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Abstract 

The nonlinear Rayleigh-Taylor stability of a liquid-vapor 
system is studied using a simplified formulation of the problem. 
The method of multiple scale expansion is employed for the 
investigation. It is found that when the heat transfer rate 
is strong enough, the classically unstable system is stabilized 
by the nonlinear effect and the effect of mass and heat transfer 
across the interface. The size of the bubbles detached from 
the interface can also be estimated when the heat transfer rate 
is moderately strong. The problem is also studied by the 
variational method, which corroborates basically the same 
conclusion. 
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Nonlinear Rayleigh-Taylor Stability with Mass and Heat Transfer 

I. Introduction 
The phenomenon of the classical Rayleigh-Taylor stability 

is well known [1,2,3]. The essential feature may be stated 
briefly. When a heavy fluid is on top of a light fluid in a 
gravitational field, the equilibrium system is unstable, and 
vice versa. To be more specific, let us take both fluids to 
be incompressible and inviscid, let the density of the fluid on 
top be p , the density of the fluid underneath p , and let 
the depths of both fluid layers be infinite, then the dispersion 
relation for the interfacial wave is given by 

2 r i / (1) (2) ̂  i 3, , , (IK (2) , ,, . 
a) = [gk(pv -pv ')+ak ]/(pv '+pv ' ) , (1) 

where to is the frequency; k, the wave number; g, the gravitation 
constant, and a, the surface tension coefficient. When the 
surface tension is neglected, this system is stable if p > p , 
and unstable if p ' > p '. However when a ^ 0, then even if 
p > p , the system is stable if k > k , where the critical 
wave number is given by 

k c = [g<p(2>-p(1)>/a]1/2. (2) 

Still when k is small enough, or the wave length is long enough, 
the equilibrium system is unstable if the heavier fluid is on top 
of the lighter fluid. These analytical results are generally in 
agreement with our experience. 
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There are, however, situations that the configuration of 
heavier fluid on top of lighter fluid is maintained even though 
the geometrical boundary conditions permit waves with wave 
lengths longer than the critical wave length. A notable example 
is the phenomenon of film boiling. In this case of intense heat 
transfer, a hot vapor film is apparently capable of supporting 
a heavier liquid on top. The physical mechanism for the stability 
of the configuration can be explained intuitively as follows. 
Although the classical Rayleigh-Taylor instability mechanism 
tends to disrupt the interface, before the growing protruding 
liquid fingers can reach the bottom of the vapor film, they are 
evaporated to become vapor themselves because of the intense heat. 

It is evident that in order to analyze such stability 
problems, the effect of mass and heat transfer across the 
interface has to be taken into consideration. In a previous 
paper [4], a general formulation of interfacial flow problem 
with mass and heat transfer was established and applied to the 
Rayleigh-Taylor stability problem. From the linearized analysis, 
it is found that when the vapor region is hotter than the liquid 
region, as usually so, the effect of mass and heat transfer tends 
to inhibit the growth of instability. However, the stability 
criterion remains the same as the classical result [4]. Thus, 
for the problem of film boiling, the instability would be 
reduced yet would persist according to the linear analysis. It 
is clear that a nonlinear analysis is needed to answer the question 
that whether and how the effect of mass and heat transfer would 
stabilize the system. 
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To facilitate the analyses of the nonlinear stability 
problem, a simplified formulation of the interfacial flow problems 
with mass and heat transfer has been established [5]. In this 
formulation, the effect of mass and heat transfer on the 
dynamics of the system is revealed through an interfacial condi
tion which makes use of the equilibrium temperature distribution 
of the system, thus bypassing the nonsteady heat equations. It 
may be termed as a quasi-steady formulation from the thermal 
perspective. The simplified formulation has been applied to 
linear Rayleigh-Taylor and Kelvin-Helmholtz stability problems [5]. 
For the Rayleigh-Taylor stability problems, a comparison of the 
results with those from the more comprehensive treatment shows 
that the essential features of the analytical results are 
retained in the simplified formulation. 

In the following, we first present the simplified formulation 
of the interfacial flow problem with mass and heat transfer. Then 
the nonlinear Rayleigh-Taylor stability problem of two semi-infinite 
incompressible inviscid fluids is investigated using the method 
of multiple scale expansion. For corroboration, a variational 
study is also made on the same problem. Brief discussion relating 
to boiling heat transfer is also presented. 



II. Formulation of Problem 

We shall study the flow of a system of two semi-infinite 

incompressible inviscid fluids as shown in Fig. 1. The 

interface is given by 

s(x,t) = y-n(x,z,t) = 0. (3) 

At equilibrium, the interface is taken to be y=0. 

Assuming the flows of the fluids are irrotational, and 

introducing the velocity potential functions (j> -1 (x,t), we have 

2 (1) 
V <j> v ; = 0 , -«> < y < n / (4) 

and 
2 (2) 

v <r = 0 , n < y < ~ . (5) 
The Bernoulli equations are: 

H ^ - + | ( V * ( j ) ) 2 + gy + | | - i - = 0, j=l,2, (6) 

where p ^ are the densities of the fluids, p , the pressures, 

and g is the gravitation constant. 

The interfacial conditions which express the conservation 

of mass and momentum are given by [4,5]: 

P ( 1 ) iff + (V<j>(1))-(Vs)] = p ( 2 ) [|| + (V(j,(2))-(Vs)], at y=n, 

(7) 

and 

p ( 1 ) [(V())(1)) • (Vs)] [|| + (V(f)(1)) • (Vs)] = 

p ( 2 ) [(V<),(2))-(Vs)] [§f + (V(J.(2))-(Vs)] + [p(2)-p(1)-a(|-+|-)]|Vs|2
/ 

at y=n, (8) 
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where a is the surface tension coefficient, and R, and R„ are 
the two principal radii of curvature of the interface. The 
radius of curvature is taken to be positive if the center of 
curvature lies on the side of the fluid (2), and negative if 
otherwise. 

The interfacial condition for energy transfer is given by 

Lp(1)[|f + (V(J)(1)) • (Vs)] =F(n), at y=n, (9) 

where L is the latent heat released when the fluid is transformed 
from phase (1) to phase (2). The left hand side of (9) repre
sents the net heat flux from the interface into the fluid regions 
when such phase transformation is taking place. This quantity 
is taken to be approximately expressible in terms of the balance 
of heat fluxes in the fluid regions as if the system is 
instantaneously in dynamic equilibrium. To concentrate on the most 
salient feature of the issue, we shall take F(n) to be linear in 
n. Thus the condition (9) can be expressed as [5]: 

P U ) [|f + (V(J)(1)) • (Vs)] =an , (10) 

where a is a thermal parameter which is positive if the vapor is 

hotter than the liquid as usually is the case. When the depth of 

the fluids are finite, say h, and h_, we have [5]: 

where G is the equilibrium heat flux. Here, we can simply take a 
to be some physical parameter for theoretical considerations. 
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Let us further limit our investigation to fluid flows in 
two space dimension. Making use of equations (3) and (6), the 
interfacial conditions (7),(8) and (10) at y=n(x,t) can be 
rewritten as 

P
(1) tnt+^1)nx-d>^1)]= {(2)} , (ID 

P
 (1
» » <» + | < >

 2
< »

 2
. +9n- l , * I" nx-t <l>, ,„t+t (" „,-♦<» ,, 

J l+n
 J J 

X 
- {(2)} + cmxx(i+n^)"

3/2
, (12) 

P
U) tV^^x'^y1^ = ~an ' (13) 

where the notation {(2)} on the right hand sides of the equations 
is used to denote the same expression as that of the left, except 
changing the superscript (1) to (2). 

Equations (4),(5),(11),(12) and (13), together with some 
boundedness conditions at infinity constitute the governing 
equations of the problem. 
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III. Multi-scale Expansion Near the Critical Wave Number. 
When the interface is perturbed from the equilibrium 

y=0 to y=ne w , the dispersion relation for the linearized 
problem formulated above is [5]: 

(p(1)+p(2))a32 + 2iato + [gk(p(2)-p(1))-ak3] = 0. (14) 

The critical wave number is again given by 

k c = [g(P ( 2 )- P
( 1 ))/o] 1 / 2. (2, 

The corresponding critical frequency, to , is zero for this case. 
When nonlinear effects are included, it is expected that 

the critical wave number will be shifted. To investigate the 
nonlinear effects on the stability of the system, we shall 
employ first the multi-scale expansion method [6]. 

Introducing a small parameter e, we assume the following 
expansions of the variables: 

3 . 
n = l ennn(X0,X1,X2,T0,T1,T2) + 0(e4), (15) 

n=l 
3 

<j>(j) = E £n*^j) (X ,X ,X2,T0,T ,T2) + 0(e4), (16) 
n=l 

where 

n „, n^ X = e x, T = e t. n ' n 

We assume also that a = 0(1). 
Substituting (15) and (16) into (4), (5), (11), (12) and (13), 

and equating like powers of e, we obtain, for n=l,2,3, three 



sets of equations for <j> -1 and n . These equations are collected 
in the Appendix. 

To solve these equations in the neighborhood of the linear 
critical wave number k , we assume that the critical wave number, 

c 

because of the nonlinear effect, will shift to 

k = k + e2p . (17) 

The first order solution is to reproduce the linear result 
for the critical case. Therefore the solutions are given by 

ikX _ -ikX 
n1 = A(X1,X2,T1,T2)e ° + A(X1,X2,T1,T2)e °, (18) 

* 1 (1) [A(X1,X2,T1,T2)e ° + A(X1,X2,T1,T2)e °]e y, 
P k 

(19) 

*12)= ' l l r fA(X1,X2,T1,T2)e1 ° 
P K 
_ ~ i k x V 

+ A(X1,X2,T1,T2)e °]e~KY, (20) 

where a bar denotes complex conjugate quantities. From (A-3) we 
recover to this order the critical dispersion relation that k=k . 

The second order equations for ru,<j)i and <t>~ have 
nonhomogeneous expressions in terms of the first order solutions. 
In order to avoid the situation that ratios like ru/ru become 
unbounded as T or X goes to infinity, the secular terms are o o ^ 2 ' 

required to vanish. Therefore, we obtain from (A-5)-(A-8), 

dA dx1 
0, (21) 

% = 0 - < 2 2 ) 
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Then the solutions for n2> cf>? a n d $? a r e given by: 

2 2 2ikX 
^2 = , "(?) (2) e ° + CC' (23) 

3 ? P P 

(1) 2 2 2ikX 2ky 
*2 = - ̂ flT (1 - . (1) (2))e ° e + C C ' (24) 

p ogkp p 

o\ ~a2 2 2ikX -2ky 
4 = - ^12T (1 +

 g , (1) (2)}e ° e + CC, (25) _a _\ _ o 
p"" 6gkp p 

where CC represents the complex conjugate. 
Substitute the first and second order solution into the 

third order equations. In order to avoid the nonuniformity of 
the expansion, we again impose the condition that secular terms 
to vanish. Then we found from (A-9) that 

% = 0 ' < 2 6 > 

and after some computation we found from (A-ll) that 

k" 8TT + < 2 oV A + 
c 2 

+ [2(-^j + -T2y)a2 - | (-—- - ̂ 2T)a2 - f ak3]kc|A|2A} = 0, (27) 
P P p p 

where 
2 

6 = . "(I) (2) * (28) 

gkcpv 'pv 

There is no loss of generality to treat A as real in (27) 
since the phase associated with A remains constant. Thus we may 
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r e w r i t e (27) a s f o l l o w s : 

g f - + ( a i + a 2 A 2 ) A = 0, (29) 

where 

ayk 2 

a
i = -ir '

 (30) 

and 

a k 3 
a2 = [{J(TT + ~T2T) ~ I (^TT ~ "T2T) " I ~^]akl- (31) 

P P p p a 

Denote A(0) = A , we o b t a i n 
o 

A^(T„) = a,A e l / (a, +a,A - a , A e x ) . ( 3 2 ) 
2 l o 1 2 o 2 o 

With finite initial value A , A may become infinite when the 
o 

denominator in (32) vanishes. Otherwise A will be asymptotically 
bounded. The situation can be summarized as follows: 

(I) a~ > 0 : stable. 
2 

(i) a, > 0 : A ^ 0, as T 2 ->• 0° . 
2
 a

l 
(ii) a, < 0 : A -*■ - — , as T 2 -»-

(II) a 2 < 0 : 

(i) a, < 0 : unstable. 
2
 a

l 
(ii) a, > 0, and A > (- — ) : unstable. 

1 o a 2 

2
 a

l 
(iii) a, > 0, and A < (- — ) : stable and 

1 o a 2 
2 

A -»- 0 as T- ->- °° . 
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Thus a sufficient condition for stability is a» > 0, which 
is due to. the finite amplitude effect. Stability can also be 
established if a, > 0 and the initial amplitude is small enough, 
which is the linear result. 

To investigate the sign of a„, let us consider the case 
that p << p , which would correspond to the case that the 
density of the vapor down below is much smaller in comparison 
with the density of the liquid on top. Then the expression 
of a~ can be approximated by 

a2 s [ i -1 - y -ink' • (33) 

p 

Thus a„ > 0 if 0.88 < 3 < 5.12. since the magnitude of a is a 
measure of the effect of mass and heat transfer due to evaporation, 
it is puzzling that the system tends to be unstable for large 
a (or B)• To resolve the paradox, we may note that for large a, 
it should be more appropriate to consider a = 0(—) in the original 
expansion scheme. Then the flow system is indeed stable. There
fore the appropriate criterion for stability as given by (27) is 
approximately: 

(_1_ + - l ^ a 2 > | ak2 . (34) 

When a_ is positive, the system can be stable even for 
a, < 0, thus enlarging the range of spectrum of the stable wave 
lengths. In that case, the asymptotic amplitude of the interface 

SL 1/2 
disturbance is given by (- — ) . From practical consideration, 

a2 
we would expect that as the amplitude exceeds half the wave length, 
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there is a tendency for bubbles to form and detach from the 
interface. Thus we may obtain an estimate of radius of the 
bubbles R by 

2 al R̂  = (- -i) . 
a2 

In the above equation, we should substitute the value (—) for k 
in the expression of JJ which is (k-k ) . If we approximate the 

1 1 2 value of a„ by (—ppy + —r^y)ak , then an estimate of R is given 
P P 

by 

, (1) (2) 
R2 - 2 ° p

( i , ; ,2 ) , <*c - s> • < 3 5 » 
a (p '+p ) 

From (35), we see that for a small, the relevant root is 

k R ~ f which is the same as that given by the linear result. 
c 

As a increases, the size of the bubble will also increase. 
But when a exceeds certain critical value, no real positive root 
for R exists, and no bubble will be released from the interface. 
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IV. Variational Method 

For interfacial flow problems with two immiscible fluids, 
the governing equations can be shown to be equivalent to some 
variational principle [7]. For the simpler case that the fluids 
are both incompressible and irrotational, the variational principle 
can be stated as follows: the flow field of the system and the 
motion of the interface are such that the functional 

t2 t2 

J = dt dt adA, (36) - Ptff + \ (V()>)2]d3x -
t, G t, A 

is a extremum, where G = G +G denotes the entire space 
occupied by the fluids and A denotes the interface between G 
and G . Thus in each respective region G , the variables 
p and cj) should take their respective designations p and cf> . 
The variations with respect to (J> and cf) and the variation 
of the interface lead to the governing equations and the 
kinematic and dynamic interfacial conditions as well [7]. Since 
the fluids are assumed to be immiscible, they are indeed 
physically two distinct materials. Hence the variations with 
respect to <!> and <$> are completely independent. As a result, 
the kinematic interfacial conditions are 

|f + (Vcj>(l)) • (Vs) = 0, on s(x,t) = 0, i=l,2. (37) 

When there is mass transfer across the interface, it turns 
out that the variational principle using the same J as in (36) is 
also applicable. However, since one fluid can change into the 
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other through phase transformation, these two fluids are 

physically really not distinct, although the flow variables are 

discontinuous across the interface. Therefore the variations 

6<|> and 6$ are the same at the interface rather than 

independent of each other. As a result, we obtain one single 

interfacial condition (7) instead of the two conditions as given 

by (37). Taking into consideration of the mass flow across the 

interface as given by (7), we also obtain the dynamical inter

facial condition (8), as a result from the variation of the 

interface. Together with the condition of interfacial energy 

transfer (9) or (10), the variational formulation is then 

equivalent to the governing equations (4)-(10). The condition 

of interfacial energy transfer can be obtained from the variation 

with respect to <t> of the following functional: 
t 2 t 2 

dt r9d) , 1 /r7 , v 2, ,3 P [ j£ + (̂Vcj)) ^ d * " dt andA. (38) 

H G ( 1 ) fcl 
Following the approach as presented elsewhere [8], let us take 

the following trial function in the process of variation: 

n = 2A cos(kx+wt), (39) 

<J>(1) = [B cos(kx+tot) + B' sin(kx+tot) ]e k y , (40) 

<j>(2) = [C cos(kx+wt) + C sin(kx+wt) ]e~ k y, (41) 

and substitute directly into the functional J and I. Retaining 

only the secular terms and after straightforward but somewhat 



lengthy calculations, we found that, up to 0(A ): 
+co 

J = - d t 

t -°° 
^ 1 

n ) 1 2 2 
d x { p ^ [uAB' (1 + f- k A ) 

+ J (B 2 +B' 2 ) ( l+4k 2 A 2 ) + gA2] 

+ p ( 2 ) [ - u A C (1 + \ k 2 A 2 ) + k - ( C 2 + C ' 2 ) ( l + 4 k 2 A 2 ) - g A 2 ] 
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+ a [ l + k 2 A 2 - | k 4 A 4 ] } , (42) 

and 
+ 00 

I = dt dx{p(1) [wAB' ( 1 + | k2A2)+ ^(B2+B'2) (l+4k2A2)+gA2] 
t± -oo 

- aAB[l+2k2A2]}. (43) 

Now we shall take the variation of J with respect to 
A,B,B',C and C . Since 6cj) and 6<j> are the same at the 
interface in this variational formulation, therefore we have to 
take 6B = 6C and 6B' = SC . From the variation of J, we thus 
obtain: 

6B = 1 (1) 2 2 1 (2) 2 2 
6C: ± p^"UkB(l+4kZA ) + ± p V ' kC (l+4kZA ) = 0, (44) 

6 B ' = <5C : p ( 1 ) [toA(l + | k 2 A 2 ) + | B ' ( l + 4 k 2 A 2 ) ] 

+ p ( 2 ) [ - w A ( l + \ k 2 A 2 ) + | C ( l + 4 k 2 A 2 ) ] - 0 , (4 5) 

6A: p ( 1 ) [ w B 1 ( 1 + | k 2 A 2 ) + 2 k 3 A B * 2 + 2 k 3 A B 2 + 2gA] 

(2) 3 2 2 3 2 3 2 
+ p^ ' N C 1 ( 1 + | k A ) + 2 k J A C + 2k JAC - 2gA] 

2 3 2 2 
+ 2 a k A ( l - | k A ) = 0 . (46) 
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The variation with respect to B and B' of I leads to: 

6B: i p(1)kB(l+4k2A2) - aA(l+2k2A2) = 0, (47) 

6B' : p ( 1 ) [a)A(l + | k2A2) + \ B' (l+4k2A2)] = 0 . (48) 

It is illuminating to consider the linear problem first. 
It may be seen then that the equations (45), (4 6) and (48) form 
an independent set, and the dispersion relation (1) is obtained, 
just like the case when the two fluids are immiscible. The mode 
associated with B and C plays a passive role through the 
equations (44) and (47). The critical condition is achieved 
when we set co=0. Then the mode associated with B' and C1 becomes 
vanishingly small. This is the situation when the effect of 
mass and heat transfer enters to play the active and dominant 
role. Now the amplitudes of both the surface disturbance and 
the flow field can be kept finite even at the critical condition. 

Setting to=0, then we obtain from (45) , (48) , (46) and (47) : 

B' = C1 = 0. (49) 

p<l>B = -p(2)C = iaA (l + 2k2A2
 ( 5 Q ) 

K l+4kV 
Equation (46) then yields a nonlinear dispersion relation: 

2 
ak2-(p(2)-p(1))g+[4(^Ty + -^jf)^- - § ak2]k2A2 + 0(A4) - 0. (51) 

P P 
Thus, when 

•(_!__ + - ^ a 2 > § ak3, (52) 
P P 

the system may reach stability for finite amplitude waves. 
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The variational method gives the same result as the 
previous approach for the linear problem. The nonlinear results 
as given by (51) and (52) do not agree completely with those 
given in (29), although they tend to corroborate qualitatively 
with each other. 
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V. Discussion 
We have presented an analysis of nonlinear Rayleigh-Taylor 

stability with mass and heat transfer based on a simplified 
formulation. The simplified formulation reduces greatly the 
complexity of the problem, making it easier to keep track of 
the mechanism involved. In this simplified formulation, the 
effect of mass and heat transfer is revealed through a single 
parameter a. It is found that when a is large enough, the 
system, which would be unstable classically, can be stabilized 
for finite amplitude disturbances. For moderately large a, 
the size of the vapor bubbles detached from the interface can 
also be estimated. Detailed applications to real problems of 
boiling heat transfer will be discussed in another paper. 

We have presented two mutually corroborating analyses of 
the problem, i.e. the multiple-scale expansion method and the 
variational method. In the multi-scale expansion method, the 
scale assigned to a is of crucial importance. The main results 
were obtained by choosing a = 0(1). It may be shown that if we 
have chosen a = 0(e), then we would have obtained essentially 
the classical result with only slight modification due to the 
effect of mass and heat transfer. On the other hand, if we had 
chosen a = 0(—), then we would have the solution corresponding 
to the quiescence of the interface. These results again tend to 
confirm our general expectation that the larger is a the more 
stable is the system. 

The variational method has the potential to be applicable 
beyond the perturbation approach. It also offers another 

/ 
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perspective on the problem. It is encouraging that a 
variational formulation of the problem can be established and 
the results of the linear analysis agree completely with those 
of the multi-scale expansion method. The nonlinear results of 
these two methods are qualitatively corroborating. But the lack 
of complete quantitative agreement does indicate that a fuller 
understanding on the variational method for the study of 
nonlinear stability problems is still needed. 

Although great analytical advantage was gained by using 
the simplified formulation, it is clear we should go back to the 
general formulation to get a full picture of the problem. What 
we have now learned from the simplified problem can serve as a 
useful guide for that purpose. 
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A p p e n d i x 

O r d e r e 

3 2 * n
( j ) 3 2 ^ ( j ) 

2 ^ - = 0 , j = l , 2 ; + 
3X 9y 

( A - l ) 

( 1 ) 3 n , 3<J>, 
p [ 3 T ^ " 1 ^ — ] = { ( 2 ) } ' ° n Y = 0 ; (A-2) 

( 1 ) ^ 1 
(1) 

3T + gn-J 
a 2 

{ (2) } + a — ^ , on y = 0 ; 
ax: 

(A-3) 

( D t
9 T 1 l 3<{> (1) 

3T 3y -] = ~om1 , on y = 0 . (A-4) 

O r d e r e' 

3 % ^ ) 3 2 ^ ( j ) 3 2 (D ) 

TA + *A = - 2
 X 

3X 3y 
3X 3X, ' 

o 1 
j = l , 2 ; (A-5) 

, 3n S ^
1

* 3 n , 3cj)1
(1) 3 n , 3

2
* n

( 1 ) 

P
{ ' [^A - ^A— + (^A- + ^ ^ ^ - n, , ) ] = { ( 2 ) } , y=0 ; 

3 T o 3y ■3T, ' 3X 3X " 1 , 2 
l o o 3y 

3(J) (1) 
3 4 , 1

( 1 ) 3 2 * ( 1 ) 
a)r"

y2 , r ^ i , - n , l . ^ i N
2 , i , 3 4 > r y 

p {
3 T

 +
g

n
2

+ [
3 T T -

 + 3T 3y
 n

l
 + 2

(
3 ^ >

 +
2

(
3 X > 

o 1 o o 

(1) < A " 6 ) 

3cj){1) 3cj) (1 ) 3n 3 2
n ? 3 2 ru 

■(■*rrr **A) > = U 2 ) } + a ( — * A + 2 ^ t v ) , on y = 0 ; 
3y 3y 3T „ v _ 3X 3X, 

3X o 1 
o 

(A-7) 
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2 2 2 2 
3 rio 3 H-, 3 rin 3 H9 

= { ( 2 ) } + a[—^ + ~±- + 2 „ v ; L + 2 Z » v 2 ^,,2 3X 3X„ 3X 3X. 3X 3X, o 2 o 1 o 1 

2 
_. 3 n-, 3n n 2 

- 4( 9^) (vT^) 1/ on y=0; (A-l i ; Z 3X^ do o 

Left Hand Side of (A-10) = -an_ , on y=0. (A-12) 



23 

References 

Lord Rayleigh, Scientific Papers, Vol. ii, 200-207, 
Cambridge, England (1900). 
G.I. Taylor, Proc. Roy. Soc. (London) A201, 192-196 (1950). 
S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability", 
Oxford, England (1961). 
D.Y. Hsieh, Trans. ASME 94D, 156-160 (1972) . 
D.Y. Hsieh, "Interfacial Stability with Mass and Heat 
Transfer", ERDA Report C00-4155-2, Division of Applied 
Mathematics, Brown University (1977). 
A.H. Nayfeh, "Perturbation Methods", Wiley, New York (1973). 
D.Y. Hsieh, "Variational Methods and Dynamics of Nonspherical 
Bubbles and Liquid Drops", in "Finite-Amplitude Wave Effects 
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