Growth and transport properties of Y-Ba-Cu-O/Pr-Ba-Cu-O superlattices

PDF Version Also Available for Download.

Description

The pulsed-laser deposition method has been used to fabricate epitaxial, nonsymmetric M(Y) {times} N(Pr) superlattices in which YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) layers either M = 1,2,3,4,8, or 16 c-axis unit cells thick are separated by insulating PrBa{sub 2}Cu{sub 3}O{sub 7-x} (PBCO) layers N unit cells thick (N = 1 to {approximately}32). The zero-resistance superconducting transition temperature, T{sub c0}, initially decreases rapidly with increasing PBCO layer thickness, but then saturates at T{sub c0} {approximately} 19 K, 54 K, 71 K, or 80 K, or structures containing 1-,2-,3-, or 4-cell-thick YBCO layers, respectively. Critical current density measurements carried out on structures … continued below

Physical Description

12 pages

Creation Information

Lowndes, D. H.; Norton, D. P.; Budai, J. D.; Christen, D. K.; Klabunde, C. E.; Warmack, R. J. et al. January 1, 1990.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pulsed-laser deposition method has been used to fabricate epitaxial, nonsymmetric M(Y) {times} N(Pr) superlattices in which YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) layers either M = 1,2,3,4,8, or 16 c-axis unit cells thick are separated by insulating PrBa{sub 2}Cu{sub 3}O{sub 7-x} (PBCO) layers N unit cells thick (N = 1 to {approximately}32). The zero-resistance superconducting transition temperature, T{sub c0}, initially decreases rapidly with increasing PBCO layer thickness, but then saturates at T{sub c0} {approximately} 19 K, 54 K, 71 K, or 80 K, or structures containing 1-,2-,3-, or 4-cell-thick YBCO layers, respectively. Critical current density measurements carried out on structures with 16- or 32-cell thick YBCO layers show that the magnitude of J{sub c}(H = 0) {approximately} 1-2 MA/cm{sup 2}, as well as the magnetic field dependence and the anisotropy of J{sub c}(H) all are in good agreement with corresponding measurements on thicker, single-layer YBCO films. Thus, there is no evidence of an enhanced J{sub c}(H) due to the multi-layered structure, for the layer thickness investigated to date. The systematic variation of T{sub c0}, as a function of the YBCO and PBCO layer thickness, is discussed in light of other recent experiments and theoretical model calculations. The superlattices' structural and compositional order are characterized using x-ray diffraction, transmission electron microscopy, and scanning tunneling microscopy, and details of the pulsed-laser deposition process are reported. 42 refs., 7 figs.

Physical Description

12 pages

Notes

NTIS, PC A03/MF A01 - OSTI; GPO Dep.

Source

  • SPIE conference on prospects on high temperature superconducting transistors and other devices, Santa Clara, CA (USA), 30 Sep - 5 Oct 1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91000721
  • Report No.: CONF-9009173-1
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 6534251
  • Archival Resource Key: ark:/67531/metadc1183814

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1990

Added to The UNT Digital Library

  • July 3, 2018, 8:14 a.m.

Description Last Updated

  • Aug. 23, 2021, 3:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lowndes, D. H.; Norton, D. P.; Budai, J. D.; Christen, D. K.; Klabunde, C. E.; Warmack, R. J. et al. Growth and transport properties of Y-Ba-Cu-O/Pr-Ba-Cu-O superlattices, article, January 1, 1990; Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc1183814/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen