Uniserial Representations of Vec(R) with a Single Casimir Eigenvalue

PDF Version Also Available for Download.

Description

In 1980 Feigin and Fuchs classified the length 2 bounded representations of Vec(R), the Lie algebra of polynomial vector fields on the line, as a result of their work on the cohomology of Vec(R). This dissertation is concerned mainly with the uniserial (completely indecomposable) representations of Vec(R) with a single Casimir eigenvalue and weights bounded below. Such representations are composed of irreducible representations with semisimple Euler operator action, bounded weight space dimensions, and weights bounded below. These are known to be the tensor density modules with lowest weight λ, for any non-zero complex number λ, and the trivial module C, ... continued below

Creation Information

Kuhns, Nehemiah May 2018.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Kuhns, Nehemiah

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

In 1980 Feigin and Fuchs classified the length 2 bounded representations of Vec(R), the Lie algebra of polynomial vector fields on the line, as a result of their work on the cohomology of Vec(R). This dissertation is concerned mainly with the uniserial (completely indecomposable) representations of Vec(R) with a single Casimir eigenvalue and weights bounded below. Such representations are composed of irreducible representations with semisimple Euler operator action, bounded weight space dimensions, and weights bounded below. These are known to be the tensor density modules with lowest weight λ, for any non-zero complex number λ, and the trivial module C, with Vec(R) actions π_λ and π_C, respectively. Our proofs are cohomology arguments involving the first cohomology groups of Vec(R) with values in the space of homomorphisms between two irreducible representations. These results classify the finite length uniserial extensions, with a single Casimir eigenvalue, of admissible irreducible Vec(R) representations with weights bounded below. In almost every case there is at most one uniserial representation with a given composition series. However, in the case of an odd length extension with composition series {π_1,π_C,π_1,…,π_C,π_1}, there is a one-parameter family of extensions. We also give preliminary results on uniserial representations of the Virasoro Lie algebra.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2018

Added to The UNT Digital Library

  • June 6, 2018, 1:19 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 30

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kuhns, Nehemiah. Uniserial Representations of Vec(R) with a Single Casimir Eigenvalue, dissertation, May 2018; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1157652/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .