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ABSTRACT

The effect of the anisotropic pressure of a hot electron p]asﬁa on

b 3 -o . i
allooning-interchange and compressional Alfven modes are investigated

General eigenmode equations for these modes are derived in the eikonal

Timit with finite gyrofradius effects retained. A local dispersion relation

is obtained in the flute 1imit for an isotropic Maxwellian background plasma

with a hi-Maxwellian hot c]cptron population. SLability 1s investigated

both analytically and numerically.

DISCLAIMER

This teport was prepared &s an account of work sponsored by an agency of the United States Goverament.
. Neither the United States Government nor any bgency thereof, nor any of their employees, makes any

warranty, express or implied, or sssumes any legal liability or responsibility for the accuracy.
completeness, or usefuln
represents that its use would not infringé piwately SWNED rigms. Mg ieels w any gaific
commercial product, process, of service by trede name, i or

nat necessarily constitute or imply its endorsement, recomme
States Government or any agency thereof, The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government of any agency thereof.

ise, does

ess of any information, spparatus, produci, or process disclosed, or | .
)

ndation, or favoring by the United !

DISTRIBUTION OF THIS BOCUMENT 1S UNLIRYED



I. INTRODUCTION

1

In a recent paper,” the stability of a hot electron ring-plasma system

in either tandeh mirror or Elmo Bumpy Torus (EBT) geometry was investigated.

Modes with wave frequency w below the ion gyrofrequency Q; were treated by using

the gyrokinetic technique.2 A set of ballooning-interchange/compressional
Al1fvén eigenmode equations were derfved from the Maxwell equations. This
resulting set of equations is general enough to describe low frequency (w < Qi)
modes including interchange, shear and compressionél Altven, and drift waves.

In the 1imit in which ballooning is negligible, k, ~ 0 (where k, is the parallel
wavenumber), the shear A1fvén and drift waves decouple from the system. One
then recovers the dispersion relation, which is the focus of much of the recent

ring stability ana]yses,1’3’4

and describes the coupling of interchange and
compressional Alfvén modes.

However, the calculalion in Ref. 1 i5 based on an isotropic Maxwellian
model: the equilibrium distribution functions for the core electrons, ions
and hot electrons are assumed to be isotropic Maxwellians. For the hot electruns
this assumption is obviously not true because the hot electrons are generated
hy e1ectron'cyc]otron heating which heats preferentially in the perpendicular
direction. In this work, we will remove the isotropic assumption. In order
to obtain the simplest results, we eventually retain only the aniéotropy of
the hot electrons, while continuing to treat the ions and core electrons as
isotropic Maxwellians.

The fntereét in anisetropic effects in a high beta hot electron plasma

N
is not new. Theoretical investigations” in the late 1950's revealed that

a high beta plasma having a perpendicular pressure (p,) greater than the



parallel pressure (p,) could.be unstable with respect to the so-called "mirror
instability." It is baéica11y‘a fast (compressional) Alfvén mode which becomes
destabilized by pressure anisotropy.

These early results were based on infinite homogenous medium theory. In
a hot electron ring-plasma system, it has been shown  that for k, ~ 0 a subtle
cancellation in the dispersion relation of fhe compressional Alfvén mode leads

1,34 because of

instead to a curvature driven compressional Alfvén insfabi]ity
the finite beta effects of the hot electrons. Since it is the perturbed hot
electron pressure that is responsible for the subtle cancellation, a careful
gyrokinetic calculation including the anisotropic velocity distribution of the"

hot -electrons becomes necessary in order to obtain.an accurate picture of the

interaction between the‘mirror driving force and the inhomogeneity.

IT. BASIC MODEL

In order to be as general as practical we shall initially assume ‘that all
equilibrium distribution functions Fj depend upon the magnetic moment u = Vf/ZB
as well as energy E = v2/2 and guiding center location B o+ leyxﬁ , Where
B= (B, n=8/B, and 9; = Z;eB/M;c with B the unperturbed magnetic field
and Zj and Mj the species charge number and mass. The unpefturbed densities
N and the total unperturbed pressures p, and p, are assumed to satisfy quasi--

neutrality
Z.eN. =0
2 Z5eN;
J

and pressure balance



2 - 1
v(dmp, +%87) = [1 + %(p,- p..)]g-y!} + 4n§§-y(p‘—Bg—P—) ; - (1)

w-1° th

- 3, L2F -
pL—ZMjfdv‘/QVLFj— ?plj

J
and
p" = ZM J d v V"F zpu
The species subséript J will be used Lu denole hot electrons (j = h; Z-h = .1,
' M, = m), core electrons (J=e, Z,= -1, M =m), and fons (3=1,12,=12,
M. = M).

i

Perturbed field quantities will be indicated by a tilda. The perturbed

scalar and vector potentials will be denoted by 5 and A with I~\.. = n.A. For

any perturbed quantity (~) , we employ the eikonal ansatz
a(r, t) = Q(r.w) exp[is(r) - iwt]

with n-vS =0, k

= vS, and Q satisfying k,> k. = I':"Y”’“al and
kJ- > |Y12'n6(raw)l .

Defining a displacement % via

£ = (ch/wB)k, xR ,

~

the perturbed species distribution function fJ. can be written as 6

Z.e (aF oF . Z.e 3F. .
Y B 2B N D S e DN I _
f HM q)[ v g ] W 5 C;,,][l J, exp(-1L)]

_ujﬁu) exp(-iL) + (ﬁj * 53') exp(-iL) ,  (2)

where Ej satisfies the gyrokinetic equation



~ ~ Z.e 3F
A. L - - = _J____J_-I- A. L
vl Thy = Tl = uggdhy = |5 5 agke T ][A[deQJo kee B0
+ V..ﬁ'V(J 5) - VnRu‘_wJ ] (3)

L =] KixRevy s B, = -1kl - A,
Wys = (M.v2/2T Jw, .t 2(M.v2/2T Jw .o,
dj U R -5 R BN AR
(4)
wbj = (ij/Mij)L(l‘QXYQHB .
and
O 5 = (T" /M Q )k -nX(n v) .
The nth order Bessel functions J ~have argument klvl/Qj. In Eq. (2), §j

is the correction to ?j to next order in w/Qj and for isotropic ions it satisfies2

-Q iéi—# RV, - Tl - Wy )8e = —v, A ze ¥ +SkoxAevF. | s (5)
g VelYY; W= w379 CUHTIUM BEY B T
with ¢ the gyrophase angle. Only the leading order ion §i ,
dF1 -1 n 2
§i = [iﬁj» + 9 k Xn VF1](B"kL-vl/le) , : (6)

need be employed to obtain the polarization drift that is necessary to retain in

order to recover the compressional Alfvén mode.1



111. MAXWELL EQUATIONS

The sysfem of three eigenvalue equations in the three unknowns 5, En,
and R" can be derived in a straightforward manner by judiciously employing
the appropriate moments of thé %j of Eqs. (2) and (3) for ,kle/Qj <1 in
the Maxwell equations.

We first form quasi-neutrality, 3 ZJ.ej' a3y ?j = 0, by using EZJ.eNj =0
and nnting ‘fd3v EJ exp(-iL) = 0 for the §i of Eq. (6). The resd]ting

expression may then be written as

3, 1% = (R 4 Z.oR\S 3y u_J
szefd v Joh, (B, + £ YB)LZjeJd vE

j
2
M= oF
(38, + E-v8)3 7 [ a2 1Y (7)
J

Similarly, the k,xn component ot Ampere's law, (1k§c/4w)éu‘-zzjef'd3v Elxﬁlvl%ji

may be evaluated to obtain

[(1 - O)B, - (4n/B)E-vp,]

4nM 29Q. 4mkéc M 2
i} 3, ,,2 7 L3+ _,_.LA.3/2]
= -2 B fd ViRV ‘Jl j 2 ZQ[z(plj/Qj) 5y Sk xn YJd v (avy) Fj

1V B ij
5F. . 9F .
b~ L~ 3 2275 2m2.5 L 3s 3 2,3
+ ETZE‘-(B" +E vB)ZMJJd v (Vi) 5 - —kB"3r 1(B, + -2-§.~B)ZQ—%Jd v (%v]) —aui ,
J

with



and where C is defined via

B,C

—— > 1. efd3v k ><§ v, exp(-iL) . (9)

~

1k iC

To evaluate C, we follow Ref. 1 and multiply Eq. (5) by k,-v, , integrate

over all v, and employ the lowest order 9, of Eq. (6) to obtain
I I T 3
Ze [ d7v kyxnev, g, = (icM/B) | d°v (w - wdi)kl°vlgi

As a result, we may write

2

E..C x m[ d3V ((1) - wdi)kl'vlﬁi 5 (10)
KB ~= o~ . .
1

with 61 given by Eq. (6). Carrying out the velocity space integral yields

¢~ —o? -2 C —kxhoup; + M ier [ F [)
TRZE T i T W T OZepN TP T Uy p X I 4 1"2—_]

ki p.Q. Kl

. ) .
A v
xn.vfd3v F. —2* v%] (11)
i3 ~ ~ ~ 1

0 1,
where v, = (B"/41rMN1.)2 is the Alfvén speed.

Finally, we employ the parallel Ampere's law
(k Lc/4n =J, = >, e[ d’v v"f . ' (12)

along with Eq. (2) to obtain

2~
kiA 4 3. o 2olh ,
B-V{ F(1+ ‘;—gm - p..)]} =4 sze[d v vafi9(h90) (13)

Rewriting Eq. (13) by employing Eq. (3), and then using quasi-neutrality as
given by Eq. (7) and the perpendicular Ampere's law of Eq. (8) to eliminate
7. ef d3v h J, and ZZjejd3v “’bjﬁj‘]o , respectively, yields after a con-

siderable amount of algebra



k 4m iwy f 2 :
ZEUE [ s - IR bl -y a0 ¢

(2 /bB) (1, = Cup) + wy - wK[Z(plj/Qj)]—l S (M /sz [k xiv (l/zfcr”v vaﬁF

~

3

v VA0 - DRI} + (B E7B) (2u/ocbB) [ 306 5/00) i, (1 C)

(lflxﬁ-yan)fd

+

580, + %bg[w -w, - wb(pBZ/G)(ZDLj/Qj)-Z E(Mj/ﬂg)fd% 1133FJ/31JJ}

g

2
4riw YA 3 oA 2 A, ~ A~ 3 9.
c2 E zzjej;d VVnhjn'YJo - (wB/lep)lfle-{(Q.YQ) ZMj [d v V"h‘on

3, L2y [,. 295]_
+(ymB)ZMjfdv§vlhj[Jo- dg b =0 (14)

In Eq. (14) we have defined the following quantities:

= MNs
B = (8r/B0)[ 3 (pagr2]/(207H)
b=op 1k?;(2931)2(plj/szJ) ,
@y = 07 (2py3/Q; k<1 TnB
w, = p'l(ZpLj/Qj)k.xn*(Qﬂjg) , 13
0y = 0T (S0 )k xiieTp,
on = 07N (20 kxR Tpu

» wpy = p-IELxﬁ'Z(YpLj)/Qj ,

g = [Suye)] T s nyssdyesind ddey)



Rather than employ Eqs. (7), (8), and (14) as the system of three eigen-
value equations for 3, B,, and A, , it is convenient to replace Eq. (7) by
the X Zjef d3v v,.Jo moment of Eq. (3) with the parallel Ampere's law of
Eq. (12) employed to eliminate ELZjej'd3v vnﬁj and thereby obtain to lowest order

2 2 3 2A ~ . ~
(4n/KkSc )szeJd v JO[V"[“Y“J' + 1v..wdjhj]

= jcﬂ,?\“ [1 + g_g(pl = pn)] = (ﬁ'Y5 - %)‘Aun){(ll'ﬂ/kECz)Z( ieZNJ/MJ)

- (4m/k(B w)[szELXQ°anj + (ELXQ'YQHB)ZQJ-(PLJ- - p..j)]}. (16)

Equations (8), (14), and (16) along with Egs. (2) and (3) are the convenient
system of eigenvalue equations for an anisotropic b]asma. i |
Equation (16) is best v{ewed as the kinetic generafization of the ideal
MHD constraint relating iwA,/c and nevd. It has previous]yibeen referred té
as the "parallel Ohm's law;" but it is more accurate to note that it is really
just the parallel Ampeke's law rewritten by using.the appkopriate moment of the
equation for Ej . The misnomer for Eq. (16)arises because Eq. (14) is normally
referred to as the parallel Ampere's law; however, it is easily seen to be a
linear combination of quasi-neutrality and the two components 6f Ampere's law.
As a result, Eq. (14) is best viewed as a more convenient form of quasi-neutrality
than Eq. (7), since Eqs. (8) and (16) are really the pafa11e1 and perpendicular

components of Ampere's law, respectively.
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I11. BI-MAXWELLIAN MODEL
We assume that the equilibrium distribution functions for the ions (j = i)
and the core electrons (j = e) are isotropic Maxwellians, while that of the

hot electrons- (j = h) is a bi-Maxwellian. We therefore take

ﬂ-3/2 -1/2a1§

F. =N,

j j OLHJ' exp['(vu/o‘nj)z‘ (VL/(XLJ)Z] . (17)

where v, and v, are the parallel and perpendicular velocity components at

the midplane of a mirror cell. For the ions and background electrons

_ _ s s oY ' 2 _
%y 5 aj = a"j ZTJ./Mj (j = i,e); while for the hot electrons % 2T, /m
and <x§h = 2T,/m, with T, and T, the perpendicular and parallel temperatures.

In order to obtain a tractable system of equations from Egs. (2), (3),

(8), (14), and (16) we consider the flute 1imit [A-V] ~ k, > 0. In this
T1imit Eq.'(16) is not required since the ballooning A, term in Eq. (14) may
he neglected. In addition, only moments ot Hj even 1n v, enter in Eys. (8)

and (16) so that only the lowest order solution of Eq. (3) is required, namely,

F A5 L ey 50+ |
hj = -l - wdj) Mj 5t + EﬁExxﬁ'YFj][wdjéJo + ETEB"Jl . (18)
Defining
= 2 Ju2
AJ— alj/auj ’
ol = (2./20. )k, xR+VanF,
*3 TS T
and the integrals
& F. (Aaw- 0l ) [rva 14 [ vavy 12 (v, 8
(Lo ooloesloisl, olossl ) = ARN J[]{ ][]
13°723°733°°43°°53°7637 T Nj {w - wdj) oig) P lowg0g) Tlouy
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Egs. (8) and (14) may be written.as

Dlépc_[Z(pLj/Qj)]-l + (200,B/bR)¥ = 0 (20)
and

D.¥ = D,doc[BuS (p,:/2.)]"} o ~ (21)
' 3 2 pVN ’
with |

¥ = 87H(B, + E+vB)

’ N’"‘(!

The Dj”s of Eqs. (20) and (21) are defined as follows:

2

D; = w -bw(gp *wy - mK) " (wkw"(b) +'wbwg - 08
- a(w2/bB) S (1,; - byl ). ATL
K 1j N R M
A -1
+ 2(mb/b8){Cmb - U)KI:]- + ZBLij(l - Aj ) -~ ZBHJ :] 4J]} s (22)
0, = 0 {1+ 08, - 82) -38us1,5 - (3741041, ]}
S u[c (338, 5(A; - 1) - 1/8)23”1: 1]+ (BB - uy) | (23)
and
0y = 1-C - Seulhy - D0 - (/206 Sl - Ca)bilgs].  (28)
with »
o = (ZPL'/Q')-lZ(Mjmg)b"a’YJd3v V(VE/Z)V%FJ. ,
b = 2

i *p*J/MJNJQJ &

Bi ZB..J- z 81Tpnj/B s

and

BL = ZBLJ' Z8ﬂplj/82
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Equations (20) and (21) may then be combined to obtain the local dispersion

relation for interchange and compressional Alfvén modes:

_ 2 -1 |
p = D;D, + ZDZ(biBi) =0 . (25)

In a weakly inhomogeneous plasma in the absence of the hot electron ring
and finite jon gyration radius corrections D2 % 0 and Eq. (25) yields the
branches D; =0 (interchanqge) and Dy = 0, which gives riée to the compressional
Alfvén mode for isotropic pressure plasmas. If the contribution of nonadiabatic
perturbed pressures to D

3

instabﬂity"5 is possible when 1 - E)BLJ(AJ - 1) < 0. In the next section,

the effects of the ring and inhomogeneity are systematically investigated.

are ignored (I3j ~ 0), then the so-called "mirror

IV. LOCAL STABILITY ANALYSIS
In the 1imit when background ions and clectrons are much colder than the

hot electrons, we can assume |o| < [wei] s |wel s | with

ogil o loge

2 "y i .
Wes = (qij/Zﬂj)Elxg-YQan . We also assume that the tinite gyroradius terms

J
may be ignored compared with the hot electron gyroradius terms. The integrals

in D for the core ions and electrons can be simplified to

z%S 13\]2"2, 14331 and ISJ~b

I2j
Another simplification usually adopted is the Tong-thin approximation, which
means ij<« W3 - Therefore Ilj and 16j do not appear in the dispersion-
relation. Consequently, we define the small parameter ¢ = wKi/wbi and assume

le| < 1.
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To evaluate I'2h 3 I4h , and T5h , we first note that

where the w term is obtained by keeping E,u constant in the spatial gradient

bh
of F,,and A=A . In the limit |w| « Iw*h|.5|wbh| , we have
((1)
Ly, = % Zhova o],
\Whh
7u*h _
I ~ Ll—+ 2(A - 1) .
4h ,th ]
and _ )
w*h
I = 2l— + 3(A - 1)
5h ;_u)bh ]

The integral I3h has to be evaluated to higher order in ¢ ‘:and w/wbh
because the lowest order terms cancel in D3 due to the equilibrium perpendicular
pressure balance. Evaluating I3h to higher order yields

ll»\*h

W .
I =——u-§)+£{—ﬂ-1+gj+m-1uz-%
3 wpy T ATy ey A

Using the preceding approximations, Dl’ Dz‘, and D3 can be rewritﬁen as

Dy = o’ + s coep b (1 + < iNA -1)(2 v}
1w b. B €17 "n 2R T 2A T bapld

- € 3 _ _ -
D, = wbi{el - C - 58 + by + gxeby [1 - By (A 1)]} : (26)

and

1 w f
- 1+
BLh) Opp 2

Dy =g - C + bh + sc(l +
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_ 1. . L _ | _ 2
wherg €1 = (1+A e, Bc =B * Be » €4 wKi/m*i and .C = (w/leA) .

It is interesting to note that, in D3 of Eq. (26), the mjrror instability
driving term, Bxh(l - 3bh/2)(1 - A), is céﬁce]led by similar terms in I3h
and ISh' As a result, the. hot electron pressure anisotropy cannot drive
the mirror instability in the high phase velocity limit..

Ignoring the products of small parameters in Eq. (26) and normalizing

w by kLVA , we obtain the local dispersion relation

dydg + wd5 = 0 . (27)
where

w = kIZ(BQnB/Br)Z ,

dy = 22 + w(z? - o) >

d, = -z
n 82 )

dy =gy - 2"+ B.(1 +41/Blh) =9z,
z = Lu.i/leA , ' '
q‘= kiVa(1 + Blh/Z)/mbh‘ '
and
€ = €1 * by

Equat%o; (27) reduces to Ey. (28) of Ref. 1 if A - 1. Therefore an
analytic technique §imi1ar to fhaf used in Ref. 1 can be applied to Lq. (27).
The generalization 0f the Nelson-Van Dam-Lee (NVL) stabil{ty'boundary7 can be
estimated from the conditjon:

€2
2 - €
e, ¥ B(1* 1/8,) ~ %2

<0 ,

which gives

-1
B < 2eo{1 + A7) - Bupby
c 1+ 8,
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if e, <0. From Eq. (28), we conclude that the NVL stability boundary is
lowered by the anisotropy and the hot electron gyroradius .effects. From the
expression of d3 , 1t is also easy to conclude that anisotropy slightly
improves the stability of the curvature driven compressional Alfvén mode
because of the mu]tip]ier.1-+A'1 in front of the curvature term e . In
addition to NVL and the compressional Alfvén stability boundaries, there

is a new stable region provided by the hot electron gyror&dius effect as

pointed out in Ref. 1. This stable region, given by €y > 0, becomes8

Bapy > 2egbp (1 + A7) | (29)

The analytic estimate given above is confirmed by a numerical solution
of Eq. (27), which is a quartic equation in z . By fixing the following set
of parameters: r = 10 cm, § = Nh/Ni = 0.1, e, = Ov.05,'Ln = |2)SLnN/ar|'1 =2 cm,
and P = 0.3 cm, we are able to solve Eq. (27) and map out the stability region
in Bc’B*hl space for different values of poloidal mode number m, and anisotropy
A. In Figures (1), the stability boundaries for m = 5, 10, and 20 are
represented by dotted, solid and broken lines, respectively. Figure (la) shows
the stability boundaries for A = 2, while Fig. (1b) shows those for A.= 1.
When m = 5, we observe that k*Ln = (m/r)Ln ~ 1 and, strictly speaking, the
eikonal ansatz is not applicable. Therefore the stability regioﬁ for m=5
shown in Figs. 1 is not to be taken too seriously. Nonetheless, it shows the
stable region is shrinking for low m, which agrees with previous work.4 The
behavior of the NVL stability boundaries in Figs. (1) with respect to m (for
m 2 10) and A agrees with the prediction of Eq. (28). The compressional Alfvén
stability boundaries also behave as expected. The new stable region for

Bup 2 0.5 and m = 20 1is roughly the same as predicted by Eq. (29).
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V. CONCLUSION

The effect of an anisotropfc hot electron pressure in an electron-ring
plasma is carefully retained in the gyrokinetic derivation of the ballooning-
interchange/compressional -Alfvén eigenmode equation. We assume an equilibrium
bi-Maxwellian distribution function for the hot electrons. In this'set of
eigen-equations, terms that drive the fluid fire-hose. and mirror instabilities
are readily identifiable. The fire-hose instability is un%nteresting because
we always have p,-> p. for the hot electrons and also because the perturbed
parallel vector potential, [ decouples from ¢ and 5" in the flute 1imit.
In addition, the fluid driving terms for the mirror instability cancel with the
anisotropic contribution to the hot electron compressibility in the widely
assumed high phase velocity (w - Wy > k"a“h)1imit. Therefore, the mirror
instability does not exist in this 1imit and only the curvature driven com-
pressional A1fvén and interchange modes are possible.

The local dispersion relation for the interchange/compressional Alfvén
modes is obtained explicitly including the effect of anisotropic hot electron
pressure and finite hot electron gyroradius. A1l species are assumed to be in
the high phase velocity regime. We Conciude froin this dispersion relation that:
(i) the Nelson-Van Dam-Lee stability boundary is degraded in the presence of
anisotropic hot electron pressure and the finite hot electron gyroradius
effect; (ii) the stability of the curvature driven compressional Alfvén mode
is improved by the énisotropy, and (iii) the finite hot electron gyroradius
effect opens up a new stable region in high B*h for high.poloidal mode number.
- However, for low poloidal mode number, the stable region shrinks and the

eikonal ansatz employed in our study is no longer valid.
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Fig. 1 Plot of marginal stability boundaries for m = 5 (dotted),
m = 10 (solid), and m = 20 (broken) lines. Other parameters
are r = 10 cm, & = 0.1, € = 0.05, Ln = 2 cm, and oy 0.3 cm.





