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Abstract

The nonlinear Rayleigh-Taylor stakility of a liquid-vapor
sfstem is studied uzing a simplified formulation of the problem.
The method of multiple =scale expansicn is employsd for the
investigation. It is found that when the heat transfer rate
is strong enough, the classically unstable system is stabilized
by the nonlinear effect and the effect of mass and heat transfer
across the interface. The size of the bubbles detached from
the interface can also be estimated when the heat transfer rate
is moderately strong. The problem is alsce studied by the
variational methed, which corrckorates basically the same

conclusion.



Honlinear Rayleigh-Taylor Stability with Mass and Heat Transfer

I. Introduction

The phencmenon of the classical Rayleigh-Taylor stability
is well known [1,2,3]. The essential feature may be stated

briefly. Wwhen a heavy fluid is on top of a light fluid in a

gravitational field, the eguilibrium system is unstable, and
vice versa. To ke more specific, let us take both fluids to

be incompressible and inviscid, let the density of the fluid on

top be p{z}, the density of the fluid underneath p{l}, and let

the depths of both £luid layers be lnfinite, then the dispersion

relation for the interfacial wave 1s given by

o2 = Takip 1) ap 2y aox3) /(o Map iy, (13

where m is the frequency; k, the wave number; g, the gravitation

constant, and ¢, the serface tension coefficient. When the

(L) {(2)

surface tension is neglected, this system is stable if p > p ,

(2) , (1)

and wnstable if p However when o # 0, then even if

p 12} o),

> p
> the system is stabla if k » kc' where the critical

wave number 1is given by

k, = (gto'P-o a2, (2)

5till when k is small enough, or the wave length is long enough,
the equilibrium system is unstable if the heavier fluid i1s on top
of the lighter fiuid. These analytical results are generally in

agreement with our experience.




There are, however, siyuatinns that the configuraticn of
heavier fluvid on top of lighter fluid is maintained even though
the geometrical boundary conditions permit waves with wave
lengths loenger than the critical wave length. A notable example
is the phenomenon of film beiling. In this case of intense heat
transfer, a hot vapor film is apparently capable of supporting
& heavier liguid on top. The physical mechanism for the stability
of the configuration can be explained intuitively as follows.
Although the classical Rayleigh-Tayler instability mechanism
tends to disrupt the interface, before the growing protruding
liquid fingers can reach the bottom of the vapor film, they are
gvaporated to become vapor themselves because of the intense heat.

It is evident that in order to analyze such stability
probhlems, the effect of mass and heat transfer across the
interface has to be taken into consideration. In a previous
paper [4], a general formulation of interfacial flow problem
with mass and heat transfer was established and applied to the
Rayleigh-Taylor stability problem. From the linsarized analysis,
it is found that when the vapor region is hotter than the liguid
region, as usually so, the effect of mass and heat transfer tends
to inhibit the growth of instability. However, the stakility
criterion remains the same as the classical resuli [4]. Thus,
for the problem of film beiling, the instabkility would be
reduced yet would persist according to the linear analysis. It
is clear that a nonlinear analysis is nesded to answer the guestion

that whether and how the efiect of mass and heat transfer would

stabilize the system.



To facilitate the analyses Of the nonlinear stability
problem, a simplified farmuiatian of the interfacial flow problems
with mass and heat transfer has been established [5]. In this
formulation, the affect of mass and heat transfer on the
dynamics of the system is revealed through an interfacial condi-
tion which makes use of the eguilibrium temperature distribution
of the system, thus bypassing the nonsteady heat eguations. It
may be termed as a quasi-steady formulation from the thermal
perspective. The simplified formulation has been applied to
linear Rayleigh-Taylor and Xelvin-Helmholtz stability proklems [5].
For the Rayleigh-Taylor stakility problems, a comparison of the
results with those from the more comprehensive treatment shows
that the essential features of the analytical results are
retained in the simplified formulation.

In the feollowing, we first present the simplified formulation
of the interfacial flow problem with mass and heat transfer. Then
the neonlinear Rayleigh-Taylor stability problem of two semi-infinite
incompressible inviscid fluids is investigated using the metheod
of multiple scale expansion. For corrcoboration, a variasticnal
study is alsc made an the same problem. Brief discussion relating

£0 beiling heat transfer is alsc presented.




II. Formulation of FPreblem

We shall study the flow of a system of two semi-infinite
incompressikle inviscid fluids as shoewn in Fig. 1. The

interface is given by
s{x,t) = y-nix,z,t} = 0. {3}

A&t equilibrium, the interface is taken to be y=0.
Assuming the flows of the fluids are irrotational, and

introducing the velocity potential functions ¢f]}{x,t}; we have

el g, cm<y<a, (4)

and

2 12}

Ve =0, n <y <=, {9)

The Bernoulli equations are:

(3) , (3}
By Lpefdy2 gy + 3— = 0, j=1,2, (6)
,ar 2 ot

where p'J) are the densities of the fluids, p‘J’, the pressures,

and g is the gravitation constant.
The interfacial conditions which express the conservation

of mass and momentum are given by [4,5]:

oM B2+ wo'M vey1 = o iEE + @'y e, at yan,
(7)
and
o (e V- 9e1 (32 4 (ve L)y (ve) =
2 2 1 1 .1 2
0B (we Ny w138+ (56 Py-(wsry + 1p1P)-p ’-a{§I+§;;]|ws| ,

at y=n, (8}




where ¢ is the surface tensipn cpefficient, and R1 and R, are
the two principal radii of curvature of the interface. The

radius of curvature is taken to be positive if the gcenter of
curvature lies on the side of the fluid (2), and negative if

ctherwise,

The interfacial condition for energy transfer is given by
1o M (22 4 (weM)(98)) = F(n),  at y=n, (9)

where L 1s the latent heat released1when the fluid is transformed
from phase {1) to phase (2}. The left hand side of {9) repre-
gants the net heat flux from the interface inte the fluid regions
when such phase transformation is taking place. This guantity

is taken to be approximately expressible in terms of the balance
of heat fluxes in the fluid regions as if the system is
instantaneously in dynamic eguilibrium. To concentrate on the most
salient featuredﬂf the iszsue, we shall take F{n} to ke linear in

n. Thus the condition {9) can be expressed as [5]):
o' M 122+ 'y (esd] =an (10)

where o is a thermal parameter which is positive if the vapor is
hotter than the liquid as usually is the case. When the depth of

the fluids are finite, say hl and hz' we have [5]:

i

Y
{ + =,
hl h

(][

o =

where G is the eguilibrium heat flux. Here, we can simply take «

to be some physical parameter for thecretical considerations.




Let ws further limit our investigation to fluid flows in
two space dimension. Making use of equations (3) and (6], the
interfacial conditions {7},(8) and (10} at y=n(x,t) can be

rewritten as

u{l}[nt+¢;1}nx-¢;l’1= (231, (11)

oM togt+ Jroft Fae t) 2y agn- ;i;§{¢;l}"x'¢;l}"“t+¢il}“x‘¢;1}*l
X

= {(21}) + anxxll+ni}'3f2, (1)

D{ljlnt+¢i1}nx-¢;l}] = -an , (13)

where the notation {(2)} on the right hand sides of the equations
is used to dencte the same expregsion as that of the left, except
changing the superscript {1) to (2).

Bquations (4),(5},{11},{12) and (13}, together with some
boundedness conditions at infinity constitute the governing

equations of the problem.



III. Multi-scale Expansion Near the Critical Wave Number.

When the interfage is perturbed from the equilibrium

ilkx=—wt)

y=0 to y=ne , the dispersion relation for the linearized

problem formulated above is [5]:
0 M 4p12302 4 250w + gk (0@ oM yog?] = 0. (14)

The critical wave number is again given by

K, = Tg(o 2 p @) /6112, )

The corresponding critical frequency, W r is 2zere for this case.
When nonlinear sffects are included, it is expected that
the critical wave number will be shifted. To investigate the
nonlinear effects on the stability of the system, we shall
employ first the multi-scale expansion method [&)].
Introducing a small parameter e, we assume the following
expansions of the wvariables:

3

_ n 4
e 430 = ; ePe 0 x x x.,T.,1.,T,) + 0(c) (16}
m=1 n greret2r 012 r
where
R I
xn = £ M, Tn = g t.

We assume also that o = 0(1).
Subkstituting (15) and (l&) into (4),({5), (11},{12} and (12},

and eguating like powers of e, we obtain, for n=1,2,3, three




sets of equations for ¢£j} and Ny, These equaticons are collected
in the Appendix.

Te solve these eguations in the neighborhood of the linear
gritical wave number kc' we assume that the critical wawve number,

because of the nonlinear effect, will shift to

_ 2
k = kc + £ . {173

The first order solution is to reproduce the lingar result

for the critical case. Therefore the solutions are given by

ikKD _ -ikHD
ﬂl = ﬂ{xltxererE}e + R(xHKE:Tl:Tzie ¥ (18}
ikX ~ikX
il k
(19)
i kX
(2)_ _ _ & *
¢'l - m [ﬁ{xlrxererz}E
-ikX
—_ -k
+ E{X),X,,Ty.Tyle  Cre Y, (20)

where a bar denotes complex conjugate guantities. From {A-3} we
recover to this order the critical dispersion relation that knkc.

The second order egquations for n2.¢£l] and ¢;2} have
nonhcmageneocus expressiong in terms of the first order solutions.
In order to avoid the situation that ratios like nzfnl bhacome

unbounded as T, or X, goes to infinity, the secular terms are

required to vanish. Therefore, we obtain from [(A=5}-{R~8)},

1
A

sA 0, (21}

[+3]

[2%]

(22}

(%]
}_J
[}
=]
L




Then the solutions for Tigr ¢é1} and i3 are given by:

2,2 2ikX
ny = -2 v e 4+ cc, {23)
igp B
(1) 2 y, 21kX_ 2ky
R e et e 20
i égkp P
2 2 2ikX_ -2ky
(2] ol I o
b2 ST Ty Y (ar (2 © ¢ + cc, {25
P bgkp o

where CC represents the complex coenjugate,

Substitute the first and second order solutieon into the
third order equations. In order to avoid the nonuniformity of
the expansion, we again impose the condition that secular terms

tc vanish. Then we found from {A-5%) that

2B _
3K, O (26

and after some computation we found from (A-11l) that

gi %ég + {Eakcuﬂ +
+ (20yy + el - § Gy - Thpe® - 3 aklik lal%a) = o, (27)
g ¢ e a
where
uz
o chpTT}nizl (29)

There is no loss of generality to treat A as real in (27)

since the phase associated with A remains constant. Thus we may




10
rewrite {27} as follows:
_ B (ay+andia= 0, (29)
2
where
Uuki
a, = — (30}
and
3
k
1 1 6 , 1 1 3 P, 2
a. = [¢ + b= = - 21‘4—71{:{]{. {31}
] ﬂ{l} ﬂ(E} B 0{1} D{ } a C
Dencote A(0) = AG, we obtailn
- -2a.t —Za,t
2 _ 2 1 2 2 1
A [TE} = a,A e f[al+azno a,h e 1. {32}

With finite initial valus AD, A may become infinite when the
denominator in {(32) vanishes. Otherwise A will be asymptotically

boundsd. The situation can be summarized as follows:

{I] a, > 0 : stable.
2
(i) a > O : A -~ [, as T2 & g
(3i) a. <0 : A2+ -l som s
1 - a, f 2
{II) &2 < 0

(i} al ¢« 0 : unstable.

2 s |
{ii) a; » 0, and AG » (= E—} : i1nstable.
2
2 2y
{iii) a, > 3, and AE < (= E—} : stable and

Az + {0 as T
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Thus a spfficient condition for stability is a, > 0, which
is due to the finite amplit&de effect. Stability can also be
established if a, ? 0 and the initial amplitude is sma;l enough,
which is the linear result.

Tc investigate the sign of Ay, let us consider the case

{1} p{EJ

that p < . Which would correspond to the case that the
density of the vapor down below is much smaller in comparison
with the density of the liguid on top. Then the expression

of a, can be approximated by

— k. . {33}

I
—
=

I

|

I

)

Thus a, > 0 if 0.88 < 8 < 5.12. Since the magnitude of o is a
measure of the effect of mass and heat transfer due to evapeoration,
it is puzzling that the system tends to be unstable for large

o {or B}. Teo resolve the paradox, we may note that for large o,

it should be more appropriate to consider o = ﬂ{%} in the criginal
expansion scheme. Then the flow system is indeed stable. There-
fore the appropriate criterion for stakility as given by (27) is

approximately:

1 2 3 2
+ p{zi}a » = gkc . {32)

( 1
p{l} 4

When a, is positive, the system can be stable even for

ay < 0, thus enlarging the range of spectrum of the stable wave

lengths. In that case, the asymptotic amplitude of the interface
a, 1/2
disturbance is given by (- Eil . From practical consideration,
2
we would expect that as the amplitude exceeds half the wave length,



i2

there iz a tendency for bubbles to form and detach frem the

interface. Thus we may obtain an estaimate of radius of the

bubbles R by

a
1l
rR® = (- E-}.
2
In the above eguation, we should substitute the value {%} for k

in the expressicon of u which is {k_kc}' If we approximate the

value of a., by | 1 + 2 }akz, then an estimate of R is given
2 0{1} ﬂfEi c

by

2 gell) 12)

R™ = b, {35)

e ke TR

o {pn +n )

From (1%, we see that for o small, the relevant root 1s

R & Em , which 1s the same as that given by the linear result.
c

As o increases, the =z2ize of the bubble will also increasa.

But when ¢ exceeds certain critical value, no real positive root

for R exists, and no bubble will be released from the interface.
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Iv. vVariational Methed

For interfacial flow problems with two immiscible fluids,
the governing equations can be shown to be equivalent to some
variational principle [7}. Fer the simpler cage that the fluids
are both incompressible and irrotational, the wvariational principle
can be stated as follows: the flow field of the system and the

motion of the interface are such that the functional

t t2

7= J at j - o2t 4 I e e’ - ! at [ odA, (36)
t G tl ¥

al
ba]

1

(1)

is a extremum, where G = ¢ +G{2} denctes the entire space

occupied by the fluids and & denotes the interface between G“‘JI

G{ll, the variables

¢ and ¢ should take their respective designations p{ll and ¢{l}.

(1}

and ¢'2'. fThos in each respactive region
The wvariations with respect to ¢ and ¢{2} and the variation

of the interface lead to the governing eguations and the
kinematic and dynamic interfacial conditions as well [7]. Since
the fluids are assumed to be immiscibkle, they are indeed
physically two distinct materials. Hence the variations with
respect to ¢{1} and ¢{2} are completely indapendent. As a result,

the kinematic interfacial conditions are

3

22 . (v¢' 1y (ve) = 0, om six,t) = ¢, i=1,2. (37)

ot

When there 1s mass transfer across the interface, it turns
out that the variational principle using the zame J as in {36} i3

alse applicable. However, since one fluid can change into the
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other through phase transformation, these two fluids are
physically really not distinet, although the flow variables are
discontinuous across the interface. Therefore the variations
5o 1)

independent of each other. As a result, we cbtain one single

and 6¢{2] are the same at the interface rather than

interfacial condition (7} instead of the two conditions as given
by (37). Taking intoc consideration of the mass flow across the
interface as given by {(7), we also obtain the dynamical inter-
facial condition (8), as a result from the variation of the
interface. Together with the condition of interfacial energy
transfer (9} or (l0), the wvariabtional formulation is then
equivalent to the governing eguations (4)-{10}. The condition

of interfacial energy transfer can be obtained from the wvariaticn

with respect to ¢ of the following functional:

) ta
I = J at I p[%% + %{?¢}21d3§ - J at { andA. (38)
b, (D S

Following the approach as presented elsewhere (8], let us take

the feollowing trial function in the process of variation:

n = 2A cos{kx+wt], {39}
¢{l} = [B cos{kx+wt) + B’ sin[kx+wt}]eky f {40}
6% = [c costkx+wt) + C' sin{kx+wt)le Y, {41}

and substitute directly into the functional J and I. Retaining

only the secular terms and after straightforward but somewhat




lengthy calculations, we found that, up to G{Aq]:

£, o
J = -

£, Zes

4

+ ﬂ{m [-wAC® {1

+ ollek®a? - 2
and

t2 o

t; -

[ dt l dx{pil}[mAB'{l + 3

j at [ axtp M ruapr 1 + 3

1 k2g2}

ke?ipr?) (1eak?n?) + ga?)

+ % k%a?) + §{02+C'2}{1+4k2ﬁ2}—gﬂzl
kiatyy, (42)

i

k2a%y+ K?en?) (ea?a®yagaty

«AB[1+2k%a%11. (43)

Mow we shall take the wvariation of J with respect to

A,B,B',C and C"'.

interface in this wvariational formalation,

Since &¢

{1} (2}

and d¢ are the same at the

therefore we have to

take §B = 4C and éB' = &C'. From the variation of J, we thus
cobtain:
8 = éc: = oM kparax®a?) « 1 0¥ kcara®a?) < o, (44)
s8'= st o ena + 1 k%a%) + & mrearta?))
+ 0@ peeni + 2% ¢ Ko ea®a?)) = 0, 145)

dA: pil}[wB'fl + % kzhzi + 2k3RB'2 + Ek?'.EB2 + 2ga)

y o ucr a4 3 k%) 4 aac? + 2%ac? - 242

+ 20k%2(1 - 3 k%% = 0. (46)

o



The wariation with raspect to B and B' of I leads to:

2 2

§B: % p D ipi+axa?) ~ an(1+2¢%a?) = o, t47)

st p1 (wai1 + % k?a%y + ; B' (1+4k%a%)1 = 0. (48)

! It is illuminating to consider the linear problem first.

I It may be seen then that the egquations (45), (46} and (48) form
an independent set, and the dispersion relation (1) is obtained,
just like the case when the twoe fluids are immiscible. The mode
associated with B and C plays a passive role through the
equations (44) and (47). The c¢ritical condition is achiaved
when wa set w=0. Then the mode associated with B' and C' becomes
vanishingly small. This is the situatiocon whesn the affect of
mass and heat transfer enters to play the active and dominant
rola. HRow the amplitudes of both the surface disturbance and
the flow field can be kept finite even at the critical condition.

Betting w=0, then we obtain from (45), (48), (46) and (47):
B' = ' = 0, (49)

2.2
203 {1+2k A (50)

y.
R pakal

,Mp o 2

Equation {46) then vields a nonlinear dispersion relation:

2
2) (1) 1 L .« 3 .2,,2,2 4,
o }g+{4{p{l} + pﬁz}}E“ - 3 ok“Ik“A® + 0(a") = 0. (S5L)

ok2-{p

Thus, when

+ 1 1 2 3 k!
{p[lj + p{z}}u » B gk, (52)

the system may reach stability for finite amplitude waves.
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The variational method gives the same result as the
pravious approach for the linear problem. The nonlinear results
as given by (51) and (52) do not agrae completely with those
given in (2%), although they tend to corroborate gualitatively

with each otheyx.
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V. Discuzsion

We have presented an an%lysis of nonlinear Rayleigh-Taylor
stability with mass and heat transfer based on a simplified
fermulation. The simplified formulation reéduces greatly the
complexity of the probklem, making it easier to keep track of
the mechanism inveolved. In this simplified formulaticon, the
effect of mass and heat transfer is revealed through a single
parameter a. It is found that when o is large encugh, the
system, which would be unstable c¢lassically, can be stabilized
for finite amplitude disturbances. For moderately large o,
the size of the vapor bubbles detached from the interface can
also be estimated. Detailed applications to real problems of
boiling heat transfer will be discussed in ancother paper.

We have presented two mutually corrobeorating analyses of
the problem, i.e. the multiple-scale expansion method and the
variational methed. In the multi-scale expansion method, the
scale assigned to o is of crucial importance. The main results
were obtained by choosing ¢ = 0{l). It may be shown that if we
have chosen ¢ = 0ic), then we would have obtalned essentially
the classical result with only slight modification due to the

effect of mass and heat transfer. On the other hand, if we had

chosen a ﬂ{%l, then we would have the sclution corresponding

to the quiescence of the interface. These results again tend to
confirm our general expectation that the larger is o the more
stable is the system.

The variational method has the potential to be applicable

beyond the perturbation approach. It also offers ancother

A
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perspective on the problem. It is encouraging that a
variational formulation of the problem can be established and
the results of the linear analysis agree completely with those
of the multi-scale expansion method. The nonlinear results of
these two methods are gualitatively corroborating. But the lack
of complete guantitative agreement does indicate that a fuller
understanding on the variational method for the study of
nonlinear stability probilems is still neesded.

Although great analytical advantage was gained by using
the simplified formulation, it is clear we showld go back to the
general formulation to get a full picture of the problem. What
wa have now learned from the simplified problem can serve as a

useful guide for that purpose.
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