

NTIS-25 Bins-237

Dr.2391

DOE/ET/14858-4

DEVELOPMENT OF ALCOHOL-BASED SYNTHETIC TRANSPORTATION FUELS FROM COAL-DERIVED SYNTHESIS GASES

Fourth Quarterly Progress Report for Period July 1-September 30, 1980

December 3, 1980

Work Performed Under Contract No. AC22-79ET14858

Chem Systems Research & Development Group Fairfield, New Jersey

U. S. DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

"This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A04 Microfiche A01 CONTRACT NO. DE-AC 22-79. ET 14858

FOURTH QUARTERLY PROGRESS REPORT

JULY 1 - SEPTEMBER 30, 1980

DEVELOPMENT OF ALCOHOL-BASED SYNTHETIC TRANSPORTATION FUELS FROM COAL-DERIVED SYNTHESIS GASES

SUBMITTED TO: U.S. DEPARTMENT OF ENERGY COAL LIQUEFACTION PROJECT MANAGEMENT PITTSBURGH ENERGY TECHNOLOGY CENTER PITTSBURGH, PA 15213

PREPARED BY:

CHEM SYSTEMS RESEARCH & DEVELOPMENT GROUP ONE EVANS STREET FAIRFIELD, NJ 07006

DOE Project Manager: Richard Diffenbach Chem Systems Project Manager: Marvin. I. Greene

DECEMBER 3, 1980

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

		PAGE
1.0	ABSTRACT	1
2.0	OBJECTIVES AND SCOPE	3
3.0	SUMMARY OF TECHNICAL PROGRESS	4
4.0	WORK PLANNED FOR NEXT QUARTER	8
5.0	DETAILED DESCRIPTION OF TECHNICAL PROGRESS	11
	5.1 Task 1 - Catalyst Formulation and Screening Studies	11
	5.1.1 Recent Literature Review	11
	5.1.2 Catalyst Preparation	14
	5.1.3 Experimental Results	20
	5.1.4 Analysis of Results	41
	5.2 Task 2 – Process Variable Studies in BSU	50
	5.3 Task 3 – Engineering Studies & Economic Analyses	50
	5.4 Task 4 – Performance Studies in PDU	50
6.0	PATENTABLE INVENTIONS	51
7.0	REFERENCES	52

ii

/

1.0 ABSTRACT

Chem Systems, under DOE Contract No. De-AC 22-79. ET-14858, is carrying out an experimental program for the conversion of coal-derived synthesis gases to a mixture of C_1 - C_6 alcohols. The objectives of this contract are to: 1) develop a catalyst and reactor system for producing a mixture of C_1 - C_6 alcohols to be used as a synthetic transportation fuel and 2) assess the technical and economic feasibility of scaling the process to a commercial-scale application.

This fourth quarterly report presents the experimental work performed for the period of July 1 - September 30, 1980. Some of the accomplishments made this quarter during the Task 1 screening studies were:

- 1. A total of twenty-four catalysts were prepared by either evaporation of metal nitrate-citric acid solutions; by impregnation of methanol synthesis catalysts or by coprecipitation with KOH.
- 2. A total of seventeen catalysts were tested in either the Berty gradientless reactor or the plug-flow reactor. These catalysts have been characterized into the following five groups:

Group I: Catalysts containing Cu, Zn, Co, Cr and alkali

Group II: Catalysts of Group I without Zn, Co, or Cr

Group III: Modified methanol synthesis catalysts of Cu-Zn-Al family

Group IV: Catalysts of Group I where Cr is substituted by transition metal(s) such as Fe, Mn, Ti, Th, etc.

Group V: Catalysts of Groups I, II or IV supported on inert oxides such as SiO₂, TiO₂ or MnO

3. A $CuCoZn_{0.125}Fe_{0.1}Th_{0.5}K_{0.11}$ catalyst produced by evaporation of metal nitrate-citric acid solutions resulted in an oxygenates selectivity of about 50% (CO₂-free basis) at total CO conversions of the order of 5 to 15% per pass. The alcohols (including about 2% aldehydes) distribution was 48.2% C_1 ; 33.4% C_2 ; 10.7% C_3 ; 5.3% C_4 and 2.3% C_5 . The calculated heating value of this Alkanol mixture is about 78,000 Btu/gal (20% higher than that of methanol). The estimated clear Research Octane Number (RONC) of this mixture is 109. The estimated octane quality (RONC) of a mixture of 80% unleaded gasoline having an 80 RONC and 20% of the Alkanols is about 91.

4. The following observations regarding the conversion-selectivity characteristics were made:

- a) Use of the evaporation technique (metal nitrate-citric acid solutions) results in a significant improvement in oxygenates selectivity over that of the KOH coprecipitation method when processing a CuZn_{0.125}CoTh_{0.5}Fe_{0.1}K_{0.11} catalyst;
- A broad maxima in the Fe/Cu ratio vs. oxygenates selectivity relationship was observed between about 0.1 and 0.25 Fe/Cu ratio with the above catalyst formulation;
- c) Catalysts having an atomic formula of CuZn_{0.125}CoK_{0.11}M have oxygenates selectivity varying with transition metal type according to the following series (in order of decreasing selectivity):

Zr ∿Th >V≥Cr>Mn>Mo;

- d) Recycle of methanol at 7 mol% in syn gas to а CuZn_{0.125}CoTh_{0.5}K_{0.11}Fe_{0.1} catalyst resulted in no[/] improvement in oxygenates selectivity but significant conversion of the methanol was observed to primarily methane.
- e) The incorporation of MnO (a poor hydrogen chemisorber) as a support for a CuZn_{O.125}CoTh_{O.5}Fe_{O.5}K_{O.11} catalyst produced by evaporation did not supress hydrocarbon formation activity.

Plans for the next quarter include the preparation and testing of catalysts formulated to study a) the effect of Co/Cu ratio; b) the effects of catalyst aging on both activity and selectivity; c) less complex chemical compositions; d) calcination temperature; e) hydrogen reduction conditions and f) alternative coprecipitation methods.

2.0 OBJECTIVES AND SCOPE

This project is part of the DOE-Fossil Energy alcohol fuels research program which is directed towards developing technology for producing fuels from coal-derived, transportation alcohol-based. synthetic synthesis gases. A major on-going effort is in the area of methanol for use in methanol-gasoline blends ("methyl fuel"). Another alternative, which is the subject of this research and development project, is to produce a mixture of methanol and higher alcohols (C_2-C_5) , which we call ALKANOL. This mixture has the potential for providing a synthetic transportation fuel far superior to that which would be provided by The ALKANOL fuel has improved volatility, straight-run methanol. solubility and water sensitivity characteristics over that of methyl fuel as well as having higher heats of combustion, of the order of 35-70% higher depending upon the carbon number distribution of the ALKANOL fuel.

As an outgrowth of our Liquid-Phase Methanol (LPMeOH) synthesis experience, we have been investigating the effectiveness of catalysts comprised of Fischer-Tropsch elements and low pressure methanol synthesis catalyst elements. The objectives of this contract are to: 1) develop a catalyst and reactor system for converting coal-derived synthesis gases to alcohol-based, synthetic transportation fuels and 2) assess the technical and economic feasibility of scaling the process concept to a commercial-scale application.

A multi-task program was formulated to provide the necessary information for meeting the contract objectives:

- Task 1: Catalyst Formulation and Screening Studies
- Task 2: Process Variables Studies in Bench-Scale Unit
- Task 3: Engineering and Economic Analysis
- Task 4: Catalyst Performance Studies in Process Development Unit

The experimental work is being performed at Chem Systems Research Center in Fairfield, New Jersey, and the contract will require 24 months to completion.

3.0 SUMMARY OF TECHNICAL PROGRESS

3.1 Task 1 - Catalyst Formulation & Screening Studies

During this quarterly period, a total of twenty-four catalysts were prepared by either evaporation techniques (with metal nitrates, citrates or acetates), coprecipitation techniques (with KOH) or by impregnation techniques (of potassium-promoted, methanol synthesis catalyst with a dicobalt octacarbonyl-methanol-monoethanolamine solution). All catalysts were calcined and pelletized.

A total of seventeen catalysts were tested in either the Berty gradientless reactor or the plug-flow reactor. These catalysts have been characterized into the following five groups based on their elemental composition:

Group I:	Catalysts containing Cu, Zn, Co, Cr and alkali
Group II:	Catalysts of Group I without Zn or Co or Cr
Group III:	Modified methanol synthesis catalysts of
	Cu-Zn-Al family.
Group IV:	Catalysts of Group I where Cr is substituted by
	transition metal(s) such as Fe, Mn, Th, V, etc.
Group V:	Catalysts of Group I, II or IV supported on inert
	oxides such as SiO_2 , TiO_2 or MnO.

The testing during this quarter was formulated to determine whether variations in the following parameters would improve oxygenates selectivity:

- Reduction temperature;
- Coprecipitation with KOH vs. evaporation of metal nitrates, citrates or acetates;
- Pelletizing pressure;
- Addition of methanol to feed gas (simulated methanol recycle) and;
- Incorporation of a MnO support having low hydrogen chemisorption capacity.

The catalyst formulation with the highest selectivity to oxygenates was $CuCoZn_{0.125}Fe_{0.1}Th_{0.5}K_{0.11}$ produced by evaporation of metal nitrate-citric acid solutions. Selectivity was about 50% (CO_2 -free basis) at total CO conversions of the order to 5 to 15% per pass. The C_2 + alcohols/CH₂OH ratio was about 1/1.

Examination of the conversion-selectivity characteristics of the catalysts tested led to the following apparent correlations:

Higher temperature and lower space velocity result in higher CO conversion per pass with the higher oxygenates selectivities occurring at the lower levels of CO conversion.

For a CuZn_{0.125}CoTh_{0.5}Fe_{0.1}K_{0.11} catalyst formulation, the evaporation technique results in a significant improvement in oxygenates selectivity over that of the KOH coprecipitation method, particularly at CO conversions between 5 and 20% per pass as seen from the following table:

Production Method	Evapor	ation	KOH Copre	cipitatio	<u>n</u>
% CO Conversion	6.3	17.5	5.2	18.0	
Temperature, ^O C	270	272	245	263	
VHSV, L/hr/kgm	3351	976	3262	3574	
Pressure, psig	905	905	910	910	
% Oxygenates Selectivity	43.1	32.8	27.9	25.1	

Catalysts having an atomic formula of CuZn_{0.125}CoK_{0.11}M have oxygenates selectivity varying with transition metal type according to the following series (in order of decreasing selectivity):

 $Zr \sim h > V \geq Cr > Mn > Mo;$

The incorporation of a poor hydrogen chemisorber in the form of MnO into a $CuZn_{0.125}CoTh_{0.5}Fe_{0.5}K_{0.11}$ catalyst produced by evaporation of metal nitrate-citric acid solutions did not suppress hydrocarbon formation activity of this catalyst. While oxygenates selectivity did not vary, selectivity to methane increased.

There appears to be a small effect of iron/copper ratio on oxygenates selectivity with a $CuZn_{0.125}CoTh_{0.5}K_{0.11}Fe_x$ catalyst produced by evaporation of metal nitrate-citric acid solutions. A broad maxima in the Fe/Cu ratio vs. oxygenates selectivity was observed between about 0.1 and 0.25 Fe/Cu ratio.

Tests with the above catalyst having a 0.1/1 Fe/Cu ratio indicated that the catalyst has little or no homologation activity when methanol is fed along with the synthesis gas. Total carbon conversion (feed methanol carbon plus CO carbon) was approximately constant but the methane/higher alcohols ratio increased from 0.8/1 to about 2.3/1 as seen below:

MeOH Content of Feed Gas, Mol % 7 0

Equivalent CO Converted, gmol/hr/kg cat. 6.4 7.6

<u>% Selectivity To:</u>		
сңзон		4
C2-C6 Oxygenates	13	21
CH ₄	30	17
C ₂ + H.C.	24	34
co ₂	33	24

There appears to be essentially no effect on the oxygenates selectivity-CO conversion characteristics when the chromium/copper ratio in a $CuZn_{0.125}CoK_{0.11}Cr_x$ formulation produced by evaporation of metal nitrate-citric acid solutions is varied between 0 and 1/1.

Task 2 - Process Variables Studies in BSU 3.2

No work has been performed on this task during the present reporting period.

Task 3 - Engineering Studies & Economic Analyses 3.3

No work has been performed on this task during the present reporting period.

Task 4 - Performance Studies in PDU 3.4

No work has been performed on this task during the present reporting period.

「「「「「「「「」」」」」

35

4.0 WORK PLANNED FOR NEXT QUARTER

Task 1: Catalyst Formulation and Screening Studies

Past testing has concentrated in the study and optimization of a five or six component catalyst system containing copper, cobalt, zinc, an alkali metal promoter and one or more transition metal promoters. Work concentrated on optimizing catalyst production techniques and on exploring the types and atomic ratios of the various catalyst components.

At this point, we are not convinced that five or six catalyst components are required for an effective catalyst. In the next quarter, we plan to explore less complex compositions and variables that we believe may lead to minimizing hydrocarbon selectivity and simultaneously increasing alcohols selectivity. The following discussion briefly describes the parameters that will be studied.

Aging Effects

Aging of catalysts generally results in loss of activity due to carbon laydown, metal sintering, etc. In Run 201-67B, described in the Third Quarterly Report, an increase in oxygenates selectivity was observed over the 43-hour run period even though the catalyst activity (i.e., % CO converted or the gmol/hr CO converted per kgm catalyst) declined. We plan to make extended (ca.. 100-300 an run hours) with а CuCoCr_{0.8}Kn.09 catalyst and determine whether aging results in the suppression of hydrocarbon formation activity and the corresponding increase in oxygenates selectivity.

Calcination Temperature Effects

We plan to calcine future catalyst formulations at lower temperatures (ca., 350° C) then previously used. The data of Runs 201–37B and 201–34B reported in the Second Quarterly Report indicate that there is an increase in activity resulting from a reduction in calcination temperature from 550° C to 450° C and that further reductions in calcination temperature might improve catalyst performance.

Hydrogen Reduction Conditions

We plan to investigate the effects of modifications to the standard hydrogen reduction procedure being utilized. One change will consist of reducing a $CuCoCr_{0.8}K_{0.09}$ catalyst with a 0.2% H₂/99.8% N₂ gas vs. the standard 2% H₂/98% N₂ gas. Reduction pressure and standard hourly space velocity will be increased ten-fold, thereby maintaining contact time and hydrogen partial pressure at a constant value. The excess heat capacity of the N₂-diluent in the reducing gas should effectively absorb hydrogenation heat and prevent any localized exotherms that might possibly occur at active catalyst sites.

Another reduction procedure will consist of reducing copper-cobalt containing catalysts that do not contain zinc with a CO/CO_2 containing reducing gas. This procedure should result in maintaining the copper in its Cu^{+1} state, which has been shown in the literature to be the active species for methanol synthesis catalysts. Although methanol synthesis catalysts are reduced with reducing gases free of CO_2 content, they contain zinc which complexes the copper thereby preventing the copper from being reduced completely to its zero valence state.

Na2CO3 Coprecipitation

The bulk of the catalysts produced by coprecipitation used KOH as the coprecipitation agent. Sodium carbonate as the coprecipitation agent has been reported ^(a) to result in superior activity to that of KOH or NaOH coprecipitating agents, and it is the preferred material for producing methanol synthesis catalysts. Several catalysts will be produced using the Na₂CO_z coprecipitation method.

(a)Advances in Catalysis, Vol IV, Frankenburg, Komarewsky & Rideal (editors), New York, (1952), Pg. 276.

Catalyst Composition

The following catalysts will be tested:

Atomic Formula	Basis of Formulation
CuCoCr _{0.8}	3-component system; no alkali
CuZn _{0.5} CoK _{0.11}	Cu/Zn = 2.0; Cu/Co = 1
Cu _{0.5} ZnCo _{0.2}	3-component system; Cu/Zn = 0.5;
	Cu/Co = 5
CuCo	2-component system; no alkali;
	Cu/Co = 1
CuCoK _{0.11}	3-component system; Cu/Co = 1 with
	alkali
CuCoTh	3-component system; no alkali
CuCo _{0.3} Cr _{0.8} K _{0.09}	4-component system with alkali;
	Cu/Co = 3.33
CuZn _{O_S} Co	3-component system without alkali;
	Cu/Zn = 2
CuZn _{0.4} Co _{0.5} Al _{0.25} K _{0.05}	Co + K impregnated methanol synthesis
	catalyst; Cu/Co = 2
CuZn _{0.4} Co _{0.5} Al _{0.25}	Co impregnated methanol synthesis
	catalyst; Cu/Co = 2
CuZn _{0.4} Co _{0.1} Al _{0.25} K _{0.05}	Co + K impregnated methanol synthesis
	catalyst; Cu/Co = 10

No work is planned in the next quarter for Tasks 2, 3, and 4.

5.0 DETAILED DESCRIPTION OF TECHNICAL PROGRESS

5.1 Task 1 - Catalyst Formulation & Screening Studies

5.1.1 Recent Literature Review

IFP

Institut Francais Du Petrole (IFP) recently filed a U.K. patent application⁽¹⁾ for a process to manufacture alcohols from synthesis gas. The process is very similar to the West German and U.S. patents awarded to IFP and discussed in previous quarterly reports. The major difference is the enlargement of the scope of catalyst composition to include 5-40% of a rare earth metal in addition to copper, cobalt, alkali or alkaline earth metal and a transition metal of atomic Number 23 to 26 inclusive. The catalyst can also contain zinc and/or a noble metal from Group VII. The following catalyst formulations were reported to result in high space yields and selectivities of 90-98%:

- 1. CuCoCr_8K_09
- 2. CuCoMn_{0.8}K_{0.12}
- 3. CuCoFe_{0.8}K_{0.12}
- 4. CuCoV_{0.8}K_{0.12}
- 5. CuCoCr0.5La0.3K0.09
- 6. CuCoCr_{0.5}Ce_{0.3}K_{0.09}
- 7. CuCoMn_{0.5}Nd_{0.21}Pr_{0.09}K_{0.09}
- 8. CuCoFe_{0.5}La_{0.3}K_{0.09}
- 9. CuCoV_{0.5}La_{0.3}K_{0.09}
- 10. $CuCr_{0.4}Co_{0.8}AlBa_{0.1}$
- 11. CuCr_{0.2}Co_{0.8}Al_{0.4}La_{0.8}Ba_{0.1}

Amoco

Standard Oil of Indiana (Amoco) filed for a European patent⁽²⁾ for a process to produce alcohol mixtures from synthesis gases. The heart of the process is a catalyst described by the following empirical formula:

Cu_{aThMb}A_cO_x

wherein

M is one or more of Ca, Mo, Rh, Mn, Pt, Ce, Cr, Zn, Al, Ti, La, V, U, Re, Ru and Pd.

A is an alkali metal and,

- a = 0.5 2.5
- b = 0.01 1.0

c = 0.05 - 0.9 and

x = a number to satisfy valence

requirements of other elements.

This catalyst notably is devoid of cobalt content. Methanol is the key component of the alcohol mixtures with C_1/C_2 + alcohol ratios varying from 2/1 to 16/1 and methanol content of the alcohol mixtures equivalent to 65-94% by weight. It is interesting to note that Amoco also claims a modified gasoline composition which consists of a mixture of alcohols (40% minimum methanol content) with either paraffinic hydrocarbons or paraffinic plus aromatic hydrocarbons.

Further Review of Mechanisms

There is recent evidence to suggest that for higher alcohols production, a catalyst must possess sites capable of adsorbing carbon monoxide associatively with hydrogenation to methanol or a methanol-like intermediate and also dissociatively with formation of a hydrocarbon intermediate⁽³⁻⁷⁾, i.e.,

 $M - C + O_{Ads} + H_2 \longrightarrow M - CH + OH_{Ads}$

where M is an active metal or metal oxide site. M = CHOH and M = C can undergo facile hydrogenation as follows:

$$M - CHOH \xrightarrow{1/2} H_2 \qquad 1/2 H_2 \qquad M + CH_3OH$$

$$M - C \xrightarrow{H_2} M - CH_2OH \xrightarrow{1/2} H_2 \qquad M - CH_3 \xrightarrow{1/2} H_2$$

$$M - C \xrightarrow{H_2} M - CH_2 \xrightarrow{1/2} M - CH_3 \xrightarrow{M} + CH_4$$
Both modes of adsorption A and B are important and in addition, the two sites which promote the two types of adsorption must be in proximity so that the methanol-like and hydrocarbon-like moieties can interact to produce higher alcohols (and higher hydrocarbons). This suggests an extremely well dispersed catalyst, i.e., a "homogeneous" heterogeneous catalyst.

$$\begin{array}{ccc} CH_{2}OH \\ M \end{array} & M + M - CH - CH_{2}OH \\ M - CH - CH_{2}OH + CO + H_{2} \end{array} & propanol, butanol, etc \\ CH_{1}OH_{1}OH_{2} \end{array} & M + M - CH - CH_{3} \end{array}$$

There is some evidence to say that in general, <u>associative</u> adsorption of carbon monoxide takes place on metal oxides (e.g., CO on Cu^{1} in $Cu^{I}Zn^{II}$ O_{χ} , which is the active site for methanol formation) although it can take place on metals. <u>Dissociative</u> adsorption of carbon monoxide takes place on metals (e.g., CO on Co, Ni) although it is possible that metal oxides are involved as well.

One of the problems with optimization of our present catalysts is the large number of species present on preparation and under run conditions. For example, the $CuZn_{0.125}CoCrK_{0.11}O_x$ catalyst tested is probably composed of:

- CoO

Cr₂0₃

K20

Cu^O

Co^O

plus any surface carbides, while a CuZn_{0.125}CoFe_{0.5}Th_{0.5}K_{0.11}° x catalyst likely has:

Cu ⁰		Fe ^O
Cu ^I Zn ^{II} 0 _x		Fe ₃ 04
Co ^O		Th02
Co0	•	K ₂ 0

plus stable surface carbides of Fe and Co.

5.1.2 Catalyst Preparation

During the past quarter, twenty-four catalysts were prepared. The calculated atomic compositions and the respective production methods are shown in Table 5.1.2-1. The detailed composition of each of the formulations is in Table 5.1.2-2. Selected made shown catalyst formulations were analyzed by atomic absorption spectrophotometry and some differences were observed between the calculated compositions and those determined by A.A. as seen from Table 5.1.2-3.

The preparation techniques fall into three general areas:

- A. Evaporation
 - 1) Of metal nitrate-citric acid solutions.
 - 2) Of metal acetate-citric acid solutions.
 - 3) Of metal citrates.

B. Coprecipitation

1) With KOH

2) With K₂CO₃

C. Detergent Dispersion

Evaporation of a potassium-impregnated methanol synthesis catalyst slurried in a methanol-ethanolaminedicobalt octacarbonyl solution.

TABLE 5.1.2-1 CALCULATED ATOMIC COMPOSITIONS

Catalyst		
Number	Atomic Formula	Preparation Method
197-72	^{CuZn} 0.125 ^{CoZrK} 0.11	Evaporation of metal nitrates with citric acid.
197-73		17
197-77	$CuZn_{0,125}$ $CoTh_{0,5}K_{0,11}$	
197-78	$CuZn_{0.125}CoCr_{0.125}K_{0.11}$	"
197-76	^{CuZn} 0.125 ^{CoCrK} 0.11	Evaporation of metal citrates.
197 - 79	CuZn _{0.125} CoThK _{0.11}	Coprecipitation with KOH
197-81	CuZn _{0.125} CoTh _{0.5} Fe _{0.5} K _{0.11} /Mn0	u .
197-82	^{CuZn} 0.125 ^{CoTh} 0.75 ^{Fe} 0.10 ^K 0.11	•
197-83	^{CuZn} 0.125 ^{CoThFe} 0.1 ^K 0.11	11
197-84	CuCoRuo.1Ko.11	11 III III III III III III III III III
197-85	^{CuZn} 0.125 ^{CoTh} 0.5 ^{Fe} 0.1 ^K 0.11	"
197-86	^{CU2N} 0.125 ^{TN} 0.5 ^{Fe} 0.5 ^K 0.11	Coprecipitation with
197-87		К ₂ СО ₃ "
197-88A	C_{12} C_{11}	Coprecipitation with KOH
197-88B	CuZn _{n 25} Co	**
197-89	$CuZn_{1,25}Th_{1,5}Fe_{1,5}K_{1,1}$	10
200-76	CuCoCr _{0.8} K _{0.09}	Evaporation of metal
		nitrates with citric
	0	acid.
200-78-1	$CU2n_{0.4}CO_{0.5}^{A1}O_{.25}C_{0.05}$	Detergent dispersion
200-70-2	$CUZIO_{.4}CUO_{.5}^{A1}O_{.25}$	Eveneration of metal
200-77	0.500.11	ecetates with citric
;		acid.
200-81-1	CuCoTh _{0.5} CoK _{0.11}	Coprecipitation with KOH
200-81-2	CuCoTh _{0.5}	11
200-83-1	CuCoK _{0.11}	11
200-83-2	CuCo	n

	1				DET	AILED	COMPOS	ITION (DF CATA	LYST F	ORMULA	TIONS									
<u>CATALYST N</u> O.	197-72	197-73	197-76	197-77	197-78	197-79	197-81	197-82	197-83	197-84	197-85	197-86	197-87	197-88-1 197-88-2	197-89-1 197-89-2	200-76	200-78-1 200-78-2	200-79	200-81-1 200-81-2	200-83-1 200-83-2	
COMPONENT						<u> </u>											<u> </u>				<u> </u>
Cu(NO ₃) ₂ ·2.5H ₂ 0	116	233	116	91	116	116	58	58	29	116	116	116	116	116	116	465	с	116 ^d	116	233	
Zn(N03)26H20	19	37	19	14	19	19	9.3	9.3	4.7		19	19	37	37	19		с	74 ^d			
Co(NO3)2.6H20	145 ^a	291	145	110	145	145	73	73	36	145	145		145	145		582 ^b		145 ^d	145	291	
Mn (NO 3) 2							145														
Cr(NO ₃) ₃ •9H ₂ 0		400	200		25																
Cr0 ₃																160					
Fe(N03)3.9H20							50	20	5		20	101			101						
Th(NO ₃) ₄ ·4H ₂ 0				104		321	69	103	69		138	138			138				138		6-
Zn(OAc) ₄	164																				
Co ₂ (CO) ₈																	88				
RuC1 ₃										12											
KNO3				4.3	5.6												۰.	10 ^d			
кон			3.2													8.6	2.4				
к ₂ со ₃	3.8	9.2				2.7	1.6	1.9	0.95	3.8	3.8	1.9	1.7	1.7	1.9			•	1.9	1.9	
Citric Acid	15	60	976	11												109		47			
Calcining	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	300	400	450	450	
	· <u>NOTES</u>	: a)	An c Carl	equival bonate	ent ar was us	nount o sed. (C	f Coba oCO ₃)	lt				c) Tr c	wo hund atalysi	lred gran t was use	ms of co ed.	ommercia	al meth	anol			
	•	b)	An d Carl	equival bónate	ent ar was us	nount o sed (2C	f Coba oCO ₃ 3	lt Co(OH)	2 ^{.H} 2 ⁰⁾			d) A w	n∘equiv as used	valent an 1.	mount of	f the a	cetate :	salts			

TABLE 5.1.2-2 DETAILED COMPOSITION OF CATALYST FORMULATION

	CALCULATED ⁽¹⁾				MEASURED ⁽²⁾
Catalyst No.	Atomic Formula		Wt %	WE %	Atomic Formula
197-1	Cu ₁ Co ₁ Cr _{0.8} K _{0.00}	Cu	28.9	32.0	$Cu_{0} \circ Co_{1} \circ Cr_{0} \circ K_{0} $
		Со	26.8	34.7	0.8 1.0 0.8 0.11
		Cr	19.0	17.4	
		К	1.6	2.5	
197-2	^{Cu} 1 ^{Zn} 0.125 ^{Co} 1 ^{Cr} 1 ^K 0.11	Cu	25.8	28.4	^{Cu} 1.05 ^{Zn} 0.11 ^{CO} 1.0 ^{Cr} 0.95 ^K 0.12
		Zn	3.3	3.0	
		Со	24.0	24.9	•
		Cr	21.2	21.4	
		K	1.6	1.9	
200-76	^{Cu1^{Co}1^{Cr}0.8^K0.09}	Cu	28.9	31.0	^{Cu} 1.2 ^{Co} 1.0 ^{Cr} 0.8 ^K 0.08
		Со	26.8	24.4	
		Cr	19.0	16.1	
		К	1.6	1.3	· · ·
200-78-1	Cu1Zn0 5Co0 5K0 05	C 11	20.7		Gu Zn Cn K
		Cu 7n	20 /	14.0	0.300.5 0.04
· ,		211 Co	18.4	22.4	
		K	1.2	1.1	
197-79	Cu1Zn0 125C01Th1K (4)	Cu	14.8	15.0	Cu, Zn, JCo, Th, J
	- 0.120 I I Y	Zn	1.9	2.13	1.3 0.1/ 1 1.3
、 · · ·		Со	13.7	11.3	
}.	· ·	Th	54.1	53.1	
		К	0.0	0.0	

TABLE 5.1.2-3 CATALYST ANALYSIS BY ATOMIC ABSORPTION

Notes: (1)_{Calculated} based on materials used in preparation.

Metals % based on total metal oxide mixture.

(2) Calculated based on wt % found, Co assumed 1.00

(3) Commercial catalyst assumed to be 2 CuO: 1 ZnO

(4) Submitted before impregnation of K (y = 0 before impregnation)

All catalysts analyzed after calcination.

	·················(1)				MEASURED (2)
Catalyst No.	Atomic Formula	L	Wt %	<u>Wt %</u>	Atomic Formula
200-83-1	Cu ₁ Co ₁ K _{0.11}	Cu ·	39.8	39.6	^{Cu} 1.0 ^{Co} 1.0 ^K 0.08
		Co	36.9	32.2	
		Κ.	2.7	1.7	
197-85	Cu ₁ Zn _{0.125} Co ₁ Th _{0.5} Fe _{0.1} K _{0.11}	Cu	, 20.5	22.2	^{Cu} 1.3 ^{Zn} 0.12 ^{Co} 1.0 Th 0.5 ^{Fe} 0.06 ^K 0.07
		Zn	2.6	2.11	
		Co	19.0	16.2	
•		Th	37.5	33.2	
		Fe	1.8	1.7	
		K	1.4	1.5	
197-87	Cu ₁ Zn _{0.25} Co ₁ K _y ⁽⁴⁾	Cu	36.3	29.2	^{Cu} 0.83 ^{Zn} 0.21 ^{Co} 1.0 ^K <0.01
•		Zn	9.4	7.6	
	· · ·	Со	33.7	32.4	
		к	0.0	0.15	
197-88A	^{Cu} 1 ^{Zn} 0.25 ^{Co} 1 ^K 0.11	Cu	35.3	45.8	^{Cu} 1.5 ^{Zn} 0.26 ^{Co} 1.0 ^K 0.095
		Zn j	9.1	8.2	
	·	Со	32.7	28.7	
	· ·	ĸ	2.4	1.8	

TABLE 5.1.2-3 (Continued) CATALYST ANALYSIS BY ATOMIC ABSORPTION

(1) Calculated based on materials used in preparation.

Metals % based on total metal oxide mixture.

(2) Calculated based on wt % found, Co assumed 1.00

(3) Commercial catalyst assumed to be 2 CuO: 1 ZnO

(4) Submitted before impregnation of K (y = 0 before impregnation)

All catalysts analyzed after calcination.

Evaporation Methods

The evaporation of metal nitrates in the presence of citric acid was carried out as described previously by adding citric acid (0.1 mole/mole metals) to a solution of the metal nitrates and evaporating at 100° C to a viscous glass. This semi-solid is then calcined at 450° C after increasing the temperature slowly. Sterotex was added, the material pelletized as above and heated slowly to 350° C in order to combust the Sterotex.

The evaporation of metal acetates followed the same procedure as above except that the metal nitrates were replaced by metal acetates.

The evaporation of metal citrates differed from the above two evaporation methods in that the metal citrates were prepared separately by mixing each individual metal nitrate with excess citric acid to form a metal nitrate-citrate complex. The individual complexes were then mixed together and evaporated at 100° C until a viscous, glassy paste was formed. NO₂ evolution was observed during this step. The calcining and finishing steps were the same as those of the standard evaporation method.

Coprecipitation Method

In the coprecipitation technique, the solution of metal nitrates and potassium hydroxide were prepared and charged to two burettes such that the solutions could be added sequentially or simultaneously to a well-stirred sample of deignized water (80⁰C). With either mode of addition, the pH of the resulting solution was kept at about 9. This procedure was continued until all the metal hydroxides were precipitated from the nitrates with the KOH solution. The precipitated hydroxides were then allowed to age for about 18-24 hours at 40°C. The hydroxide slurry was filtered, reslurried in 5% KOH solution for one hour, filtered and slurried twice with deionized water. The filtrate had a pH of 7. The catalyst cake was dried at 120°C and then calcined at 450°C for 3 hours (temperature brought to 450°C slowly). The calcined catalyst was added to a potassium carbonate solution for impregnation of the potassium component of the catalyst. The water was then evaporated using a rotovap unit. The catalyst was pelletized, using Sterotex, to a $1 \frac{1}{4} \times \frac{1}{8}$ wafer which was recalcined at 350° C for three hours (temperature brought up very slowly). The recalcined catalyst was broken apart and screened to 8 x 12 mesh particles.

When potassium carbonate, instead of potassium hydroxide was the precipitating agent (nitrates to carbonates), the above procedure also was used.

Detergent Dispersion

This method was based on a procedure developed by Shirokov⁽⁸⁾ and consisted of dispersing and mixing oxide-base catalysts in the presence of surfactants. The atomic formulation tested with this method was This method CuZn_{n_4}Co_{n_5}Al_{n-25}K where x was either 0 or 0.05. also allowed for the incorporation of cobalt into the catalyst in a form not previously used. A commercial methanol synthesis catalyst of the Cu-Zn-Al type was crushed and sieved through a 106 micron screen. For the formulation in which x = 0.05, some of the powdered methanol catalyst was impregnated with KOH solution to add the proper amount of K onto the catalyst. The powders were then slurried in a dry methanol-ethanolamine solution containing dicobalt octacarbonyl. The slurry was agitated in an The mixture was removed from the ultrasonic bath for two hours. ultrasonic bath and allowed to age for a period of time. The mixture was then heated to evaporate the methanol followed by heating at 200⁰C for a period of 8 hours. The dried solids were broken and mixed with 3-5% Sterotex and pelletized to produce 1 1/4" x 1/8" wafers. Final finishing was accomplished by burning off the Sterotex at 300°C.

5.1.3 Experimental Results

A total of seventeen catalyst screening runs were completed during the fourth quarter including eleven tests in the Berty reactor and the

-20-

remaining six in the plug-flow reactor. These catalysts (see Table 5.1.3-1A) can be classified into the following five groups based on their elemental composition:

Group	I:	Catalysts containing Cu, Zn, Cr, Co, and Alkali
Group	II:	Catalysts of Group I without Zn, Co, or Cr
Group	III:	Modified methanol synthesis catalysts of the
		Cu-Zn-Al family.
Group	IV:	Catalysts of Group I where Cr is substituted by
	· •	a transition metal (or metals) such as Fe, Th, Ti, V, etc.
Group	۷:	Catalysts of Group I, II, or IV supported on inert oxides.

Runs 201-100P and 213-2B were made with catalysts that do not directly fit into any of these groups. In 201-100P, the plug-flow reactor was loaded with the first zone containing a commercial methanol synthesis catalyst followed by a second zone containing a Group IV catalyst. In 213-2B, the Berty reactor was loaded with a random and equal mixture of these same two catalysts.

The following parameters were tested this quarter:

- Effect of incorporating a support having low hydrogen chemisorption capacity.
- 2. Effect of reduction conditions.
- 3. Effect of catalyst preparation methods.
 - Evaporation of metal nitrate-citric acid solutions.
 - Evaporation of metal citrate solutions.
 - Coprecipitation of metal nitrates with KOH.
- 4. Effect of pelletizing pressure.
- 5. Effect of methanol addition to syn gas (simulation of methanol recycle).

Detailed summary of results for each of the seventeen tests is presented in Tables 5.1.3-1 through 5.1.3-17.

-21-

TABLE 5.1.3-1A SUMMARY OF CATALYSTS TESTED

	Catalyst	
Run No.	Number	Calculated Composition
	Group I:	Catalysts Containing Cu, Zn, Cr, Co, and Alkali
201-82B	197-70	CuZn _{0.125} CoCrK _{0.11}
201 - 87B	197-73	$CuZn_{0,125}CoCrK_{0,11}$
201 - 90B	197-76	$CuZn_{1,125}CoCrK_{1,11}$
201 - 91B	197-73	$CuZn_{1,25}CoCrK_{1,11}$
201-92P	197-78	$CuZn_{0,125}CoCr_{0,125}K_{0,11}$
201-97P	197-73	CuZn _{0.125} CoCrK _{0.11}
	Group IV:	Catalysts of Group I Without Cr & Containing
		Transition Metals
201-81P	200-58-1	CuZn _{0.125} CoMoK _{0.11}
201-83B	197-71	CuZn _{0.125} CoTh _{0.5} Fe _{0.1} K _{0.11}
201 - 85B	197-71	CuZn _{0.125} CoTh _{0.5} Fe _{0.5} K _{0.11}
201-89P	197-72	CuZn _{0.125} CoZrK _{0.11}
201 - 93B	197-77	$CuZn_{0.125}CoTn_{0.5}K_{0.11}$
201-958	197-79	$CuZn_{0.125}CoThK_{0.11}$
213 - 4B	197-85	^{CuZn} 0.125 ^{CoTh} 0.5 ^{Fe} 0.1 ^K 0.11
	Group V:	Supported Catalysts
201-84P	197-67	CuZn _{0.125} CoCrK _{0.11} on TiO ₂
201-988	197-81	CuZn _{0.125} CoTh _{0.5} Fe _{0.5} K _{0.11} on Mn0
	<u>Catalysts</u>	Not Fitting Into Groups I Through V
201-100P	MeOH cat/	CuZn _{.49} Al _{.21} CuZn _{.125} CoTh _{.5} Fe _{.5} K _{.11}
	200-27-1	
213-28	MeOH cat/	^{CuZn} 0.49 ^{A1} 0.21 ^{CuZn} 0.125 ^{CoTh} 0.5 ^{Fe} 0.5 ^K 0.11
	200-27-1	
* Suffix	– P devotes 1	testing in the plug-flow reactor and Suffix B denotes

testing in the Berty gradientless reactor.

**No catalysts were tested in Group II (Catalysts of Group I without Zn or Co or Cr) and Group III (Modified methanol synthesis catalysts).

TABLE 5.1.3-1 SUMMA	RY FOR RU	N <u>201-81</u>	P (10-July	<u>-</u> 80)		
CATALYST NO. 200-58-1	AT0	MIC FORMUL	A CuCoMoZ	ⁿ 0.125 ^K 0.1	11	
PREP. METHOD <u>Evaporation of nitrates</u>	<u>& (NH₄)₆M</u>	074H20 w/c	itric acio	1		
SURFACE AREA ⁽¹⁾	_m ² /gm	FEED H ₂ /C	0 2.0	C0 ₂ _	5.0	Vo1%
BULK DENSITY(1) 1.41		Ľ		L		
TEST NO.		-2	_3		<u> </u>	
Avg. Temp., ^O C	265	275	283			
Hot Spot, ^O C	267	277	287			
Pressure, psig	885	885	885			
VHSV, L/hr/kgm cat.	3151	2972	2967		<u> </u>	
Hrs. on Stream	3.3	5.2	6.3			
CONVERSION						
CO, Vol%	8.54	11.1	_15.4_			
CO, gm mol/hr/kgm cat.	3.38	4.16	5.73		<u> </u>	- ,
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.277	0.258	0.276	·		
NORMALIZED CARBON SELECTIVITY, vol %	-					
СН ₃ ОН	5.0	3.7	2.9			
C ₂ -C ₆ Alcohols	2.0	1.5	1.1			·
C ₁ -C ₆ Aldehydes	0.3	0.2	0.1			. <u></u>
C ₄ -C ₀ H.C.	4.9	7.6	6.9			
CHA	28.4	27.5	28.5			
Ca+CaH_C.	28.4	24.3				
c0 ₂	30.8	35.2				
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C						· .
CARBON ACCOUNTABILITY, %	78.8	97.2	102.8			
(1) _{Fresh, non-reduced catalyst}						х
(2) _{Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\%}{2}$}	<u>20 in Fee</u> 100	<u>d</u> x <u>% CO C</u> 10	<u>conv.</u> x %	Selectivi	<u>ty to Ox</u> 100	ygenates
(3) _{Defined} as $T = T_{eq} - T_{avg}$						
where T = water gas shift equilit eq effluent composition	orium tem	perature c	alculated	for reac	tor	
T _{avo} = average observed bulk-p	ohase rea	ction temp	erature			• •
u · J	-23-	·		•	· • •	

1

SURFACE AREA ⁽¹⁾	m ² /qm	FEED Ha/C	0 2.0	C02	5.0	Vol%
BULK DENSITY(1)	gm/cc	2	- <u> </u>	- 2-		
TEST NO.	-1	-2	-3		. (
	274	282	290			:
Hot Spot, ^O C	275	283	292	·		. , · · · ·
Pressure, psig	895	895	895		·	
VHSV, L/hr/kgm cat.	814	849				
Hrs. on Stream	48.0	50.8	70.8			
CONVERSION						·
CO, Vol%	0.85	2.5	0.43			
CO, gm mol/hr/kgm_cat.	8.5 <u>5X10</u> 2	0.026	<u>4.12</u> X10 ⁻ 2			
NORMALIZED CARBON SELECTIVITY, vol	THIS BATC BY FOREIG	H OF CATALY N MATERIAL	ST WAS FOUND DURING PREPA) TO HAVI NRATION,	E BEEN PO	ISONED
сн _а он				<u> </u>		
CH ₃ OH C ₂ -C ₆ Alcohols		·				
CH ₃ OH C ₂ -C ₆ Alcohols C ₁ -C ₆ Aldehydes		·			·	
CH ₃ OH C ₂ -C ₆ Alcohols C ₁ -C ₆ Aldehydes C ₄ -C ₉ H.C.	 	·			·	
$H_{3}OH$ $C_{2}-C_{6}$ Alcohols $T_{1}-C_{6}$ Aldehydes $T_{4}-C_{9}$ H.C. H_{4}		·			·	
CH ₃ OH C ₂ -C ₆ Alcohols C ₁ -C ₆ Aldehydes C ₄ -C ₉ H.C. CH ₄ C ₂ +C ₃ H.C.		·			· ·	
CH ₃ OH C_2-C_6 Alcohols C_1-C_6 Aldehydes C_4-C_9 H.C. C_3+C_3 H.C. C_2 PPROACH TO ⁽³⁾ <u>GS EQUILIBRIUM</u> , ^O C						
CH ₃ OH C_2-C_6 Alcohols C_1-C_6 Aldehydes C_4-C_9 H.C. CH_4 $C_3+C_3H.C.$ CO_2 APPROACH TO ⁽³⁾ AGS EQUILIBRIUM, ^O C CARBON CARBON						
CH ₃ OH C_2-C_6 Alcohols C_1-C_6 Aldehydes C_4-C_9 H.C. CH_4 $C_3+C_3H.C.$ CO_2 APPROACH TO ⁽³⁾ AGS EQUILIBRIUM, ^O C CARBON ACCOUNTABILITY, % 1) Fresh, non-reduced catalyst 2) Space Time Yield (STY) = VHSV x	 			ectivit	y to 0xys	genates
$H_{3}OH$ $2^{-C_{6}}$ Alcohols $1^{-C_{6}}$ Aldehydes $4^{-C_{9}}$ H.C. H_{4} $2^{+C_{3}}H.C.$ 0_{2} PPROACH TO ⁽³⁾ <u>GS EQUILIBRIUM, ^OC</u> <u>ARBON</u> <u>CCOUNTABILITY, %</u> 1^{1} Fresh, non-reduced catalyst 2^{1} Space Time Yield (STY) = $\frac{VHSV}{22.4}$ x	<u> </u>		<u>onv.</u> <u>% Sel</u>		y to 0xyo 100	genates
H ₃ OH $_{2}^{-C_{6}}$ Alcohols $_{1}^{-C_{6}}$ Aldehydes $_{4}^{-C_{9}}$ H.C. H ₄ $_{4}^{+C_{3}}$ H.C. $_{2}^{0}$ PPROACH TO ⁽³⁾ <u>GS EQUILIBRIUM, ^OC</u> ARBON <u>CCOUNTABILITY, %</u> $_{1}^{1)}$ Fresh, non-reduced catalyst $_{2}^{2)}$ Space Time Yield (STY) = $\frac{VHSV}{22.4}$ x $_{3}^{3)}$ Defined as T = T _{eq} - T _{avg}	<u>% CO in Fee</u> 100		<u>onv.</u> <u>x [%] Sel</u>		<u>y to Oxyo</u>	genates

. .

.

PREP. METHOD Evaporation of Nitrate	$\frac{2}{2}$		$\frac{2100}{20}$	<u>c</u> for 3	<u>hrs</u>	
SURFACE AREA	m /gm ·	FEED H2/1				\
BULK DENSITY	gm/cc					
TEST NO.		2			. <u></u>	
Avg. Temp., ^O C	246	274	275			
Hot Spot, ^O C	247	275	276			
Pressure, psig	900	900	900			<u></u>
VHSV, L/hr/kgm cat.	2063	2314	533			
Hrs. on Stream	5.2	9.2	11.4			
CONVERSION						
CO, Vol%	3.39	5.90	18.9			
CO, gm mol/hr/kgm cat.	0.80	1.56		· .		
STY of Oxygenates ⁽²⁾	0.42	0.85	0.45			
gm mol/hr/kgm cat.	<u> </u>	·	<u> </u>			
NORMALIZED CARBON SELECTIVITY, vol %			•			
СНаОН	21.0	19.6	13.9			
C ₂ -C ₆ Alcohols	26.5	30.3	21.3			
C ₁ -C ₆ Aldehydes	0.8	0.6	1.0			
С ₄ -С ₉ Н.С.	8.9	6.4	5.0		<u> </u>	
CH4	27.1	27.7.	22.5			
Ca+CaH.C.	15.7	15.4				
co ₂ ³	Trace	Trace	23.8			
APPROACH TO ⁽³⁾						
WGS EQUILIBRIUM, C			·		· <u> </u>	·
CARBON						
ACCOUNTABILITY, 2		508	<u>76.7</u>	<u> </u>		
(1) Fresh, non-reduced catalyst	•	·		• '		
(2) Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{9}{2}$	CO in Feed	<u>i x [%] CO (</u>	<u>Conv.</u> x <u>% Se</u>	lectivit	<u>y to Ox</u>	yger
$(3)_{\text{Defined as } T = T} T$	100	I. I.				
Dettined as 1 - 1 eq - 1 avg	•	•	•			•
where T = water gas shift equil eq effluent composition	ibrium temp	erature c	calculated fo	or react	or	
The summer sharming built	-					

CATALYST NO. 197-67		OMIC FORMUL	30% (C A	<u>-</u> 80) uZn _{0.125} C	oCrK _{0.11})	on TiO ₂
PREP. METHOD Impregrnation of Titan	ia with met	tal nitrațe	solution;	Calcined	at 450 ⁰ C	for 3 hr:
SURFACE AREA	m ² /gm	FEED H ₂ /C	02.0	C0 ₂	5.1	Vo1%
BULK DENSITY(1) 1.27	gm/cc	E		L		·
TEST NO.	1	2				
Avg. Temp., ^O C	261	262		<u>.</u>		
Hot Spot, ^O C	262	262				
Pressure, psig	890	880				
VHSV, L/hr/kgm cat.	3374	1000				·····
Hrs. on Stream	4.0	6.0				
CONVERSION						
CO, Vo1%	1.0	3.7				Ň
CO, gm mol/hr/kgm cat.	0.42	0.45				
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.025	<u>Ò.048</u>				
NORMALIZED CARBON SELECTIVITY, vol %						
СН ОН	0.2	0.1			:	
Γ_{-}	0.5	0.3	<u> </u>		<u> </u>	
$^{\circ}$	5.1	10.1	<u> </u>			
$C_{A}-C_{C}$ H.C.	1.9	2.3		<u> </u>		
CH _A	42.8	25.8	<u> </u>	<u>_</u>	•	
↓ C ₂ +C ₃ H.C. CO ₂	5.7 43.8	5.9				
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C						
CARBON ACCOUNTABILITY, %	69.3	89.2			· · ·	·.
(1)				• •		
(2) VHSV 9	K CO in Fee	a % CO C	0.0V. %	Selectivi	ty to Oxy	voenates
Space Time Yield (STY) = $\frac{1100}{22.4}$ x $\frac{1}{2}$	100	- x - 10	0 × ~		100	
⁽³⁾ Defined as T = T _{eq} - T _{avg}		,		•		· ·
where T = water gas shift equil eq effluent composition	librium ten	nperature c	alculated	for reac	tor	
T _{avg} = average observed bulk	k-phase rea	ction temp	erature			

-26-

.

TABLE 5.1.3-5 SUMMA	RY FOR RU	IN 201-85B	(22-Jû)	<u>y-8</u> 0)				
CATALYST NO. 107 71	ATO	MIC FORMULA	^{CuZn} 0.125 ^{CoTh} 0.5 ^{Fe} 0.1 ^K 0.11					
		uloitnio aci		inod at 450	0 for 3	hrs		
PREP. METHOD Evanoration of Nitrate	2	W/CIU <u>CIC</u> ach	u, carc		5 1			
SURFACE AREA	_m²/gm	FEED H ₂ /CO		<u>2.0</u> CO ₂ -	5.1	Vo1%		
BULK DENSITY ⁽¹⁾ 1.73	_gm/cc							
TEST NO.			-3	4_	5	6		
Avg. Temp., ^O C	257	258	270	271	279			
Hot Spot, ^O C	258	259	271	272	280			
Pressure, psig	905	900	905	905	905	905		
VHSV, L/hr/kgm cat.	3597	882	3351	976	<u> </u>			
Hrs. on Stream	4.2		10.3	12.8	<u> 16.1</u>	<u>19.1</u>		
CONVERSION								
CO, Vo1%	3.9	13.1	6.3	17.5	6.4	20.4		
CO, gm mol/hr/kgm cat.	1.70	1.39	2.60	2.13	2.61	.2.57		
STY of Oxygenates ⁽²⁾		-						
gm mol/hr/kgm cat.	0,85	<u> </u>	1.12	0.70	0.942	0.752		
NORMALIZED CARBON SELECTIVITY, vol %	_							
СН-ОН	14.8	10.7	15.2	10.2	13.7	9.8		
C ₂ -C ₆ Alcohols	32.0		25.8	210	20.8	17.5		
C ₁ -C ₆ Aldehydes	3.3		2.1	1_6	1.7	2.1		
$C_{a}-C_{q}$ H.C.	9.4	5.5	4.9	3.4	3.1	<u> 3.6</u>		
CH ₄	24.4		25.1	24.7	25_0	25.7		
Ca+CaH.C.	<u> 16.1</u>	13.8	14.2	<u> 13.6 </u>	<u> 12.6</u>	<u> 12.9</u>		
co ₂ 3	<u> </u>		<u>12.7</u>	25.5	<u> 23.1</u>	28.4		
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C	147		134	169	67	148		
CARBON ACCOUNTABILITY, %	73.3	91.1	80.3	91.5	97.5	98.0		
(1) Fresh, non-reduced catalyst (2) Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\%}{2}$	<u>CO in Fee</u>	ed x <u>% CO Cor</u>	<u>nv.</u> x ³	<u>Selectivi</u>	ty to 0x	ygenates		

(3) Defined as $T = T_{eq} - T_{avg}$

where T = water gas shift equilibrium temperature calculated for reactor eq effluent composition

T_{avg} = average observed bulk-phase reaction temperature

TABLE_5.1.3-6 SUMM	ARY FOR RI	UN 201-87	3 (31-July-	<u>8</u> 0)		
CATALYST NO. 197-73	ATC	MIC FORMU	LA0.1	25 ^{CrCoK} 0.	.11	
PREP. METHODEvaporation of metal	nitrate-ci	tric acid	solution			
SURFACE AREA ⁽¹⁾	m ² /gm .	FEED H ₂ /0	CO <u>2.0</u>	C0 ₂	5.1	Vo1%
BULK DENSITY ⁽¹⁾ 1.28	gm/cc					
TEST NO.	1	2	3			·
Avg. Temp., ^O C	260	260	272			
Hot Spot, ^O C	260	261	273		· · · · · · · · · · · · · · · · · · ·	
Pressure, psig	935	930	935	<u> </u>		
VHSV, L/hr/kgm cat.	3406	892	877	<u> </u>	· ·	
irs. on Stream	4.0	6.0	9.3			
CONVERSION					-	
CO, Vo1%	5.6	15.9	29.1	•		•
CO, gm mol/hr/kgm_cat.	2.41	1.79	3.22	· · · ·		
TY of Oxygenates ⁽²⁾ m mol/hr/kgm cat.	0.48	0.276	0.558			
NORMALIZED CARBON SELECTIVITY, vol %						
H_OH	 2 C	0.1				
C- Alcohols	<u> </u>	<u> </u>	<u></u>			·
2 6 Aldebydes	<u> </u>	<u> 0.0 </u>	1 2			·
	<u> </u>	<u> </u>	<u> </u>			
4 °9 ·····	29.2	24.8	<u></u>			<u> </u>
	13.0	11.8	12.5	<u> </u>	<u> </u>	
2 ⁺¹ -3 ⁻¹ -1- 0 ₂	32.0	42.5	35.8			
PPROACH TO ⁽³⁾ GS EQUILIBRIUM, ^O C				· · · ·		· .
ARBON CCOUNTABLETTY %	68.2	99.8	93.4	·		
				·	·	
) Fresh, non-reduced catalyst			-			
²⁾ Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\%}{2}$	CO in Fee 100	<u>d</u> x <u>% CO C</u> 10	<u>conv.</u> x <u>% S</u>	electivi	<u>ty to Ox</u> 100	ygenates
$^{3)}$ Defined as T = T _{eq} - T _{avg}	• • •					
where T = water gas shift equili eq effluent composition	brium tem	perature c	alculated	for react	tor	• ·
T _{avg} = average observed bulk-	phase read	ction temp	erature	. *		

TABLE 5.1.3-7 SUMM	ARY FOR RU	JN 201-89 P	(6-Aug	<u>8</u> 0)		
CATALYST NO. 197-72	` Δ ΤΩ		CuZn _{0.1}	25 ^{CoZrK} 0.1	1 .	:
		to Coloinor	+ >+ 450 ⁰		с	
PREP. METHOD Evaporation of mitrates	2 21 aleu	ite, taitinet			<u>s.</u>	
SURFACE AREA	m ⁺ /gm	FEED H ₂ /CO	2.0	^{CO} 2 –	5.1	VO1%
BULK DENSITY ⁽¹⁾ 1.3	gm/cc					,
TEST NO.	-1	2	-3	4		
Avg. Temp., ^O C	264	264	273	273		
Hot Spot, ^O C	265	265	273	273		
Pressure, psig	880	.875	910	910		
VHSV, L/hr/kgm cat.	3548	857	2791	932		
Hrs. on Stream	4.1	6.9	10.0	14.9		<u> </u>
CONVERSION		·				
CO, Vo1%	1.0	3.9	1.4	7.2		<u></u>
CO, gm mol/hr/kgm cat.	0.449	0.42	0.491	0.828		<u> </u>
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.111	0.119	0.200	0.355		
NORMALIZED CARBON SELECTIVITY, vo] %						2
CH_OH	16.1	15.6	24.1	21.9		
Co-Co Alcohols	6.7	9.0	11.3	16.9		
$C_{2} = C_{2}$ Aldehydes	1.8	3.6	5.3	4.0		
CCo H.C.	3.2	4.1	3.2	5.1		
CH _A	34,8	28.7	35.5	30.7		
CatCatta C.	9.2	8.2-	140	13.5	·	. ·
cd ₂ 3	28.2	<u> </u>	6.6	7.9*		
APPROACH TO ⁽³⁾	96.6	106.1	95.8	55.8		
CAPBON	· · ·	· `				_
ACCOUNTABILITY, %		· <u></u>				
· · · · · · · · · · · · · · · · · · ·	. · ·			·		
(1) Enorth non-reduced catalyst						
(2) Concerting viald (STV) - VHSV %	<u>CO in Fee</u>	ed <u>x % CO Co</u>	<u>nv. %</u>	Selectivit	y to Oxy	genates
(2)	100	100	×		100	
$^{(3)}$ Defined as T = T _{eq} - T _{avg}						
where T = water gas shift equilibring eq effluent composition	um tempera	ture calcula	ted for 1	reactor		• .
T _{avg} = average observed bulk-pha	se reactio	on temperatur	e			
* CO2 selectivity value was not n	ormalized				• .	

-29-

. ..

•• •• • ••

(

•

TABLE 5.1.3-8	_ SUMMARY FOR RI	JN 201-90	B (4-Aug-8	0)	· .	
	Á T		CuZn _{0.1}	25 ^{CoCrK} 0	.11	
CRIALISI NU., <u>197-76</u>	AIC	MITC LOKMO	LA			<u>·</u>
PREP. METHOD Evaporation of c	itrates; Calcine	ed at .450°C	; for 3hrs	•		· ·
SURFACE AREA ⁽¹⁾	m ² /gm	FEED H2/	co <u>2.0</u>	C0 ₂	4.9	Vo1%
BULK DENSITY ⁽¹⁾ 1.35	gm/cc					
TEST NO.	1	-2	3	_4	•	
Avg. Temp., ^O C	271		238	246		
Hot Spot, ^O C	272	273	238	246		
Pressure, psig	935	. 930	1600	1600		
VHSV, L/hr/kgm cat.	3509	854	322	309	· · · ·	
Hrs. on Stream	3.0	6.0	8.5	12.1	·	
CONVERSION	4					
CO, Vol%	4.8	24.6	8.6	17.1		
CO, gm mol/hr/kgm_cat.	2.07	2.61	0.339	0.647		
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.364	0.355	0.070	0.104		
NORMALIZED CARBON SELECTIVITY.						<u></u>
сн_он	3.4	2.7	5.9	3.7		
S C ₂ -C _c Alcohols	5.1	4.6	6.2	5.1	· · · · · · · · · · · · · · · · · · ·	
C,-C, Aldehydes	9,1	6.3	8.5	7.3	• .	
$C_A - C_B H.C.$	5.2	5.6	7.2	7.3		
ch ^a	29.2	27.1	32.1	27.9		
- C +C H ⊂C	11.9	12.2	14.4	12.7		•••••
CO ₂	36.1	41.5	25.7	36.0	·	<u> </u>
2 ADDDOACH TO(3)			· · ·			·
WGS EQUILIBRIUM, ^O C	·	·			<u></u>	
CARBON						
ACCOUNTABILITY, %	112.9	100.0	98.3	101.7	<u></u>	
						· ·
⁽¹⁾ Fresh, non-reduced catalyst					•	
⁽²⁾ Space Time Yield (STY) = $\frac{VHS}{22}$.	5V x <u>% CO in Fee</u> 100	<u>d</u> x <u>% CO (</u>	<u>Conv.</u> x <u>%</u>	Selectiv	<u>ity to Ox</u> 100	ygenate
(3) Defined as $T = T_{eo} - T_{avo}$						
where T = water gas shift eq effluent composi	equilibrium tem tion	perature d	alculated	for rea	ctor	
· · · · · ·						

)

i

T_{avg} = average observed bulk-phase reaction temperature -30-

T	ABLE 5.1.3-9	SUMMAF	RY FOR RU	JN201-9	1 B (11-A	lug80))		
CATALYST NO.	197-73	·	ATC	MIC FORMU	LA CuCrC	oZn _{0.1}	25 ^K 0.1	1	
PREP. METHOD	Evaporation (of metal r	ni tra te-c	itric aci	1;20,000	psi pe	lletiz	ing pres	sure
SURFACE AREA	1)		_m ² /gm	FEED H ₂ /	со	2.1	^{CO} 2 -	5.2	Vo1%
BULK DENSITY	1)		_gm/cc						
TEST NO.			-1			. <u>.</u>	<u></u>		. <u></u>
Avg. Temp., ^O C		×	271						
Hot Spot, ^O C	/		272		· 	•			
Pressure, psig	3	•	915			<u></u>			<u></u>
VHSV, L/hr/kgm	n cat.		918		<u></u>				
Hrs. on Stream	n		9.2					· · · · · · · · · · · · · · · · · · ·	
CONVERSION									
CO, Vo1%			21.2	_ _					
CO, gm mol/hr/	kgm_cat.		2.40			<u></u>			
STY of Oxygena gm mol/hr/kgm	tes ⁽²⁾ cat.		0.46			<u></u>			
NORMALIZED CAR	BON SELECTIVITY	(<u>,</u> vo] %	-					•	
сн _з он			5.6	<u></u>					
C2-C6 Alcohols			12.9				·		
C1-C6 Aldehyde	S		0.6						<u> </u>
С ₄ -С ₉ Н.С.			5.3				· .		<u> </u>
сн ₄		•	29.0	<u> </u>	<u> </u>				
C2+C3H-C.	, , ,		11.8	<u> </u>					
c0 ₂					<u> </u>			<u>_</u> _	
APPROACH TO ⁽³⁾ WGS EQUILIBRIU	м, ^о с		91		<u> </u>				<u>.</u>
CARBON ACCOUNTABILITY	, %		103.5						
(1)									
''Fresh, non-	reduced catalys	st		. ~ ~ ~ ~	~	<i>а</i> с .		O.	
(²⁾ Space Time	Yield (STY) = $\frac{V}{Z}$	$\frac{2}{2.4} \times \frac{2}{2}$	<u>:0 in Fee</u> 100	<u>ad</u> x <u>% co</u> 1	$\frac{\text{Conv.}}{00}$ x	% Sele	ctivii	<u>ty to 0x</u> 100	ygenates
(3) _{Defined as}	T = T _{eq} - T _{avg}					,			
where T _{eq} =	water gas shif effluent compo	t equilib sition	orium tem	perature	calculat	ed for	react	tor	
T _{avg} =	average observ	ed bulk-p	hase rea	ction tem	perature				
•			3	1					

.

$ \begin{array}{c} \text{MULA} \\ \underline{\begin{array}{c} \text{CuZn}_{0.125} \text{CoCr}_{0.125} \text{K}_{0.11}} \\ \text{solutions} \\ \underline{\begin{array}{c} \text{solutions}} \\ \underline{\begin{array}{c} \text{solutions}} \\ \underline{\begin{array}{c} \text{solut} \\ 2 \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \\ 2 \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \\ 2 \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\\underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}} \\ \underline{\begin{array}{c} \text{c} \end{array} \end{array}}$	Vo1%
solutions $2/C0$ 2.0 $C0_2$ 5.1 -3^1 3^2 3^2 279 3^2 3^2 279 3^2 3^2 279 3^2 3^2 279 3^2 3^2 279 3^2 3^2 284 3^2 3^2 910 3^2 3^2 969 3^2 3^2 969 3^2 3^2 90^2 3^2 3^2 50.9 3^2 3^2 50.9 3^2 3^2 3^2 0.93^2 3^2	Vo1%
$2^{/C0}$ 2.0 $C0_2$ 5.1 -3^{1} -3	Vo1%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
910 969 9.0 9.0 50.9 5.94 0 5.94 3 0.93	
969 9.0 50.9 5.94 3 0.93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
50.9	
5.94 3 0.93	
0.93	
	·
2.4	
9.3	
3.9	
6.0	
<u>5</u> <u>23.3</u> <u> </u>	
<u>5 14.1</u>	
41.0	
19	<u></u>
3 104.6	
	2.4

where T = water gas shift equilibrium temperature calculated for reactor eq effluent composition

T_{avg} = average observed bulk-phase reaction temperature

TABLE	RY FOR RL	JN <u>201-93</u>	B (19-Au	<u>g-</u> 80)			
CATALYST NO. 197-77	ATO	MIC FORMUL	AO.	125 ^{CoTh} 0.	5 ^K 0.11	•	
PREP. METHOD Evaporation of metal nit	rates, Ca	alcined at 4	450 ⁰ c for	3 hrs. p	elletized	<u>at 1</u> 0,000)pst
SURFACE AREA(1)	_m ² /gm	FEED H2/C	2.1	^{CO} 2	5.0	_ Vo1%	
BULK DENSITY(1)	gm/cc						
TEST NO.	1	-2		4	-5	-6	
Avg. Temp., ^O C	262	268	270	27:0	282	284	
Hot Spot, ^O C	262	268	270	270	283	284	
Pressure, psig	920	.915	920	920	920	915	
VHSV. L/hr/kgm cat.	3607	900	3239	931	3431	984	
Hrs. on Stream	4.0	7.0	10.2	13.1	18.1	20.2	
CONVERSION							
CO, Vol%	4.3	30.5	7.5	29.8	13.6	63.8	į., ;
CO, gm mol/hr/kgm cat.	1.90	3.37	2.98	3.41	5.73	7.71	
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.59	0.87	0.75	0.72	1.67	1.33	\$
NORMALIZED CARBON SELECTIVITY, vol %		······				· · · · · · · · · · · · · · · · · · ·	4. K.
сн _а он	8.1	5.5	7.7	5.3	7.3	4.2	•
C ₂ -C ₆ Alcohols	16.3	17.9	15.0	13.9	17.7	11.6	
C1-C6 Aldehydes	6.7	2.3	2.3	1.8	4.1	1.4	
$C_{A} - C_{Q}$ H.C.	.4.7	4.9	2.6	3.0	3.0	2.7	e*** (†2)
CHA	33.5	19.8	27.8	27.4	30.2	30.6	
C_+C_H_C.	14.7	12.1	18.3	17.4	19.4	16.3	
co ₂	16.0	37.5	26.3	31.2	18.3	33.2	•
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C		70	72	142	170	122	1
CARBON ACCOUNTABILITY, %	106.2	100.8	109.0	105.3	100.2	103.1	
(1) Freed and anti-lust				•			
(2) Space Time Yield (STY) = $\frac{VHSV}{5264} \times \frac{\%}{6}$	<u>CO in Fee</u>	<u>d x % CO Co</u>	<u>onv.</u> <u>x</u> <u>%</u>	Selectiv	ity to Oxy	genates	
(3) _{Defined as T = T_{en} - T_{avn}}	100		J				
where T _{eq} = water gas shift equilit eq effluent composition	orium tem	perature ca	alculated	for read	tor		

 T_{avg} = average observed bulk-phase reaction temperature

.

.

-33-

. ..

. .

TABLE <u>5.1.3-11</u> SUM	MARY FOR R	UN 201-93 B	(19-Au	<u>g-80)</u>	Contin	ued	
CATALYST NO197-77	AT	OMIC FORMULA	CuZn ₀	.125 ^{Co}	Th 0.5 ^K	0.11	
PREP. METHOD _ Evaporation of Nitrat	es. Calcin	ed at 450 ⁰ C	for 3 l	nrs;pe	lletiz	ed at 10	000ps i
SURFACE AREA ⁽¹⁾	m ² /gm	FEED H2/CO)	2.1	C02	5.0	Vo1%
BULK DENSITY(1)	gm/cc	۷	<u></u>		2		
TEST NO.	7	·	- <u>.</u>				
Avg. Temp., ^O C	257						
Hot Spot, ^O C	257						
Pressure, psig	925		-				
VHSV, L/hr/kgm cat.	3248			<u></u>		<u> </u>	
Hrs. on Stream	22.7						
CONVERSION							
CO, Vol%							
CO, gm mol/hr/kgm cat.	1.08			<u></u>			
STY of Oxygenates ⁽²⁾ gm mol/hr/kgm cat.	0.35	<u> </u>	. <u> </u>				,
NORMALIZED CARBON SELECTIVITY, vol %							
СН ОН							
$C_{-}C_{-}$ Alcobols	<u> </u>					<u> </u>	
$C_2 = C_2$ Aldehydes	3.0	 _					<u>·</u>
CC. H.C.	2.7	<u></u>			<u> </u>		
CH _A	39.2		. <u></u>				<u></u>
4 Г. 4 Г. Н. Г.	23.2		<u>.</u>			<u> </u>	
c0 ₂	2.0				·		
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C	93						
CARBON ACCOUNTABILITY, %	101.7		·			····	
⁽¹⁾ Fresh, non-reduced catalyst ⁽²⁾ Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\%}{2}$ ⁽³⁾ Defined as T = T _{eq} - T _{avg} where T _{eq} = water gas shift equil effluent composition	<u>CO in Fee</u> 100 ibrium ten	ed x <u>% CO Co</u> 100 mperature ca	<u>nv.</u> _X lculat	<u>% Sele</u> ed for	ctivi reac	t <u>y to Ox</u> 100 tor	ygenates
T _{avg} = average observed bulk	-phase rea	ction temper	rature				

TABLE_	<u>513-12</u> SUM	MARY FOR RU	JN <u>201-95 B</u>	(28-Aug-	80)		~
CATALYST NO.	197-79	ATC	MIC FORMULA	CuZn _{0.1}	25 ^{CoThK} 0.1	.1	
PRÉP. METHOD Copr	ecipitation of M	<u>etal Nitrat</u>	es_w/KOHCa	lcined at	450°C for	<u>3 hrs</u>	
SURFACE AREA(1)		m ² /gm	FEED H ₂ /CO	2.0	^{C0} 2 _	5.2	Vo1%
BULK DENSITY(1)	1.52	gm/cc					
TEST NO.			-2	-3			
Avg. Temp., ^O C		260		273	<u> </u>		
Hot Spot, ^O C		260		273	<u></u> .	<u> </u>	
Pressure, psig		920	1530	910			
VHSV, L/hr/kgm cat.	•	3202	3237	3364			
Hrs. on Stream	- -	4.6	7.3	12.2			
CONVERSION							
CO, Vo1%		3.5	7.3	4.7_			
CO, gm mol/hr/kgm c	at.	1.39	2.93	1.96			
STY of Oxygenates ⁽²	2)						
gm mol/hr/kgm cat.		0.52	0.77	0.70	<u> </u>		
NORMALIZED CARBON	ELECTIVITY, vol %						
CH ₂ OH		12.6	9.0	14.3			
C ₂ -C _c Alcohols		23.6	16.1	20.3			
$C_1 - C_2$ Aldehydes		1.3	1.1	0.9			
$C_{4}-C_{0}$ H.C.		5.8	4.0	2.8			
CH_		31.9	19.8	34.1			
с. 4 С. 4. С.		24.2	14.3	18.4		·······	
C_2		0.6	35.7	9.2			
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^O C	-		· <u></u>	<u> </u>			
CARBON ACCOUNTABILITY, %		90.3	89.0	104.9	<u> </u>		
⁽¹⁾ Fresh, non-reduc ⁽²⁾ Space Time Yield	ed catalyst (STY) = VHSV x	<u>% CO in Fee</u> 100	ed x <u>% CO Co</u> 100	<u>) x % (</u>	Selectivit	<u>y to Ox</u> 100	ygenates
$^{(3)}$ Defined as T = T	eq ^{- T} avg						-

.

, , , , ,

where T = water gas shift equilibrium temperature calculated for reactor eq effluent composition

 T_{avg} = average observed bulk-phase reaction temperature

-35-

CATALYST NO197-73	AT(MIC FORMULA	^{CuZn} 0.125	CoCrK _{0.11}		
PREP. METHOD <u>Evaporation of metal</u> n	itrates					
SURFACE AREA ⁽¹⁾	m ² /am	FEED Ha/CO	2.1	CO _o	-51	/01%
BULK DENSITY(1) 1.38	gm/cc					
TEST NO.	1	· · ·		_		
Avg. Temp., ^O C	273					
lot Spot, ^O C	273		<u> </u>	<u> </u>	······································	•
Pressure, psig	910					
/HSV, L/hr/kgm cat.		· · · · · · · · · · · · · · · · · · ·				
irs. on Stream	35.6					
CONVERSION						
0, Vol%	7.2					
0, gm mol/hr/kgm_cat.	0.92				·	
TY of Oxygenates ⁽²⁾ m mol/hr/kgm cat.	0.19					
NORMALIZED CARRON SELECTIVITY WOL &		• <u> </u>				
	 / 0					
-C Alcohols	<u> </u>	·····		<u>.</u>		<u> </u>
2 - 6 Aldehydes	10.0	<u>,</u>		<u></u>	· ·	
	6.1	<u> </u>		<u> </u>		
4 °9 ···	29.1	<u></u> <u> </u>		· · · · · · · · · · · · · · · · · · ·		
4 +CHC	18.9	·	<u></u>			
2°03°°°°	25.0	<u> </u>				
PPROACH TO(3)		<u> </u>				
GS EQUILIBRIUM, ^O C						
ARBON	00.1					
COUNTABILITY, %	99.1	<u> </u>	. <u> </u>	<u></u>	``	
) Fresh, non-reduced catalyst						
() VHSV 2	CO in Fee	d % CO Con	ام ۲ در ا	ectivity	to Avvaen	ate
'Space lime Yield (STY) = $\frac{1100}{22.4} \times \frac{10}{2}$	100	$= x \frac{2}{100} \frac{100}{100}$	·· x x	10	10	ule
) Defined as $T = T_{ac} - T_{avc}$					· · ·	
where T = water gas shift equil eq effluent composition	ibrium tem	perature cal	culated fo	r reactor	•	
T_{ave} = average observed bulk	-phase read	tion temper	ature	·		
					1	

SUPPLART FUR KUN 201-98 B (8-Sept-80)		
CATALYST NO. 197-81 ATOMIC FORMULA	e0.5 ^K 0.11	on MnO
PREP. METHOD Coprecipitation of Nitrates w/KOH		
SURFACE AREA ⁽¹⁾ m ² /gm FEED H ₂ /CO 2.0 CO ₂	5.0	Vo1%
BULK DENSITY ⁽¹⁾ 1.02 gm/cc		
<u>TEST NO.</u> -1 -2 -3 -4		
Avg. Temp., ^O C 267 262 262 239		
Hot Spot, ^o C 268 262 263 242		
Pressure, psig 920 920 1500 900		
VHSV, L/hr/kgm cat. <u>1619 4487 5162 1797</u>		
Hrs. on Stream <u>3.8</u> <u>8.2</u> <u>11.1</u> <u>15.1</u>		·
CONVERSION		· ·
CO. Vol% 49.6 11.9 12.3 9.1		
CO, gm mol/hr/kgm cat. 10.1 6.71 7.78 2.06		
STY of Oxygenates ⁽²⁾ 1.27 1.14 1.70 0.44	•	;
gm mol/hr/kgm cat.		
NORMALIZED CARBON SELECTIVITY, vol %	•	
CH ₂ OH 1.3 4.1 4.6 5.0		
$C_2 - C_6$ Alcohols 10.8 12.1 14.7 14.3		
$C_1 - C_6$ Aldehydes 0.5 0.8 2.6 2.3		
C ₄ -C ₉ H.C. <u>15.7</u> <u>12.5</u> <u>12.0</u> <u>10.8</u>		
CH ₄ 20.3 24.2 22.5 24.9	·	
C.+C.H.C. <u>27.7</u> <u>32.1</u> <u>28.2</u> <u>29.6</u>		
$c \delta_2^{3} = 23.7 - 14.2 - 15.4 - 13.1$		
APPROACH TO ⁽³⁾ WGS EQUILIBRIUM, ^o C		
CARBON ACCOUNTABILITY, % 101.2 95.3 114.4 90.1		
(1) Fresh, non-reduced catalyst		
(2) Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{2 CO \text{ in Feed}}{100} \times \frac{2 CO Conv.}{100} \times \frac{2 Selectivi}{100}$	ty to 0x 100	ygenates
$(3)_{\text{Defined as } T = T - T}$		
eq avq		
where T = water gas shift equilibrium temperature calculated for reac eq effluent composition	tor	

TABLE <u>51-3-15</u> SUMMAI	RY FOR RU	N 201-100	P (12-S	ept-80)	·	
Methanol Synthesis Catalyst (F CATALYST NO. <u>200-27-1 (second stage)</u>	irst Stag ATO	e); MIC FORMULA	CuZn_4	9^{A1} .21	<u> </u>	Co
PREP. METHOD Evaporation of metal nit	rate-citr	ic acid solu	tion	.125 0.0	0.11	
SURFACE AREA ⁽¹⁾	_m ² /gm	FEED H ₂ /CO	2.1	^{CO} 2 _	4.9	Vo1%
BULK DENSITY ⁽¹⁾	_gm/cc			·		
TEST NO.	-1	2	-3		·····	
Avg. Temp., ^O C	182	193	209			
Hot Spot, ^O C	183	193	219			
Pressure, psig	920	920	920			
VHSV, L/hr/kgm cat.	3402	3388	3669			
Hrs. on Stream	4.0	5.8	10.4			
CONVERSION						
CO, Vol%	1.4	1.8	27.9			
CO, gm mol/hr/kgm cat.	0.58	0.75	12.5			
STY of Oxygenates ⁽²⁾						
gm mol/hr/kgm cat.	0.40	0.58	11.6			
NORMALIZED CARBON SELECTIVITY, vol %	 '					
снзон	68.9	71.9	90.9			
C ₂ -C ₆ Alcohols	2.1	1.7	1.4		1	
C1-C6 Aldehydes	6.7	3.5	0.3			
С ₄ -С ₉ Н.С.	3.8	3.1	1.7			
CHA	10.6	9.9	1.6	<u> </u>		
Ca+CaH.C.	7.9	9.9	2.5			
c6 ₂ 3	Frace	Trace	1.6			
APPROACH TO (3)	•					
WGS EQUILIBRIUM, C						
CARBON ACCOUNTABILITY, %	87.2	121.3	88.5		<u> </u>	
			, ,	."		
(1) Fresh, non-reduced catalyst	•				· .	
(2) Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\%}{2}$	CO in Fee	<u>d</u> x <u>% CO Co</u>	<u>nv.</u> x <u>%</u>	Selectivit	ty to Oxy 100	genates/
(3) Defined as $T = T_{-} - T_{-}$						
where T _{co} = water gas shift equilib	brium tem	perature ca	lculate	d for react	tori	
eq effluent composition		·				
T _{avg} = average observed bulk-p	ohase rea	ction temper	rature			

		A				
PREP. METHODEvaporation of metal	nitrates/ci	tric acid				
SURFACE AREA	m²/gm ·	FEED H_2/CO	2	<u> 1 </u>	5.0	_ Vo1%
BULK DENSITY(1) 1.23	gm/cc					
TEST NO.	-1	-2	-3	_4=	-5	
Avg. Temp., ^O C	: 225_	225	208	208	250_	
lot Spot, ^O C	225	225	208	208	250	
Pressure, psig	910	905	905	905	910	
/HSV, L/hr/kgm cat.	3632	1251	673	3521	3972	
irs. on Stream	3.8	7.7	11.3	14.1	19.4	
ONVERSION		·				
0, Vo1%	<u> </u>	65.6	52.5	17.3	362	
0, gm mol/hr/kgm cat.	14.8	9.81	4.30	7.41	17.4	
TY of Oxygenates ⁽²⁾ m mol/hr/kgm cat.	10.1	5.71	2.45	6.50	8.31	
NORMALIZED CARBON SELECTIVITY, vol %	· .					
н _з он	63.9	49.8	53.8	84.1	39.2	
2-C ₆ Alcohols	4.3	8.1	3.2	3.6	7.8	
-C ₆ Aldehydes	~ 0	0.3	<u>~ 0</u>	~ 0	0.5	
,-C ₀ H.C.	5.1	5.6	5.0	2.2	5.3	
1	4.1	6.2	4.7	2.7	10.8	
	5.4	7.3	6.7	3.1	10.2	
2 - 3	17.3	22.7	26.5	4.3	26.2	
PPROACH TO ⁽³⁾ SS EQUILIBRIUM, ^O C	·					
ARBON CCOUNTABILITY, %	100.6	90.6	95.1	95.5	103.0	

(1) Fresh, non-reduced catalyst

(2) Space Time Yield (STY) = $\frac{VHSV}{22.4} \times \frac{\% CO \text{ in Feed}}{100} \times \frac{\% CO Conv.}{100} \times \frac{\% Selectivity to Oxygenates}{100}$

(3)_{Defined as T = $T_{eq} - T_{avg}$}

where T = water gas shift equilibrium temperature calculated for reactor effluent composition

 T_{avg} = average observed bulk-phase reaction temperature

TABLE 5.1.3-17 SUMM	ARY FOR RUN	213-	4 B (24-	<u>Sept-80)</u>		
CATALYST NO	ATOM	IIC FORMUL	A0.	125 ^{CoTh} 0.5	, ^{Fe} 0.1 ^K (0.11
PREP. METHOD Coprecipitaion of Meta	l nitrates	w/KOH, Cal	lcined at	450 ⁰ C for	<u>3 hr</u> s.	
SURFACE AREA ⁽¹⁾	m ² /gm	FEED H ₂ /C	0 _2.1	CO ₂	4.8	Vol%
BULK DENSITY ⁽¹⁾ 1.04	gm/cc	د ۰.		-		
TEST NO.	-1	-2	-3	4*	• <u>•</u>	
Avg. Temp., ^O C	263	263	245	267		
Hot Spot, ^O C	263	263	245	267		
Pressure, psig	910	905	910	920		
VHSV, L/hr/kgm cat.	3574	1092	3262	3763		
Hrs. on Stream	3.7	6.3	11.6	18.1		
CONVERSION		<u> </u>			<u>`</u>	- <u>-</u>
CO. Vol%	18.0	55.9	5.2	13.5	(11.1	MeOH Conv
CO. gm mol/hr/kgm cat.	7.60	7.21	2.09	5.06	(1.36	MeOH Conv
STY of Oxygenates (2)		1.00				, [*] 4
gill indi/ir/kgm cat.	1.91	1.28	0.59	0.866		
NORMALIZED CARBON SELECTIVITY, vol %						
СН ₃ ОН	3.9	3.0	6.4			
C ₂ -C ₆ Alcohols	17.0	13.0	17.3	12.4		
C ₁ -C ₆ Aldehydes	4.2	1.8	4.2	1.1		
C ₄ -C ₉ H.C.	11.3	7.4	6.7	5.9		
CH4	17.4	22.1	22.4	30.3		
C_+C_H_C.	22.2	16.6	21.2	17.8		
co ₂ 3	24.0	<u> </u>	21.8	32.5		
APPROACH TO ⁽³⁾ WGS FOULL IBRILIM. ^O C	,		×		·	
	· · · · ·					<u> </u>
ACCOUNTABILITY, %	103.0	102.9	105.9	97.9		·
(1) Fresh, non-reduced catalyst						
(2) Space Time Yield (STY) = $\frac{VHSV}{22A} \times \frac{2}{A}$	CO in Feed	× [%] CO Co	<u>onv.</u> x <u>%</u>	Selectivi	ty to C)xýgenates
(3) Defined as $T = T_{eq} - T_{avg}$	100	100		·		
where T_{eq} = water gas shift equili	brium temp	erature ca	alculated	for react	tor	
effluent composition	• •					
T _{avg} = average observed bulk- * 7 mol % MeOH added to ford	phase react	tion tempe	erature			
"	-40					

الحمد،

ياية بالمحت

--- -

----• 🗕 •

5.1.4 Analysis of Results

The maximum selectivity to alcohol-fuel component observed during the this quarter obtained with tests made was а CuCoZn_{0.125}Fe_{0.1}Th_{0.5}K_{0.11} catalyst by evaporation produced of metal nitrate-citric acid solutions. Selectivity to C1-C6 oxygenates was about 50% (CO2-free, carbon basis) at total CO conversions of the order of 5 to 15% per pass. The distribution of oxygenates by carbon number was as follows:

	Alcohols	Aldehydes	Total
0	49.2	0	49.2
	40.2 33.0	0.43	33.4
C ₃	10.6	0.07	10.7
C ₄	5.0	0.34	5.3
C ₅	1.3	1.04	2.3
с ₆	0	0	0
Total	98.1	1.88	100.0

Some relevant correlations were observed for this and other catalysts tested. These correlations are illustrated in plots of the conversion vs. selectivity characteristics shown on Figures 5.1.4-1 through 5.1.4-6. In all cases, oxygenates selectivity notably decreases as total CO conversion per pass increases. The rate of the selectivity decrease does however vary with catalyst composition and catalyst production methods.

Figure 5.1.4-1 shows the effect of catalyst preparation method on the conversion-selectivity relationship. At the lower CO conversion levels, the evaporation method results in a significant increase in oxygenates selectivity over that of the KOH coprecipitation method. We plan to also test this formulation produced by a Na_2CO_3 coprecipitation method. The latter is the preferred method for the preparation of both present-day commercial methanol synthesis catalysts and of the cobalt/thoria-based F-T catalysts produced prior to WW II.

Figure 5.1.4-2 shows the effect of different transition metal types in a $CuZn_{0.125}CoK_{0.11}M$ formulation.Catalysts having an atomic formula of $CuZn_{0.125}CoK_{0.11}M$ have oxygenates selectivity varying with transition metal type according to the following series (in order of decreasing selectivity):

Zr∿Th>V≥Cr>Mn>Mo;

Figure 5.1.4-3 shows the effect of supporting a CuZn_{0.125}CoTh_{0.5}Fe_{0.5}K_{0.11} formulation on a manganese oxide (MnO) support. MnO as a support results in a strong metal-support interaction (SMSI) and one of the characteristics of SMSI catalysts is their poor ability to chemisorb hydrogen⁽⁹⁾. This means that SMSI catalysts have activity for hydrogenation. Although the unsupported lower а CuZn_{0.125}CoTh_{0.5}Fe_{0.5}K_{0.11} formulation was very active as regards CO reactivity and space time yield of oxygenates, a high selectivity to C2+ hydrocarbons was observed. It is believed that this was a result of the high hydrogenation activity of the thorium/iron constituents of the catalyst which might be reduced by incorporating a poor hydrogen chemisorber into the catalyst system. However, as can be seen from the figure, oxygenates selectivity is essentially independent of the incorporation of MnO into the catalyst. However, MnO did appear to accelerate the activity of the methanation reaction as observed by the 100% increase in methane selectivity over the range of 35-50% CO conversion.

Figure 5.1.4-4 shows the effect of iron/copper ratio in a $CuZn_{0.125}CoTh_{0.5}K_{0.11}Fe_x$ catalyst over the range 0 to 0.5/1. There appears to be a small effect of iron/copper ratio on oxygenates selectivity with an observed maxima in the relationship between Fe/Cu ratio and oxygenates selectivity. A cross-plot of Fe/Cu ratio vs. oxygenates selectivity at about 25% CO conversion per pass (see Figure 5.1.4-5) shows the broad maxima occurring between about 0.1 and 0.25 Fe/Cu ratio. At higher CO conversions, increasing the Fe/Cu ratio to a value as high as 0.5/1 appears to reduce the oxygenates selectivity relative to that of a catalyst with lower iron content.

-46-

Figure 5.1.4-6 shows the effect of chromium/copper ratio in a $CuZn_{0.125}CoK_{0.11}Cr_x$ type catalyst over the range of 0 to 1/1. There appears to be essentially no effect of the chromium/copper ratio on oxygenates selectivity over the range investigated.

During the course of the Task 1 studies, it was hypothesized that higher alcohols (C2+) formation might be accelerated if a sufficient quantity of methanol was allowed to chemisorb on a catalyst formulation that shows some homologation activity. Therefore, an equal mixture by weight of methanol commercial synthesis catalyst vand CuZn0.125CoTh0.5Fe0.5K0.11 catalyst produced by KOH coprecipitation was tested in both the plug-flow and Berty reactors. The first-stage zone of the plug-flow reactor contained the methanol synthesis catalyst followed by the higher alcohols catalyst in the second-stage. In the Berty reactor, a random mixture of the two catalysts was used. The objective of these tests was to determine the effect of methanol generated in situ by the methanol synthesis catalyst. The plug-flow reactor operation was limited by exothermic heat removal resulting from the high activity of the methanol synthesis catalyst and therefore could not be operated beyond 210°C. At this low temperature, the second-stage higher alcohols catalyst was essentially inactive. In the Berty reactor, reactor operation was not temperature-limited and high conversions to methanol were observed. However, little homologation activity was observed. Any water of hydrogenation produced by the higher alcohols catalyst reacted with CO to yield CO, via the water-gas shift reaction, the latter being catalyzed by both the methanol synthesis catalyst as well as the higher alcohols catalyst.

During one test condition with a CuZn_{0.125}CoFe_{0.1}Th_{0.5}K_{0.11} catalyst prepared by KOH coprecipitation, methanol was co-fed with the syn gas (at 7 mol%) to simulate methanol recycle and measure the homologation activity of this formulation. Total carbon (methanol carbon plus CO carbon) conversion

-49-

was approximately constant but the methane/higher alcohols ratio increased from 0.8/l to about 2.3/l as seen below:

MeOH Content of Feed Gas, Mol %	7	0
Equivalent CO Converted, gmol/hr/kg cat.	6.4	7.6
% Selectivity to CH ₂ OH		4
% Selectivity to $C_2 - C_6$ Oxygenates	13	21
% Selectivity to CH4	30	17
% Selectivity to C ₂ + HC	24	34
% Selectivity to CO2	33	24

5.2 Task 2: Process Variable Studies in BSU

No work was performed on this task during the reporting period.

5.3 Task 3: Engineering Studies & Economic Analyses

No work was performed on this task during the reporting period.

5.4 Task 4: Performance Studies in PDU

No work was performed on this task during the reporting period.

6.0 PATENTABLE INVENTIONS

No patentable inventions were conceived during this quarterly period.

7.0 REFERENCES

- (1) G.B. Patent 2,037,179, July 9, 1980
- (2) European Patent EP0005492, May 7, 1979
- (3) Jones & McNicol J. Catal. 47, 384 (1977)
- (4) Joyner, J. Catal. <u>50</u>, 176 (1977)
- (5) Ponec, Catal. Rev. Sc. Eng. <u>18</u>, 151 (1978)
- (6) Ponec & van Barneveld I&EC Prod. Res. & Dev. 18, 268 (1979)
- (7) Herman, Klier et al. J. Catal. 56, 407 (1979)
- (8) Sherokov, V.G. Kirillov, I.P. & S.P. Kochethov, Proceedings of First Intl. Symposium on the Preparation of Heterogeneous Catalysts, Brussels, (Oct. 14–17, 1975)
- Kugler, E.L., "Synthesis of Light Olefins from CO and H₂",
 ACS Div. Pet. Chem. Symposium, San Francisco (Aug. 24-29, 1980)