Mechanical Characterization of A2 and D2 Tool Steels By Nanoindentation

PDF Version Also Available for Download.

Description

Nanoindentation technique was used to investigate the surface properties of A2 and D2 tool steel subjected to different heat treatments. the mechanical characteristics of these two easily available tool steels were studied based on microstructural images obtained from SEM, the grain growth after heat treatment using X-ray diffraction method and nanoindentation technique. the investigation showed that a single nanoindentation result can explain how heat treatment influences reliability and failure in A2 and D2 tool steels. in this work, the causes and effects of these variations were studied to explain how they influence reliability and failure in A2 and D2 tool ... continued below

Creation Information

Okafor, Uzochukwu Chimezie May 2012.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 4558 times , with 38 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Okafor, Uzochukwu Chimezie

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Nanoindentation technique was used to investigate the surface properties of A2 and D2 tool steel subjected to different heat treatments. the mechanical characteristics of these two easily available tool steels were studied based on microstructural images obtained from SEM, the grain growth after heat treatment using X-ray diffraction method and nanoindentation technique. the investigation showed that a single nanoindentation result can explain how heat treatment influences reliability and failure in A2 and D2 tool steels. in this work, the causes and effects of these variations were studied to explain how they influence reliability and failure in A2 and D2 tool steel. Finally, a cube-corner indenter tip was used to determine the fracture toughness of silicon wafer. the emphasis of this research is on how nanoindentation technique is more extensive in material characterization.

Subjects

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2012

Added to The UNT Digital Library

  • Nov. 6, 2012, 3:03 p.m.

Description Last Updated

  • Nov. 16, 2016, 5:28 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 38
Total Uses: 4,558

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Okafor, Uzochukwu Chimezie. Mechanical Characterization of A2 and D2 Tool Steels By Nanoindentation, thesis, May 2012; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc115131/: accessed April 28, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .