDIAM*DFDIAM*DFDEP/(4.*R 3*R 3*R3)
    WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
    WRITE(LOU,15)R1,R2,L, RCL,T1, POW,C,A,B
    10 FORMAT('ACT ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    15 FORMAT('NOR ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    W̄RITE(LOU,ZU)K'3, FKEU, RHOL,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F11.4)
    CALL QSMODE(MODE)
    CALL GRID
        DO 1000 NZ=1,NZT
        ZD=DELTAZ*NZ
        SMAIR=0.0
        SMIMPR-0.0
        SMIMPI=0.0
        SMZDFR1=0.0
        SMZDFI1=0.0
        SMZDFR2=0.0
        SMZDFI2=0.0
        AIR=0.
C AII=0.
C AUR=0.
C AUI-0.
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
30 RI9=SMAIR
    X=B1-0.5*S1(JKL)
C DETERMINE NIMRER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
```

```
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S1(JKL)
    CALL IJBSSL(X,R1,R2,XIR21,XJR21)
    XL=X*L
    IF(XL.GT.5.OE-3) GO TO 60
    A1=XL*XL*(0.5-XL/6.0)
    GO TO 80
60 IF(XL.GT.75.0) GO TO 70
    Al=XL+DEXP(-XL)-1.0
    GO TO 80
70 Al=XL-1.0
80 SMAIR=SMAIR+2.*XJR21*XJR21*A1*S1(JKL)
    IF(X.GT.160.)GO TO 90
    XX=X*X
    XXXX=XX*XX
    X1=DSQRT(0.5*(XX+DSQRT(XXXX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/( }2*\textrm{X}1*\textrm{U}1*\textrm{U}1
    XA=X*A
    XB=X*B
    X1A=X1*A
    Y1A=Y1*A
    X1B=X1*B
    Y1B=Y1*B
    CALL CMDBES(X1A,Y1A,ZIORA,ZIOIA,ZKORA,ZKOIA,BI1RA,BI1IA
*,BK1RA,BK1IA)
    CALL CMDBES(X1B,Y1B,ZIORB,ZIOIB,ZKORB,ZKOIB,BI1RB,BI1IB
*,BK1RB,BK1IB)
    CALL BESI(XA,BIOA,BI1A)
    CALL BESK(XA,BKOA,BKlA)
    CALL BESI (XB,BIOB,BI1B)
    CALL BESK(XB,BKOB,BK1B)
    DR1=XB*BKOB*BK1RB-ZKORB*BK1B/U1
    DI 1 = XB*BKOB*BK1IB-ZKOIB*BK1B/U1
    DR2 =ZIORA*BIIA/U1-XA*BIOA*BI1RA
    DI2=2IOIA*BI1A/U1-XA*BIOA*BI1IA
    DR3=XA*BIOA*BK1RA+ZKORA*BI1A/U1
    DI 3=XA*BIOA*BK1IA +ZKOIA*BI1A/U1
    DR4=ZIORB*BK1B/U1+XB*BKOB*BI1RB
    DI4}=\textrm{ZIOIB}*\textrm{BK}1\textrm{B}/\textrm{U1}+\textrm{XB}*\textrm{BKOB}*\textrm{BIIIB
    DDR=DR1*DR2-DI1*DI2+DR3*DR4-DI 3*DI4
    DDI=DR1*DI2+DR 2*DI1+DR 3*DI4+DR4*DI3
    SNR =-BI1RA*DR1+BI1IA*DI1+BK1RA*DR4-BK1IA*DI4
    SNI=-BI1IA*DR1-BI1RA*DI1+BK1RA*DI4+BK1IA*DR4
    DEN=DDR*DDR+DDI*DDI
    SSR=((SNR*DDR+SNI*DDI)/DEN-BK1A)/BI1A
    SSI=(SNI*DDR-SNR*DDI)/(BIIA*DEN)
    XFACT=XIR21*DSIN(XL/2.)
    SMIMPR=SMIMPR+8.*XFACT*XFACT*S1(JKL)*SSR/PI.
    SMIMPI=SMIMPI+8.*XFACT*XFACT*S1(JKL)*SSI/PI
    XF=4.*XFACT*S1(JKL)/PI
```

```
    XF1=XF*DSIN(0.5*X*C)
    XF2=XF*DCOS (0.5*X*C)
    DO }89\mathrm{ NR=1,NRT
    RD=(REAL(NR)-0.5)*(RDT/REAL(NRT))
    IF(ISIDE.EQ.1) THEN
    RD=B+RD
    ELSE
    RD=A-RD
    END IF
    X1R=X1*RD
    Y1R-Y1*RD
    CALL CMDBES(X1R,Y1R,ZIORR,ZIOIR,ZKORR,ZKOIR,BI1RR,BI1IR.
    *,BK1RR,BK1IR)
    DNR-BK1RR*DR4-BK1IR*DI4-BI1RR*DR1+BIIIR*DI1
    DNI=BK1IR*DR4+BK1RR*DI4-BI1IR*DR1-BI1RR*DII
    DFR=(DNR*DDR+DNI*DDI)/DEN
    DFI=(DNI*DDR-DNR*DDI)/DEN
    DO }88\textrm{NZ}=1,\textrm{NZT
    IF(NR.GT.l)GO TO 87
    ZD=DELTAZ*NZ
    XFACT1(NZ)=XF1*DSIN(X*ZD)
    XFACT2 (NZ) =XF2*DCOS (X*ZD)
87 SMZDFR1A(NZ,NR)=SMZDFR1A(NZ,NR)+XFACT1(NZ)*DFR
    SMZDFI1A(NZ,NR)=SMZDFI1A(NZ,NR)+XFACT1(NZ)*DFI
    SMZDFR2A(NZ,NR)=SMZDFR2A(NZ,NR)+XFACT2(NZ)*DFR
    SMZDFI2A(NZ,NR)=SMZDFI2A(NZ,NR)+XFACT2(NZ)*DFI
88 CONTINUE
8 9 \text { CONTINUE}
90 CONTINUE
    B1=B2
    B2=B2+S2(JKL)
    CHECK=(SMAIR-RI9)/SMAIR
    IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
100 CONTINUE
    DO }990\mathrm{ NZ=1,NZT
    ZD=DELTAZ*NZ
    SMZDFR1=0.
    SMZDFI1=0.
    SMZDFR2=0.
    SMZDFI2=0.
    DO 120 NR=1,NRT
    SMZDFR1=SMZDFR1+SMZDFR1A(NZ,NR)
    SMZDFI1-SMZDFIIISMZDFI1A(NZ,NR)
    SMZDFR2=SMZDFR2+SMZDFR2A(NZ,NR)
    SMZDFI2=SMZDFI2+SMZDFI2A(NZ,NR)
120 CONTINUE
    SMZDFR1=SMZDFR1/NRT
    SMZDFIl=SMZDFII/NRT
```

```
        SMZDFR2=SMZDFR2/NRT
        SMZDFI2=SMZDFI2/NRT
            WRITE(LOU,*)NZ,SMZDFR1,SMZDFI1
            WRITE(LOU,*)' ',SMZDFR2,SMZDFI2
            DSFR=-1.5*WUSRR*(SMZDFR1*SMZDFR2-SMZDFI1*SMZDFI2)/(SMAIR*PI)
            DSFI=-1.5*WUSRR*(SMZDFR1*SMZDFI2+SMZDFR2*SMZDFI1)/(SMAIR*PI)
    135 Q6=0.0254*4.0E-7*TRN*TRN*R 3*PI*PI*SMAIR/(L*(R2-R1))**2
    ZNIM=SMIMPR/SMAIR+1.0
    ZNRL=-SMIMPI/SMAIR
    ZNDFR=VOLN*DSFR
    ZNDFI=VOLN*DSFI
    IF(NZ.EQ.1.) WRITE(LOU,140)ZNRL, ZNIM,Q6
    DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
    IF(ZD.EQ.0.0) THEN
    DFP=0.
    ELSE
    DFP=ATAN2(DSFI,DSFR)
    END IF
    CX(NZ)=DFM*COS (DFP)
    CY(NZ)=DFM*SIN(DFP)
    DFP=DFP*(180./PI)
    IF(ABS(CX(NZ)).GT.XMAX) XMAX=ABS(CX(NZ))
    IF(ABS(CY(NZ)).GT.YMAX) YMAX=ABS(CY(NZ))
    IF(DFM.GT.DFMMAX) THEN
    DFMMAX=DFM
    DFPMMAX=DFP
    END IF
    WRITE(LOD, 162)ZD, DFM, DFP
    9 9 0 ~ C O N T I N U E ~
    GIM=300./YMAX
    GRL=300./XMAX
    IF(GIM.GT.GRL) THEN
    GIM=GRL
    ELSE
    GRL=GIM
    END IF
    IM1=GIM*CY(1)+OIM
    IR1-GRL*CX(1)+ORL
    WRITE(LOU, 150) ZNDFR, ZNDFI, DFM, DFP
    WRITE(LOU, 160)DSFR,DSFI,VOLN
    WRITE(LOU,164)DFMMAX,DFPMMAX
    IF(ISIDE.EQ.1) THEN
    WRITE(LOU,*)' OD DEFECT'
    ELSE
    WRITE(LOU,*)' ID DEFECT'
    END IF
    DO 1000 NZ=2,NZT
    IM2=GIM*CY(NZ)+OIM
    IR2=GRL*CX(NZ)+ORL
```

```
            CALL QLINE(IR1,IM1,IR2,IM2,15)
            IR1=IR2
            IM1-IM2
    1000 CONTINUE
            WRITE(LOU,*)
            WRITE(LOU,*)
            CALL PRTSC
            WRITE(LOU,*)FF
c GO TO 11.
    140 FORMAT(' NORM IMPD:RL',F10.6,', IM'",F10'.6;,
        *' AIR IND',1PE13.6)
C 150 FORMAT(' NORM CHG:RL ',OPF1O.6;," IM'",0PF10.6,
C *' MAG',OPF10.6,' PHA ',OPFT..2',\);
    160 FORMAT(' NORM DSF:RL',1PE11..4,' IIM'",1PEI1..4,' VOLN',1PE11.4)
    161 FORMAT(' ZD PAG M');
    162 FORMAT(F6.3,5X,D11.4,5X,F7.2)
    164 FORMAT(' MAXIMUM MAG ',D11.4,' PHA: AT MAX MAG ',F7.2,\)
    1 0 0 1 ~ E N D
```


CIRCUMFERENTIAL ENCIRCLING COIL PROGRAMS

The programs in this section perform functions relating to the effect on an encircling coil of a defect in a single conducting tube. The types of circumferential coils dealt with in this section are absolute encircling and differential encircling coils. Calculations of the normalized impedance change in these coils due to a defect in a single conducting tube are done by programs ABENCAR and DFENCAR. Fig. 18 shows a differential coil encircling a tube.

Fig. 18. Differential coil encirciling a conducting tube.

ABENCAR calculates impedance change for absolute coil

Program ABENCAR calculates the change in the normalized impedance of an absolute encircling coil due to the presence of a defect in a single conducting tube, as shown in Fig. 19.

Fig. 19. Absolute coil encircling a tube in the presence of a defect.
The normalized impedance for a coil encircling a tube, without the defect, is:
$Z_{\mathrm{n}}=\frac{j}{I_{\mathrm{a} \mid \mathrm{r}}} \int_{0}^{\infty}\left[\frac{8}{\pi \alpha^{6}} K^{2}\left(r_{2}, r_{1}\right)\left\{\frac{K_{1}(\alpha, b) D_{2}+I_{1}(\alpha, b) D_{3}}{K_{1}(\alpha b)\left(D_{1} D_{2}+D_{3} D_{4}\right)}-\frac{I_{1}(\alpha b)}{K_{1}(\alpha b)}\right\} \sin ^{2}\left(\frac{\alpha \ell}{2}\right)+I_{\mathrm{arr}}\right] d \alpha$
and for the change in the normalized impedance due to the defect we have:
$Z_{\mathrm{nd}}(r, z)=\frac{-3\left(\omega \mu \sigma_{1} \overline{\mathrm{r}}^{2}\right) \operatorname{VoI}_{\mathrm{n}}}{2 \pi I_{\mathrm{air}}}\left[\int_{0}^{m} \frac{K\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}(\alpha, r) D_{2}+I_{1}(\alpha, r) D_{3}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) 2 \cos (\alpha z) d \alpha\right]^{2}$
where:

$$
\begin{align*}
& D_{1}=\alpha b K_{0}(\alpha b) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b) \tag{45}\\
& D_{2}=\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right) \tag{46}\\
& D_{3}=\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right) \tag{47}\\
& D_{4}=\beta_{1} b I_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}\left(\alpha_{1} b\right) \tag{48}\\
& K\left(r_{2}, r_{1}\right)=\int_{\alpha r_{1}}^{\alpha r_{2}} x K_{1}(x) d x \tag{49}\\
& \alpha_{1}=\left(\alpha^{2}+j \omega \mu \sigma_{1} \bar{r}^{2}\right)^{1 / 2} \tag{50}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{1}=\left(\mu_{0} / \mu_{1}\right)\left(\alpha^{2}+j \omega \mu_{1} \sigma_{1} \overrightarrow{\mathrm{r}}^{2}\right)^{1 / 2} \tag{51}
\end{equation*}
$$

The term $I_{\text {air }}$ is related to the air inductance of the coil and is:

$$
\begin{equation*}
I_{\mathrm{air}}=\int_{0}^{\infty} \frac{1}{\alpha^{6}}\left[J\left(r_{2}, r_{1}\right)\right]^{2} 2[\alpha \ell+\exp (-\alpha \ell)-1] d \alpha \tag{52}
\end{equation*}
$$

where $J\left(r_{2}, r_{1}\right)=\int_{\alpha r_{1}}^{\alpha r_{2}} x J_{1}(x) d x$
The program performs the calculations for a number of different axial distances between the coil and the defect, and it can divide the defect into a number of parts and calculate the effect of each part separately. In the inner conductor, the value of the conductivity σ_{2} is taken as zero, and the relative permeability μ_{2} is taken as unity, so that β_{2} becomes α. These values are used in the program, but not in the derivation.

Variables

A number of the variables which occur mainly inside the integration loops do not correspond to anything physical. These variables are described in a section at the end. Starred variables must be assigned by the user.

A	The normalized inner radius of the tube. The normalized outer radius of the tube.
DELTAZ	The normalized axial distance between the points at which the calculations are done.
DFDEP	The depth of the defect in the tube in inches.
DFDIAM	The diameter of the defect in the tube in inches.
DFM	The magnitude of the normalized impedance change in the coil due to the defect.
DFP	The phase of the normalized impedance change in the coil due to the defect.

DSFI	The imaginary part of the defect sensitivity factor of the coil.
DSFR	The real part of the defect sensitivity factor of the coil.
FREQ*	The operating frequency in hertz.
ISIDE'	The side of the tube where the defect is located.
	If ISIDE=1, the defect is on the outside of the
	tube; if ISIDE=2, the defect is on the inside of the tube.
L^{*}	The length of the coil. The value is input in inches and normalized by the program.
LOD ${ }^{*}$	The number of the I/O unit connected to the output data file.
LOE*	The number of the I / O unit connected to a file which contains the diameters and depths of the defects for which calculations are to be performed.
LOU	The number of the I / O unit connected to the printer.
NRT ${ }^{*}$	The total number of parts centered along the axis of the defect into which the defect is divided to perform the calculations.
NZT ${ }^{\text { }}$	The total number of different values of the axial distance between the center of the coil and the defect for which calculations are performed.
POW	The depth of the defect expressed as a percentage of wall thickness.
Q6	The inductance in henries of the coil in air.
R1*	The inner radius of the coil. The value is input in inches and normalized by the program.
R2*	The outer radius of the coil. The value is input in inches and normalized by the program.
R3	The mean radius of the coil in inches
RCL*	The distance between the outside of the coil and the inside wall of the tube. The value is input in inches and normalized by the program.
RD	The radial distance between lle center of the coil and the defect. \{See note 1$\}$
RDT	The normalized depth to the bottom of the defect. A negative number.
RHO1*	The electrical resistivity of the tube in $\mu \Omega-\mathrm{cm}$.
T1*	The thickness of the tube wall. The value is input in inches and normalized by the program.
TRN*	The number of turns in the coil.
U1*	The relative magnetic permeability of the tube.
VOLN	The normalized volume of the defect.
WUSRR	The product of the angular operating frequency, the magnetic permeability of the tube, the electrical conductivity of the tube, and the square of the mean radius of the coil.
ZD	The axial distance between the center of the coil

and the defect.
ZNDFI The imaginary part of the normalized impedance change in the coil due to the defect.
ZNDFR The real part of the normalized impedance change in the coil due to the defect.
ZNIM The imaginary part of the normalized impedance of the coil when no defects are present.
ZNRL The real part of the normalized impedance of the coil when no defects are present.

Integration Section of Program ABENGAR

Symbol definitions

The following are definitions of the symbols used to describe the program variables which appear in the integration section of the program. All lengths are normalized unless otherwise noted.

α	Integration variable
a	Inner radius of the tube
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma \bar{r}^{2}\right)^{1 / 2} / \mu$
b	Outer radius of the tube
$I_{0}(x)$	Modified Bessel function of the first kind of order 0
$I_{1}(x)$	Modified Bessel function of the first kind of order 1
$J\left(x_{2}, x_{1}\right)$	Integral of $x J_{1}(x)$ with respect to x from αx_{1} to αx_{2}
$J_{1}(x)$	Bessel function of the first kind of order 1
$K\left(x_{2}, x_{1}\right)$	Integral of $x K_{1}(x)$ with respect to x from αx_{1} to αx_{2}
$K_{0}(x)$	Modified Bessel function of the second kind of order 0
$K_{1}(x)$	Modified Bessel function of the second kind of order 1
l	Length of the coil
μ	Relative magnetic permeability of the tube
σ_{1}	Electrical conductivity of the tube
r	Radial distance between center of coil and defect
$\frac{r}{r}$	Coil mean radius in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
z	Axial distance between defect and coil center
ω	Angular operating frequency

Variables appearing in: the integration section

Program	Symbolic
variable	$\frac{\text { equivalent }}{\alpha \ell+\exp (-\alpha l)-1}$
AI	$I_{0}(\alpha a)$
BIOA	$I_{0}(\alpha b)$
BIOB	$I_{1}(\alpha a)$
BIIA	$I_{1}(\alpha b)$
BIIB	

DI2
DI3
DI4
DNI

DNR

DR1
DR2
DR3
DR4
S1
SNI

SNR

SSR
$\operatorname{Im}\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right)\right]$
$\operatorname{Im}\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]$
$\operatorname{Im}\left[\beta, b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]$
$\operatorname{Im}\left[K_{1}(\alpha, r)\left[\beta, a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}(\alpha, r)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]\right\}$
$\operatorname{Re}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$

$$
\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right]
$$

$\operatorname{Re}\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta, b K_{0}(\alpha, b) K_{1}(\alpha b)\right]$
$\operatorname{Re}\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]$
$\operatorname{Re}\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]$
$\operatorname{Re}\left[\beta, b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]$
$d \alpha$
$\operatorname{Im}\left\{K_{1}(\alpha, b)\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}\left(\alpha_{1} b\right)\left\{\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right\}$
$\operatorname{Re}\left[K_{1}(\alpha, b)\left[\beta, a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}(\alpha, b)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right\}$
$\operatorname{Re} \frac{1}{K_{1}(\alpha b)}\left[K_{1}(\alpha, b)\left[\beta, a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}(\alpha, b)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right]$
$\left[\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta, b K_{0}(\alpha, b) K_{1}(\alpha b)\right]\right.$
$\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+$ $\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]$

$$
\left[\left[\beta_{1} b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]\right]^{-1}-\frac{I_{1}(\alpha b)}{K_{1}(\alpha b)}
$$

α
$\operatorname{Re}\left[\alpha_{1}\right]$
$\operatorname{Re}[\alpha, a]$
$\operatorname{Re}[\alpha, b]$
$\operatorname{Re}[\alpha, r]$

XA
XB
XF2

XFACT

XFACT2

XJR21

XKR21
XL
XX
XXXX
Y1
Y1A
Y1B
Y1R
ZIOIA
ZIOIB
ZIOIR
ZIORA
ZIORB
ZIORR
ZKOIA
zKOIB
ZKOIR
ZKORA
ZKORB
ZKORR
αa
αb

$$
\frac{2}{\pi} \frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2) d \alpha
$$

$$
\frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2)
$$

$\frac{2}{\pi} \frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2) \cos (\alpha z) d \alpha$

$$
\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)
$$

$$
\frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right)
$$

$$
\alpha \ell
$$

α^{2}
α^{4}
$\operatorname{Im}\left[\alpha_{1}\right]$
$\operatorname{Im}[\alpha, a]$
$\operatorname{Im}[\alpha, b]$
$\operatorname{Im}[\alpha, r]$
$\operatorname{Im}\left[\alpha, a I_{0}(\alpha, a)\right]$
$\operatorname{Im}\left[\alpha, b I_{0}(\alpha, b)\right]$
$\operatorname{Im}\left[\alpha, r I_{0}(\alpha, r)\right]$
$\operatorname{Re}\left[\alpha, a I_{0}(\alpha, a)\right]$
$\operatorname{Re}\left[\alpha, b I_{n}(\alpha, b)\right]$
$\operatorname{Re}\left[\alpha_{1} r I_{0}\left(\alpha_{1} r\right)\right]$
$\operatorname{Im}\left[\alpha, a K_{0}(\alpha, a)\right]$
$\operatorname{Im}\left[\alpha, b K_{0}(\alpha, b)\right]$
$\operatorname{Im}\left[\alpha_{1} r K_{0}\left(\alpha_{1} r\right)\right]$
$\operatorname{Re}\left[\alpha_{1} a K_{0}\left(\alpha_{1} a\right)\right]$
$\operatorname{Re}\left[\alpha, b K_{0}(\alpha, b)\right]$
$\operatorname{Re}\left[\alpha, r K_{0}(\alpha, r)\right]$

Sample output

Output sent to printer:

ABENCAR		TIME 6:34:51 DATE 8/18/89				\% WALL	TUB IR	TUB OR
	IN RAD	OT Rad	LENGTH	RAD CLR	WALLTH			
ACT	1.7750	2.0670	0.2650	0.0075	0.2200	45.45	1.5475	1.7675
NOR	0.9240	1.0760	0.1379	0.0039	0.1145	45.45	0.8056	0.9201
RBAR 1.9210 FREQ $=4.000000 \mathrm{E}+02 \mathrm{RHO}=3.8400$ PERM $=1.000$ WUSRR $=195.8126$								
NORM IMPD: RL 0.135056 IM 0.494500 AIR IND 1.826299E-02								
NORM DSF:RL $2.8462 \mathrm{E}-04 \mathrm{IM}-1.0838 \mathrm{E}-04$ VOLN $1.1079 \mathrm{E}-04$								
MAX	MUM MAG	0.1845	-03	Ha at ma	MAG	87.61	OD D	

Partial listing of output defect axial position (ZD), defect magnitude (DFM) and defect phase (DFP) that is sent to LOD file (either FORT39 or ENCSCN.DAT):

0.000	$0.1845 \mathrm{D}-03$	87.61
0.010	$0.1832 \mathrm{D}-03$	87.43
0.020	$0.1793 \mathrm{D}-03$	86.87
0.030	$0.1729 \mathrm{D}-03$	85.89
0.040	$0.1642 \mathrm{D}-03$	84.46
0.050	$0.1537 \mathrm{D}-03$	82.54
0.060	$0.1420 \mathrm{D}-03$	80.14
0.070	$0.1296 \mathrm{D}-03$	77.30
0.080	$0.1172 \mathrm{D}-03$	74.09
0.090	$0.1052 \mathrm{D}-03$	70.61
0.100	$0.9405 \mathrm{D}-04$	66.98

The program also plots the output on the CRT, and a plot similar to Fig. 17 can be obtained. The phases and magnitudes given in this report are referenced to the X axis being zero phase and measured counterclockwise from X axis, which is standard for mathematics and electrical engineering. Standard eddy-current practice is to measure the phase shift in a clockwise direction from the -X axis. Furthermore, the phase is rotated until the probe wobble/fill factor/lift-off variations lie in a horizontal direction.

Listing

PROGRAM ABENCAR
C VERSION August 17 1989
C Program to calculate the normalized impedance change in
C an absolute encircling coil due to a defect
C in a single tube as the coil scans past the defect. The program averages the effect of the defect over the depth of the defect.

C $\quad \mathrm{Z}=0.0$ AT CENTER OF COIL.
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
REAL*8 L
CHARACTER*1. FF
DIMENSION S1(6),S2(6), ERR(6)
DIMENSION CX $(0: 200)$, CY $(0: 200), X F A C T 2(0: 200)$
DIMENSION SMZDFRA $(0: 200,30), \operatorname{SMZDFIA}(0: 200,30)$
DATA LOU/8/,PI/3.141592653/,LOD/39/,LOE/38/
DATA S1/.005,.02,.05,.1,.1,.5/
DATA $\mathrm{S} 2 / 1.0,2.0,5.0,10.0,50.0,200.0 /$
DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-10/
DATA FREQ/ 4.0E2/,RHO1/3.84/, U1/1.0/
DATA TRN/325./,ISIDE/1/,DELTAZ/0.01/
DATA MODE/16/,NZT/100/,NRT/20/
DATA OIM/50/,ORL/330/
FF=CHAR (12)
OPEN(LOD, FILE='ENCSCN.DAT', STATUS='NEW')
OPEN (LOE , FTT.F=' FNGINAT . DAT' , STATUS='OLD')
11 XMAX=0.
YMAX $=0$.
DFMMAX $=0$.
DO $14 \mathrm{NZ}=0$, NZT
DO 12 NR=1,NRT
SMZDFRA (NZ,NR) $=0$.
SMZDFIA(NZ,NR)=0.
12 CONTINUE
14 CONTINUE
READ (LOE , * , END=1001) DFDIAM, DFDEP
dfdiam=0.1
dfdep=0.1
TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN,ISE, IFR)
CALL GETDAT (IYR, IMO, IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR , IMN, ISE, IMO, IDA, IYR
2 FORMAT(' ABENCAR TIME',I2,':',I2,':', 12
*,' DATE ', I2,'/', I2,'/', I2)
WRITE (LOU, 5)
5 FORMAT(5X,'IN RAD', 2X, 'OT RAD', 2X,'LENGTH', 2X, 'RAD CLR' *, 1X,'WALLTH', 2X,'\% WALL', 2X,'TUB IR', 2X,'TUB OR')
$\mathrm{R} 1=1.775$

```
    R2=2.067
    L=0.265
    RCL=0.0075
    T1=0.22
    POW=(DFDEP/T1)*100.
    B=R1-RCL
    A=B-T1
    RDT=-DFDEP
    R3=0.5*(R1+R2)
    WRITE(LOU , 10)R1,R2,L, RCL,T1, POW , A , B
    R1=R1/R3
    R2=2.0-R1
    L=L/R3
    RCL=RCL/R3
    RDT=RDT/R3
    RD=RD/R3
    T1=T1/R3
    A=A/R3
    B=B/R3
C VOLN=0.1666667*PI*(DFDIAM/R3)*(DFDIAM/R3)*(DFDIAM/R3)
    VOLN=PI*DFDIAM*DFDIAM*DFDEP/(4.*R3*R3*R3)
    WUSRR=0.5093979*U1*R 3*R 3*FREQ/RHO1
    WRITE(LOU, 15)R1, R2, L, RCL, T1, POW , A, B
    10 FORMAT('ACT ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
        15 FORMAT('NOR ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
        WRITE(LOU , 20)R3, FREQ, RHO1,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ=',1PE13.6,' RHO=',0PF9.4,
        *' PERM=',F7.3,' WUSRR=',F11.4)
        CALL QSMODE(MODE)
        CALL GRID
        SMAIR=0.0
        SMIMPR=0.0
        SMIMPI=0.0
        SMZDFR=0.0
        SMZDFI=0.0
C AIR=0.
C AII=0.
C. AUR=0.
C . AUI=0.
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
    30 RI9=SMAIR
    X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S 1(JKL)
    CALL KJBSSL(X,R1,R2,XKR21,XJR21)
    XL=X*L
    IF(XL.GT.5.OE-3) GO TO 60
```

```
    Al=XL*XL*(0.5-XL/6.0)
    GO TO 80
60 IF(XL.GT.75.0) GO TO 70
    A1=XL+DEXP(-XL)-1.0
    GO TO }8
70 Al-XL-1.0
80 SMAIR=SMAIR+2.*XJR21*XJR21*A1*S1(JKL)
    IF(X.GT.160.)GO TO 90
    XX=X*X
    XXXX=XX*XX
    X1=DSQRT(0.5*(XX+DSQRT(XXXX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/( 2*X1*U1*U1)
    XA=X*A
    XB=X*B
    XlA=X1*A
    Y1A=Y1*A
    X1B=X1*B
    Y1B=Y1*B
    CALL CMDBES(X1A,Y1A,ZIORA,ZIOIA,ZKORA,ZKOIA,BI1RA,BIIIA
*,BK1RA,BK1IA)
    CALL CMDBES(X1B,Y1B,ZIORB,ZIOIB,ZKORB,ZKOIB,BI1RB,BIIIB
*,BK1RB,BK1IB)
    CALL BESI(XA,BIOA,BI1A)
    CALL BESK(XA,BKOA,BK1A)
    CALL BESI(XB,BIOB,BI1B)
    CALL BESK(XB,BKOB,BK1B)
    DR1=XB*BKOB*BK1RB-ZKORB*BK1B/U1
    DI1=XB*DKOD*DIK1IB-ZKOIB*BK1B/U1
    DR2=ZIORA*BI1A/U1-XA*BIOA*BI1RA
    DI2=Z1OIA*BI1A/U1-XA*BIOA*BI1IA
    DR3=XA*BIOA*BK1RA+ZKORA*BI1A/U1
    DI3 =XA*BIOA*BK1IA +ZKOIA*BI1A/U1
    DR4=ZIORB*BK1B/U1+XB*BKOB*BI1RB
    DI4}=\textrm{ZIOIB}*\textrm{BK}1\textrm{B}/\textrm{U}1+XB*BKOB*BI1I
    DDR=DR1*DR2-DI1*DI2+DR 3*DR4-DI 3*DI4
    DDI =DR1*DI 2+DR2*DI1 +DR 3*DI4+DR4*DI3
    SNR=BK1RB*DR2-BK1IB*DI2+BI1RB*DR3-BI1IB*DI3
    SNI=BK1RB*DI2+BK1IB*DR2+BI1RB*DI3+BI1IB*DR3
    DEN=DDR*DDR+DDI*DDI
    SSR=((SNR*DDR+SNI*DDI)/DEN-BI1B)/BK1B
    SSI=(SNI*DDR - SNR*DDI)/(BK1B*DEN)
    XFACT=XKR21*DSIN(XL/2.)
    SMIMPR=SMTMPR+8.*XFACT*XFACT*S1(JKL)*SSR/PI
    SMIMPI=SMIMPI+8.*XFACT*XFACT*S1(JKL)*SSI/PI
    XF2=2.*XFACT*S1(JKL)/PI
    DO }89\mathrm{ NR=1,NRT
    RD=(REAT(NR)-0, 5)*(RDT/REAL(NRT))
    IF(ISIDE.EQ.1) THEN
    RD=B+RD
    ELSE
```

```
        RD=A-RD
        END IF
        X1R=X1*RD
        Y1R=Y1*RD
        CALL CMDBES(X1R,Y1R,ZIORR,ZIOIR,ZKORR,ZKOIR,BI1RR,BI1IR
        *,BK1RR,BK1IR)
    DNR=BK1RR*DR2-BK1IR*DI2+BI1RR*DR3-BI1IR*DI3
    DNI=BK1IR*DR2+BK1RR*DI2+BI1IR*DR3+BI1RR*DI3
    DFR=(DNR*DDR+DNI*DDI)}/\textrm{DEN
    DFI=(DNI*DDR-DNR*DDI)}/\textrm{DEN
        DO }88\mathrm{ NZ=0,NZT
        IF(NR.GT.1)GO TO }8
        ZD=DELTAZ*NZ
        XFACT2(NZ)=XF2*DCOS(X*ZD)
        87 SMZDFRA(NZ,NR)=SMZDFRA(NZ,NR)+XFACT2(NZ)*DFR
        SMZDFIA(NZ,NR)=SMZDFIA(NZ,NR)+XFACT2(NZ)*DFI
        8 8 \text { CONTINUE}
        8 9 ~ C O N T I N U E ~
        90 CONTINU̇E
        B1=B2
        B2=B2+S2(JKL)
        CHECK=(SMAIR-RI9)/SMAIR
        IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
    DO }990\mathrm{ NZ=0,NZT
    ZD=DELTAZ*NZ
    SMZDFR=0.
    SMZDFI=0 .
    DO 120 NR=1,NRT
    SMZDFR=SMZDFR+SMZDFRA(NZ,NR)
    SMZDFI=SMZDFI+SMZDFIA(NZ,NR)
    120 CONTINUE
    SMZDFR=SMZDFR/NRT
    SMZDFI=SMZDFI/NRT
C WRITE(LOU,*)NZ,SMZDFR,SMZDFI
    DSFR=-1.5*WUSRR*(SMZDFR*SMZDFR-SMZDFI*SMZDFI)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*2.0*SMZDFR*SMZDFI/(SMAIR*PI)
    135Q6=0.0254*4.0E-7*TRN*TRN*R 3*PI*PI*SMAIR/(L*(R2-R1))**2
    ZNIM=SMIMPR/SMAIR+1.0
    ZNRL=-SMIMPI/SMAIR
    ZNDFR=VOLN*DSFR
    ZNDFI=VOLN*DSFI
    IF(NZ.EQ.0) WRITE(LOU,140)ZNRL,ZNIM,Q6
    DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
    DFP=ATAN2(DSFI,DSFR)
    CX(NZ)=DFM*COS (DFP)
    CY(NZ)=DFM*SIN(DFP)
    DFP=DFP*(180./PI)
```

```
            IF(ABS(CX(NZ)).GT.XMAX) XMAX=ABS (CX(NZ))
            IF(ABS(CY(NZ)).GT.YMAX) YMAX=ABS (CY(NZ))
            IF(DFM.GT.DFMMAX) THEN
            DFMMAX=DFM
            DFPMMAX=DFP
            END IF
            WRITE(LOD, 162) ZD,DFM,DFP
    990 CONTINUE
            GIM=300./YMAX
            GRL=300./XMAX
            IF(GIM.GT.GRL) THEN
            GIM=GRL
            ELSE
                            GRI_=GIM
                            END IF
                            IM1=GIM*CY(0)+OIM
                            IR1=GRL*CX(0)+ORL
C WRITE(LOU,150)ZNDFR,ZNDFI,DFM,DFP
            WRITE(LOU,160)DSFR,DSFI,VOLN
            WRITE(LOU,164)DFMMAX,DFPMMAX
            IF(ISIDE.EQ.1) THEN
            WRITE(LOU,*)' OD DEFECT'
            ELSE
            WRITE(LOU,*)' .ID DEFECT'
            END IF
            DO 1000 NZ=1,NZT
            TM2\equivFTM*R:Y(N7.)+OTM
            IR2=GRL*CX(NZ)+ORL
            CALL QLINE(IR1,IM1,IR2,IM2,15)
            IR1=IR2
            IM1=IM2
1000 CONTINUE
            WRITE(LOU ,*)
            WRITE(LOU,*)
            CALL PRTSC
            WRITE (LOU, *)FF
c GO TO 11
    140 FORMAT(' NORM IMPD:RL',F10.6,' IM',F10.6,
            *' AIR IND',1PE13.6)
C 150 FORMAT(' NORM CHG:RL ',OPF10.6,' IM',0PF10.6,
C *' MAG',OPF10.6,' PHA ',0PF7.2)
    160 FORMAT(' NORM DSF:RL',1PE11.4,' IM',1PE11.4,' VOLN',1PEil.4)
    161 FORMAT(' ZD MAG PHA')
    162 FORMAT(F6.3,5X, D1.1.4, 5X,F7. 2)
    164 FORMAT(' MAXIMUM MAG ',D11.4,' PHA AT MAX MAG ',F7.2,\)
1001 END
```

DFENGAR calculates defect impedance change, average over depth

Program DFENCAR calculates the change in the normalized impedance of a differential encircling coil due to the presence of a defect in a single conducting tube, as shown in Fig. 20.

Fig. 20. Cross sectional view of a differential encircling probe.
The distance to the defect is measured from the center of the coil assembly, and the center-to-center distance of the coils is denoted c. The impedance difference between the two matched coils is:

$$
\begin{equation*}
Z_{\mathrm{nd}}=Z_{1 \mathrm{~d}}-Z_{2 \mathrm{~d}} \tag{54}
\end{equation*}
$$

Substituting in from Eq. (29) for the impedance change of each coil and using some trigonometric identities gives for the normalized impedance difference:

$$
\begin{align*}
Z_{\mathrm{no}}(r, z)= & \frac{-3\left(\omega \mu \sigma_{1} \bar{r}^{2}\right) V o I_{n}}{2 \pi I_{\mathrm{a} \mid r}} \tag{55}\\
& \times\left[\int_{0}^{\infty} \frac{K\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{2}+I_{1}(\alpha, r) D_{3}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \sin \left(\frac{\alpha c}{2}\right) \sin (\alpha z) 4 d \alpha\right] \\
& \times\left[\int_{0}^{\infty} \frac{K\left(r_{2}, r_{1}\right)}{\pi \alpha^{3}}\left\{\frac{K_{1}\left(\alpha_{1} r\right) D_{2}+I_{1}\left(\alpha_{1} r\right) D_{3}}{\left(D_{1} D_{2}+D_{3} D_{4}\right)}\right\} \sin \left(\frac{\alpha \ell}{2}\right) \cos \left(\frac{\alpha c}{2}\right) \cos (\alpha z) 4 d \alpha\right]
\end{align*}
$$

The definitions of the various terms in Eq. (55) are given in Eqs. (45) through (53) in the discussion of the absolute encircling coil. The program performs the calculations for a number of different axial distances between the center of the coil and the defect, and it can divide the defect into a number of parts and calculate the effect of each part separately.

Summary

1. Dimension arrays and declare variable types.
2. Initialize variables.
3. Begin the integration. Calculate the expressions that are independent of the position of the defect.
4. Select a value for the radial distance between the defect and the center of the coil. Do the calculations which depend only upon this component of the position.
5. Select a value for the axial distance between the defect and the center of the coil. Complete the calculations.
6. Loop to 5 until done.
7. Loop to 4 until done.
8. Output the results.

Variables

A number of the variables which occur mainly inside the integration loops do not correspond to anything physical. These variables are described in a section at the end. Starred variables must be assigned by the user.

A The normalized inner radius of the tube.
B The normalized outer radius of the tube.
C. The axial distance between the centers of the two coils. The value is input in inches and normalized by the program.
DELTAZ The normalized axial distance between the points at which the calculations are done.
DFDEP \quad The depth of the defect in the tube in inches.
DFDIAM \quad The diameter of the defect in the tube in inches.

DFM	The magnitude of the normalized impedance change in the coil due to the defect.
DFP	The phase of the normalized impedance change in the coil due to the defect.
DSFI	The imaginary part of the defect sensitivity factor of the coil.
DSFR	The real part of the defect sensitivity factor of the coil.
FREQ ${ }^{\circ}$	The operating frequency in hertz.
ISIDE*	The side of the tube where the defect is located. If ISIDE $=1$, the defect is on the outside of the tube; if ISIDE $=2$, the defect is on the inside of the tube.
L°	The length of each coil. The value is input in inches and normalized by the program.
LOD ${ }^{\text {a }}$	The number of the I / O unit connected to the output data file.
LOE*	The number of the I/O unit connected to a file which contains the diameters and depths of the defects for which calculations are to be performed.
LOU	The number of the $I / 0$ unit connected to the printer.
NRT*	The total number of parts centered along the axis of the defect into which the defect is divided to perform the calculations.
NZT*	The total number of different values of the axial distance between the center of the coil and the defect for which calculations are performed.
POW	The depth of the defect expressed as a percentage of wall thickness.
Q6	The inductance in henries of the coil in air.
R1 ${ }^{\circ}$	The inner radius of each coil. The value is input in inches and normalized by the program.
R2 ${ }^{\text { }}$	The outer radius of each coil. The value is input in inches and normalized by the program.
R3	The mean radius of each coil in inches.
RCL ${ }^{\text { }}$	The distance between the inside of the coil and the outside wall of the tube. The value is input in inches and normalized by the program.
RD	The radial distance between the center of the coil and the defect (see note 1).
RDT	The normalized depth to the bottom of the defect. A negative number.
RHO1 ${ }^{\circ}$	The electrical resistivity of the tube in $\mu \Omega-\mathrm{cm}$.
T1 ${ }^{\circ}$	The thickness of the tube wall. The value is input in inches and normalized by the program.
TRN*	The number of turns in each coil.
U1*	The relative magnetic permeability of the tube.
VOLN	The normalized volume of the defect.
WUSRR	The product of the angular operating frequency,

the magnetic permeability of the tube, the electrical conductivity of the tube, and the square of the mean radius of the coil.

ZNIM The imaginary part of the normalized impedance of the coil when no defects are present.
ZNRL The real part of the normalized impedance of the coil when no defects are present.

Integration section of Program DFENCAR

Symbol definitions

The following are definitions of the symbols used to describe the program variables which appear in the integration section of the program. All lengths are normalized unless otherwise noted.

α	Integration variable
a	Inner radius of the tube
β_{1}	$\left(\alpha^{2}+j \omega \mu \sigma_{i} \bar{r}^{2}\right)^{1 / 2} / \mu$
b	Outer radius of the tube
c	Distance between the centers of the coils
$I_{0}(\mathrm{x})$	Modified Bessel function of the first kind of order 0
$I_{1}(x)$	Modified Bessel function of the first kind of order 1
$J\left(x_{2}, x_{1}\right)$	Integral of $\mathrm{x} J_{1}(\mathrm{x})$ with respect to x from $\alpha \mathrm{x}_{\text {, }}$ to $\boldsymbol{\alpha} \mathrm{x}_{2}$
$J_{1}(x)$	Bessel function of the first kind of order 1
$K\left(x_{2}, x_{1}\right)$	Integral of $\mathrm{x} K_{1}(\mathrm{x})$ with respect to x from $\alpha \mathrm{x}$, to $\alpha \mathrm{x}_{2}$
$K_{0}(\underline{x})$	Modified Bessel function of the second kind of order 0
$K_{\text {t }}(\mathrm{x})$	Modified Bessel function of the second kind of order 1
ℓ	Length of the coil
μ	Relative magnetic permeability of the tube
r	Radial distance between center of coil and defect
\bar{r}	Coil mean radius in inches
r_{1}	Inner radius of coil
r_{2}	Outer radius of coil
σ_{1}	Electrical conductivity of the tube
z	Axial distance between defect and probe center
ω	Angular operating frequency

Variables appearing in the integration section

Program variable	Symbolic equivalent
Al	$I_{0}(\alpha a)$
BIOA	$I_{0}(\alpha b)$
BIOB	$I_{1}(\alpha a)$
BIIA	$I_{1}(\alpha b)$
BIIB	$\operatorname{Im}\left[I_{1}(\alpha, a)\right]$
BIIIA	$\operatorname{Im}\left[I_{1}(\alpha, b)\right]$
BIIIB	$\operatorname{Im}\left[I_{1}(\alpha, r)\right]$
BIIIR	$\operatorname{Re}\left[I_{1}(\alpha, a)\right]$
BIIRA	$\operatorname{Re}\left[I_{1}(\alpha, b)\right]$
BIIRB	

BIIRR	$\operatorname{Re}\left[I_{1}(\alpha, r)\right]$
BK0A	$K_{0}(\alpha a)$
BK0B	$K_{0}(\alpha b)$
BK1A	$K_{1}(\alpha a)$
BK1B	$K_{1}(\alpha b)$
BK1IA	$\operatorname{Im}\left[K_{1}(\alpha, a)\right]$
BK1IB	$\operatorname{Im}\left[K_{1}(\alpha, b)\right]$
BK1IR	$\operatorname{Im}\left[K_{1}(\alpha, r)\right]$
BK1RA	$\operatorname{Re}\left[K_{1}(\alpha, a)\right]$
BK1RB	$\operatorname{Re}\left[K_{1}(\alpha, b)\right]$
BK1RR	$\operatorname{Re}\left[K_{1}(\alpha, r)\right]$

DDI

DDR

DFR

$$
\begin{aligned}
\operatorname{Re}\{ & K_{1}(\alpha, r)\left[\beta, a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+ \\
& \left.I_{1}(\alpha, r)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right\}
\end{aligned}
$$

$$
\div\left\{\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta, b K_{0}(\alpha, b) K_{1}(\alpha b)\right]\right.
$$ $\div\left\{\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta, b K_{0}(\alpha, b) K_{1}(\alpha b)\right]\right.$

$$
\left[\beta, a I_{0}\left(\alpha_{1} a\right) I_{1}\left(u_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right)\right]+
$$

$\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K,\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]$

DII
DI2
DI3
DI4

$$
\begin{gathered}
\operatorname{Im}\left\{\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{1}(\alpha b)\right]\right. \\
{\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+} \\
{\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]} \\
\left.\left[\beta, b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]\right\} \\
\operatorname{Re}\left\{\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b)\right]\right. \\
{\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+} \\
{\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]} \\
\left.\left[\beta_{1} b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]\right\}
\end{gathered}
$$

$$
\left.\left[\beta, b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]\right]
$$

$\operatorname{Im}\left[\alpha b K_{0}(\alpha b) K_{1}(\alpha, b)-\beta_{1} b K_{0}(\alpha, b) K_{t}(\alpha b)\right]$
$\operatorname{Im}\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right)\right]$
$\operatorname{Im}\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]$
$\operatorname{Im}\left[\beta, b I_{0}(\alpha, b) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]$

DNI

DNR

DR1
DR2
DR3
DR4
S1
SNI

SNR

SSR

$$
\begin{gathered}
\operatorname{Re} \frac{1}{K_{1}(\alpha b)}\left[K_{1}\left(\alpha_{1} b\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right)\right]+\right. \\
\left.I_{1}\left(\alpha_{1} b\right)\left[\beta_{2} a I_{10}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{n} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right] \\
{\left[\begin{array}{l}
{\left[\alpha b K_{0}(\alpha b) K_{1}\left(\alpha_{1} b\right)-\beta_{1} b K_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b)\right]} \\
\\
{\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+} \\
{\left[\beta_{2} a I_{0}\left(\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right.} \\
\\
{\left[\left[\beta_{1} b I_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}\left(\alpha_{1} b\right)\right]\right]^{-1}-\frac{I_{1}(\alpha b)}{K_{1}(\alpha b)}}
\end{array} .\right.}
\end{gathered}
$$

$\operatorname{Im}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{i} a\right)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]\right]$
$\operatorname{Re}\left\{K_{1}\left(\alpha_{1} r\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}\left(\alpha_{1} r\right)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]\right)$
$\operatorname{Re}\left[\alpha b K_{0}(\alpha b) K_{1}\left(\alpha_{1}, b\right)-\beta_{1} b K_{0}(\alpha, b) K_{1}(\alpha b)\right]$
$\operatorname{Re}\left[\beta_{1} a I_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]$
$\operatorname{Re}\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}(\alpha, a)+\beta_{1} a R_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]$
$\operatorname{Re}\left[\beta, b I_{0}\left(\alpha_{1} b\right) K_{1}(\alpha b)+\alpha b K_{0}(\alpha b) I_{1}(\alpha, b)\right]$
$d \alpha$
$\operatorname{Im}\left\{K_{1}\left(\alpha_{1} b\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{4}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}\left(\alpha_{1} a\right)\right]+\right.$ $\left.I_{1}(\alpha, b)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}(\alpha, a) I_{1}\left(\alpha_{2} a\right)\right]\right)$
$\operatorname{Re}\left[K_{1}\left(\alpha_{1} b\right)\left[\beta_{1} a I_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)-\beta_{2} a I_{0}\left(\alpha_{2} a\right) I_{1}(\alpha, a)\right]+\right.$ $\left.I_{1}\left(\alpha_{1} b\right)\left[\beta_{2} a I_{0}\left(\alpha_{2} a\right) K_{1}\left(\alpha_{1} a\right)+\beta_{1} a K_{0}\left(\alpha_{1} a\right) I_{1}\left(\alpha_{2} a\right)\right]\right\}$
-
$\operatorname{Re}\left[\alpha_{1}\right]$
$\operatorname{Re}[\alpha, a]$
$\operatorname{Re}\left[\alpha_{i} b\right]$
$\operatorname{Re}[\alpha, x]$
aa
αb
$\frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right) \sin (\alpha \ell / 2)$

Sample output

A sample of the printer output is given below:
DFENCAR TIME 11:32: 0 DATE 8/18/89
IN RAD OT RAD LENGTH RAD CLR WALLTH \% WALL C TO C TUB IR TUB OR $\begin{array}{lllllllllll}\text { ACT } 1.7750 & 2.0670 & 0.2650 & 0.0075 & 0.2200 & 45.45 & 0.5150 & 1.5475 & 1.7675\end{array}$ $\begin{array}{llllllllll}\text { NOR. } 0.9240 & 1.0760 & 0.1379 & 0.0039 & 0.1145 & 45.45 & 0.2681 & 0.8056 & 0.9201\end{array}$ RBAR 1.9210 FREQ $=4.000000 \mathrm{E}+02 \mathrm{RHO}=3.8400 \mathrm{PERM}=1.000 \mathrm{WUSRR}=195.8126$ NORM IMPD:RL 0.135056 IM 0.494500 AIR IND 1.826299E-02

NORM DSF:RL 3.3340E-04 IM-2.1253E-04 VOLN 1.1079E-04
MAXIMUM MAG 0.1826D-03 PHA AT MAX MAG 91.17 OD DEFECT
Partial listing of output defect axial position (ZD), defect magnitude (DFM) and defect phase (DFP) that is sent to LOD file (either FORT39 or ENCSCN.DAT):

0.010	$0.1723 \mathrm{D}-04$	$0.8304 \mathrm{D}+02$
0.020	$0.3455 \mathrm{D}-04$	$0.8350 \mathrm{D}+02$
0.030	$0.5201 \mathrm{D}-04$	$0.8425 \mathrm{D}+02$
0.040	$0.6962 \mathrm{D}-04$	$0.8524 \mathrm{D}+02$
0.050	$0.8728 \mathrm{D}-04$	$0.8641 \mathrm{D}+02$
0.060	$0.1047 \mathrm{D}-03$	$0.8766 \mathrm{D}+02$
0.070	$0.1216 \mathrm{D}-03$	$0.8888 \mathrm{D}+02$
0.080	$0.1373 \mathrm{D}-03$	$0.8996 \mathrm{D}+02$
0.090	$0.1513 \mathrm{D}-03$	$0.9083 \mathrm{D}+02$
0.100	$0.1631 \mathrm{D}-03$	$0.9144 \mathrm{D}+02$

If the proper plotting software has been installed, a plot of these data is made on the CRT and a hard copy can be obtained, as shown in Fig. 21. The plot forms one-half the normal Lissajous pattern one gets in an eddycurrent test with a differential bobbin coil. The second half can be obtained by reflecting the signal in the $-z$ direction, since the signal is anti-symmetric. The phases and magnitudes given in this report are referenced to the X axis being zero phase and measured counterclockwise from X axis, which is standard for mathematics and electrical engineering. Standard eddy-current practice is to measure the phase shift in a clockwise direction from the -X axis. Furthermore, the phase is rotated until the probe wobble/fill factor/lift-off variations lie in a horizontal direction.

Fig. 21. Plot of defect signal on complex impedance plane as the defect is moved from the probe center in the plus z direction.

Listing

PROGRAM DFENCAR
C VERSION July 11, 1988
C PROGRAM TO CALCULATE THE NORMALIZED IMPEDANCE CHANGE
C FOR A DEFECT IN A SINGLE TUBE WITH AN ENCIRCLING COIL
C $\quad Z=0.0$ AT CENTER OF COIL.
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L
CHARACTER*1 FF.
DIMENSION S1(6),S2(6),ERR (6)
DIMENSION CX(200),CY(200)
DIMENSION SMZDFR1A(200,30), SMZDFI1A $(200,30)$
DIMENSION SMZDFR2A 200,30$)$, SMZDFI2A $(200,30)$
DATA LOU/8/,PI/3.141592653/,LOD/39/,LOE/38/
DATA S1/.005,.02,.05,.1,.1,.5/
DATA S2/1.0,2.0,5.0,10.0,50.0,200.0/
DATA ERR/.1,.01,.001,1.E-4,1.E-5,1.E-10/
DATA FREQ/ 4.0E2/,RHO1/3.84/,U1/1.0/
DATA TRN/325./,ISIDE/1/,DELTAZ/0.01/
DATA MODE/ $16 /, N Z T / 100 /, N R T / 20 /$
DATA OIM/50/,ORL/330/
$\mathrm{FF}=\mathrm{CHAR}$ (12)
C OPEN(LOD,FILE='ENCSCN.DAT',STATUS = 'NEW')
OPEN(LOE , FILE='ENCDAT. DAT', STATUS = 'OLD')
$11 \mathrm{XMAX}=0$.
YMAX $=0$.
DFMMAX $=0$.
DO $14 \mathrm{NZ}=1$, NZT
DO 12 NR=1,NRT
SMZDFR1A (NZ,NR) $=0$.
SMZDFI1A (NZ,NR) $=0$.
SMZDFR2A (NZ,NR) $=0$.
SMZDFI2A(NZ,NR)=0.
12 CONTINUE
14 CONTINUE
READ (LOE , *, END=1001) DFDIAM, DFDEP
C TIME AND DATE ARE PRINTED
CALL GETTIM (IHR, IMN,ISE, IFR)
CALL GETDAT(IYR,IMO,IDA)
IYR=IYR-1900
WRITE (LOU , 2) IHR, IMN, ISE , IMO, IDA, IYR
2 FORMAT(' DFENCAR TIME ',I2,':',I2,':',I2
*,' DATE ', I2,'/', I2,'/', I2)
WRITE (LOU , 5)
5 FORMAT (5X,'IN RAD', 2X,'OT RAD', 2X,'LENGTH', 2X, 'RAD CLR'

R1=1:775
$\mathrm{R} 2=2.067$
$\mathrm{L}=0.265$
$\mathrm{C}=0.515$

```
    RCL=0.0075
    T1=0.22
    POW=(DFDEP/T1)*100.
    B=R1-RCL
    A=B}-\textrm{T}
    RDT=-DFDEP
    R3=0.5*(R1+R2)
    WRITE(LOU,10)R1,R2,L,RCL,T1, POW, C,A B
    R1=R1/R3
    R2=2.0-R1
    L=L/R3
    C=C/R3
    RCL=RCL/R3
    RDT=RDT/R3
    RD=RD/R3
    Tl=T1/R3
    A=A/R3
    B=B/R3
C VOLN=0.1666667*PI*(DFDIAM/R3)*(DFDIAM/R3)*(DFDIAM/R3)
    VOLN=PI*DFDIAM*DFDIAM*DFDEP/(4.*R 3*R 3*R 3)
    WUSRR=0.5093979*U1*R3*R3*FREQ/RHO1
    WRITE(LOU,15)R1,R2,L,RCL,T1, POW, C,A,B
    10 FORMAT('ACT ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    15 FORMAT('NOR ',5(F7.4,1X),F7.2,1X,3(F7.4,1X))
    WRITE(LOU, 20)R3, FREQ, RH01,U1,WUSRR
    20 FORMAT(' RBAR',F7.4,' FREQ= ',1PE13.6,' RHO=',0PF9.4,
    *' PERM=',F7.3,' WUSRR=',F11.4)
        CALL QSMODE(MODE)
        CALL GRID
            DO 1000 NZ=1,50
            ZD=0.04*NZ
        SMAIR=0.0
        SMIMPR=0.0
        SMIMPI=0.0
        SMZDFR1=0.0
        SMZDFIl=0.0
        SMZDFR2=0.0
        SMZDFI2=0.0
    AIR=0.
AII=0.
C AUR=0.
C AUI=0.
    B1=0.0
    B2=S2(1)
    DO 100 JKL=1,6
    30 RI9=SMAIR
        X=B1-0.5*S1(JKL)
C DETERMINE NUMBER OF STEPS,ISTEPS,BASED ON STEP SIZE&INTERVAL
    ISTEPS=DNINT((B2-B1)/S1(JKL))
    DO 90 I=1,ISTEPS
    X=X+S1(JKL)
```

```
    CALL KJBSSL(X,R1,R2,XKR21,XJR21)
    XL=X*L
    IF(XL.GT.5.0E-3) GO TO 60
    Al=XL*XL*(0.5-XL/6.0)
    GO TO 80
60 IF(XL.GT.75.0) GO TO 70
    Al=XL+DEXP(-XL)-1.0
    GO TO 80
70 Al=XL-1.0
80 SMAIR=SMAIR+2.*XJR21*XJR21*A1*S1(JKL)
    IF(X.GT.160.)GO TO 90
    XX=X*X
    XXXX=XX*XX
    X1=DSQRT(0.5*(XX+DSQRT(XXXX+WUSRR*WUSRR)))/U1
    Y1=WUSRR/(2*Xl*U1*U1)
    XA=X*A
    XB=X*B
    X1A=X1*A
    Y1A=Y1*A
    X1B=X1*B
    Y1B=Y1*B
    CALL CMDBES(X1A,Y1A,ZIORA,ZIOIA, ZKORA,ZKOIA,BI1RA,BI1IA
*,BK1RA,BKIIA)
    CALL CMDBES(X1B,Y1B,ZIORB,ZIOIB,ZKORB,ZKOIB,BI1RB,BI1IB
*,BK1RB,BK1IB)
    CALL BESI(XA,BIOA,BILA)
    CALL BESK(XA,BKOA,BK1A)
    CALL BESI(XB,BIOB,BI1B)
    CALL BESK(XB,BKOB,BKIB)
    DR1=XB*BKOB*BK1RB-ZKORB*BK1B/U1
    DI1 =XB*BKOB*BK1IB - ZKOIB*BK1B/U1
    DR2=ZIORA*BI1A/U1-XA*BIOA*BI1RA
    DI2=ZIOIA*BIIA/U1-XA*BIOA*BI1IA
    DR3 =XA*BIOA*BK1RA +ZKORA*BI1A/U1
    DI3 =XA*BIOA*BK1IA +2KOIA*BI1A/U1
    DR4=ZIORB*BK1B/U1+XB*BKOB*BI1RB
    DI4}=ZIOIB*BK1B/U1+XB*BKOB*BI1IB
    DDR=DR1*DR2-DI1*DI2+DR3*DR4-DI3*DI4
    DDI=DR1*DI2+DR2*DI1+DR 3*DI4+DR4*DI3
    SNR=BK1RB*DR2-BK1IB*DI2+BI1RB*DR3-BI1IB*DI3
    SNI=BK1RB*DI2+BK1IB*DR2+BI1RB*DI 3+BIIIB*DR3
    DEN=DDR*DDR+DDI*DDI
    SSR=((SNR*DDR+SNI*DDI)/DEN-BI1B)/BK1B
    SSI=(SNI*DDR-SNR*DDI)/(BK1B*DEN)
    XFACT=XKR21*DSIN(XL/2.)
    SMIMPR=SMIMPR+8.*XFACT*XFACT*S1(JKL)*SSR/PI
    SMIMPI=SMIMPI+8.*XFACT*XFACT*S1(JKL)*SSI/PI
    DO }89\mathrm{ NR=1,NRT
    RD=(REAL(NR)-0.5)*(RDT/REAL(NRT))
    IF(ISIDE.EQ.1) THEN
```

```
        RD=B+RD
        ELSE
        RD=A-KD
        END IF
        X1R=X1*RD
        Y1R=Y1*RD
        CALL CMDBES(X1R,Y1R,ZIORR,ZIOIR,ZKORR,ZKOIR,BI1RR,BI1IR
        *,BK1RR,BK1IR)
            DNR=BK1RR*DR2-BKIIR*DI2+BIIRR*DR3-BIIIR*DI3
            DNI=BK1IR*DR2+BK1RR*DI2+BI1IR*DR3+BI1RR*DI3
            DFR=(DNR*DDR+DNI*DDI)}/DE
            DFI=(DNI*DDR-DNR*DDI)/DEN
            DO }88\mathrm{ NZ=1,NZT
            ZD=DELTAZ*NZ
            XFACT1=4.*XFACT*DSIN (X*ZD)*DSIN (0.5*X*C)*S1(JKL)/PI
            XFACT2=4.*XFACT*DCOS (X*ZD)*DCOS (0.5*X*C)*S1(JKL)/PI
            SMZDFR1A(NZ,NR)=SMZDFR1A(NZ,NR)+XFACT1*DFR
            SMZDFIIA(NZ,NR)=SMZDFI1A(NZ,NR)+XFACT1*DFI
            SMZDFR2A(NZ,NR)=SMZDFR2A(NZ,NR)+XFACT2*DFR
            SMZDFI2A(NZ,NR)=SMZDFI2A(NZ,NR)+XFACT2*DFI
            8 8 \text { CONTINUE}
            8 9 \text { CONTINUE}
            90 CONTINUE
            B1=B2
            B2=B2+S2 (JKL)
            CHECK=(SMAIR-RI9)/SMAIR
            IF(ABS(CHECK).GT.ERR(JKL)) GO TO 30
    100 CONTINUE
            DO }990\mathrm{ NZ=1,NZT
            ZD=DELTAZ*NZ
            SMZDFR1=0.
            SMZDFIl=0.
            SMZDFR2=0.
            SMZDFI2=0.
            DO 120 NR=1,NRT
            SMZDFR1=SMZDFR1+SMZDFR1A(NZ,NR)
            SMZDFI1=SMZDFI1+SMZDFIIA(NZ,NR)
            SMZDFR2=SMZDFR2+SMZDFR2A(NZ,NR)
            SMZDFI2=SMZDFI2+SMZDFI2A(NZ,NR)
    120 CONTINUE
    SMZDFR1=SMZDFR1/NRT
    SMZDFI1=SMZDFI1/NRT
    SMZDFR2=SMZDFR2/NRT
    SMZDFI2=SMZDFI2/NRT
C WRITE(LOU,*)NZ,SMZDFR1,SMZDFI1
C WRITE(LOU,*)' ',SMZDFR2,SMZDFI2
    DSFR=-1.5*WUSRR*(SMZDFR1*SMZDFR2-SMZDFI1*SMZDFI2)/(SMAIR*PI)
    DSFI=-1.5*WUSRR*(SMZDFR1*SMZDFI2+SMZDFR2*SMZDFI1)/(SMAIR*PI)
    135 Q6=0.0254*4.0E-7*TRN*TRN*R3*PI*PI*SMAIR/(L**(R2-R1))**2
```

```
        ZNIM=SMIMPR/SMAIR+1.0
        ZNRL=-SMIMPI/SMAIR
        ZNDFR=VOLN*DSFR
        ZNDFI=VOLN*DSFI
        IF(NZ.EQ.1) WRITE(LOU,140)ZNRL,ZNIM,Q6
        DFM=VOLN*SQRT(DSFR*DSFR+DSFI*DSFI)
        IF(ZD.EQ.0.0) THEN
        DFP=0.
        ELSE
        DFP=ATAN2(DSFI,DSFR)
        END IF
        CX(NZ)=DFM*COS(DFP)
        CY(NZ)=DFM*SIN(DFP)
        DFP=DFP*(180./PI)
        IF(ABS(CX(NZ)).GT.XMAX) XMAX=ABS(CX(NZ))
        IF(ABS(CY(NZ)).GT.YMAX) YMAX=ABS(CY(NZ))
        IF(DFM.GT.DFMMAX) THEN
        DFMMAX=DFM
        DFPMMAX=DFP
        END IF
    C WRITE(LOD ,162)ZD,DFM,DFP
    990 CONTINUE
        GIM=300. /YMAX
        GRL=300./XMAX
        IF(GIM.GT.GRL) THEN
        GIM=GRL
        ELSE
        GRL=GIM
        END IF
        IM1=GIM*CY(1)+OIM
        IR1=GRL*CX(1)+ORL
C WRITE(LOU,150)ZNDFR,ZNDFI,DFM,DFP
    WRITE(LOU, 160)DSFR, DSFI, VOLN
    WRITE(LOU,164)DFMMAX,DFPMMAX
    IF(ISIDE.EQ.1) THEN
    WRITE(LOU,*)' OD DEFECT'
    ELSE
    WRITE(LOU,*)' ID DEFECT'
    END IF
    DO 1000 NZ=2,NZT
    IM2=GIM*CY(NZ)+OIM
    IR2=GRL*CX(NZ)+ORL
    CALL QLINE(IR1,IM1,IR2,IM2,15).
    IR1=IR2
    IM1=IM2
1000 CONTINUE
    WRITE(LOU,*)
    WRITE(LOU,*)
    CALL PRTSC
    WRITE(LOU,*)FF
```

GO TO 11
140 FORMAT(' NORM IMPD: $\mathrm{R} \bar{L}^{\prime}, F 10.6,^{\prime} \mathrm{IM}^{\prime}$, F10.6, *' AIR IND',1PE13.6)
C 150 FORMAT(' NORM CHG:RL ',OPF10.6,' IM',0PF10.6,
C ${ }^{\prime \prime}$ MAG',OPF10.6,' PHA ',OPF7.2)
160 FORMAT(' NORM DSF:RL',1PE11.4,' IM',1PE11.4,' VOLN',1PE11.4)
161 FORMAT(' ZD MAG PHA')
162 FORMAT(F6.3,5X,D11.4,5X,D11.4)
164 FORMAT(' MAXIMUM MAG ', D11.4,' PHA AT MAX MAG ', F7.2,
)
1001 END

The following is a collection of subroutines that are used by many of the programs. Rather than list them every time with each program, they are collected here. A more detailed description of these routines is given in other reports. ${ }^{4-6}$

Subroutine BESO(XJOR,R)

Subroutine BESO calculates $J_{0}(r)$, the Bessel function of the first kind of order 0. It is called by program PCBLDF.

Input

$R \quad$ The argument of the function.

Output
XJOR The function $J_{0}(r)$

Listing

```
            SUBROUTINE BESO(XJOR,R)
C PROGRAM TO CALCULATE JO(R)
            IMPLICIT REAL*8 (A-H,O-Z)
            IF(R.GT.3.0)GO TO 50
            Y=R*R/9.0
            XJOR=((() (.00021*Y-.0039444)*Y+.0444479)*Y-. 3163866)
            1*Y+1.2656208)*Y-2.2499997)*Y+1.0
            GO TO 10n
        50 Y=3/R
            FO=(((().00014476*Y-.00072805)*Y+.00137237)*Y . .00009512)
            1*Y-.00552740)*Y-.00000077)*Y+.79788456
            ANG=(((().00013558*Y-.00029333)*Y-.00054125)*Y+.00262573)
            1*Y-.00003954)*Y-.04166397)*Y-. 78539816+R
            XJOR=FO*COS (ANG)/SQRT(R)
    100 RETURN
    END
```


Subroutine BESEL1(Q1,RJ1)

Subroutine BESEL1 calculates $J_{1}(r)$, the Bessel function of the first kind of order 1. It is called by programs PCDSF and PCAVZSCN.

Input
Q1 The argument of the function
Output

RJ1 The function $J_{1}(r)$

Listing

SUBROUTINE BESELI (Q1,RJ1)
C
C VERSION 7 DEC 1982 CALCULATES J1(Q1) TO WITHIN 4E-8
C
IMPLICIT REAL*8 (A-H,O-Z)
IF (Q1.GT.3) GO TO 20
$\mathrm{Q} 1 \mathrm{~S}=\mathrm{Q} 1 * \mathrm{Q} 1$
$\mathrm{Q} 2 \mathrm{~S}=((2.1 \mathrm{E}-11 * \mathrm{Q} 1 \mathrm{~S}-5.38 \mathrm{E}-9) * \mathrm{Q} 1 \mathrm{~S}+6.757 \mathrm{E}-7) * \mathrm{Q} 1 \mathrm{~S}-5.42443 \mathrm{E}-5$
$\mathrm{Q} 2 \mathrm{~S}=((\mathrm{Q} 2 \mathrm{~S} * \mathrm{Q} 1 \mathrm{~S}+2.60415 \mathrm{E}-3) * \mathrm{Q} 1 \mathrm{~S}-6.25 \mathrm{E}-2) * \mathrm{Q} 1 \mathrm{~S}+.5$
RJ1=Q1*Q2S
RETURN
$20 \mathrm{Q} 3 \mathrm{~S}=(((-.14604057 / \mathrm{Q} 1+.27617679) / \mathrm{Q} 1-.20210391) / \mathrm{Q} 1+4.61835 \mathrm{E}-3) / \mathrm{Q} 1$
$\mathrm{Q} 3 \mathrm{~S}=((\mathrm{Q} 3 \mathrm{~S}+.14937) / \mathrm{Q} 1+4.68 \mathrm{E}-6) / \mathrm{Q} 1+.79788456$
$\mathrm{Q} 4 \mathrm{~S}=(((-.21262014 / \mathrm{Q} 1+.19397232) / \mathrm{Q} 1+6.022188 \mathrm{E}-2) / \mathrm{Q} 1-.17222733) / \mathrm{Q} 1$
$\mathrm{Q} 4 \mathrm{~S}=((\mathrm{Q} 4 \mathrm{~S}+5.085 \mathrm{E}-4) / \mathrm{Q} 1+.37498836) / \mathrm{Q} 1-2.35619449+\mathrm{Q} 1$
RJ1=Q3S*DCOS (Q4S)/DSQRT (Q1)
RETURN
END

Subroutine BESI(X,XIZRO,XIONE)

Subroutine BESI calculates $I_{0}(x)$ and $I_{1}(x)$ where I_{0} is the modified Bessel function of the first kind of order 0 , and I_{1} is the modified Bessel function of the first kind of order 1.

Input

$X \quad$ The argument of the functions
Output

$$
\begin{array}{ll}
\text { XKZRO } & I_{0}(x) \\
\text { XKONE } & I_{1}(x)
\end{array}
$$

Listing

SUBROUTINE BESI (X, XIZRO, XIONE)

C
C (J. M. BLAIR, AECL-4928, OCT. 1974)
C TABLE 13, P. 12 (IO(X), X .LE. 15)
C
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DATA P0, P1, P2, P3, P4, P5, P6, P7, P8, P9/
$1.137394871 \mathrm{E} 12, .335834006 \mathrm{E} 11, .195725233 \mathrm{E} 10, .481197766 \mathrm{E} 08$, $2.627000932 \mathrm{E} 06, .487113418 \mathrm{E} 04, .240359483 \mathrm{E} 02, .773737707 \mathrm{E}-1$, 3 . 157463530E-3, . 193496966E-6/

DATA Q0, Q1, Q2, Q3/
1 . $346485713 \mathrm{E} 11,-.229970736 \mathrm{E} 09, .693700416 \mathrm{E} 06,-.116950647 \mathrm{E} 04 /$
C
C

C
TABLE 29, P. 22 (I1(X), X .LE. 15)
DATA R0, R1, R2, R3, R4, R5, R6, R7, R8, R9/
1-. 130304539E09,-.157394690E08,-.610953810E06, -.113886320E05, 2-. 121620389E03, -. 819523728E00, -. 367341959E-2,-.113297426E-4, 3-. 226143979E-7, -. 340950565E-10/ DATA S0, S1, S2/
1-.893665937E08, .475582653E06,-. $104386692 \mathrm{E} 04 /$
C
C TABLE 43, P. 32 (I0(X), X .GT. 15)
C
DATA T0, T1, T2/
1 . $468486946 \mathrm{E} 00,-.117012345 \mathrm{E} 01, .278005347 \mathrm{E} 00 /$
DATA U0, U1/
1 . $116422863 \mathrm{E} 01,-.306426483 \mathrm{E} 01 /$
C
C TABLE 61, P. 43 ($\mathrm{II}(\mathrm{X}), \mathrm{X}$.GT. 15)
C
DATA VO, V1, V2/

```
        1 .106280324E01,-.267327163E01, .113698557E01/
        DATA W0, W1/
        1 .273391652E01,-.577627341E01/
        IF (X .GT. 15.) GO TO 100
        Z = X**2
        Q = Z - 225.
        XI'ZRO = (P0 + Z*(P1 + Z*(P2 + Z*(P3 + Z*(P4 + Z*(P5 + Z*(P6 +
    1 Z*(P7 + Z*(P8 + Z*P9)))))))))/(Q0 + Q*(Q1 + Q*(Q2 + Q*(Q3 + Q))))
        XIONE = X**(R0 + Z**(R1 + Z* (R2 + Z*(R3 + Z* (R4 + Z*(R5 + Z*(R6 +
    1 Z*(R7 + Z*(R8 + Z*R9)))))))))/(S0 + Q*(S1 + Q*(S2 + Q)))
        RETURN
        Z = 1./X
        Q = DSQRT(Z)*DEXP(X)
        z= Z - .0666666667
        XIZRO = Q*(T0 + Z*(T1 + Z*T2) )/(U0 + Z*(U1 + Z))
        XIONE = Q*(VO + Z*(V1 + Z*V2))/(WO + Z*(W1 + Z))
        RETURN
        END
```

Subroutine BESK(X,XKZRO,XKONE)

Subroutine BESK calculates $K_{0}(x)$ and $K_{1}(x)$ where K_{0} is the modified Bessel function of the second kind of order 0 , and K_{1} is the modified Bessel function of the second kind of order 1.

Input
X
The argument of the functions
Output

XKZRO	$K_{0}(x)$
XKONE	$K_{1}(x)$

Listing
SUBROUTINE BESK (X, XKZRO, XKONE)

IMPLICIT REAL*8 (A-H,O-Z)
DATA Q0 /-4.21100684E1/
DATA P0, P1, P2, P3, P4 /1.15931516E-1, 2.78982863E-1,
$1 \quad 2.52490595 \mathrm{E}-2,8.45673143 \mathrm{E}-4,1.53265946 \mathrm{E}-5 /$
DATA R0, R1, R2 /1.29684595E+1, 3.28698873E00,
$1 \quad 1.10173127 \mathrm{E}-1 /$
DATA V0, V1, V2, V3 /1.16185714E+2, 3.92399581E+2,
$13.09123840 \mathrm{E}+2,4.78236536 \mathrm{E}+1 /$
DATA S0, S1, S2, S3 $/ 9.27027874 \mathrm{E}+1, \quad 3.24677382 \mathrm{E}+2$,
$1 \quad 2.80713014 \mathrm{E}+2,5.71852878 \mathrm{E}+1 /$
DATA T0, T1, T2, T3, T4 /4.35972688E00, $1.50242580 \mathrm{E}+1$,
$1 \quad 1.38870631 \mathrm{E}+1,3.64579096 \mathrm{E} 00,1.31176117 \mathrm{E}-1 /$
DATA U0, U1, U2 /3.47855876E00, $1.06831663 \mathrm{E}+1$,
1 7.48163646E00/
IF (X .GT. 1.) GO TO 100
CALL BESI (X, XIZRO, XIONE)
ZLOG $=$ DLOC (X)
Z $=\mathrm{X} * \mathrm{X}$
XKZRO $=\mathrm{PO}+\mathrm{Z} *(\mathrm{P} 1+\mathrm{Z} *(\mathrm{P} 2+\mathrm{Z} *(\mathrm{P} 3+\mathrm{Z} \times \mathrm{P} 4)))-\mathrm{ZLOG} \times$ XIZRO
$\mathrm{XKONE}=((\mathrm{RO}+\mathrm{Z} *(\mathrm{R} 1+\mathrm{Z} * \mathrm{R} 2)) /(\mathrm{QO}+\mathrm{Z})) * \mathrm{X}+\mathrm{ZLOG} * \mathrm{XIONE}+1 . / \mathrm{X}$
RETURN
$100 \mathrm{Z}=1 . / \mathrm{X}$
SXEX $=\operatorname{DSQRT}(Z) * \operatorname{DEXP}(-X)$
XKZRO $=$ SXEX*(V0 + Z*(V1 1 Z*(V2 $+\mathrm{Z} * \mathrm{~V} 3))$)/
$1(\mathrm{~S} 0+\mathrm{Z} *(\mathrm{~S} 1+\mathrm{Z} *(\mathrm{~S} 2+\mathrm{Z*}(\mathrm{~S} 3+\mathrm{Z}))))$
XKONE $=$ SXEX* $(\mathrm{T} 0+\mathrm{Z} *(\mathrm{~T} 1+\mathrm{Z} *(\mathrm{~T} 2+\mathrm{Z} *(\mathrm{~T} 3+\mathrm{Z} * \mathrm{~T} 4)))) /$
1 ($\mathrm{U} 0+\mathrm{Z} *(\mathrm{Ul}+\mathrm{Z} *(\mathrm{U} 2+\mathrm{Z}))$)
RETURN
END

Subroutine BESSEL(XJ1,X,R)

Subroutine BESSEL calculates

$$
\frac{1}{\alpha^{3}} J\left(r_{1}, 0\right)=\frac{1}{\alpha^{3}} \int_{0}^{r_{1}} \alpha r J_{1}(\alpha r) d r
$$

where J_{1} is the Bessel function of the first kind of order 1. It is called by programs PCBLDF, PCDSF, and PCAVZSCN.

Input

X	α in the above equation
R	r_{1} in the above equation

Output

XJ1
The right side of the above equation

Listing

SUBROUTINE BESSEL(XJI, X,R)
C CALCULATES INT (XR*XJI (XR) $/(X * \dot{X} * X)$ FROM 0 TO XR
IMPLICIT REAL*8 (A-H,O-Z)
DATA PIO4/.785398163/
$\mathrm{Z}=\mathrm{X} * \mathrm{R}$
IF(Z.GT.5.0) GO TO 1090
$\mathrm{L} 5=2.0 * \mathrm{Z}+3.0$
$\mathrm{Fl}=0.5 * \mathrm{R} * \mathrm{R} * \mathrm{R}$
$\mathrm{XJ} 1=\mathrm{F} 1 / 3.0$
DO $1070 \mathrm{~N}=1, \mathrm{~L} 5$
$\mathrm{RN}=\mathrm{N}$
$\mathrm{F} 1=-\mathrm{F} 1 * .25 * \mathrm{Z} * \mathrm{Z} /(\mathrm{RN} * \mathrm{RN}+\mathrm{RN})$)
$1070 \mathrm{XJl}=\mathrm{XJ} 1+\mathrm{F} 1 /(2.0 * \mathrm{RN}+3.0)$
GO TO 1210
1090 IF (Z.GT. 30.0) GO TO 1160
Q1=(($-188.1357 / Z+109.1142) / Z-23.793333) / Z+2.050931) / Z$
Q1=($\mathrm{Q} 1-.1730503) / Z+.7034845) / Z-.064109 \mathrm{E}-3$
Q2 $=(((-5.817517 / Z+2.105874) / / Z-.6896196) / Z+.4952024) / Z$
$\mathrm{Q} 2=(\mathrm{Q} 2-.187344 \mathrm{E}-2) / \mathrm{Z}+.7979 .095$
$\mathrm{XJ} 1=(1.0-\operatorname{DSQRT}(\mathrm{Z}) *(\mathrm{Q} 2 * \operatorname{DCOS}(\mathrm{Z}-\mathrm{PIO4})-\mathrm{Q} 1 * \operatorname{DSIN}(\mathrm{Z}-\mathrm{PIO} 4))) /(\mathrm{X} * \mathrm{X} * \mathrm{X})$
GO TO 1210
1160 P3=1.0/(Z*Z)
$\mathrm{P} 1=\mathrm{Z} *(-1.0+\mathrm{P} 3 *(-.5546875+2.48062114 * * \mathrm{P} 3))$
$\mathrm{P} 2=.875+\mathrm{P} 3 *(-.93457031+8.98975114 \times \mathrm{P} 3)$
XJ1 $=1.0+.79788456 *(\mathrm{P} 1 * \operatorname{DCOS}(\mathrm{Z}-.78539816)$
8 +P2*DSIN(Z-.78539816))/DSQRT(Z)
$\mathrm{XJ} 1=\mathrm{XJ} 1 /(\mathrm{X} * \mathrm{X} * \mathrm{X})$
1210 RETURN
END

Subroutine CMDBES(X,Y,ZIOR,ZIOI,ZKOR,ZKOI,BI1R,BIII,BK1R,BK1I)

Subroutine CMDBES calculates the following four quantities: $z I_{0}(z)$, $z K_{0}(z), I_{1}(z)$, and $K_{1}(z)$, where z is a complex number and where I_{0} is the modified Bessel function of the first kind of order $0, K_{0}$ is the modified Bessel function of the second kind of order $0, I_{\text {, }}$ is the modified Bessel function of the first kind of order 1 , and K_{0} is the modified Bessel function of the second kind of order 1 .

Input

X	$\operatorname{Re}(z)$
Y	$\operatorname{Im}(z)$

Output

ZIOI	$\operatorname{Im}\left[z I_{0}(z)\right]$
ZIOR	$\operatorname{Re}\left[z I_{0}(z)\right]$
ZKOI	$\operatorname{Im}\left[z K_{0}(z)\right]$
ZKOR	$\operatorname{Re}\left[z K_{0}(z)\right]$
BI1I	$\operatorname{Im}\left[I_{i}(z)\right]$
BI1R	$\operatorname{Re}\left[I_{i}(z)\right]$
BK1I	$\operatorname{Im}\left[K_{1}(z)\right]$
BK1R	$\operatorname{Re}\left[K_{1}(z)\right]$

Listing

SUBROUTINE CMDBES (X,Y,ZIOR,ZIOI,ZKOR,ZKOI,BI1R,BI1I,BK1R,BK1I)
C

C
C
COMPUTES $F(1)+J * F(2)=Z * I 0(Z)$
$F(3)+J * F(4)=Z * K 0(Z)$
$F(5)+J * F(6)=I 1(Z)$
$F(7)+J * F(8)=K 1(Z)$
OF THE COMPLEX ARGUMENT $Z=X+J * Y$
C
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION $\mathrm{F}(8)$
$\mathrm{R}=\mathrm{DSQRT}(\mathrm{X} * \mathrm{X}+\mathrm{Y} * \mathrm{Y})$
$\mathrm{Cl}=\mathrm{X} / \mathrm{R}$
Sl=Y/R
PHI=DATAN(S1/C1)
IF(R.GT.8.0) GO TO 100
C FOR R.LE. 8 USE RATIONAL APPROXIMATION FOR K0(Z) AND K1(Z)
C AND BACKWARD RECURRENCE FOR IO(Z) AND II(Z)
CALL COMKB(X,Y,ZKOR,ZKOI,BK1R,BK1I)
CALL CMI (X,Y,ZIOR,ZIOI,BI1R,BI1I)
GO TO 125

C
C ASYMPTOTIC SERIES FOR R.GT. 8
©
$100 \quad F(2)=0$.
$F(4)=0$.
$F(6)=0$.
$F(8)=0$.
$F(1)=1.0$
$F(3)=1.0$
$F(5)=1.0$
$F(7)=1.0$
ODD=1.0
$\mathrm{T}=1.0$
$\mathrm{U}=1.0$
$\mathrm{P}=1.0$
SIGN=-1.0
$\mathrm{V}=.1250 / \mathrm{R}$
$C=C 1$
$\mathrm{S}=\mathrm{S} 1$
$\mathrm{L} 5=3+20 . / \mathrm{R}$
DO $110 \mathrm{~N}=1$, L5
SG $=-O D D * O D D$
S7=V/P
$\mathrm{T}=\mathrm{S} 7 * \mathrm{~S} 6 * \mathrm{~T}$
$\mathrm{U}=\mathrm{U} *(4.0+\mathrm{S} 6) * \mathrm{~S} 7$
$\mathrm{T} 1=\mathrm{C} * \mathrm{~T}$
$F(1)=T 1 * S I G N+F(1)$
$\mathrm{F}(3)=\mathrm{T} 1+\mathrm{F}(3)$
$\mathrm{T} 1=-\mathrm{S} \times \mathrm{T}$
$F(2)=T 1 * S I G N+F(2)$
F(4) $=\mathrm{T} 1+\mathrm{F}(4)$
$\mathrm{Tl}=\mathrm{C} * \mathrm{U}$
$\mathrm{F}(5)=\mathrm{T} 1 *$ SIGN+F(5)
$F(7)=T 1+F(7)$
$\mathrm{T} 1=-\mathrm{S} * \mathrm{U}$
$F(6)=T 1 * S I G N+F(6)$
$\mathrm{F}(8)=\mathrm{T} 1+\mathrm{F}(8)$
SIGN $=-$ SIGN
$\mathrm{P}=\mathrm{P}+1.0$
ODD=ODD+2. 0
$\mathrm{C} 2=\mathrm{C} * \mathrm{C} 1-\mathrm{S} * \mathrm{~S} 1$
$\mathrm{S}=\mathrm{S} * \mathrm{C} 1+\mathrm{C} * \mathrm{~S} 1$
$\mathrm{C}=\mathrm{C} 2$
110 CONTINUE
XLIM=175.
IF (DABS (X).GT.XLIM) GO TO 140
S6=DEXP (X)
S7=1. D0/S6
T1=DSQRT (R)
S6=.39894228*S6/T1
S7=1.25331413*S7/T1

C
C C

DO $120 \mathrm{~N}=1,5,4$
$\mathrm{T}=\mathrm{F}(\mathrm{N}) * \mathrm{C}-\mathrm{F}(\mathrm{N}+1) * \mathrm{~S}$
$\mathrm{F}(\mathrm{N}+1)=\mathrm{S} 6 *(\mathrm{~F}(\mathrm{~N}+1) * \mathrm{C}+\mathrm{F}(\mathrm{N}) * \mathrm{~S})$
$\mathrm{F}(\mathrm{N})=\mathrm{T} * \mathrm{~S} 6$
$\mathrm{T}=\mathrm{F}(\mathrm{N}+2) * \mathrm{C}+\mathrm{F}(\mathrm{N}+3) * \mathrm{~S}$
$\mathrm{F}(\mathrm{N}+3)=\mathrm{S} 7 *(\mathrm{~F}(\mathrm{~N}+3) * \mathrm{C}-\mathrm{F}(\mathrm{N}+2) * \mathrm{~S})$
$\mathrm{F}(\mathrm{N}+2)=\mathrm{T} * \mathrm{~S} 7$
120 CONTINUE
ZIOR=F(1)
ZIOI=F (2)
ZKOR=F (3)
ZKOI=F(4)
BIIR=F(5)
BIII $=\mathrm{F}$ (6)
BK1R=F(7)
BK1I $=F(8)$
C
C
$125 \mathrm{~T}=\mathrm{X} *$ ZIOR $-\mathrm{Y} *$ ZIOI
ZIOI $=$ ZIOR $* Y+$ ZIOI $* X$
ZIOR=T
$\mathrm{T}=\mathrm{X} * \mathrm{ZKOR}-\mathrm{Y} * \mathrm{ZKOI}$
ZKOI $=$ ZKOR $* Y+$ ZKOI $* X$
ZKOR=T
140 RETURN
END
C
 SUBROUTINE CMI (X,Y, BIZR, BIZI, BIOR, BIOI)

C
FRE(N+2)=0.
FIM(N+2)=0.
SRE=A
FRE(N+1)=A
SIM=B
FIM(N+1)=B
XN=FLOAT(N)
TNUOZR =XN*U
TNUOZI=XN*V
NU=N+1
C
C
C
DO 135 K=1,N
FRE(NU-1)=FRE(NU+1)+TNUOZR*FRE(NU)-TNUOZI*FIM(NU)
SREmFRE(NU 1)+ERE
FIM(NU-1)=FIM(NU+1)+TNUOZR*FIM(NU)+TNUOZI*FRE(NU)
SIM=FIM(NU-1)+SIM
NU=NU-1
TNUOZR=TNUOZR-U
TNUOZI=TNUOZI-V
135 CONTINUE
C
C
C
SRE=SRE+SRE-FRE(1)
SIM=SIM+SIM-FIM(1)
T1=SIM/SRE
U1=1./(T1*SIM+SRE)
V1=-U1*T1

```

C

\section*{NORMALIZE}
\(\mathrm{EX}=\mathrm{DEXP}(\mathrm{X})\)
\(S Y=D S I N(Y)\)
\(C Y=D C O S(Y)\)
FANRE \(=E X *(C Y * U 1-S Y * V 1)\)
\(F A N I M=E X *(C Y * V 1+S Y * U 1)\)
BIZR \(=\) FANRE \(*\) FRE (1) -FANIM \(*\) FIM (1)
BIZI \(=\) FANRE \(*\) FIM (1) +FANIM \(*\) FRE (1)
BIOR=FANRE*FRE (2) - FANIM \(*\) FIM (2)
BIOI \(=\) FANRE \(*\) FIM (2) +FANIM \(*\) FRE (2)
337 RETURN
END

SUBROUTINE COMKB (X, Y, BKZR, BKZI, BKOR, BKOI)

COMPUTES THE REAL \& IMAGINARY PARTS OF THE MODIFIED BESSEL FUNCTIONS \(\mathrm{KO}(\mathrm{Z}) \& \mathrm{~K} 1(\mathrm{Z})\), WHERE \(\mathrm{Z}=\mathrm{X}+\mathrm{I} * \mathrm{Y}\), BY THE METHOD OF Y.L. LUKE, THE SPECIAL FUNCTIONS AND THEIR APPROXIMATIONS, VOL.2, PG. 229.

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION P1ZE(16), P2ZE(16), P3ZE(16), Q1ZE(16)
DIMENSION P1ON(16), P2ON(16), P3ON(16), Q1ON(16)
DIMENSION RTEST(5), NTEST(5)
DATA PIZE \(/ 3 * 0.0\)
\(1 \quad,-1.59863946,-1.91851852,-2.11452184\)
\(2 \quad,-2.24917817,-2.34787879,-2.42347618\)
\(3 \quad,-2.48328717,-2.53181273,-2.57198289\)
\(4 \quad,-2.60579048,-2.63463947,-2.65954816\)
\(5 \quad,-2.68127340 /\)
DATA P2ZE \(/ 3 * 0.0\)
1 , .632653061, 1.07407407, 1.38016529
\(2 \quad, 1.6035503,1.77333333,1.90657439\)
\(3 \quad, 2.01385042,2.10204082,2.17580340\)
\(4 \quad, 2.2384,2.29218107,2.33888228\)
5 , 2.379812\%/
DATA P3ZE \(/ 3 * 0.0\)
\(1 \quad,-3.40136054 \mathrm{E}-02,-1.55555556 \mathrm{E}-01,-2.65643447 \mathrm{E}-01\)
\(2 \quad,-3.54372124 \mathrm{E}-01,-4.25454545 \mathrm{E}-01,-4.83098217 \mathrm{E}-01\)
\(3 \quad,-5.3056325 \mathrm{E}-01,-5.70228091 \mathrm{E}-01,-6.03820515 \mathrm{E}-01\)
\(4 \quad,-6.32609524 \mathrm{E}-01,-6.575416 \mathrm{E}-01,-6.79334126 \mathrm{E}-01\)
\(5 \quad,-6.9853933 \mathrm{E}-01 /\)
DATA Q1ZE \(/ 3 * 0.0\)
\(1 \quad, 1.63265306,1.38271605,1.19008264\)
\(2 \quad, 1.04142012,9.24444444 \mathrm{E}-01,8.30449827 \mathrm{E}-01\)
\(3 \quad, 7.53462604 \mathrm{E}-01,6.89342404 \mathrm{E}-01,6.35160681 \mathrm{E}-01\)
\(4 \quad, 5.888 \mathrm{E}-01,5.48696845 \mathrm{E}-01,5.13674197 \mathrm{E}-01\)
\(5 \quad, 4.82830385 \mathrm{E}-01 /\)

DATA P1ON \(/ 3 * 0.0\)
\(1 \quad,-1.888888889,-2.09090909,-2.23076923\)
\(2 \quad,-2.33333333,-2.41176471,-2.47368421\)
\(3 \quad,-2.52380952,-2.56521739,-2.6\)
\(4 \quad,-2.62962963,-2.65517241,-2.67741935\)
5 ,-2.6969697/
DATA P2ON \(/ 3 * 0.0\)
\(1 \quad, 7.77777778 \mathrm{E}-01,1.18181818,1.46153846\)
\(2 \quad, 1.66666667,1.82352941,1.94736842\)
\(3 \quad, 2.04761905,2.13043478,2.2\)
\(4 \quad, 2.25925926,2.31034483,2.35483871\)
5 , 2.39393939/
DATA P3ON \(/ 3 * 0.0\)
\(1 \quad, 1.11111111 \mathrm{E}-01,-9.09090909 \mathrm{E}-02,-2.30769231 \mathrm{E}-01\)
\(2,-3.33333333 \mathrm{E}-01,-4.11764706 \mathrm{E}-01,-4.73684211 \mathrm{E}-01\)
\(3 \quad,-5.23809524 \mathrm{E}-01,-5.65217391 \mathrm{E}-01,-.6\)
\(4 \quad,-6.2962963 \mathrm{E}-01,-6.55172414 \mathrm{E}-01,-6.77419355 \mathrm{E}-01\)
\(5 \quad,-6.96969697 \mathrm{E}-01 /\)
DATA Q1ON \(/ 3 * 0.0\)
\(1 \quad, 1.77777778,1.45454545,1.23076923\)
\(2 \quad, 1.06666667 \mathrm{E} 00,9.41176471 \mathrm{E}-01,8.42105263 \mathrm{E}-01\)
\(3 \quad, 7.61904762 \mathrm{E}-01,6.95652174 \mathrm{E}-01, .64\).
\(4 \quad, 5.92592593 \mathrm{E}-01,5.51724138 \mathrm{E}-01,5.16129032 \mathrm{E}-01\)
\(5 \quad, 4.84848485 \mathrm{E}-01 /\)
DATA C/1.25331414/
DATA RTEST/ 1., 4., 16., 36., 64./
DATA NTEST/ \(15,10,10,6,6 /\)
FTND NTERM, THE NTMBER OF TEBMS
We assume the argument has been checked to insure that r.le. 8
RSQ \(=\mathrm{X} * * 2+\mathrm{Y} * * 2\)
DO \(100 \mathrm{I}=2,5\)
IT = I - 1
IF (RSQ .LT. RTEST(I) ) GO TO 105
100 CONTINUE
105 NTERM \(=\) NTEST(IT)
C INITIALIZE FK-1, FK-2, AND FK-3 FOR N-0 AND N=1
C
FKM3RZ \(=1.0\)
FKM3RO \(=1.0\)
PKM3RZ \(=1.0\)
PKM3RO \(=1.0\)
FKM3IZ \(=0.0\)
FKM3IO \(=0.0\)
PKM3IZ \(=0.0\)
PKM3IO \(=0.0\)
\(\mathrm{HX}=\mathrm{X} * 16.0\)
FKM2RZ \(=(H X+9.0) / 9.0\)
PKM2RZ \(=(H X+7.0) / 9.0\)
\(\mathrm{FX}=\mathrm{X} * 3.20\)
FKM2RO \(=F X+1.0\)
PKM2RO \(=\) FKM2RO +1.20
FKM2IO \(=\mathrm{Y} * 3.20\)
PKM2IO \(=\) FKM2IO
\(\mathrm{HY}=\mathrm{Y} * 16.0\)
FKM2IZ \(=\mathrm{HY} / 9.0\)
PKM2IZ = FKM2IZ
HYS \(=\mathrm{HY} * * 2\)
\(T=H X+25.0\)
FKM1RZ \(=(H X * T+75.0-H Y S) / 75.0\)
FKM1IZ \(=\mathrm{HY} *(\mathrm{HX}+\mathrm{T}) / 75.0\)
\(T=H X+23.0\)
PKMIRZ \(=(H X * T+43.0-H Y S) / 75.0\)
PKM1IZ \(=\mathrm{HY} *(\mathrm{HX}+\mathrm{T}) / 75.0\)
\(T=H X+21.0\)
FKM1RO \(=(\mathrm{HX} * T+35.0-\mathrm{HYS}) / 35.0\)
FKM1IO \(=\mathrm{HY} *(\mathrm{HX}+\mathrm{T}) / 35.0\)
\(T=H X+27.0\)
PKM1RO \(=(H X * T+131.0-H Y S) / 35.0\)
PKM1IO \(=\mathrm{HY} *(\mathrm{HX}+\mathrm{T}) / 35.0\)
C BEGIN RECURRENCE
DO \(110 \mathrm{~K}=3\), NTERM
\(\mathrm{KP1}=\mathrm{K}+1\)
CALCULATIONS OF FKRZ, FKIZ, PKRZ, AND PKIZ FOR \(N=0\)
\(\mathrm{Pl}=\mathrm{PlZE}(\mathrm{KP1})\)
\(\mathrm{P} 2=\mathrm{P} 2 \mathrm{ZE}(\mathrm{KP} 1)\)
\(\mathrm{P} 3=\mathrm{P} 32 \mathrm{E}(\mathrm{KP} 1)\)
\(\mathrm{Q} 1=\mathrm{Q} 12 \mathrm{E}(\mathrm{KP} 1)\)
\(\mathrm{HX}=\mathrm{Q} 1 * \mathrm{X}\)
\(\mathrm{HY}=\mathrm{Q} 1 \times \mathrm{Y}\)
\(\mathrm{Tl}=\mathrm{FKM1RZ}+\mathrm{FKM2RZ}\)
T2 \(=\) FKM1IZ + FKM2IZ
FKRZ \(=\mathrm{HX} * \mathrm{~T} 1-\mathrm{P} 1 * \mathrm{FKM1RZ}-\mathrm{P} 2 * \mathrm{FKM2RZ}-\mathrm{HY} * T 2\) - P3*FKM3RZ
FKIZ \(=\mathrm{HX} * \mathrm{~T} 2-\mathrm{P} 1 * \mathrm{FKM1IZ}-\mathrm{P} 2 *\) FKM2IZ \(+\mathrm{HY} * \mathrm{~T} 1-\mathrm{P} 3 * \mathrm{FKM} 3 \mathrm{IZ}\)
FKM3RZ \(=\) FKM2RZ
FKM2RZ \(=\) FKM1RZ
FKM1RZ \(=\) FKRZ
FKM3IZ \(=\) FKM2IZ
FKM2IZ \(=\) FKM1IZ
FKM1IZ \(=\) FKIZ
T1 \(=\) PKM1RZ + PKM2RZ
\(\mathrm{T} 2=\mathrm{PKM1IZ}+\mathrm{PKM} 2 \mathrm{IZ}\)
\(\mathrm{PKRZ}=\mathrm{HX} * \mathrm{~T} 1-\mathrm{P} 1 * \mathrm{PKM1RZ}-\mathrm{P} 2 * \mathrm{PKM} 2 \mathrm{RZ}-\mathrm{HY} * \mathrm{~T} 2-\mathrm{P} 3 * \mathrm{PKM} 3 \mathrm{RZ}\)
PKIZ = HX*T2 - P1*PKM1IZ - P2*PKM2IZ + HY*T1 - P3*PKM3IZ
PKM3RZ \(=\) PKM2RZ
PKM2RZ \(=\) PKM1RZ
```

 PKM1RZ = PKRZ
 PKM3T7 = PKM2IZ
 PKM2IZ = PKMLITZ
 PKMIIZ = PKIZ
    ```
```

 CALCULATIONS OF FKRO, FKIO, PKRO, AND PKIO FOR N = 1
 P1 = P1ON(KP1)
 P2 = P2ON(KP1)
 P3 = P3ON(KP1)
 Q1 = Q1ON(KP1)
 HX = Q1*X
 HY = Q1*Y
 T1 = FKM1RO + FKM2RO
 T2 = FKM1IO + FKM2IO
 FKRO = HX*T1 - P1*FKM1RO - P2*FKM2RO - HY*T2 - P3*FKM3RO
 FKIO = HX*T2 - P1*FKM1IO - P2*FKM2IO + HY*T1 - P3*FKM3IO
 FKM3RO = FKM2RO
 FKM2RO = FKM1RO
 FKM1RO = FKRO
 FKM3IO = FKM2IO
 FKM2IO = FKM1IO
 FKM1IO = FKIO
 T1 = PKM1RO + PKM2RO
 T2 = PKM1IO + PKM2IO
 PKRO = HX*T1 - P1*PKM1RO - P2*PKM2RO - HY*T2 - P3*PKM3RO
 PKIO = HX*T2 - P1*PKM1IO - P2*PKM2IO + HY*T1 - P3*PKM3IO
 PKM3RO - FKM2RO
 PKM2RO = PKM1RO
 PKM1RO = PKRO
 PKM3IO = PKM2IO
 PKM2IO = PKM1IO
 PKM1IO = PKIO
 CONTINUE
 EVALUATE CONSTANT TERM FOR K0(Z) AND K1(Z)
 C IS SQUARE ROOT OF PI/2
 X2 = - X
 EMX = DEXP(X2)
 RATYX = DABS (Y/X)
 IF (RATYX .GT. 1.E-3) D = DSQRT(RSQ)
 IF ((1.E-8 .LT. RATYX) .AND. (RATYX .LT. 1.E-3)) D =
 * DABS (X) * (1. + 1./2. *RATYX*RATYX)
 IF (1, E-8,GE,RATYX) D=DABS (X)
 C2 = EMX*C/D
 SR= DCOS(Y)
 TI = - DSIN(Y)
 IF(Y.NE.0.0) GO TO }12
 IF(X.GE.0.0) GO TO 115
 HI = DSQRT(X2)
    ```
```

 GR=0.0
 GO TO 125
 115 GR = DSQRT(X)
 HI = 0.DO
 GO TO 125
 120 GR = DSQRT((X + D)*.5)
 HI = DSQRT((X2 + D)*.5)
 IF(Y.LT.0.0)GO TO 125
 HI=-HI
 125 AR = C2*(GR*SR - HI*TI)
 BI = C2*(HI*SR + GR*TI)
 C
C CALCULATE KO(Z) = BKZR + BKZI*I
C
DEN = FKRZ**2 + FKIZ**2
UR = (PKRZ*FKRZ + PKIZ*FKIZ)/DEN
VI = (PKIZ*FKRZ - PKRZ*FKIZ)/DEN
BKZR = AR*UR - BI*VI
BKZI = BI*UR + AR*VI
C
C CALCULATE KI(Z) = BKOR + BKOI*I
C
DEN = FKRO**2 + FKIO**2
UR = (PKRO*FKRO + PKIO*FKIO)/DEN
VI = (PKIO*FKRO - PKRO*FKIO)/DEN
BKOR = AR*UR - BI*VI
BKOI = BI*UR + AR*VI
5 5 6 ~ R E T U R N
END

```

\section*{Subroutine GRID}

Subroutine GRID draws a grid on the screen.

\section*{Listing}
```

SUBROUTINE GRID
CALL QLINE(30,0,630,0,7)
CALL QLINE (30,50,630,50,7)
CALL QLINE (30, 100,630,100,7)
CALL QLINE(30,150,630,150,7)
CALL QLINE (30, 200,6.30, 200.7)
CALL QLINE (30,250,630,250,7)
CALL QLINE(30,300,630,300,7)
CALL QLINE(30,349,630,349,7)
CALL QLINE (30,0,30,349,7)
CALL QLINE(80,0,80,349,7)
CAI.L QLINE(130,0,130,349,7)
CALL QLINE(180,0,180,349,7)
CALL QLINE(230,0,230,349,7)
CALL QLINE(280,0,280,349,7)
CALL QLINE (330,0,330,349,7)
CALL QLINE(380,0,380,349,7)
CALL QLINE(430,0,430,349,7)
CALL QLINE(480,0,480,349,7)
CALL QLINE(530,0,530,349,7)
CALL QLINE(580,0,580,349,7)
GALL QLINE(630,0,630,349,7)
RETURN
END

```

Subroutine IJBSSL(A, R1, R2, I, J)

Subroutine IJBSSL calculates
\[
\frac{1}{\alpha^{3}} I\left(r_{2}, r_{1}\right)=\frac{1}{\alpha^{3}} \int_{r_{1}}^{r_{2}} \alpha r I_{1}(\alpha r) d r
\]
and
\[
\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)=\frac{1}{\alpha^{3}} \int_{r_{1}}^{r_{2}} \alpha r J,(\alpha r) d r
\]
where \(I_{1}\) is the modified Bessel function of the first kind of order 1 , and \(J\), is the Bessel function of the first kind of order 1.

Input
\begin{tabular}{ll} 
A & \(\alpha\) in the above equations \\
R1 & \(r_{1}\) in the above equations \\
R2 & \(r_{2}\) in the above equations
\end{tabular}

\section*{Output}

```

C J - VALUE OF J (X2,X1)/A**3
C II(K) - INTEGRAL OF (X*I(X))/A**3
C JJ(K) - INTEGRAL OF (X*J (X))/A***3
C I1 - WORKING VALUE OF II(K)
C Jl - WORKING VALUE OF JJ(K)
C K - SUBSCRIPT USED TO KEEP TRACK OF X1 OR X2
C N - VARIABLE OF SUMMATION
C FN - FLOATING POINT VALUE OF N
C LIMIT - LIMIT OF SUMMATION
C T1 - ((R.(K)***3)* X**(2N))/((2**(2N+1))*N!*(N+1)!)
C - FIRST CONSTANT FOR INTG OF X*JI(X)
C T2 - (-1)**N
C
C
C T3 - CONSTANT FOR INTG OF X*I1(X)
C T4 - Tl/(2N+3)
C T5 - X**2 OR X - PI/4
C SQR - -DSQRT(X) OR DSQRT(2/(PI*X))
C
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 R(2), II(2), JJ(2), I, J, I1, J1
R(1) = R1
R(2) = R2
AAA=A*A*A
GET BOTH VALUES FOR II(K) AND JJ(K)
DO 50 K=1,2
X = A*R(K)
T5 = X*X
DECIDE WHICH METHOD TO USE
IF (X .GT. 10.) GO TO 20
C
LIMIT=INT(2.*X+8.)
T1 = R(K)*R(K)*R(K)/2.
T2 = 1.
J1 = T1/3.
I1 = T1/3.
EVALUATE SUMMATIONS
DO 10 N=1,LIMIT
FN = FLOAT(N)
T1 = T1*T5 / (4.*FN*(FN+1.))
T2 = -T2
T4 = T1 / (2.*FN + 3.)
J1 = J1 + T2*T4
I1 = I1 + T4
CONTINUE
IF(X.LT.1.E-10)J1=0.

```
```

 IF(X.LT.1.E-10)I1=0.
 II(K) = II
 JJ(K) = J1
 GO TO 50
 C
C FOLLOWING USED WHEN X}>1
C IF X}>30 WE USE DIFFERENT CONSTANT
C
20 IF (X .GT. 30.) GO TO 30
C
T1 = - ((()((-188.1357/X + 109.1142)/X - 23.79333)/X
2 + 2.050931)/X-0.1730503)/X + 0.7034845)/X
3-0.064109E-3)
C
T2 = ((()-5.81751/X + 2.105874)/X - . 6896196)/X
2
+.4952024)/X - (.187344E-2))/X + . 7979095
C
SQR = - DSQRT(X)
GO TO 40
C
30 T1 = (8.9897511.4/T5 - .93457031)/T5 +.875
T2 = (2.48062114/T5 - . 5546875)/X - X
SQR =.7978845608* DSQRT(1./X)
C
40 T5 = X - . 7853981635
JJ(K) = (1. + SQR*(T2*DCOS(T5) + T1*DSIN(T5))) / AAA
C
IF (X.GT.140.0) GO TO 50
T3=((()(((1660.794/X-1737.556)/X+543.6694)/X+11.81804)/X
2
- 33.78366)/X + 5.108402)/X - .6130935)/X
3-.3360836)/X + . 3987795
C
50 CONTINUE
C
C GET DIFFERENCE
I = II(2) - II(1)
J=JJ(2) - JJ(1)
6 6 8 RETURN
END

```

Subroutine KJBSSL(A, R1, R2, K, J)

Subroutine KJBSSL calculates
\[
\frac{1}{\alpha^{3}} K\left(r_{2}, r_{1}\right)=\frac{1}{\alpha^{3}} \int_{r_{1}}^{r_{2}} \alpha r K_{1}(\alpha r) d r
\]
and
\[
\frac{1}{\alpha^{3}} J\left(r_{2}, r_{1}\right)=\frac{1}{\alpha^{3}} \int_{r_{1}}^{r_{2}} \alpha r . J_{1}(\alpha r) d r
\]
where \(K_{1}\) is the modified Bessel function of the second kind of order 1 , and \(J_{1}\) is the Bessel function of the first kind of order 1.

\section*{Input}
A
\(\alpha\) in the above equations
R1
\(r_{1}\) in the above equations
R2
\(r_{2}\) in the above equations

\section*{Output}
\(\mathrm{K} \quad\) The right side of the first equation above
\(J \quad\) The right side of the second equation above

\section*{Listing}

SUBROUTINE KJBSSL (A, R1, R2, K, J)
C
C THIS SUBROUTINE EVALUATES \(\mathrm{K}(\mathrm{X} 2, \mathrm{X} 1) /(\mathrm{A} * * 3)\) AND
\(\mathrm{C} \quad \mathrm{J}(\mathrm{X} 2, \mathrm{X} 1) /(\mathrm{A} * * 3)\) WHERE \(\mathrm{X} 1=\mathrm{A} * \mathrm{R}(1)\) AND \(\mathrm{X} 2=\mathrm{A} * \mathrm{R}(2)\)
C IT USES THE METHODS DESCRIBED ON PAGE 259 AND ON
C PAGE 263 OF "COMPUTER PROGRAMS FOR SOME EDDY-
C CURRENT PROBLEMS - 1970"
C. DTCTIONARY

C X - Variable used to evaluate integral
\(\mathrm{C} \quad \mathrm{X} * \mathrm{~K} 1(\mathrm{X})\) AND \(\mathrm{X} * \mathrm{~J} 1(\mathrm{X})\)
C A - COMMON FACTOR IN X
C \(\quad\) (I) - FACTOR FOR DIFFERENT VALUES OF X
\(\mathrm{C} \quad \mathrm{K} \quad\) - VALUE OF \(\mathrm{K}(\mathrm{X} 2, \mathrm{X} 1) /(\mathrm{A} * * 3)\)
```

C J - VALUE OF J (X2,X1)/(A**3)
C JJ(I) - INTEGRAL OF (X*J1(X)) - PI/2
C KK(I) - INTEGRAL OF (X*I1(X)) - PI/2
C
c
C
C
C
C
C
C
C
C
C
C
C
c
c
C
C
C
C
C
GET BOTH VALUES FOR KK(I) AND JJ(I)
DO 50 I=1,2
X = A*R(I)
IF(X.GT.1.E-9)GO TO 5
JJ (I)=0.
KK(I)=-PIO2/AAA
GO TO 50
5
T5 = X*X
DECIDE WHICH METHOD TO USE
IF (X .GT. 5.) GO TO 20
LIMIT=INT(2.*X+8.)
TI=R(I)*R(I)*R(I)/2.
T2 = 1.
T3 = 0.
ZLOG=DLOG(X/2.)+C1
J1 = Tl/3.
K1 = J1*(2LOG-C2) + R(I)/(AA)

```

C
C EVALUATE SUMMATION
C
DO \(10 \mathrm{~N}=1\), LIMIT
\(\mathrm{FN}=\mathrm{FLOAT}(\mathrm{N})\)
\(\mathrm{T} 1=\mathrm{T} 1 * \mathrm{~T} 5 /(4 . * \mathrm{FN} *(\mathrm{FN}+1)\).
\(\mathrm{T} 2=-\mathrm{T} 2\)
\(\mathrm{T} 3=\mathrm{T} 3+1 . / \mathrm{FN}\)
\(\mathrm{T} 4=1 . /(2 . \pm \mathrm{FN}+3\).
\(\mathrm{J} 1=\mathrm{J} 1+\mathrm{T} 2 * \mathrm{~T} 1 * \mathrm{~T} 4\)
\(\mathrm{K} 1=\mathrm{K} 1+\mathrm{T} 1 * \mathrm{~T} 4 *(\mathrm{ZLOG}-\mathrm{T} 4-\mathrm{T} 3-1 . /(2 *(\mathrm{FN}+1))\).
CONTINUE
\(K K(I)=K 1-P I O 2 / A A A\)
\(\mathrm{JJ}(\mathrm{I})=\mathrm{J} 1\)
GO TO 50
C
FOLLOWING IS USED WHEN \(X>5\) IF \(\mathrm{X}>30\) WE USE DIFFERENT CONSTANTS FOR \(\mathrm{X} * \mathrm{~J} 1(\mathrm{X})\)

C
```

 T1 = - ((((()-188.1357/X + 109.1142)/X - 23.79333)/X
 2
 3
    ```
C
    2
C
C
C
    40 T5 =X-PIO4
        \(J J(I) \cdots(1 .+\operatorname{SQR} *(T 2 * D C O S(T 5)+T 1 * D S I N(T 5))) / A A A\).
C
C IF X IS GREATER THAN 77, WE EXPERIENCE UNDERFLOW
C
C
        IN CALCULATING KK(I) AND SO SET KK (I) TO 0.0
        IF (X . GT. 77.0) GO TO 45
        \(\mathrm{T} 3=((() .79898397 / \mathrm{X}-1.1768576) / \mathrm{X}+0.91571421) / \mathrm{X}\)
        2
            \(\mathrm{KK}(\mathrm{I})=-\operatorname{DSQRT}(\mathrm{X}) * \operatorname{DEXP}(-\mathrm{X}) * T 3 / \operatorname{AAA}\)
            GO TO 50
    \(45 \mathrm{KK}(\mathrm{I})=0.0\)
50 CONTINUE
C
    \(\mathrm{K}=\mathrm{KK}(2)-\mathrm{KK}(1)\)
    \(\mathrm{J}=\mathrm{JJ}(2)-\mathrm{JJ}(1)\)

RETURN
END

Subroutine PCLKUP(DEPTH,RHSMAG,LHSPHA)

Subroutine PCLKUP searches through a lookup table created by program PCBLDF to find the depth and magnitude of an integral corresponding to the phase which it is given as input. It is called by programs PCINV and PCRTSCAN.

\section*{Input}

LHSPHA The phase of the integral

\section*{Output}

DEPTH The depth at which the integral has this phase RHSMAG The magnitude of the integral when it has this phase

\section*{Listing}

SUBROUTINE PCLKUP (DEPTH, RHSMAG, LHSPHA)
IMPLICIT REAL*8 (A-H,O-2)
REAL*8 LHSPHA
DATA PI/3.141592653/,LOU/8/,LOE/40/ OPEN (LOE , FILE='ASPHAJO.DAT' , STATUS='OLD')
C OPEN (LOE,FILE='ADPHAF.DAT', STATUS='OLD') RHSPHAO \(=0\).
1120 READ (LOE ,*, END=1380) Z, RHSMAG, RHSPHA
DPH=ABS (ABS (RHSPHA) -AB゙S (RHSPHAU))
DMG=RHSMAG-RHSMAGO
RLMR=ABS (ABS (RHSPHA) -ABS (LHSPHA))
\(\mathrm{DZ}=7.70\)
IF (RHSPHAO.EQ.O.) GO TO 1180
IF (RHSPHA.GE.LHSPHA) THEN
IF (RHSPHAO.LT.LHSPHA) THEN
\(A F=R L M R / D P H\)
DEPTH=Z-DZ*AF
RHSMAG=RHSMAG-DMG*AF
GO TO 1400
END IF
ELSE
IF (RHSPHAO.GE.LHSPHA) THEN
\(A F=R L M R / D P H\)
DEPTH=Z-DZ*AF
RHSMAG=RHSMAG-DMG*AF
GO TO 1400
END IF
END IF
\(1180 \mathrm{ZO}=\mathrm{Z}\)
RHSMAGO=RHSMAG
RHSPHA \(=\) RHSPHA
\begin{tabular}{|c|c|}
\hline & PHDO=RLMR \\
\hline \multirow[t]{2}{*}{C} & WRITE (LOU , *) \(\mathrm{Z}, \mathrm{RHSPHA}\) \\
\hline & WRITE ( \(0, *\) ) \(\mathrm{Z}, \mathrm{RHSPHA}\) \\
\hline 1200 & -GO TO 1120 \\
\hline \multirow[t]{2}{*}{1380} & DEPTH=0. \\
\hline & RHSMAG=0.. \\
\hline \multirow[t]{3}{*}{1400} & CLOSE (LOE) \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

Subroutine RFLKUP(DEPTH,RHSMAG,LHSPHA)

Subroutine RFLKUP searches through a lookup table created by program RFBLDF to find the depth and magnitude of an integral corresponding to the phase which it is given as input. It is called by program RFINV.

\section*{Input}

LHSPHA The phase of the integral

\section*{Output}

DEPTH The depth at which the integral has phase LHSPHA RHSMAG The magnitude of the integral when it has phase LHSPHA

\section*{Listing}
```

 SUBROUTINE RFLKUP(DEPTH,RHSMAG,LHSPHA)
 IMPLICIT REAL*8(A-H,O-Z)
 REAL*8 LHSPHA
 DATA PI/3.141592653/,LOU/8/,LOE/40/
 OPEN(LOE, FILE='RF25P.500',STATUS='OLD')
 RHSPHAO=0.
 1140 READ(LOE,*,END=1280)Z,RHSMAG,RHSPHA
DPH=ABS (ABS (RHSPHA) -ABS (RHSPHAO))
DMG=RHSMAG-RHSMAGO
KLMK=ABS (ABS (RHS PHA) - ABS (LHSPHA))
DZ=Z-Z0
IF(RHSPHAO.EQ.O.)GO TO 1180
IF(RHSPHA.GE.LHSPHA) THEN
IF(RHSPHAO.LT.LHSPHA) THEN
AF=RLMR/DPH
DEPTH=Z-DZ*AF
RHSMAG=RHSMAG-DMG*AF
GO TO 1^00
END IF
ELSE
IF(RHSPHAO.GE.LHSPHA) THEN
AF=RLMR/DPH
DEPTH=Z-DZ*AF
RHSMAG=RHSMAG-DMG*AF
CO TO }140
END IF
END IF
1180 Z0=Z
RHSMAGO=RHSMAG
RHGPILAO-RIIGILIA
PHDO=RLMR
WRITE(0,*)Z,RHSPHA

```

1200 GO TO 1140
1280 DEPTH=0. RHSMAG=0.
1400 CLOSE(LOE)
RETURN
END

Data File REF.DAT
The following data file is required to run some of the reflection coil programs in this report.

0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0300
0.0300
0.0300
0.0300
0.0300
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0832
0.0832
0.0830
0.1000
0.1200
0.1400
0.1500
0.1500
0.1500
0.2000
0.2000
0.2500
0.3000
0.3000
0.4000
0.4000
0.4000
0.5000
0.1830
0.2000
0.2000
0.0650
0.0 0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.8000
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7508
0.7500
0.7530
0.7900
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.7500
0.9618
0.7400
0.7400
0.4615
0.0

\begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} 1.5000
0.9000
0.9000
0.9000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.5000
0.5000
0.5000
0.5000
0.6000
0.3000
0.6000
0.3000
0.4000
0.4000
0.3000
0.3000
0.4000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3604
0.3600
0.3614
0.4200
0.3000
0.3930
0.4000
0.3600
0.3600
0.6000
0.4000
0.6000
0.6000
0.4000
0.6000
0.6000
0.4000
0.4000
0.3825
0.5000
0.5000
0.1538
0.0

 c00000000000000000000000000000000000000000000000000 \begin{tabular}{l}
5000 \\
3000 \\
3000 \\
3000 \\
2000 \\
2000 \\
2000 \\
2000 \\
2000 \\
2000 \\
1670 \\
1670 \\
1670 \\
1667 \\
2000 \\
1000 \\
2000 \\
1000 \\
1250 \\
1250 \\
1000 \\
10000 \\
1000 \\
1000 \\
1000 \\
1000 \\
1000 \\
1000 \\
0961 \\
0960 \\
0964 \\
1000 \\
0667 \\
0643 \\
1000 \\
1000 \\
1000 \\
2000 \\
1250 \\
2000 \\
2000 \\
0670 \\
2000 \\
2000 \\
0650 \\
0650 \\
1530 \\
00000 \\
00000 \\
0000 \\
\hline
\end{tabular}



 13.800
128.400
24.305
23.100
2.100
2.100
24.679
26.600
0.3720
74.230
62.800
62.800
2.578
9.100
205.200
79.210
659.500
114.500
11.215
140.000
1067.399
865.600
1.049
190.700
31.670
30.366
77.200
77.200
728.899
530.500
85.900
0.405
182.300
1.180
335.000
531.000
531.000
7023.140
1656.000
5147.000
3443.009
472.550
99.050
190.380
161.2700
257.400
25.7200
0.000 .8000
3000
1000
1000
1000
6792
6000
3720
2300
8000
8000
1000
2000
2100
5000
5000
2150
0000
3999
6001
0490
7000
6700
3660
2000
2000
8999
5000
9000
4050
3000
1800
0000
0000
0000
1406
0000
0000
0098
5500
0500
3800
2700
4000
7200
0000
0000
0000
0



\section*{REFERENCES}
1. M. L. Burrows, A Theory of Eddy Current Flaw Detection, University Microfilms, Inc., Ann Arbor, Michigan, 1964.
2. C. V. Dodd, W. E. Deeds, J. W. Luquire, and W. G. Spoeri, Union Carbide Corporation Nuclear Division, Oak Ridge National Laboratory, Some * Eddy-Current Problems and Their Integral Solutions, ORNL-4384, April 1969.*
3. C. V. Dodd, C. C. Cheng, and W. E. Deeds, "Induction Coils Coaxial with an Arbitrary Number of Cylindrical Conductors," J. Appl. Phys. 45(2), 638-47. \(\dagger\)
4. C. V. Dodd, C. C. Cheng, C. W. Nestor, and R. B: Hofstra, Union Carbide Corporation Nuclear Division, Oak Ridge National Laboratory, Design of Induction Probes for Measurement of Level of Liquid Metals, ORNL-TM-4175, May 1973*
5. W. A. Simpson, C. V. Dodd, J. W. Luquire, and W. G. Spoeri, Union Carbide Corporation Nuclear Division, Oak Ridge National Laboratory, Computer Programs for Some Eddy-Current Problems - 1970, ORNL-TM-3295, June 1971.
6. C. W. Nestor Jr., C. V. Dodd, and W. E. Deeds, Union Carbide Corporation Nuclear Division, Oak Ridge National Laboratory, Analysis and Computer Programs for Eddy Current Coils Concentric with Multiple Cylindrical Conductors, ORNL-5220, July 1979.*

\footnotetext{
*Available for purchase from National Technical Information Service, Springfield, Virginia 22161.
\(\dagger_{\text {Available }}\) in public technical libraries.
}

NUREG/CR-5553
ORNL/TM-11505
Dist. Category RF

\section*{INTERNAL DISTRIBUTION}
```

1. W. R. Corwin 27. W. A. Simpson
2-6. L. D. Chitwood
7-11. W. E. Deeds
12-16. C. V. Dodd
17. R. W. McClung
18. D. J. McGuire
19. R. K. Nanstad
20-24. J. R. Pate
25. J. G. Purett
26. C. E. Pugh

| 1. | W. R. Corwin |
| ---: | :--- |
| $2-6$. | L. D. Chitwood |
| 7-11. | W. E. Deeds |
| 12-16. | C. V. Dodd |
| 17. | R. W. McClung |
| 18. | D. J. McGuire |
| 19. | R. K. Nanstad |
| 20-24. | J. R. Pate |
| 25. | J. G. Purett |
| 26. | C. E. Pugh |

```
27. W. A. Simpson
28. G. M. Slaughter
29. J. R. Weir

30-32. M\&C Records Office
33. ORNL Patent Section
34. Central Research Library
35. Document Reference Section

36-37. Laboratory Records Department
38. Laboratory Records (RC)
39. Nuclear Safety Information Center
```

EXTERNAL DISTRIBUTION
40. NRC, OFFICE OF NUCLEAR REGULATORY RESEARCH, Washington, DC 20555
G. A. Arlotto
J. Muscara
C. Z. Serpan
41. ELECTRIC POWER RESEARCH INSTITUTE, P.O. Box 217097, Charlotte, NC 28221
Mike Elmo
Kenji Kryzwosz
42. BATTELLE PACIFIC NORTHWEST LABORATORIES, P.O. Box 999, Richland, WA 99352
Bob Ferris
43. ROCKY FLATS PLANT, P.O. Box 464, Golden, CO 80402 Bruce Allen
44. 23 Greensburg Strcet, Dc1mont Borough, PA 15626 Steve D. Brown

```

45: DOE, Oak Ridge Operations Office, Oak Ridge, TN 37831-8600 Office of Assistant Manager for Energy Research and Development

46-47. DOE, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831

48-297. Given distribution as shown in category RF (NTIS-10)
```


[^0]: Research Sponsored by the Office of Nuclear Regulatory Research, Division of Engineering Safety, U. S. Nuclear Regulatory Commission under Interagency Agreement DOE 1886-8010-9B with the U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

[^1]: Vo DRIVING VOLTAGE
 R_{0} SERIES RESISTANCE IN THE DRIVING CIRCUIT
 C_{6} SHUNT CAPACITANCE OF THE DRIVING CIRCUIT
 R_{6} D.C. RESISTANCE OF THE DRIVER COIL
 Z_{D}^{6} IMPEDANCE OF THE DRIVER COIL
 m MUTUAL IMPEDANCE BETWEEN THE DRIVER AND PICK-UP COILS
 $Z_{\text {PU }}$ IMPEDANCE OF THE PICK-UP COILS
 R_{7} D.C. RESISTANCE OF THE PICK-UP COILS
 C_{7} SHUNT CAPACITANCE OF THE PICK-UP CIRCUIT
 R_{9} AMPLIFIER INPUT IMPEDANCE

