Computational Approaches for Analyzing Social Support in Online Health Communities

PDF Version Also Available for Download.

Description

Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. ... continued below

Creation Information

Khan Pour, Hamed May 2018.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Other

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Khan Pour, Hamed

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. Given the purpose of OHC moderators for developing OHCs applications and the purpose of patients for using OHCs, there is no facility, feature, or sub-application in OHCs to satisfy patient and moderator goals. OHCs are only equipped with a primary search engine that is a keyword-based search tool. In other words, if a patient wants to obtain information about a side-effect, he/she needs to browse many threads in the hope that he/she can find several related comments. In the same way, OHC moderators cannot browse all information which is exchanged among patients to validate their accuracy. Thus, it is critical for OHCs to be equipped with computational tools which are supported by several sophisticated computational models that provide moderators and patients with the collection of messages that they need for making decisions or predictions. We present multiple computational models to alleviate the problem of OHCs in providing specific types of messages in response to the specific moderator and patient needs. Specifically, we focused on proposing computational models for the following tasks: identifying emotional support, which presents OHCs moderators, psychologists, and sociologists with insightful views on the emotional states of individuals and groups, and identifying informational support, which provides patients with an efficient and effective tool for accessing the best-fit messages from a huge amount of patient posts to satisfy their information needs, as well as provides OHC moderators, health-practitioners, nurses, and doctors with an insightful view about the current discussion under the topics of side-effects and therapeutic processes, giving them an opportunity to monitor and validate the exchange of information in OHCs. We proposed hybrid models that combine high-level, abstract features extracted from convolutional neural networks with lexicon-based features and features extracted from long short-term memory networks to capture the semantics of the data. We show that our models, with and without lexicon-based features, outperform strong baselines.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2018

Added to The UNT Digital Library

  • June 6, 2018, 1:19 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Khan Pour, Hamed. Computational Approaches for Analyzing Social Support in Online Health Communities, dissertation, May 2018; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1157594/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .