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ABSTRACT
The objective of this program is to develop a microwave oscillator
capable of producing 200 kW of CW output power at 60 GHz. The use of

cyclotron resonance interacton is being pursued.

The design and early procurement and construction phases of this

program are discussed.
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I. INTRODUCTION

The current objective of this program is to develop a microwave
oscillator capable of producing 200 kW of CW output power at 60 GHz.
Tunability or bandwidth is not considered an important parameter in the
design, but efficiency is. Mode purity in the output waveguide is not a
requirement for the device, but the circular electric mode is considered

desirable because of its low loss properties;

‘With these objectives in mind, an approach based on cyclotron resonance
interaction between an electron beam and microwave fields is belng pursued.
The detailed arguments leading to this approach aré contained in the final
report: of a preceding study progr'am.1 The device configurations of
particular interest, called gyrotrons, have been discussed in recent
lit,er'at,ure.z'6 They employ a hollow electron beam interacting with

cylindrical resonators of the TEom1 class.

The optimum beam for the cyclotron resonance interaction is one in
which the electrons have most of their energy in velocities ﬁerpendicular to
the axial magnetic field. Another requirement is that the spread in ‘the
axial components of the electron velocities be as small as possible.
Electrons which have different axial velocities will not interact

efficiently.

The approach chosen to generate the beam is a magnetron type of gun as
is used on the 28 GHz gyrotron, also developed for QOak Ridge National
Laboratory.7’8 With this type of gun the shaping of the magnetic field in

the gun region becomes quite important.

Construction of the first experimental 60 GHz gyrotron has been
started. Electron gun parts are on order. A purchase order has been placed
with Magnetic Corporation of America for the superconducting solenoid

magnet. ‘Assembly of the anode and oscillator cavity assembly has also been



started. A cold test model of the CW collector has been constructed and
most of the cold test equipment has been received, as well as the microwave

window parts. At present, the limiting item appeérs to be modification of

the test set.



II. ELECTRON BEAM

A computer simulation of the electron beam was done for the pulsed tube

collector design.

Twenty-four trajectories were calculated starting from the interaction
circuit with eight electrons arranged about each of three orbit centers.
Because of program size limitations, four axial collector segments were

required in the calculation to reach the area where interception occurs.

The calculations were made using the fringing field of the
superconduct ing magnet system with no additional coils in the collector

region for field shaping.

Figure 1 shows the plots of the trajectories in the region 20.5 to 50.0
inches from the center of the interaction circuit. The first trajectory
intercepted approximately 10 inches beyond the lower collector seal. The

beam loading is spread over an axial length of approximately 2 feet.

An estimate of the peak power density on the collector walls will

require more detailed trajectory simulation runs.
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III. THE ELECTRON GUN

The procurement cycle for the electron gun is in process. All the
parts were ordered prior to the end of the quarter with the majority having
a confirmed delivery date_of no later than July 31. The delivery date on
several critical parts, including the ceramic heater retainer rings had not
been confirmed; however, cdnfirﬁation dates were being expedited by Varian's

Production Control Group. .

Tooling for drawn parts (e.g., heat shields and seal rings) and
fixtures for jigging during gun construction were designed and ordered
during the quarter. Because of the exceptionally long delivery dates quoted
by outside vendors, the order for the tooling items was submitted to
Varian's in-house engineering machine shop. Under a high priority
production schedule, the tooling and fixtures will now meet the delivery
date of July 31.:



IV. SUPERCONDUCTING SOLENOID MAGNET

Both on-axis and off-axis axial and radial components of flux density
were computed in addition to the vector potential using the Varian
magnetostatic program which computes the normalized flux array for an

iron-free magnet system in a form suitable for use in the Varian gun

program.

The diameter of the bucking coil was increased to achieve better

voltage hold off characteristiecs.

The design of the superconducting solenoid magnet consists of a split
pair of coils for the main magnetic field and a bucking coil in the gun
region for shaping the magnetic field in the vicinity of the magnetron
injection gun. Two pairs of transverse trim coils are available for beam
steering. The main coils and bucking coil will be wound on the same bobbin
to ensure concentricity. The transverse coils will be outside the main
coils. The entire coil assembly operates in a liquid helium bath. The
liquid helium vessel 1s surrounded by vacuum, a liquid nitrogen temperature

heat shield, vacuum and the room temperature shell.

The room temperature shell has a flange which mounts on an existing
flange in the test set oil tank. The superconducting solenoid magnet will
have a vertical bore, A socket to accept the tube gun will be attached to
the bottom of the dewar. Leads and service ports exit the room temperature
shell at a 45° angle on the .outside diameter to leave the top surface of the

dewar clear for possible room temperature collector coills and their

support ing structure,

The thermal design will allow a day's operation after topping the
liquid helium and liquid nitrogen levels. After being shut off for as long
as a weekend, the liquid reservoirs will merely have to be filled, not
having warmed up to a temperature requiring cooling.

A design review will be held at Magnetic Corporation of America on
July 18, 1980. Delivery of the first unit is expected in November 1980.



The outline drawing of the coil and dewar assembly is shown in

Figure 2.
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V. INTERACTION CIRCUIT

~Analytical work on the interaction circuit is continuing. We have
chosen a cavity geometry which is sufficiently arbitrary that any reasonable
combination of external Q, resonant frequency, and axial electric field
profile may be obtained by varying the geometric parameters. The mathe-
matical solution for the vacuum electromagnetic fields in the cavity

geometry is obtained in the following manner.

An "initial value" solution for the vacuum fields, E and B, is derived

‘for modes TEmnl from a Debye potential of a form such that

ﬁ:;an

e 2 4
[]

v (Zz + Vm) -

c2

where 57 is the unit vector in the direction of propagation (along the z
axis), ¢ is the speed of light, and n is the Debye potential which satisfies
t.he wave equation,

On = 0.

The boundary conditions on the components of the electromagnetic fields are:

(4) g . ;z = 0 at conducting boundaries,

(B) §.(; 0) - 4 = ﬁ(; =0) * Zz at boundaries 1 Ez’

while the integrated Poynting flux is also matched at boundaries 1 ;z:

(c) Zlf/(ﬁ x By, - Zz dA a—;-ff (8 x Be)_- Zz da, and

(D) the radiative boundary condition is abplied for z » + %,



Our interaction circuit computer code, which is set in this analytical
framework, can now predict the cavity electric field profile for circular

electric cavity modes. Figure 3 shows a plot of the calculated electric
field profile at the first radial maximum of the electric field versus axial

position for the TE,,, cavity mode. Some computational difficulties have
been encountered in extending this work to noncircular electric cavity
modes. Work on improving the computer code to overcome these problems is

continuing. Cold testing of the interaction circuit designs is continuing

with borrowed equipment.

We have modified a previous calculation (see reference 1, section
6.2) of ohmic losses in the gyrotron resonator cavity to explicitly show the
dependence of cavity power dissipation in the external cavity Q. We have
made several simplifying assumptions generally valid in gyrotron

engineering:

(a) the external cavity Q, QEXT’ is independent of the ohmic losses in
the cavity and is therefore equal to the loaded Q of the cavity,

Q;

(b) the electric field profile in the cavity has an axial dependence
of ~ sin wz/L where 2z is the axial position and L is the cavity

length;
(c) the cavity length is large compared to its radius, a.

With these approximations we find the result for the average power

dissipation in watts/cm2 in the cavity walls for a TEOn1 cavity:

572
gar _ %exr To ° (cgs) (1a)
e |
\A/7in
2
. na
with QEXT 2 QL’ (;I;i> <K 1,

10
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. where Po is the cavity output power in watts, f is the cavity resonant
frequency in hertz, ¢ is the speed of light in cm/sec, L. is the cavity
length in units of A = c¢/f, X1 is the nth positive root of the equation

Jl(x) = 0, and o is the rf conductivity of the cavity walls in cgs units.

For a copper cavity we find:

5/2
Q P (kW) f (GHz)
dp 2y _ -8 ., EXT o
Ty (kW/cem®) = 4.87 x 10 6&) x2 (1b)
A in

Equations 1a and 1b explicitly include the dependence of dissiﬁation on QEXT
and Po. The strong frequency dependence of the dissipation ~ f5/2 is
clearly evident as is the advantage of using higher order TEOn cavity modes.
For the 60 GHz, 200 kW, TE02 cavity mode oscillator, Equation 1b gives

dP/dA = 440 watts/cmz, when we use L/A = 5 and Qpxr = 400.

Most of the parts required for the interaction circuit section of the
tube have been received. Test brazing assemblies have been designed for
investigating brazing techniques and ensuring that the brazing jigs have
been properly designed. Trial fabrication of the ceramic assemblies in the

anode and the load cavity had already begun at the end of the quarter.

12



VI. OUTPUT/COLLECTOR
Volt ve ve ti e e

A technique for measuring the mode content of the power flow in a
multimode transmission line has been developed. In this section we sketch

9

the analysis behind the measurement technique” and point out some additional

experimental considerations.
A. D ON O

The ratio of the maximum and minimum values of the beating wave
electric fields of any two modes propagating in a multimode guide may, by
analogy to the well established vernacular of the single mode waveguide, be
denoted the voltage traveling wave ratio (VIWR) for the two modes in
question. 1In general, the VIWR's will be a function of position in the
plane normal to the direction of propagation in the guide. Measurements of
the VTWR's can be easily related to the fractions of total power propagating

in each waveguide mode. This information may be used to:

(M characterize the operating mode output of a high power source with

multimode out.put such as a gyrotron,

(2) analyze the mode conversion properties of overmoded waveguide

components,

(3) determine the optimum locations along the line for lossy

obstructions,

(4) allow transductance matching (induced destructive interference of
one or more unwanted modes)10.

& NOTICE OF IEFEF COPYRIGHT: This section contains excerpts from a
manuscript which has been accepted for publication in the IEEE Transactions
on Microwave Theory and Techniques and is therefore subject to the standard
IEEE copyright agreement. This notice is required by that agreement.

13



The voltage traveling wave ratio (VTWR) is defined in the following

manner. Consider the superposition of the two plane waves with complex
amplitudes An and Am traveling in a multimode guide in the positive 2z

direction. The resultant wave amplitude may be written as,

ik z + 1¢ ik z + 14
n n m m
c(z) = lAnI e + IAmI e ) (N
o Im <An,m>
where ¢ z arctan { —0" . (2)
n,m
Re <An m}

and kn m are the propagation constants or wave numbers. Cases where such a
’
resultant wave, or beat pattern, is measured by a detector sensitive to the

quant ity,
(3)

lccz)| 2 - IAn| 2., | g 2,2 20| | % cos-{}kn-km)z . (¢n-¢m)}- '

are of interest. The beat wave number is defined as knm = kn-km /2. The
beat wavelength is Anm = 2n/Knm. The beat phase, (¢n-¢m), may be eliminated
by suitable choice of origin in z. Solving for the ratio of the maximum and

minimum values of C(z) we define the voltage traveling wave ratio,

, . Uppor eign:

B e L R L I L M ™AV B L I L S
) - - :
LI PTPRIEN ‘| Anl [fa] = [l LTX:T filg:m|

where the value of the VTWR can range from unity to infinity. This equation

can be solved for the ratio

A 2 /vrwr s 1\ 2 Upper Sign INENEN
- ;;;;—:“; Lower Sign lAnl < IAml . (5)

;2
|4al

Equation (5) relates a measurable quantity, the VIWR for modes n and m, to

the ratio of travelihg plane wave amplitudes.

14



B. '} ! VEG

The fractions lanl2 of the total transmission line power contained in
each waveguide mode can be deduced from the measured beat wave pattern
|C(?,z)|2. The multimode transmission line is uniform in the direction of
propagation but may have any arbitrary cross section. The measured
resultant beat wave pattern arises from the superposition of many modes
traveling in the positive z direction. This general case (arbitrary number
of modes travéling in a waveguide of arbitrary cross section) has been
analyzed and the exact treatment by which [C(;,z)l2 may be decomposed into

the constituent normal modes of the waveguide can be prescribed.

For the special case of two circular electric modes propagating in
cylindrical waveguide the general result may be simplified. Using the
definition (Eq. 4), the mode power ratio can be determined:

| 2| 2 (VTWR(r') 1>2 |
=GP \YTWR(r) » 1 (6)
|20 °

n
where the guide factor is defined according to:

2
2 X r
J (x ) ‘J _“_>
G (p) =' ° ™ T\ a , with G_ (r) = G_'(r).

nm nm mn
2 Xxr
m
J —
1 a

+

I+

Jo(xn)
C. MODE BUNCHES

When VTWR measurements are performed on systems in which the
11

transductance mismatches are not severe, the general analysis may be

simplified. One such simplification which is useful in gyrotron

engineering is that one need only consider transduction of a pure TEon mode
mode bunch (

into the (TEo net’ TEon’ TEO ne 1

often valid because mode conversion occurs preferentially into nearest

neighbor modes12. (The exception to this occurs when a resonant structure

). This approximate treatment is

15



i{s encountered, such as a waveguide segment close to a mode cutoff.) Thus a
pure TEon circular electric mode will tend to diffuse under an envelope in
k-space to form a bunch of modes centered at k = kn with the wings of the
k-space envelope trailing to zero for other modes m# n. For example, in

cylindrical waveguides the TEon mode bunches are contained under the

envelope:

2 2
Pk * xln x1m

(X?n - x21m> * | (7

i 1s the ntP positive root of J1(X) = 0. For n~ 1, it can be seen
from (7) that since P~ m'6 the mode bunch is effectively limited to the

where X

three modes m = n-1, n, and n+1.

D.  GUIDE FACTORS

The two-mode guide factor, Gnm' defined in (6) has been combuted for
the mode bunches presently of interest in gyrotron research (Table I). The
two mode VTWR equation (6) can be used when considering bunches of three
modes by performing the VIWR measurements at a radial position for which one
of the three modes is identically zero. For example, to find the mode power
fragtionszfor the gode bgnch (TE01, TE(,» TE03), the mode poger rag;os,

' |azl//|a1| and.aBI//|a1| must be measured. [The rapio|a3|//|a2| in this
unique example 1s not measured because the TEO1 has no non-trivial nulls.]
This requires the computation of G13 and GIZ' There are often more than one
radial null to choose from as shown in Table I. In this case, the values of
G13(X1a/X2) = 1.091, G, (X‘a/X3) = 0.7961, and Gy, (XZ a/X3) = 1.256 are

required.

The VTWR measurements must be performed over a longitudinal interval
which is greater than or equal to one-half of the largest beat wavelength,
Xnm’ of interest in the system. Table II lists all the half beat
wavelengths for pairs of circular electric mode through the TE05 for the
standard 2 1/2" diameter multimode guide at several frequencies. Table III
lists the minimum VITWR measurement intervals for the first three circular

electric mode bunches. These intervals are on the order of 10" - 20" and

16



"TABLE |
GUIDE FACTOR FOR CIRCULAR ELECTRIC MODE BUNCHES

MODE BUNCHES

RADIAL TEQ1, TEg2, TEQ3 TEQ2, TE03, TEo4 TEQ3, TEpg, TEQ5
RADIAL NULL POINTS
NULL POINTS linches, in 25" | GUIDE GUIDE GUIDE
(r/a) DIAM. GUIDE} | FACTOR FACTOR FACTOR
NONE — G23 —
7’%= 0.5462 0.683 G13 1.091 G34 15.04
x3= 0.3766 0.471 G12 0.7961 G24 1.026 Gas 1.633
x3= 0.6896 0.862 1.256 1.024 0.8100
. _
-3
X4= 0.2876 0.360 G23 1.709 G35 1.011
- .
2- 05265 0.658 0.01832 1.542
X
3- 07636 0.955 2.175 1.010
X
2= 0.2326 0.291 G34 2.344
X2 :
X5= 0.4259 0.532 0.2382
%—} 0.6177 0.772 0.5072
X r
X%: 0.8089 1.011 2.729




TABLE Il

ONE-HALF BEAT WAVELENGTHS (INCHES)

FREQ. (GH2) 28 35 - 60 90 110

FREE SPACE 0.422 | 0.337 197 131 107

WAVELENGTH (in.) ) ' 0. 0.13 0.10

MODE PAIR _ .

TEgq TEg2 8.1 10.3 17.9 27.1 33.3
TEQ3 3.0 3.9 6.9 105 12.9

TE 15 2.0 3.7 5.7 7.0

TEgs 0.8 1.2 2.3 3.6 4.4
TEg2 TEQ3 48 6.3 1.3 17.2 21.1 .
TEo4 1.9 25 4.7 7.2 8.9

TEgs 0.9 14 2.7 4.1 5.1

TE03 TEgq 3.0 4.3 8.1 12.5 15.4
TEQs 1.1 1.8 35 5.5 6.8

TEos TEgs 18 3.0 6.2 9.7 12.0

TABLE Il
VTWR MEASUREMENT INTERVALS (inches)
FREE I M
SPACE ODE BUNCH
FREQUENCY | WAVELENGTH
(GHz) (inches) TEgq, TEg2, TEg3|TEo2, TEo3, TEoq |TEQ3, TEp4, TEgs

28 0.422 8.1 48 3.0

35 0.337 10.3 6.3 4.3

60 0.197 179 11.3 8.1

90 0.131 27.1 17.2 125

110 0.107 33.3 21.1 15.4

18




are not too large for performing practical VTWR measurements. Although the
present trend in gyrotron design is toward higher frequency -(downward in
Table III) this is accompanied by a trend in operating mode toward higher
radial mode number (to the right in Table III). Thus for preseﬁt eircular
"electric mode devices, or those under consideratién, the relevant VTWR

measurement intervals will remain in the practical range of 10" - 20",

19



VII. WINDOW

The mechanical design of a single disc beryllia window 1.5 A long was

completed this quarter,

All window parts have been received with the exception of some ceramic
backing rings, which are due July 18 and the output waveguide flange, being
due July 25. Any change in flange design, of course, will affect this date.

Assembly of the first window is not expected to be a gating item.

The computed VSWR for a 1.5 X thick beryllia window is shown by the
dashed curve in Figure 4, It is recognized that the limited bandwidth of
the window may prove to Se a problem in raising the Q of adjacent tube
~resonances. Efforts are being made to broaden the bandwidth of the window
using sophisticated techniques. The computed VSWR for a simulated improved

window is shown by the solid curve in Figure 4.

The computed VSWR for an FC-75 face-cooled alumina double disc window
is shown in Figure 5. By comparison, the computed VSWR for an FC-75
face-cooled beryllia double-disc window is shown by the dashed curve in
Figure 6. The lower dielectric constant of the beryllia results in a wider
bandwidth compared to alumina. The computed VSWR of an improved FC-75
face-cooled beryllia double-disc is shown by the solid curve in Figure 6.

20
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COMPUTED VSWR
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VIII. MECHANICAL DESIGN
The experimental gyrotron consists of several major subassemblies:

1. Single-disc window assembly

. Collector extension assembly

. . Two collector ceramic assemblies
. Tubulation assembly

. Collector assembly

2

3

n

5

6. VacIon pump assembly
T. Output Taper Assembly

8 Three Elbow Assemblies

9. Body Cylinder Assembly

10. Beam Shaver and Output Assembly
11. Anode Shroud.Assembly

12. K~8060 Final Cathode Assembly

These major subassemblies are joined to one another with tungsten inert
gas welded joints. This modular construction allows ease of modification
and rebuilding. This type of construction is also necessary to reduce the
number of braze cycles and to accommodate construction of assemblies too

large to fit in the hydrogen braze furnaces.

The K-8060 final cathode assembly is composed of two assemblies, the
final cathode stem assembly and the high voltage seal assembly, which are
joined at the base of the tube by tungsten inert gas weld. Radial alignment
is accomplished by mating cylinders at the base. Axial alignment is assured
by a machined step.

The anode shroud assembly comprises several stainless steel body
shrouds and a weld ring. It forms the lower portion of the vacuum envelope
surrounding the anode and provides structural support between the K-8060
final cathode assembly and the body cylinder assembly.

The beam shaver and output assembly, which is housed within the anode

shroud assembly and the body cylinder assembly includes a hydrogen furnace
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brazed collection of rf load ring assemblies, the output cavity, the anode

assembly and water cooling tubing.

The body cylinder assembly is a welded stainless steel plate and shell
assembly which forms the vacuum envelope surrounding the upper portion of
the beam shaver and output assembly and the lower portion of the output
taper assembly. It also provides structural support between the anode

shroud assembly and the output taper assembly.

Three elbow assemblies consisting of a coolant tube brazed to weld
adapters provide cooling water to the beam shaver and output assembly and to
the lower end of the output taper assembly, all of which are inside the body

cylinder assembly.

The output taper assembly is composed of a copper tapered waveguide.
It is surrounded by a stainless steel water jacket and a stainless steel
plate and shell section at the top that provides structural support between’
the body cylinder assembly and ﬁhe lower collector ceramic assembly. The
assembly also provides a water pipe for the top of the taper assembly and an

elbow to connect to the Vaclon pump assembly.

The VacIon pump assembly is comprised of two stainless steel
tubulations, a stainless steel manifold and an eight liter per second VacIon
pump. The tubulation of this assembly connects to an elbow on the output
taper assembly. The purpose of this pumping channel is to pump the cathode
region of the tube through the anode‘shéoud, body cylinder and output taper

assemblies independent of the beam tunnel.

The collector assembly includes a stack of water cooled copper
cylindrical sections with stainless steel plate and shell water manifolds at
A the top and bottom. Four stainless steel stiffening bars provide structural
support between the tube lifting eyes, welded to the top water manifold, and
the lower water manifold. The collector assembly provides structural
support between the upper and lower collector ceramic assemblies.
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" The collector éeramic assemblies which are metal and ceramic assemblies
are used to isolate the collector eiectrically to enable monitoring of body,
collector and window current. The collector ceramic'assemblies provide
compressive support between the output taper assembly and collector assembly
and also between the collector assembly and collector extension assembly.
Tensile support is provided by insulated bolts.

"The collector extension assembly consists of a 2.5" insideydiameter
copper waveguide, water cooled by a stainless steel plate and a shell water
Jacket. The assembly also includes a stainless steel plate and shell vacuum
pumping manifold for evacuation and pumping through the gap between the
collector and collector extension assemblies. The plate and shell sections
provide structural support between the upper collector ceramic and

single-disc window assemblies.
The tubulation assembly includes two sealing rings and a piece of

tubulation. The assembly goes between the collector extenéion assembly and

the pumping station during bakeout. After bakeout, part of this assembly is
pinched off. -

The single-disc window assembly is composed of:
1. The beryllia window disc;

2. a short waveguide section on the vacuum side ending in a cdpper

cup for the window braze;

3. a short waveguide section on the air side with a copper cup on one

end for the window braze;
y, a stainless steel waveguide flange, terminating the tube, and

5. a plate and shell water jacket prqviding‘structural support for

the window waveguide.
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IX. COMPONENTS

Design work is continuing on the 60 GHz waveguide components. The high
power 60 GHz mode filter will be similar to the 28 GHz mode filter in
mechanical design. The electromagnetic properties of the design will be
examined in cold test and mode filter cold test parts are on order.
Analytical work on the mode filter design and on the behavior of mode
filters when they are combined with other Qaveguide components, such as
miter Bends, has begun. The electromagnetic design of the power sampler/arc

detector has been specifted'and mechanical design is underway.

27



'X. TUBE ASSEMBLY

Seventy-six percent of the piece parts for the first experimental tube
have been received. The last of the piece parts are expected August 8,
1980. ‘

The last of the gun parts abe expected in mid-July at which time
construction of the electron gun will start. The first completed gun is

expected in August.

Ninety-one percent of the interaction circuit assembly piece parts have

been received and assembly has been started.

Sixty~-five percent of the output/collector assembly piece parts have

been received. The last parts are due July 23.

Sixty-two percent of the window parts have been received. The

remaining parts are due August 8.
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XI. PROGRAM SCHEDULE AND PLANS

Parts are being received and the construction of the first experimental

60 GHz gyrotron, serial number X-1, has been started.

Completion of the first electron gun is expected during the next

quarter,

A superconducting magnet design review meeting will be held July 18 at
Magnetic Corporation of America. Progress during the next quarter will

include completion of the design and fabrication of the conductor.

Parts are being received for the pulsed oscillator interaction circuit.
During the next quarter the circuit assembly will be assembled. Parallel

cold test work will continue.

All of the output window parts should be received during the next

quarter.

The final assembly drawings will be completed during the next quarter
for both the experimental pulsed gyrotron and the 100 ms pulse duration

gyrotron,

All piece parts for the experimental and first 100 ms pulse duration

gyrotrons are expected to be delivered during the next quarter.

Construction of the wavegulde components, pulsed waterload and power

sampler and arc detector will be started during the next quarter.
Test set modification will continue during the next quarter.
Completion of the short pulse modification is not expected before the

beginning of January.

The milestone chart and status report is shown in Figure T.
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