Energy related studies utilizing K-feldspar thermochronology

PDF Version Also Available for Download.

Description

Two distinct sources of information are available from a [sup 40]Ar/[sup 39]Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ([sup 40]Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced [sup 39]Ar evolved during discrete laboratory heating steps. With the additional assumption that the [sup 39]Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39[sup Ar] release function assuming a single domain) against ... continued below

Physical Description

Pages: (5 p)

Creation Information

Creator: Unknown. January 1, 1993.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Two distinct sources of information are available from a [sup 40]Ar/[sup 39]Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ([sup 40]Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced [sup 39]Ar evolved during discrete laboratory heating steps. With the additional assumption that the [sup 39]Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39[sup Ar] release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most [sup 40]Ar/[sup 39]Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of [sup 39]Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

Physical Description

Pages: (5 p)

Notes

OSTI; NTIS; GPO Dep.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE93013137
  • Report No.: DOE/ER/14049-4
  • Grant Number: FG03-89ER14049
  • DOI: 10.2172/6874523 | External Link
  • Office of Scientific & Technical Information Report Number: 6874523
  • Archival Resource Key: ark:/67531/metadc1184077

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1993

Added to The UNT Digital Library

  • July 2, 2018, 10:52 p.m.

Description Last Updated

  • Aug. 13, 2018, 2:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Energy related studies utilizing K-feldspar thermochronology, report, January 1, 1993; United States. (https://digital.library.unt.edu/ark:/67531/metadc1184077/: accessed May 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.