This article demonstrates that tribochemical reactions occur even in dry conditions when hydrogenated diamond-like carbon (H-DLC) surface is slid against two-dimensional (2D) molybdenum disulfide along with nanodiamonds in dry nitrogen atmosphere.
The UNT College of Engineering strives to educate and train engineers and technologists who have the vision to recognize and solve the problems of society. The college comprises six degree-granting departments of instruction and research.
This article demonstrates that tribochemical reactions occur even in dry conditions when hydrogenated diamond-like carbon (H-DLC) surface is slid against two-dimensional (2D) molybdenum disulfide along with nanodiamonds in dry nitrogen atmosphere.
Physical Description
9 p.
Notes
Abstract: Stress-induced reactions at the sliding interface during relative movement are known to cause structural or chemical modifications in contacting materials. The nature of these modifications at the atomic level and formation of byproducts in an oil-free environment, however, remain poorly understood and pose uncertainties in predicting the tribological performance of the complete tribosystem. Here, we demonstrate that tribochemical reactions occur even in dry conditions when hydrogenated diamond-like carbon (H-DLC) surface is slid against two-dimensional (2D) molybdenum disulfide along with nanodiamonds in dry nitrogen atmosphere. Detailed experimental studies coupled with reactive molecular dynamics simulations reveal that at high contact pressures, diffusion of sulfur from the dissociated molybdenum disulfide led to amorphization of nanodiamond and subsequent transformation to onion-like carbon structures (OLCs). The in situ formation of OLCs at the sliding interface provide reduced contact area as well as incommensurate contact with respect to the H-DLC surface, thus enabling successful demonstration of superlubricity
This article is part of the following collection of related materials.
UNT Scholarly Works
Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.
Berman, Diana; Narayanan, Badri; Cherukara, Mathew J.; Sankaranarayanan, Subramanian K.R.S.; Erdemir, Ali; Zinovev, Alexander et al.Operando tribochemical formation of onion-likecarbon leads to macroscale superlubricity,
article,
March 21, 2018;
London, United Kingdom.
(https://digital.library.unt.edu/ark:/67531/metadc1132763/:
accessed February 12, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT College of Engineering.