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L PROJECT OBJECTIVES 

1) Conduct t es t s that will cha rac t e r i ze the behavior of sodium oxide, 

fuel, f ission product, and other ae roso l s as they might be generated 

by var ious postulated LMFBR accidents . 

2) Determine by analys is and confirm by experiment the generation and 

t r anspor t of these ae roso l s with respec t to source (location, type, 

and configuration), for the ent i re course of events associa ted with 

rea l and hypothetical accident conditions. 

3) Conduct tes ts that will de te rmine the effect of molten fuel on r eac to r 

s t ruc tu ra l or sacr i f ic ia l m a t e r i a l . 

4) P e r f o r m LMFBR r i sk a s s e s s m e n t s of key LOA-3 and LOA-4 

scenar ios to provide a bas is for pr ior i t iz ing the var ious Atomics 

International (AI) Division of the Energy Systems Group of Rockwell 

Internat ional safety projec ts so that they will have the maximum 

design applicabil i ty and value. 

n . MAJOR ACCOMPLISHMENTS DURING FISCAL YEAR 1978 

Several impor tan t m e c h a n i s m s that reduce the consequences of fast r eac to r 

HCDA's have been investigated. Tes ts with both UO^ and sodium oxide aeroso ls 

have shown that turbulent, high concentrat ion ae roso l s quickly form la rge ag­

g l o m e r a t e s . In addition, leak paths through broken or displaced reac tor head 
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seals would be rapidly plugged (following a HCDA) by the ae roso l debr i s passing 

through. Fur the r , mos t of those ae roso l s that do pass through would be ag­

glomera ted into l a rge size pa r t i c l es , which would fall out in the r eac to r con­

tainment building. 

UO_ has been successfully a r c mel ted and poured onto graphite , concrete , 

carbon steel , and s ta in less s teel . The molten UO_ spread quickly and solidi­

fied in a coolable configuration without penetra t ing the underlying ma te r i a l . 

Thus, molten fuel resul t ing from a hypothetical core meltdown would spread 

out into a thin layer on the r eac to r cavity floor. 

m . PROGRESS DURING REPORT PERIOD 

A. SUBTASK D - HIGH TEMPERATURE-CONCENTRATION AEROSOLS 

1. Introduction 

Cer ta in types of hypothetical r eac to r accidents in LMFBR's could produce 

l a rge amounts of aerosol ized fuel debr i s mixed with sodium vapor and fission 

gas . The accompanying sodium slug motion would s t re tch the head tiedown 

bolts allowing the ae roso l mix ture that reached the cover gas to escape into the 

r eac to r containment building. The radiological haza rd assoc ia ted with such 

a i rborne debr is is reduced due to the inc rease in size of the agglomerated 

pa r t i c l e s . Large pa r t i c l e s cannot eas i ly escape through leaks , and those that 

do, fall out rapidly. Also, even if inhaled, insoluble pa r t i c l e s above 10 ^ m 

aerodynamic d iamete r (AED) a r e readi ly el iminated from the lungs and from 

the body by natural p r o c e s s e s . ' ' 

At tempts a r e being made to a s s e s s the propor t ion of ae roso l pa r t i c l e s 

escaping through broken or displaced head sea ls and the size of pa r t i c l e s that 

do escape. 

Previous ly , plugging of leak paths has been demons t ra ted for both sodium 

oxide and uran ium oxide. During this r epor t period, t e s t s were c a r r i e d out to 

m e a s u r e the size and concentrat ion of u ran ium oxide as produced in the tank of 

'•'P. E. Morrow, et al. , "Deposit ion and Retention Models for Internal 
Dos imet ry of the Human Resp i r a to ry Trac t , " Health Phys ics 12, 172 (1966) 
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the a r c m e l t e r . The intensely hot a r c vapor izes copious amounts of uran ium 

oxide, which then condense in the argon furnace a tmosphere to form par t icu la tes . 

2. Fal lout Measu remen t s 

A turntable was const ructed to de te rmine fallout as a function of t ime. The 

col lector is a horizontal wheel, which slowly turns at a known ra te . The wheel 

c a r r i e s 12 g lass s l ides , which a r e exposed to the furnace a tmosphere one by 

one at 3-s in te rva l s . The m a s s collected is measu red by weighing the slides 

before and after exposure . 

The furnace was operated at 1/2 a tmosphere p r e s s u r e of argon with a slow 

flow of a rgon into the furnace. The cu r r en t was increased to 3000 A at 40 V, 

and the usual dense cloud of par t icu la tes completely obscured the a r c . The cu r ­

ren t was then turned off, and the argon flow into the furnace was a lso valved off. 

At the same t ime, the wheel was s ta r ted in order to collect fallout. Table 1 

and F igure 1 give the r e s u l t s . The concentrat ion of aerosol within the tank at 

TABLE 1 

FALLOUT OF UO2 VS TIME IN THE ARC MELTER T A N K ' 

Slide 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

Time of Slide Exposure 
After Arc Turn Off 

(s) 

Begin 

1.5 

4.5 

7.5 

10.5 

13.5 

16.5 

19.5 

22.5 

End 

4 .5 

7.5 

10.5 

13.5 

16.5 

19.5 

22.5 

25.5 

Average 

3.0 

6.0 

9.0 

12.0 

15.0 

18.0 

21.0 

24.0 

UO2 Collected 
(mg) 

4.33 

2.55 

0.78 

0.40 

0.62 

0.21 

0.72 

0.50 

*Tank ID = 105.4 cm 
Tank Length = 123.8 cm 
Tank Volume = 1.08 m3 
Slide Area = 4.9 cm^ 
Vert ical Distance of Slide to Tank Top = 63.5 cm 
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Figure 1. UO- Fallout vs Time (Test I) 



the instant the a r c was turned off may be es t imated from Figure 1 by integrat ing 

under the curve . The integrated inass of m a t e r i a l collected is 61 mg, and the 
-4 3 collect ion volume above each slide is 3,1 x 10 m . This gives a concentrat ion 

3 
of 0. 2 k g / m , The vaporizat ion ra t e can also be es t imated . As the a r c me l t e r 

3 
tank volume is about 1 m , the re is about 0, 2 kg of UO^ suspended within the 

tank at any t ime. F r o m Figure 1, the initial slope of the curve indicates that 

this amount of m a t e r i a l mus t fall out in 10 s. Thus, the vaporizat ion ra t e is 

about 0,02 k g / s when the furnace is operated at 3000 A and 40 V, The heat r e ­

quired for vapor izat ion of 0,02 k g / s of UO^ is about 68 kW or 1/2 of the furnace 

input power. 

The UO_ pa r t i c l e s somet imes form long chain agg lomera tes . F igure 2 

shows a 100 X enlargement of a long chain par t ic le collected on one of the 

s l ides . As expected, l a r g e r pa r t i c l e s fall out e a r l i e r . The pa r t i c l e s collected 

on the f i rs t fallout slide a r e roughly 40 /xm in average projected d iameter while 

on Slide No. 8, the pa r t i c l e s a r e roughly 15 ^ m in average projected d iameter . 

F igure 2. Long Chain UO2 P a r t i c l e Forrned 
in Arc Melting Furnace at C = 0 . 2 kg /m^ 
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B. SUBTASK F - LARGE-SCALE MOLTEN FUEL TESTS 

These t e s t s involved a r c melt ing and pouring of UO_ onto r eac to r s t ruc tu ra l 

m a t e r i a l s to s imulate the af termath of an LMFBR CDA. The a r c melt ing furnace 

has been descr ibed previously.''~ Briefly, it cons is t s of a wate r -coo led copper 

crucible filled with UO_ and a graphi te- t ipped e lect rode above, all enclosed in a 

l a rge wate r -coo led tank. A h igh-cu r ren t a r c is passed between the UO- and the 

e lec t rode in o rder to heat and mel t the UO_. The crucible is then tipped and the 

molten UO_ pours onto the tes t i t em below. 

In previous t e s t s , UO~ has been mel ted and poured onto graphite , carbon 

steel, and s ta in less s teel p la tes . During the cu r r en t r e p o r t period, further 

pours onto a s ta in less steel plate and a pour onto concre te were made. The 

purpose of the s ta in less s teel t e s t s was to es tab l i sh scaling laws and to verify 

heat t r ans fe r cal ibrat ion. The pour onto concre te was a scoping tes t needed to 

plan further invest igat ions of pos t -acc ident heat removal . 

In Tes t s F, G, and H, three success ive pours of UO~ were made on the 

same plate of Type 304 s ta in less s teel . The plate was a rec tangle of dimensions 

10 in. by 10-7 /8 in. by 5/8 in. thick (25 cm by 28 cm by 1.59 cm thick). The 

plate had a s teel r i m placed around the outer edge to confine the inolten UO^ to 

the top surface. The plate has considerably l e s s a r e a than those used previously 

in order to inc rease the thickness of the UO-, on the surface. F igure 3 shows the 

plate covered with UO- f rom Test G. After removal of the UO_, the plate was 

discolored and slightly warped, but otherwise undamaged (Figure 4). 

In Test H, a thin copper cover (0.25 m m thick) was placed over the r i m of 

the plate . The purpose of this cover was to prevent the buildup of an insulating 

layer of UO~ powder on the plate during the melt ing p r o c e s s before the pour. 

F igure 5 shows the surface after Test H. Evidently, copper vapor bubbled up 

through the UO_ and left the surface quite rough. 

Thermocouples were embedded in the plate to m e a s u r e the t empe ra tu r e 

r i s e during the pour. The thermocouples were placed as shown in Figure 6. 

-''Staff, "Annual Technical P r o g r e s s Report , LMFBR Safety P r o g r a m , 
GFY 1976 and 1976T," AI-ERDA-131 82 (January 10, 1977) 

ESG-DOE-13242 

10 



Figure 3. Stainless Steel P la te 
Covered with UO (Test G) 

9292-3 

Figure 4. Stainless Steel Pla te 
After Removal of UO-, 

9292-4 
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Figure 5. Stainless Steel Pla te Covered 
with UO2 (A thin copper sheet covered 

the plate previous to the pour.) 

•THERMOCOUPLES 

J 2.5 J . 1 2.5. 
cm 

SQUARE STAINLESS 
STEEL PLATE 
(TYPE 304) 

-25 cm. 

TOP SURFACE 

1.59 mm IX 7.9 mm 

15.9 T r 
•X 

THERMOCOUPLES 

0.79 mm 

4.76 mm 

BOTTOM SURFACE 
9292-6 

Figure 6. Therm.ocouple Locations for Tes t s F, G, and H 
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Figure 7 shows the recorded t empera tu re vs t ime for four thermocouples 

in the center group. The thermocouple n e a r e s t the surface malfunctioned during 

the test , apparent ly breaking and then rees tabl ish ing contact. The other t he rmo­

couples per formed well and indicate a maximum tempera tu re of about 720° C. 

Heat t ransfe r calculat ions, however, predicted a much faster r i s e t ime for the 

t empe ra tu r e and a lso a high final t empe ra tu r e . Thus, the heat t ransfer ra te of 

mol ten UO^ to the plate is considerably l e s s than predicted. The following con­

s idera t ions would tend to reduce the calculated heat t ransfer ra te . 

1) The UO- was not as hot as expected because the UO- has been 

par t i a l ly reduced in the a r c furnace to UO where x is l e s s than 2. 
X 

Analysis of the uran ium oxide showed in one case that x is 1.69 and 

in another 1.4. The melt ing point of u ran ium oxide has been invest i ­

gated by Latta and Fryxe l l . ' Fo r example, UO has a solidus of 

about 2430° C and a liquidus of 2600° C, both considerably below the 

1200 

1000 -

TCNo. 

l A 
2 0 
3 0 
4 D 

DEPTH BELOWI 
TOP SURFACE 

(In.) 
1/32 
1/16 
3/16 
5/16 

0 2 4 6 8 10 12 14 16 18 20 22 24 

TIME (s) 

26 28 30 
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Figure 7. Tempera tu re Rise vs Time Following UO_ Pour 

I'R. E. Lat ta and R. E. Fryxel l , "Determinat ion of the Solidus-Liquidus 
T e m p e r a t u r e s in the UO2+X System," Transac t ions of the Amer ican Nuclear 
Society, 8, 2 (1965) 
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m e l t i n g po in t of 2830° C for p u r e U O - . T h u s , for p o u r i n g , the 

u r a n i u m oxide t e m p e r a t u r e n e e d only be above the s o l i d u s t e m p e r a ­

t u r e of 2430° C, The UO i s a b e t t e r s i m u l a n t for m i x e d oxide fuel 
X 

than p u r e UO_ b e c a u s e the m i x e d oxide h a s a s o l i d u s and l i qu idus 

t e m p e r a t u r e be low tha t of UO_. The p r e s e n c e of f i s s i o n p r o d u c t s 

e n h a n c e s the effect . 

2) The u r a n i u m oxide d o e s not c o m e in to i n t i m a t e c o n t a c t w i th the 

s t e e l p l a t e , but r a t h e r a g a s f i l m i s f o r m e d in s p o t s . The b o t t o m 

s u r f a c e of the UO a f t e r r e m o v a l f r o m the s t e e l i s shown in F i g -
X 

u r e 8. The r o u g h s u r f a c e i n d i c a t e s the p r e s e n c e of t r a p p e d gas 

b u b b l e s . 

3) The UO h a s r e d u c e d t h e r m a l conduc t iv i t y b e c a u s e of the p r e s e n c e 

of l a t t i c e i m p u r i t i e s and p o r o s i t y . 

F u r t h e r , t h e r m a l a n a l y s i s i s u n d e r w a y to c l a r i f y the p r o c e s s e s invo lved . 

H o w e v e r , it h a s b e e n shown tha t UO e v e n in f a i r l y t h i ck l a y e r s wi l l not i m ­

m e d i a t e l y m e l t the s u r f a c e of a s t a i n l e s s s t e e l p l a t e . 

F i g u r e 8. B o t t o m S u r f a c e of UO-
Af te r P o u r i n g on S tee l P l a t e 

9292-8 
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C. SUBTASK M - CHARACTERIZATION OF RELEASED SODIUM PARTICLES 

A g round- re l ea se test re leas ing sodium combustion products to the environ­

ment f rom an open sodium-pool f ire was conducted in cooperation with the 

National Oceanic and Atmospher ic Adminis t ra t ion (NOAA) Air Resources Labo­

r a t o r y at their Grid III Meteorological Resea rch Faci l i ty located at the Idaho 

National Engineering Labora tory (Figure 9). This test was run in conjunction 

with elevated r e l e a s e tes ts under Task 38, Contract EY-76-C-03-0701 .* The 

tes t involved re leas ing 55, 3 kg of 540° C sodium from a preheat tank into a 
2 

1 . 1 m burn pan. The sodium was allowed to ignite and burn under natural 

conditions. The meteorologica l gr id (Figure 10) was ins t rumented with 50 

sampling stat ions, positioned on a r c s 25, 50, 100, 200, 400, and 800 m from 

the r e l e a s e point. Each sampling station included ins t ruments to de termine 

pa r t i c l e size, concentrat ion, fallout, and chemical species (Figure 11). 

The g round- re l ea se tes t (Figure 12) was conducted under Pasqui l l A m e t e ­

orological conditions with the wind blowing 8.8 m / s f rom 220 deg t rue . The 

durat ion of the sodium fire was 60.8 min, and approximately 30% of the combus­

tion products were r e l ea sed and d i spe r sed downwind (Figure 13). The ins t ru ­

ment s for each a r c were s imultaneously activated,but each a r c was powered in 

turn so that samples were collected sequentially as the plume swept downwind. 

P r e l i m i n a r y analys is of the par t ic le fallout col lec tors indicate that the highest 

pa r t i c l e fallout occur red near the r e l e a s e point. (A fallout desposit ion of 
3 2 

~ 1 X 10 g / in was observed 1 m downwind.) Fallout deposition diminished 
2 -3 2 

f rom 1 g / m at 25 m to 10" g / m at 800 m. Analysis of par t ic le size, con­

centrat ion, and species is in p r o g r e s s . 
D. SUBTASK N - R I S K ANALYSIS 

The f i r s t task completed during this per iod was the identification of the 

Key LOA-3 and LOA-4 i s sues , which a r e re la ted to the AI R&D work. The DOE 

LOA framework and tentative probabil i ty allocations were util ized as the s t a r t ­

ing point. Probabi l i s t ic event t r e e s , of which Figure 14 is an example, in each 

of the affected LOA-3 and LOA-4 a r e a s were util ized to identify the re la t ive 

'-Supported by DSE-DOE 
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Figure 9. Grid III R e s e a r c h Faci l i ty 
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Figure 10. Aer ia l View of Grid III R e s e a r c h Faci l i ty 
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Figure 11, Typical Pa r t i c l e Sampling Station 
Posi t ioned on Meteorological Grid 
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Figure IZ. Ground Level Pa r t i c l e Release 
f rom Sodium Pool F i r e 
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O V E R A L L DOE OBJECTIVE: DEMONSTRATE T H A T CORE DEBRIS GENERATED DURING 
A CDA CAN BE ACCOMMODATED SUCH T H A T SECONDARY 
CONTAINMENT INTEGRITY IS RETAINED 

IN-VESSEL 
RETENTION OF 
CORE DEBRIS 

EX-VESSEL 
RETENTION OF 
CORE DEBRIS 

LOSS OF 
SECONDARY 
CONTAINMENT 
BUILDING 

STABLE CORE 
DEBRIS 
COOLING 

YES 

YES 

NO 

/ 

MUST BE LESS THAN 10-2 

NO 

9292-11 
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role of top-level p r o c e s s e s in satisfying the overal l LOA probabil i ty r e q u i r e ­

men t s . The Key LOA-3 and LOA-4 design i s sues evolve natural ly from these 

event t r e e s . 

The second task completed during this per iod was the identification of the 

gener ic re la t ionship of each AI Safety R&D project a rea to resolut ion of the 

i s sues identified above. In this p r o c e s s , the design options available to resolve 

each i ssue were compared with r e spec t to their re la t ive cos ts , re la t ive design 

mer i t , and re la t ive l icensing uncertainty. The re su l t s were uti l ized to p r i o r i ­

tize, with r e spec t to R&D importance , the technology a r e a s assoc ia ted with 

each design option. The AI Safety R&D projec ts which a r e applicable to each 

of these a r e a s were identified and p r io r i t i zed accordingly. As a resul t , each 

AI subtask can now be t raced di rect ly to a pa r t i cu la r gener ic technology area(s) 

and an assoc ia ted Key LOA-3 and /o r LOA-4 safety i ssue(s) . 

The next step in the planning effort involves identification of a p re l imina ry 

work breakdown s t ruc tu re for each of the AI R&D subtasks . The p r o c e s s for 

achieving this i s shown in F igure 15. It i s designed to ut i l ize probabi l is t ic 

methods to define, on an approximate yet consis tent quantitative bas i s , R&D 

requi red in each bas ic phenomenological p r o c e s s identified as important . In 

this manner , the extent of R&D in each a r e a is appropr ia te ly l imited and aptly 

d i rected. Once identified, these var ious detail R&D tasks can then be p r i o r i ­

tized according to re la t ive cost and benefit to the LMFBR design p r o c e s s . 

IV. NEXT REPORT PERIOD ACTIVITIES 

Subtask D. Reactor head leak path tes t s with ae roso l mix tu re s of UO + Na will 
x 

be made . Liquid sodium will be sprayed di rect ly on mol ten UO within the 

furnace tank. The resul t ing ae roso l will be a mix ture of UO + sodium. Fa l l -
X 

out and size dis t r ibut ion m e a s u r e m e n t s will be made. 
Subtask F . UO pouring t e s t s will continue in o rder to de te rmine heat t ransfer 

X 

r a t e s between molten UO and underlying m a t e r i a l s , A 100-kW inductive hea te r 
X 

is being instal led in order to heat interact ing m a t e r i a l s after a pour to simulate 

the effects of l o n g - t e r m fission product heating. 
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Figure 15. Ongoing Detail R&D WBS Identification P r o c e s s 



Subtask M. Analysis of the ground r e l e a s e tes t per formed in Idaho will con­

tinue. P a r t i c l e size, concentration, and species will be de termined for each 

collection station. 

Subtask N. The p re l im ina ry work breakdown s t ruc ture planning effort will be 

completed. The output is expected to be a p r o g r a m plan, which del ineates a 

proposed R&D activity, the phenomenological a r ea that it a d d r e s s e s , the degree 

of R&D goal achievement to be met by the proposed activity, and its re la t ion­

ship to the overal l LOA-3 and /o r LOA-4 p r o g r a m . 

The resul t ing AI Safety R&D p r o g r a m will be adjusted to accommodate the 

changing needs of the overal l LMFBR safety p rog ram. Consequently, there 

will be an ongoing effort to update the AI R&D p r o g r a m by combining the tech­

nological r e su l t s emanating from the ent i re LMFBR development effort, as 

i l lus t ra ted in Figure 16. 
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Figure 16. Roll of Risk Analysis and Design Development in 
Establ ishment of the LMFBR Safety R&D P r o g r a m 




