THEORETICAL INVESTIGATION OF ELECTRON-
POSITIVE ION/ATOM INTERACTIONS

Progress Report

Alfred Z. Msezane
Clark Atlanta University
Atlanta, Georgia 30314

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

November 15, 1991-July 14, 1992

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
OFFICE OF BASIC ENERGY SCIENCES,
DIVISION OF CHEMICAL SCIENCES
UNDER CONTRACT NO. DE-FG05-84ER13266

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
INTRODUCTION

Photoionization cross sections and matrix elements for ground and excited states are important in Resonance Ionization Spectroscopy and one-atom detection. Some transitions in Na and K are important in studies of chemically driven visible laser amplifiers using fast near-resonant energy transfer. On the fundamental side, van der Waals forces and the Casimir force represent the limiting cases of cavity QED and the resonance lines of Na and Rb may be studied in the laboratory to test QED. Also, the atomic physics of multicharged and many-electron ions and their behavior under different plasma conditions is needed to search for new X-ray laser active media, particularly to reach the "water window" where the highest difference between the absorption coefficients of O and C occurs.

COMPLETED RESEARCH

For the period covered by this report we investigated and accomplished the following:

A. Electron Scattering from Atomic K.

Electron impact elastic, excitation and total cross sections for K have been investigated using elaborate CI target wave functions in the close-coupling approximation. Coupling effects have been studied by comparing 7CC and 5CC results. The 7CC calculation coupled the states 4s 2S, 5s 2S, 3d 2D, 4p 2P⁰, 4d 2D, 5p 2P⁰ and 6s 2S while the 5CC consisted of the 7CC states less the 4d 2D and 6s 2S states. We found the important result that the cross section for the dipole-forbidden transition 4s 2S → 3d 2D is large due to the virtual double-dipole mechanism. For the total cross section, σₜ there is a large discrepancy near threshold between the Kwan et. al. measurement on the one hand and other data on the other hand.

Our calculation indicates that near threshold the elastic cross section, σₑ dominates the resonance cross section, σᵣ and the sum of excitation cross sections other than σᵣ, σₒ. This dominance by σₑ near threshold explains the underestimation of σₜ by the Kwan et. al. measurement since it measures σₑ inaccurately near threshold. Furthermore, the Phelps et. al. measured σₑ shows a minimum in the electron energy interval 2 ≤ E ≤ 10 eV, while other data, including the Chen and Gallagher one, do not. Consequently, the Walters-Phelps curve may be improperly constructed by Kwan et. al.

B. Photoionization of Na near the 2s²2p⁵3s and 2s2p⁶3s Innershell Thresholds

Photoionization cross sections from ground state Na have been measured and calculated near the 2s²2p⁵3s and 2s2p⁶3s inner-shell thresholds. Also, the
photoionization cross sections of excited $3p\, ^2P^0$ and $3d\, ^2D$ states have been calculated13 using the R-matrix Methodology14 near the $2s2p^63s$ thresholds. In this energy region, the ground and excited state photoionization cross sections are characterized by each resonance structures converging to the various ionic thresholds. The calculated results are found to be very sensitive to the initial and final state wave functions.

C. Charge Transfer Matrix Elements

Charge transfer is important in ion-atom (ion) collisions to understand inter alia chemical reactions. The proton-hydrogen collision problem is quantum mechanically a three-body problem. However, in the approximation of straight-line trajectories for the protons, the problem simplifies considerably; it reduces to the solution of the one-electron time-dependent Schrödinger equation. In the coupled channel calculation of one electron in the field of two classically moving nuclei, the evaluation of one-electron, two-center, three-dimensional integrals is most troublesome. Various approaches have been employed over the years, depending upon the nature of the particular problem.

Recently, we15 have developed a numerical approach to calculate the charge transfer matrix elements and used the proton-hydrogen collision problem as illustration. The procedure involves reducing the initial integrals to one-dimensional integrals by using a Feynman integral technique and modified spherical Bessel function of the third kind. A special routine which uses continuation in the complex plane has been designed to evaluate the integrals in the region far away from the target to remove their rapid oscillation in this region. This analytic continuation is then computed using the Gauss-Laguerre method. The resultant coupled differential equations are solved by the Runge-Kutta method. Charge transfer cross sections for proton-hydrogen scattering have been compared with those of Cheshire and of Rapp to check the calculation.

The method will be extended so that it is valid also for low energy ~ 5 keV through the use of molecular orbitals.

D. Other Accomplishments

(i) Conceived and wrote the proposal to establish the NSF-MRCE Center for Theoretical Studies of Physical Systems at Clark Atlanta University. Dr. Carlos Handy and myself are the associate director and director, respectively.

(iii) Became a member of the Board of Directors of the National Association of Research Centers of Excellence. The Centers are funded by NSF.

E. Graduate Students Supported (Partially or Fully)

Ms. Sheryl Good; G. Nдов and Stephen Hiamang.

PROPOSED RESEARCH

We propose the following:

- Construction of an elaborate CI target wave function for K for use in the R-matrix method\(^{14}\) to investigate the behavior of \(\sigma_R\) in the energy range \(2 \leq E \leq 15\) eV. We hope to give a definite answer to the question: Is the measured\(^8\) minimum in \(\sigma_R\) real and due to the formation of K?

- Investigation of electron impact excitation cross sections for the core-excited quartet levels of Na and K which are metastable against autoionization. These are important for understanding atomic spectroscopy and the construction of XUV lasers.

- Continuation of investigation of the photoionization of Na, both ground and excited states, in the region of the \(2s2p^63s\) inner-shell thresholds to determine the most important correlation terms. Our cross sections are sensitive to the type and number of correlation terms on both the initial and final states as well as the excited orbitals employed.

- Continue the investigation of the photoionization of K near the \(3s^23p^4\) and \(3s3p^4\) inner-shell thresholds. The R-matrix will be used to study shake-up and conjugate shake-up satellite lines associated with the \(3p^5\) (or \(3s3p^5\)) and \(3p^4\) (or \(3s3p^4\)) final ionic configurations, respectively.

- Obtain electron impact excitation cross sections for some of the K-like and Na-like ions to determine where coupling and wave function effects become unimportant and to establish trends for cross sections as a function of Z.

- Revise the e-Cr\(^{5+}\) paper for resubmission for publication to Phys. Rev. A. as well as complete the publication of the e-N\(^{2+}\) paper.
Study the variation of the d- multi-minima in photoionization of Na and K to establish its behavior as the principal quantum number, n and the nuclear charge, Z increase.

Continue the delineation of correlation and coupling effects in the various shake up (Δl = 0) satellites and conjugate shake-up (Δl = ±1) satellites for both Na and K photoionization.

PRESENTATIONS

"Photoionization of Sodium in the Ground and Excited States", S.S. Tayal, A.Z. Msezane and S.T. Manson.

B. XVII ICPEAC, Brisbane, Australia, July 10-16, 1991

PUBLICATIONS

REFERENCES
