There is no objection from the patent point of view to the publication or dissemination of the document(s) listed in this letter.

BROCK HAVEN PATENT GROUP
6/27/1926 by CRE
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I. SURFACE STUDIES

A. SURFACE CHARACTERIZATION CHAMBER

No work was performed on this task during this reporting period.

B. ADJUSTABLE CESIUM PRESSURE ACTIVATION CHAMBER

As described last month, the Adjustable Cesium Pressure Activation Chamber (ACPAC) is an apparatus for characterizing electrode materials in an equilibrium vapor pressure of cesium. Assembly of the device, as well as the oven necessary for heating the system, has been completed. A sample of RCA sprayed barium oxide, a material with a well-characterized work function, has been installed. Cesium will be introduced from a cesium channel which yields approximately 20 milligrams when expended entirely.
II. PLASMA STUDIES

A. CONVERTER THEORY

Comparison of the calculated output characteristics using the present computer model of a thermionic diode with the experimental data in Figure 1 has been made. Experimental current-voltage (I-V) data are shown in Figure 1 for the following operating conditions: \(T_E = 1600 \text{ K}, \ T_C = 900 \text{ K}, \ d = 0.125 \text{ mm} \) and variable \(T_R \). The calculated I-V curves are compared with experimental curves in Figure 2. The Thermo Electron computer model gives good agreement above the knee of the I-V curve. Characteristics for currents below the knee were generated using a retarding emitter sheath. Although this procedure results in the correct shape of the I-V curves, the calculated curves in this region are displaced by 0.1 to 0.2 volts in output voltage relative to the measured data. Loshkarev's theory provides a slightly better prediction of the knee's location. The calculated densities of charged particles as a function of spacing for several output current densities are plotted in Figure 3. It is interesting to note that the maxima of the distributions shift toward the collector as the current density is reduced. The distribution of electron temperatures is shown in Figure 4. The electron temperature changes almost linearly for currents above the knee. For the currents below the knee, the electron temperature is higher for the region near the collector. The computer model indicates that most of the ions are produced near the emitter for the upper part of the I-V curve and near the collector for the lower part of the I-V curve. Comparison of the motive diagram is shown in Figure 5. For illustrative purposes, the sheath regions in the family of motive diagrams are drawn on an expanded scale. From these curves, one observes the following phenomena along the I-V curve:

Figure 1. Experimental I-V Curve

-3-
Figure 2. Comparison of Observed and Calculated I-V Curves

- CALCULATED
- OBSERVED

FORMATION OF DOUBLE SHEATH USING LOSHKAREV'S CRITERION

\(T_R = 564 \text{ K} \)
\(T_R = 551 \text{ K} \)
\(T_E = 1600 \text{ K} \)
\(T_C = 900 \text{ K} \)
\(d = 0.125 \text{ mm} \)
Figure 3. Density Distribution as a Function of Current
Figure 4. Distribution of Electron Temperature
Figure 5. Motive Diagram
1) In the region above the knee, most of the arc drop is due to the difference in sheath height.

2) In the region below the knee, plasma potential difference is the main contributor to the arc drop.

3) The retarding sheath is formed when most of the ions are produced near the collector. There are not enough ions to compensate for the space charges near the emitter.

4) The simple double sheath theory does not give an accurate prediction of the knee.

B. EXPERIMENTAL PLASMA ANALYSES

Electron temperature profiles were obtained for steady-state operation of Converter No. 178 (tungsten emitter - tungsten oxide collector) across a 1-mm interelectrode gap with measurements made at intervals of 0.25 mm. The converter operating conditions were: \(T_E = 1417 \) K, \(T_C = 745 \) K, \(T_R = 556 \) K and \(I = 5 \) A. The results, based on the relative intensities of the continuum radiation caused by recombinant transitions to the \(6^2P \) CsI level, indicated that the temperature between emitter and collector remains nearly constant at an average value of 2708 K.

Reduction of atomic-line intensity data for steady-state operation of the diode showed that the upper excited atomic levels are underpopulated with respect to the lower states and can be characterized by a temperature below that of the free electrons. However, in pulsed operation population inversions are created. Such inversions were observed for the \(6P_{1/2} - nS_{1/2} \), \(6P_{3/2} - nS_{1/2} \) and \(5D_{5/2} - nF_{5/2,7/2} \) series in recombinant plasmas produced by 5\(\mu \)s-long discharges.
III. CONVERTER DEVELOPMENT

A. LOW TEMPERATURE CONVERSION EXPERIMENTS

1. Inconel 671 Emitter, Nickel Collector (Converter No. 186)

If a single material can be found to act as both the emitter and the hot shell, it reduces the complexity and cost of constructing flame-heated thermionic converters. The purpose of this converter is to evaluate Inconel 671, (a high temperature alloy composed of 51.6% nickel, 48% chromium, 0.35% titanium and 0.05% carbon) as an emitter. The construction of this converter is complete and outgassing has begun.

B. HIGH EFFICIENCY CONVERSION EXPERIMENTS

1. Tungsten Emitter, Nickel Collector (Heat Flux Converter No. 175)

Heat flux measurements were made at interelectrode spacings of 0.05, 0.5 and 2 mm. The converter current was varied between 1 and 5 A. Figure 6 is a plot of the heat flux into the collector converter current. A least squares fit was used to determine the straight line slope. This slope appears at least 0.2 eV higher than expected from a summation of \(\phi_C + 2kT_e \) (\(\phi_C \) is the collector work function, \(k \) is the Boltzmann constant and \(T_e \) is the electron temperature). Furthermore, there is very little change in the slope with variations in converter spacing. Currently these experiments are being extended to current densities above 10 A where Ritz and Bohdansky* noted a change in slope at low spacing.

Figure 6. Heat Flux into Collector for a Spacing of 0.05 mm, 0.5, 2.0 mm.
IV. COMPONENT HARDWARE PROGRAM

A. CVD COMPONENT DEVELOPMENT

Eight leak-tight SiC/C/W composite hot shells were fabricated during this period and are described in Table I. Fabrication conditions were optimized further by means of a new RF coil having a higher turns concentration at the closed end (Region D) of the shell. During deposition, Region D was held at 1568 K, approximately 15 K hotter than the open end.

B. ALLOY HOT SHELL DEVELOPMENT

Simulated furnace testing continued at a furnace gas temperature of 1573 K. The inside of each shell is evacuated to 10^{-7} torr. Table 2 presents the status of these tests as of January 3, 1978.

TABLE 1

DEPOSITION THICKNESSES (inches/mm)

<table>
<thead>
<tr>
<th>SHELL</th>
<th>W DEPOSIT</th>
<th>SiC DEPOSIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>W9</td>
<td>0.254</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.012</td>
</tr>
<tr>
<td>W10</td>
<td>0.229</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>W11</td>
<td>0.254</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.012</td>
</tr>
<tr>
<td>W12</td>
<td>0.279</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.013</td>
</tr>
<tr>
<td>W13</td>
<td>0.229</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>W14</td>
<td>0.203</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>W15</td>
<td>0.229</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>W16</td>
<td>0.229</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Composite Hot Shell
TABLE 2

SIMULATED FURNACE TESTS

(3 January 1978)

<table>
<thead>
<tr>
<th>TEST PORT NO.</th>
<th>HOT SHELL</th>
<th>TEST HOURS</th>
<th>COMMENT</th>
<th>DATE OF TEST INITIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REACTION BONDED SILICON CARBIDE</td>
<td>15,466</td>
<td>LEAKTIGHT</td>
<td>9 April 75</td>
</tr>
<tr>
<td>2</td>
<td>KANTHAL A1</td>
<td>13,879</td>
<td>LEAKTIGHT</td>
<td>25 Aug. 75</td>
</tr>
<tr>
<td>3</td>
<td>446 CRES PLASMA ARC SPRAYED WITH NICRHOME</td>
<td>1,253</td>
<td>LEAKTIGHT</td>
<td>31 Oct. 77</td>
</tr>
<tr>
<td>4</td>
<td>INCONEL 671</td>
<td>6,916</td>
<td>LEAKTIGHT</td>
<td>17 Nov. 76</td>
</tr>
<tr>
<td>5</td>
<td>446 CRES PLASMA ARC SPRAYED WITH Cr$_2$O$_3$</td>
<td>1,253</td>
<td>LEAKTIGHT</td>
<td>31 Oct. 77</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
V. COMBUSTION HEATED THERMIONIC DEVICE

A. MINIATURE FLAME-HEATED DEVICE (Converter No. 179)

Flame-heated testing of the miniature thermionic device described in last month's report was continued. Current-voltage characteristics were recorded periodically. Difficulty was encountered in measuring emitter temperature due to the deterioration of the thermocouple. Within this limitation, converter performance has been stable for a period of 117 hours. Additional testing of the miniature device is planned with electrical heating which should overcome the difficulties encountered in measuring emitter temperature during flame heating.

B. WORKHORSE DEVICE (Converter No. 188)

The design of the "workhorse device" is shown in Figure 7. The diameter of the hot end of this diode is approximately two inches. The effective electrode area is 18 cm². The hot shell/emitter is fabricated from Inconel 671. The ceramic-to-metal seal is designed to provide variation of the emitter-collector spacing by means of spacer blocks. The outboard location of this seal provides ready access to the collector for instrumentation and cooling.

The workhorse device mounts flush in the chamber wall of the combustion facility described in Progress Report No. 29. A photograph of the unit installed in the combustion facility is shown in Figure 8. The static current-voltage characteristic of the workhorse device for an emitter temperature of 1500 K and an interelectrode spacing of 0.75 mm is shown in Figure 9. A power output of 7.3 watts is obtained at a current of 56 A and a load potential of 0.13 volts. The short circuit current is about 82 A.
Figure 7. Design of Workhorse Device
Figure 8. Photograph of Workhorse Device Installed in Combustion Facility
Figure 9. Current-Voltage Characteristic of Workhorse Device at a Spacing of 0.75 mm
The static current-voltage characteristic for an interelectode spacing of approximately 0.4 mm at an emitter temperature of 1500 K is given in Figure 10. At this reduced spacing, the output power is increased to 18 watts (60 A at 0.3 volt), corresponding to a power density of 1.0 watt/cm2. The short circuit current is over 130 A. Testing of this device will continue.
Figure 10. Current-Voltage Characteristic of Workhorse Device at a Spacing of 0.4 mm