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LETTER OF TRANSMITTAL.

DEPARTMENT OF THE INTERIOR,
17. S. GEOLOGICAL SURVEY,
Washington, D. C., May 31, 1887.

Str: I have the honor to trausmit herewith the results of certain
investigations, which may be broadly designated as relating to the form
and position of the sea level. These investigations were begun in part
previous to my connection with the Geological Survey, but they were
taken up again in 1883, with your approval, at the request of Mr. G. K.
Gilbert and Prof. T. C. Chamberlin, for solutions of some special prob-
lems which arose in their geological researches. The work has been
prosecuted simultaneously with other lines of office and field work. It
reached its present form substantially, however, moré than a year ago;
and the principal numerical results of the discussion of Protessor Cham-
berlin’s problem are incorporated with his paper on The Driftless
Area, in the Sixth Aunual Report. The purely mathematical features
of the paper have been published also in the Annals of Mathematics,
Nos. 5 and 6, vol. 2, and No. 1, vol..3. I have delayed offering the
complete manuscript for publication up to this time in order that I
might give it & careful revision and check all the more important form-.
ulas by independent processes of derivation.

The questions treated in this paper are for the most part necessarily '
somewhat mathematical., - They are, however, fundamental questioﬁs in
geophysics, and although the mathematical form of presentation has
been followed throughout, an attempt has been made to state the end
results and formulas in such a way that they may be understood and
used with safety by those who may not care to follow the details of the
analysis. TFor the benefit of such readers a key to the mathematical
symbols employed is given in addition to the list of contents and gen-
eral index. '

While the analysis of this investigation was designed especially to
solve the particular problems of Messrs. Gilbert and Chamberlin, it has
not been confined to those problems, but has been adapted to the entire
class of problems to which they belong. It is hoped, therefore, that
the results of the paper will be of interest and v&lue to geodesists and
mathematicians as well as to geologists.

Very respectfully, your obedient servant,

R. S. WOODWARD.
Hon. J. W. POWELL,

Director U. 8. Geological Survey.
(97) 13






ON THE FORM AND POSITION OF THE SEA LEVEL.

By R. S. WOODWARD.

I. INTRODUCTION.

1. The problem of the form and dimensions of the sea level surface
of the earth has been one of peculiar difficulty. The combined efforts
of the ablest mathematicians of the past two centuries, supplemented
by the most laborious and costly geodetic measurements have yielded
us the first approximation only to the complete solution. Fortunately
this first approximation is exceedingly close. It assigns to the sea level
a form which differs but slightly from that of an oblate spheroid, whose
major and minor semi-axes are about 20,926,000 and 20,855,000 English
feet, respectively. This spheroid, or reference ellipsoid, as it is some-
times called, has its minor axis.coincident with the earth’s axis of rota.
tion and is usually regarded as sensibly fixed in position and dimen-
sions. With respect to it the actual sea surface or geoid must be
imagined to lie partly above and partly below by small but unknown
amounts, the determination of which, if possible, will "constitute a
second approximation to the figure of the earth. For many if not most
of the applications of science the reference ellipsoid suffices; the first
approximation is nearly enough correct. But geodesy, on'the one hand,
has attained such a degree of perfection in precise measurement that
the discrepancies now brought to light in some of its operations must be
attributed largely if not chiefly to defects in theory. These discrepan-
cies must be explained before any considerable advance can be expected
in our knowledge of the figure of the earth along the presentlines of in-
vestigation. Their true explanation is apparently intimately connected
with the form of the geoid, and it is to the study of the form, therefore,
_rather than to the determination of the dimensions of the geoid that we
may look for future progress in geodesy. Geology, on the other hand,
has raised many questions relative not only to the form, position, and
fixity of the geoid proper, but also with respect to the allied equipoten-
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16 FORM AND POSITION OF THE SEA LEVEL. {BULL. 48.

tial surfaces of isolated bodies of water at higher or lower levels. It is
found, for example, in geological investigations, that the shore lines of
extinct seas do'not always coincide with existing level lines, but often
cross them at decided angles, or that the water level lines traced on
islands in such extinct seas differ in elevation from contemporaneous
lines traced on their distant shores. Aside from the changes which
may have been due in these cases to subsidence or upheaval, the ques-
tion may be raised whether such slopes or differences in elevation rela-
tive to present level lines may not have been caused by adjacent
attracting masses, which have since disappeared, like the ice mass of
the glacial epoch, or in a lake basin by the presence of the water itself,
Correct and complete answers to such questions require a knowledge
of the existing geoid and of the causes which may have produced secu-
lar variations in its form and position.

At present it is by no means clear how any specially extensive addi-
tions to our information concerning the more minute featares of the sea
surface are to be obtained. It may even be doubted whether we have
not reached a practical limit in the first approximation; whether in fact

“the distribution of matter within the earth’s surface is not so irregular
as to preclude gaining anything more than an empirical formula for the
deviations of the geoid from the ellipsoid of reference. It seems prob-
able, however, that the forces producing these deviations have their
seat in a comparatively thin terrestrial crust resting on a fluid or plastic
substratum (or nucleus), or that such was the antecedent condition of
the earth, and that our failure to perceive the relations of the crust to
the substratum is the chief obstacle to improvement.

In the absence of a complete rational theory the best evidence which
analysis can bring to bear on questions pertaining to the geoid is largely
of a negative charActer. The effects which would result under certain
conditions can be computed, but it is not always possible to prove that
those conditions accord with the actual facts. Investigation must
proceed to some extent upon doubtful postulates, and computations .
must be made from uncertain data. But notwithstanding this limita-
tion on the calculations we are about to consider, they will generally
possess a value in excluding or confirming hypotheses, or in furnishing
limiting values for the effects of observed causes.

2. A considerable class of problems concerning the sea level is that
in which the attracting or disturbing mass is symmetrically disposed
about a radius of the earth’s surface, and is situated on or near the
surface. As examples of this class we may adduce the two following,
which led to this investigation :

(a) Given the dimensions of a lake basin having a circular border.
When the lake was full of water it left a trace of its surface along the
border and on an island at the center of the basin. After the water
had disappeared a line of spirit levels was run between the water trace

(100)



WOODWARD.] RESUME OF RESULTS. 17

on the island and that on the border; what difference in altitude should
have been found %!
(b) Assuming the accumulation of ice in glacial txmes to have been
_in the shape of a spherical stratum bounded by a circle, or some sort of
meniscus symmetrical about an axis, and that the earth’s crust did not
yield under the weight of the ice, what were the resulting distortions
in the sea level %2
It will be seen that these problems are essentially the same. They are
substantially identical also with the problem of the effect of continental
masses on the sea level, since the continents may be represented, ap-
proximately at least, as spherical strata having circular borders, or as
masses of memscmd shape. ., .
3. The following paper is devoted to the investigation and discussion
of this class of problems. An attempt has been made to develop the
theory of their solution so far as‘is necessary to render practicable the
numerical evaluation of the characteristic effects of the disturbing mass
in any special case. In Articles IT to XI the theory of the effect of a
mass in the shape of a spherical stratum having a circular border and
uniform thickness is worked out with considerable detail. The only re-
strictions imposed on this mass are that its density is uniform, and that
the ratio of its thickness to the earth’s radius may be neglected in com-
parison with unity. Expressions for the potential of the disturbing mass
at any point of the disturbed sarface are derived in terms of a definite
integral and in terms of spherical harmonics; and the degree of approx-
imation of these expressions is investigated. Equations to the dis-
turbed surface are assigned for the case in which the effect of the re-
arranged free water is considered, as well as for the case in which that
effect is neglected. The disturbance in the former case is shown to be
equal to that in the latter, which is expressed in compact integral form,
plus a rapidly converging series of additive terms, '

1 This problem was proposed by my colleague, Mr. G. K. Gilbert, to the mathematical
section of the Washington Philosophical Society, February, 1884. In his geological
investigations within the area of the Quaternary sea known as Lake Bonneville, Mr.
Gilbert has found traces of the central portions of the ancient lake surface to be more
than 100 feet higher than the traces of tho contemporaneous surface at its margin,
A complete consideration of the effects of the causes which might contribute to this
distortion requires, obviously, a numerical evaluation of the depression of the level
surfaces within the area, due to the removal of the water.

A solution of the problem was given by the writer before the above-named society
in March, 1884, and a more complete discussion will be found in sections 39-41.

2To what extent the form and position of the sea level may be modified by the mere
attraction of glacial masses is a question which has been much discussed by geologists.
It was proposed to the writer by Prof. T. C. Chamberlin, geologist in charge of the
" division of glacial geology, U. 8. Geological Survey. The question is considered at
some length in sections 42-52, and a review of the work of the more prominent
mathematicians who have discussed the problem is given in sections 53-62. The
principal numerical results of the writer's investigations are given in Professor
Chamberlin’s paper on The Driftless Area, in the Sixth Annual Report of the U. S.
Geological Survey .
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18 FORM AND POSITION OF THE SEA LEVEL. {BULL. 48.

In Article XII the investigation is extended so as to assign the effect
of any mass of uniform density having a symmetrical distribution about
a radius of the earth’s surface. Particular attention is paid to a class
of masses whose shapes are assigned by a formula which represents
fairly well the mass features of the problems (a) and (b) above.

Under the head of applications, Articles XIII to X VI, the character-
istic properties of the equipotential surfaces in a lake basin are first
considered. Then the variationsin sea level attributable to continental
glaciers or ice caps are discussed at some length. The angunlar radial
extent of the ice mass is, for the most of the discussion, assumed to be
380, for the reason that this is the ‘extent of a mass of nearly uniform

‘t_hickness, which would produce the maximum upheaval of the water
along its border. The external shapes of the various masses, their vol-
umes, and the distortions of the sea surface attributable to them are
given in detail. The minimum thicknesses of ice masses of varying
angular radial extent, requisite to produce average slopes of five feet
per mile within one degree (69 miles) of their borders, and the extent of
variation in sea level on the hypothesis of an alternation of glaciation
at the poles of the earth, are also worked out. _

In the historical note of Article XV, the allied investigations of Arch-
deacon Pratt, Mr. D. D. Heath, and Sir William Thomson, on the prob-
lem of glacial submergence are reviewed. The special cases they have
considered are shown to be eas11v derived from the general formula of

- Article XII.

Finally, in Article X VI, a brief dlscussmn of the effect of continental
masses in distorting the sealevel is given. It is shown that according
as the continents are or are not superficial masses unbalanced in their
attractive effects, the sea siurface muost be very irregular or deviate only
by minute quantities from the ellipsoidal form. It is also shown that
although a continent whose radial element masses are in a condition
bordering on hydrostatic equilibrium would produce but slight disturb-
ances in the position of the sea level, it might nevertheless cause a.con-
siderable slope of the sea surface, or deflection of the plumb line along
its border.

A. THEORY. -

1I. MATHEMATICAL STATEMENT OF PROBLEM.

4. The solution of the general problem outlined in the preceding sec-
tion depends on the principle of hydrostatics that the potential of the
forces producing a liquid surface in equilibriam has a constant value
for all points of that surface. In the case of the earth, if the potential
of all the attractive forces acting on a unit mass at any point of the sea
surface be denoted by P, the distance of the point from the earth’s axis
of rotation by I, and the velocity of rotation by e, the form of the sur-
face will be completely defined by the equation
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P4-3Pe?=a constant. (1)

The exac$ value of P in this equation is a complicated function of the
densities of the element particles of the earth and of the co-ordinates of
those particles and the attracted point. For the present purposes, how-
ever, it will be sufficient to consider P due to a centrobaric sphere of
- equal mass and volume with the earth and concentric with the earth’s
center of gravity. Sinee we shall only consider relative positions of -
any point on the sea surface, the potential due to centrifugal force, which
is represented by the second.term in (1), may be neglected.

5. If ay and b, denote the equatorial ‘and polar semi-axes, respectively,
of the earth’s ellipsoid, and r, the radius of the sphere just referred to;

o= \3/_0?5(—; ’ @
‘Using Clarke’s values! of a, and b, we have

a,=20926062 English feet,

0,=20855121 English feet,

ro=20902394 English feet,
log 7,="7.32020.

The surface of the sphere thus defined may be regarded as the sur-
face assumed by a thin film of sea water covering a nucleus whose mass,
plus the mass of the film, equals the earth’s mass. We shall call this
ideal surface the undisturbed surface. With respect to it the real sur-
face of the earth lies partly without and partly within; but so far as
small relative changes in sea level are concerned it is practically imma-
~ terial whether we refer to the actual closely spheroidal surface or to
the simpler spherical one.

6. Let

.

M=mass of the earth,
p.=mean density of earth.
Then, .

- M=% nr¢pn 3)
and the equation to the undisturbed surface is '

J—l—é‘n'o on=Cl o (4)

C, being a constant. ’
Suppose, now, a new mass, m, of density p (positive or negative) be
placed in any fixed position relatively to the undisturbed surface. The
resulting sea surface will then differ from that defined by (4). To de-
termine this difference let ¥ be the potential of the disturbing mass m

! Comparisons of Standards of Length, made at the Ordnance Survey Office, Soath-
ampton, England, by Capt. A. R. Clarke, R. E. Published by order of the secretary
of state for war, 1866,
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at any point of the disturbed surface, and let » denote the elevation or
depression of this point relative to the undisturbed surface. The equa-
tion to the disturbed surface will then be

M | , : 5
ro+v+ V=0, a consta?,nt. ‘ (d)

The difference of this and (4) to terms of the first order inclusive in
v is ' '

M .
— EZH_ V=0,—0,

whence, putting .

Vi=Co— Gy
Co=(V=TyE. (6)
M ’

Since M /ro*=g, the velocity increment at the earth’s.-surface due to
the earth’s attraction, (6) may be written

g

v (6
Vo in the last two equations is the value of V when v:O; or the value
of Valong the line of intersection of the disturbed and undisturbed

surfaces. If we put .

A
r?2 V
V4= V= =-. . 7
My : (@)

This equation represents the elevation of the disturbed surface above -
a spherical surface of equal potential, whose value is

.

since the difference between this and (5) gives (7).

The constant V, may be determined from the obvious condition that
the disturbed and undisturbed surfaces must contain equal volumes.

It is evident that the equnations just derived will hold true if the
mass m be a part of the earth’s mass, so long as the ratio m /M may be
neglected relatively to unity. Thus,in the problems we shall consider,
m may represent the mass of a continent, the deficiency in mass of a
lake or lake Dbasin, or the ice mass of the glacial epoch.
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III. EVALUATION OF POTENTIAL V—DISTURBING MASS ON SURFACE
OF EARTH, OF UNIFORM THICKNESS AND DENSITY, AND WITH
CIRCULAR BORDER.

7. The next step in the solution requires the determination of the
potential V of the attracting mass for any point of the disturbed sur-
face, whether without or within the circle which we have assumed to
define the boundary of the mass. Although the nature of the mass may
be such as to prevent the water from permeating it freely, the surface
the water would take if not so restricted is an essential part of the
disturbed surface. .

In order to derive an expression for V, let the rectangular and polar
co-ordinates of any point of the attracting mass be defined by the usual
relations, viz:

r=r c08-0 cos A,
y=r cos f.sin A, -
z=r sin 0,
in which # and A correspond to polar distance and longitude, respect-
~ ively, the position of the origin being arbitrary. With reference to
the same origin, let the co-ordinates of the attracted poiut on the sea
surface be ' -
x'=1" cos 6 cos )/,
y'=r' cos ¢ sin A,
2'=1'sin ¢'.
If D denote the distance between the attracting and attracted points
and

¢os 1p=cos 6 cos §'+sin ¢ sin & cos (A—1'), (8)
D=12472—2rr" cos h=(r—7r')44r1 sin? .’/23 . 9)

The volume element of the attracting mass is
dzdydz=vr*dr sin JdOdA.

Hence, if p denote the density of the attracting mass, a general ex-
pression for the required potential is

V=p f ff redr si; fdbd ) (10)

We must now evaluate this integral. Taking the center of the sphere
of reference as the origin of co-ordinates, let

’r=7’0+ U,
and (11)
¥/ =7+,
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in which # and v are small quantities relative to_,, v being the same
of course as defined by equation (6). Premising what will be proved in -

Article IV, namely, that we may neglect quantities of the order ?;, %’,
(]
and C_‘_"_"’ \2 equation (9) gives
Yo /9
D=2y, sin %) ' \' (12)
From the first of, equations (11)
: dr=du,
and _ N (13)
) ,,.2=,.02,

to terms of the orderg .
. 0

As to the magnitude of the quantities neglected, it may be remarked
in passing that 7, is in round numbers 21,000,000 feet (see section 5),
while » and v may be restricted to values less than 100,000 feet; so

.that the fractions neglected will not exceed +%5.

Without loss of generality we may assume the line from which ¢ and
6" are reckoned to pass through the attracted point, and the plane from
which A and A’ are reckoned to pass through the attracted point and
the center of the attracting mass. In this case §/=0 and 1’=0, and (8)
gives p=40. '

By means of this relation and the equivalents in (12) and (13) the in-
tegral in (10) becomes

Verep f f f du cos 7 a6aN. (14)

If the uniform thickness of the attracting mass be denoted by &, the
limits of  in (14) will be 0 and %. Let the limits of &, which are ob-
viously functions of A, be denoted by #; and #,, The limits of A are
evidently equal in magnitude but of opposite signs. Hence we have

13 62 ‘N A A 6, -6
V=2rp | du| cos-df f dA=4rohp sin - — sin 5 )dA. (15)
0 4, 2 J oo 0 2 2

8. To complete the evaluation of (15) it will be convenient to change
variables. Consider the spherical triangles formed by the attracted and
attracting points, the center of the attracting mass, and the points in
which the arc # cuts the circle bounding the mass. Thusin Figs. 1 and
2, let P be the attracting and A the attracted points, ¢ the center of
the attracting mass, and BD@G the bounding circle. Then

f=AP and A=BAC.
(106)
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Draw CE perpendicular to AB and put

AC=a, BC=p,
. PE=g, BE=s,
CE=p, AE=q,
From either figure
f=q+s, th=q— 3, By=q+80,
whence | ‘
sin %%—Sh.l %:2 cos % sin %’

The right-angled spherical triangles of either figure give

cos q=zgzz, cos s,=208 B

cos p

, sin p=sin « sin A.

23

(16)

amn

Fie. 1.

The first two of (17) give

COoS «

2 cos? =149 & 2 sin?So—1_C08 B
3 3

cos p’
whence

cosp’

9 cos g sin ?=[(cosp+cos a) (cos p—cos £)] )

a 4 CoS p

From the last of (17)

A=___08Pdp
(cos? p—cos?® a)t

(18)

(19)

Now, the last of equations (17) and thé diagrams show that the limits
of p, corresponding to the limits of A, are 0 and « or 0 and £, according
as the attracted point is within or without the circle bounding the at-
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tracting mass. Hence, if we denote the potentials in the two cases by
V; and V3, respectively, the equivalents in (15), (16), (18), and (19) give

. cos p—cos A\ ‘ :
Vi=drilp j\ <cos p—cos & ap, o (20)
S
: . ‘ o
VZ=47'thS (g%:g—:ggz—g dp, (21)
0 :

ai B.

9. The integrals in these equations are in general elliptics of the third
species. They may be evaluated by the usual processes apphcable to
elliptics, by series, or by mechanical quadrature.

The integral in (20) presents some apparent difficulty, since the ele-
ment function is infinite at the upper limit, except when a=/4. Again,
in case a=90, this integral assumes the anomalous form

S (1_008 A ) dp,

the value of which is 7 sin B T a8 may be easily verified by means of (15),

(16), and (18). These peculiar features may be removed by the follow-
ing change of variables, which secures the same constant limits for both
(20) and (21).

For brevity put

ML

. . _ 4 :
; I= (M a | (22)
. COS p—cCos a

Jd 3
I— (cos p—cos f3
= LT R

dp. '35,
€COS p—cCos «
0 .

Then, observing that
siu’r/fj—--sin2 D

cosp—ceos 3. 2 2
Csp—cos a1, g—s'inzﬂ’
. 2 2
putin I; . -
sin;‘g =sin% sin y;,
and in 7, ' '

sin £ —sin &4 sin ys.
2 2
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These give ,
2 sin g_f cos y1dy,
d_p:—*—*—‘aj——— !
(1—sin? 3 sin? )/‘])éf

and

2 siyng oS yodyy

bl
(L—sin? g sin? yp)t

dp=

and the limits for both y; and y, are 0 and -7)5 Therefore

s
4

P sin{g !
0 . . 'l
2sing 1__——.—/3, sin? 9 dyy
n sin® L » ‘
I= PG (24)
(1—sinz Xsin? )t
0 2 .
aSB;
U_E J)
2 sin?é cos? yody,
25
I _ ps i ) (_«\))
: sinz 4 &
caf Ty ' - )
sinCf 1— sin2y, (1—51112‘751112 yz)
4 N4 <
5 . sing
.a;:/i .

10. Some special values ot the integrals (22) to (25) and the corre-
sponding potentials (20) and (21) are worth deriving. These values are:

(#) For a point of the disturbed surface at the center of the disturb-
ing mass, a=0, and (24) gives '

L=2sinf f Ty =nsin L, (26§
<J0 ~

and the corresponding value of the poteutial is
Vi=drohpn sin’% - @1

(b) For a point at the border of the disturbing mass, a=/, and hence
from (24) and (25)

I=1I,=2arc sin [sin P sin y] e =, © (28)
, =0

2
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a result which is reaclied more readily from (22) or (23). The corre-
sponding value of the potential is

Vi=Vy=4rhpp. (29)

(¢) For a point of the disturbed surface 180° from the center of the
disturbing mass, a=w, and (25) gives

sm2 /3 cos? ydy, g/ 1—cos2§>d}/2
I2— » 9 \ 2
1— sm2 1—sin?B sin? , sin® )/Z A .1+ cosz-'g tan?y,
=n—2c08 g arc tan [tan(cosg tan y2>] 2
. . 0

=7z<1—cos§> =27 sin’ g, (30)

and the potential is

-

172'=8rohpjz shﬁ%. | o (31)

(d) Suppose == ; in other words, let the attracting mass cover the
whole sphere. Then (24) gives :

I1=7T, (32)

and we have the following well-known approximate value for the po- -
tential of a spherical shell for a point on its interior or exterior surface,
viz:

drohprm. ’ (33)
This result follows also from (27) or (29) if we make f=z7.

IV. DEGREE OF APPROXIMATION OF THE LXPRDSSIONS FOR THE
POTENTIAL 7V,

11. In deriving the expressions (20) and (21) for-the potential of the
disturbing mass, it was assumed that a suiﬁcient degree of approxima-
tion is attained if quantities of the orders » , ;, and upwards are

To
neglected. The grounds of this assumption need to be examined with

some care., For this purpose we shall derive the exact expressions, in
form at least, for the potential of the disturbing mass at its center, at
its border, and at 180° from its center. A comparison of these exact
values with the approximate values given by (27), (29), and (31) will
show the order of approximation of (20) and (21).

1 See equation 34.
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We will first write down the expression for the potential of a com-
plete spherical shell, of uniform thickness and density, for a point within
its bounding surfaces. This expression will be useful as a check on
formulas relating to partial shells.

Let the radius of the interior surface of the complete shell be ry,-the
uniform thickness %, the uniform density p, and the distance of the at-
tracted point from the center of the shell ry4v.

Then the potential is!

V=drhpn{ 14; v + v (34)
0 2(ry +v) 20r0+0)0 " 2r(roF0)  Oro(roF+v)h )"

12. Let the notation be the same as that used heretofore; i. e., let r
be the radius-vector of any point of the attracting mass, »* the radius-
vector of any point of the disturbed surface, p the density, & the thick-
ness, and § the angular extent of the mass; and 4 the angular distance
between the attracted and attracting points. . For points of the dis-

_turbed surface lying above the undisturbed surface, r will be less than
r'=ry+v over the range r, to #/, and r will be greater than +' over the
range  to ro+h. Bearing these facts in mind it follows that the exact
value of the potential of the disturbing mass for the point where its
axis pierces the disturbed surface is

ot 3
' sin 66
V2 y2_2rr cos f

V=2pr | 7rZdr

[N 0
rot+h 3
9 ) sin 6d6
P 4y ‘/7.2_}_,,./2__)7-1-/ cos 6 -
oty 0 P
ro-+-v .
- ot inz B y . rdr
= <\/41 7! sin? g-}-(r’—r)z—(?’—r)) it
Yo+l
207 ( [arvrsine B4 (r—prp—(r - ,,)> rdr,
7o4-v

OW/J( @ °+h)o - (q vhoy — 310’-(I)-v> '

See Price’s Calculus, vol. 3, p. 299.
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Since

\/4w'sin2é;+( ’)2 Alnﬁx/w'(l-{- 7_7) ):

Srr’ smzl

2r sin g 1+
z( Qr’rsm? >< )

we find by expansion, integration, and reduction, to terms of the first
order inclusive,

3k sin g —h
1+ _‘—_—7
5 4(ry+v) sin L
V =4rhpmr sin 3
' @'(1—- sin —> 2
+

2(rp+v) sin g 2(ro+0)k sin B

(35)

2

If we make f=n this expression agrees with (34) to terms of the
second order.

Equation (35), it will be observed, differs from (27) by certain terms
which must be small unless & and v are very large. In one of the most
important applications discussed in the sequel, A=10,000 feet, v=3,000
feet, and f=38°. With these values, since 7, is in round numbers
21,000,000 feet, the quantity within the parentheses of (35) differs from
unity by less than 5dqg. If =600, which is (see section 23) the an;
gular extent of mass required to produce the maximum elevation of the
disturbed surface at the center of the mass, the quantity within the
brackets of (35) exceeds unity by less than 3455, using the above values
of hand v. -

13. Similarly, if the attracted point be at the border of the attrflctlnv
mass, the exact value of the potential is

’77'o+v

V=-J/)/ -—dr/ \/(T' vy mze)z . dA
T+l : -

2

+ p/ ,dr/ (a — ¥R drr! sm26’2 . dA

eV . To+-h -
r 7
_p”/l (w‘_fp)?/dr—an/ (r—’f"wdr’

0 Tot+v

(112)
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in which

sinz & . sin?fcos? A
2T I=sin? Fsin® L

Introducing this valae, the first of the above integrals relative to A
becomes

7
’ Jsiuzﬂ’cos2 A4
(’)‘I+7’)

¥ —r\?
’+r> cos? 3 m
1—sin® fsin? A i

0

Since the numerator of the element function in this integral is greater

thaun sin £ cos A and less than sin 3 cos A+ " cos /3, the value of the in-

..l..
tegral lies between (#/+7)8 and

! P OO ? 1
. 1= cos 3 ‘—M_____ .
(r'+ )/3)( +7‘/+r B Jo VI=sin®fsin?}

Suppose the-exact value of this integral is

w
s 140 T L
Likewise, represent the exact value of the second integral relative to
A by
W] r—r
rrp{ 140 15 )

Then to terms of the first order inclusive the above expression for

the potential becomes

W(B—s) v(14Q) |, v Qi+ Q) - 7&2—2}ov+27)2 :
V—47'0h/‘)ﬁ{1+ 4(,’_ +'17) (’VO+'U) 470’L —B 5(70+’U,/;(’/ }’ (36)

The first term of this agrees with (29).
The quantities ¢, and @, lie between

™

2
cos 8 dar

s v 1“_—si?127fsiﬁzx'

0

0 and

When /J’_”, or when the attracting stratum covers a whole hemi.

sphere, = (,=0, and (36) becomes’

To+0) Z(nﬁ-v)h

v=anhpr{ 14l ? } (309
(113) '
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This agrees, as it should, to terms of the second order with the half of
(34). For 1=10,000 feet and v=3,000 feet the quantity in the paren-
thesis exceeds unity by less than ;5. When g <‘~‘75, @rand @, will ex-

ceed 0, and the degree of approximation of (36) will be somewhat higher
than that of (36).

14. Tor a point of the disturbed surface 180° from the center of the
disturbing mass the exact value of the potential is

e 38 .
sin 8d6 °
V=2 2d
p”"[o ! 7/ V2721 277 cos 0 )

ro-+h ”
=2pn (r4v'— Vr24r242rr cos ,3);;,‘17'-
To .

‘When

(r—rPdrr’ cosz.g ,

which is the only case we need consider,

_ : 2 -
wzm=zcos/f¢rw§1+__—(' ") —g

L ,
< 8rr’ cos? ‘[j
2

=2rcosé%1+ﬂ —_ % %1_?—7"_'_. . %
2 8y 2r
rr! cos £ .
2
Hence, expanding, integrating, and reducing, there results to terms of
the first order inclusive, )

. - ., B 3h—2v
V=8rohpr sin® g{ 1+ =22 4,

4(ro+v)
the first term of which agrees with (31). Using the values r,=21,000,000
feet, h=10,000 feet, and v=—1,000 feet (v being here intrinsically nega-
tive), the factor in the brackets of (37) exceeds unity by z¢ss.

(37)

V. DEVELOPMENT OF POTENTIAL V IN SERIES OF SPHERICAL
HARMONICS.

15. The preceding expressions for the potential of the attracting mass,
namely, V, as defined by equations (20) and (21), are sufficient for most
of the applications to be considered in the sequel. They possess the
obvious advantage of a compact integral form. TFor some purposes,
however, it will be desirable to have V expressed in a series of spheri-
cal harmonics or Laplace’s functions. We may thereby arrive at equa-
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tions (20) and (21) by a process differing from that followed in Article IIT
and establish a useful harmonic development of the elllptxc integrals
I, and I, of equations (22) to (25).

16. Expressions fulfilling the present requirements may be derived
from equation (10) by expanding D! in a series of ascending powers of

r 7!
7 and ~ Thus from eqmtlon (9) we have

1[1",4-13( >+P2< >+ . | when r<v/,
| ]_)=% [p0+ P1< ;>+P2<?) .. ] when 17"

In these equations Py, Py, P, etc., are Laplace’s coefficients of the
zero, first, second, ete., order, respectively. They are functions of the
angular coordinates 6, ¢, A, and A’ only.

Taking, now, the ceuter of the sphere of reference as the origin of co-
ordinates, and supposing the line from which A and ¢ are reckoned to
pass through the center of the attracting mass, we shall have for a mass
of uniform thickness 7, all integrations in (10) independent. Tor that
part of the disturbed surface which lies above the undisturbed surface
r'=ro+ov will fall between the extreme values of r, which are 7, and
ro+n; and hence r <+ for values between r, and r,+4v, >’ for values
between 7,4+ and 7,4+ For that part of the disturbed surface lying
below the undisturbed surface »>7/. In both cases the limits of 4 are
0, and the angular radius 3 of the attracting mass and the limits of A
are 0 and 27. Therefore for that part of the disturbed surface lying
above the undisturbed surface equation (10) gives

S on roto
V=p sin 66 a [P.,+P1< >+P2<w>+ Zch
0 0
8 27 rth (38)
+p sin 62 f ’ |:P0+Pl<§>+z>z<3;>f|. . .:Irdr;

T

7‘/=7'0+U-

Likewise for that part of the disturbed surface which lies below the
undisturbed surface, equation (10) gives

. .
8 2

+h
/
V=p sin 646 dar [P0+P1<£—)+Pz<§;>‘3- . -]rdr; (39)

“ 7 =1yt
(115)
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Tor brevity, let the integrals with respect to » in (38) be denoted as
follows:
J _(7‘0'—‘-’0)3'—703 .
0= 3(ro+v) ’

" g (rto)i—ngt
K D

(40)
J _(7'0+'v;5--7’05
=B (vt 0)F !
T (ro+v)+—r+? .
T (143) (o)
.j0,=(7'0+h)2;(7'0+”)2,
Iy =(ro4-h) (h—v), )
(41

ro+h

Iy =(1+2)? log, kv’

Ji, r?+v) [(7‘ +’U)_ 1-2)_(,',0+]b) (;—2)]

The ambiguous forin which J;/ assumes when ¢=2 receives its proper
interpretation in the third of (41).
Similarly, let the integrals with respect to r in (39) be denoted thus:

roh)2—~1r?
J0//=( 0+:’2 0 ,.

Jl”=(7'0+’v)h,

Ty =(ryto) log, o ? (42)

"o

TG SO —(i-2)_(7~0+h)—(i—2)] .

=2

Substituting these equivalents of (40), (41), and (42) in (38) and (39)
the latter become, respectively, : '

g 2m
V=p f sin 60 f (o do) Pt (4 J) P . . .]JAA, (43)
JO 0 -

B8 - 2
V=p j sin 646 f [/ Pyt dPig . . L ]dA. (44)
0 Jo
(116)
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Now, it is known from the theory of spherical harmonics! that the
general value of P, is _
P,=f;(cos f)f; (cos ¢')+terms multiplied by cosines of multiples of (A—2'). -
Since .
jj"c‘os i(A—=A1)ar=0,

we have to:deal only with the first term of P,. The function of cos ¢
or cos ¢ involved in this first term is defined as follows:?

pu=cosf, '

1 A2 —1)

S )=l W=gry5 7 ~aw

The following important relation exists between any three consecu-
tive values of f;(u), viz:3 '

2i—1 .~ i—1 :
SR =2t s === Sial ) (45)
The remaining integrals in (43) and (44) are therefore of the form
Y] 2r 1
fi(cos @) [ fi(cos 6)sin 6d6 f aa=2qf(w) [ fi(wau.
0 TJo cos B
Let
i 1
F.(B)=| - filman. (46)
) cos B
The known value of this integral is*
1
F(B)=gi | fi-l008 f)=Fin(e0s ) |- (47)

The values of V in (43) and (44) may now be written thus, replacing
6' by a, ¢ or a being the angular distance of the attracted point from
the center of the attracting mass:

1=
V=2px E :[(J.-+J/)Ji~ (cos a) ()] (48)
i=0
for points of disturbed surface above undisturbed.
V=2pm E [J/ fi(cos &) F;(f3)] | (49)

=0

for points of disturbed surface below undisturbed.

!See Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, Erster
Band. Second edition, G. Reimer, Berlin, 1878.
2 Heiue, p. 19. 3 Heine, p. 91. 4 Heine, p. 93,

Bull, 48——3 (117)
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17. The values of V in the last two equations are exact, but their ap-
plicability to the problems we have to consider is limited by the slow
convergence of the series in the second members. In these problems
70, Yo+, and r,+h are nearly equal, and hence the convergence of the
series depends almost wholly on the convergence of the functions of «

and g.
If we neglect terms of the order h/7,, v/70, and upwards, equations

(48) and (49) become identical and equivalent to (20) and (21). To show
these facts we expand J; and J; of (40) and (41) and obtain

J4d!=reh 1— (z—l)h—2w+ @+ +02 (50)
2 1 5

in which O, represents terms of the second order. Likewise, (42) gives

_; 1,. h .o
%//_rolb[l—g(z—l)%-}-z?o-i-Og]. , (51)

Hence, to terms of the first order we have!
']i'l"TiI:J’i”:rOh,
and (48) and (49) become

V=2rhpr v/}(cos a)F,(f3). | - (62)
ya

1=0
Now, if cos ¢p=cos 6§ cos a+sin 0 sin « cos (h-;l’)_,

1=o0

9 E : | sin 6d6aA
T f(cos a / / T e s ¢+1

1=¢

But this integral, as shown by the transforniation in se(,tlon 3,1is equlva

lent to
cos p—cos 8 €OS p—Co08 ﬁ)
4[(0031} cos a) dp or 4/<cosp—cosa D

according as «a is less or greater than f.

1This inference from (50) and (51) does not appear to be quite satisfactory. For
large values of i, J;4J;' and J;’/ ave less than »h; they are each 0 for i=x. The in-
fluence of the too great factor roh in the higher terms of (52) is, however, counter-
acted by the small factors f; (cos @) F;(8) in those terms; and that the order of approx-
imation secured in (52) is sufficient is evident from the equivalence of (52) with (20)
and (21), whose order of approximation has been investigated in Article IV,

(118)
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This establishes the equivalence of (52) with (20) and (21), and fur-
nishes the following development in polar harmonics of the elhptlc inte-
grals in (22) to (25):

=%

AC = DY I
(33) *
/ng:ﬁ:ggz ﬁ) dp= 92 (cos a)F,(B),
aSp.

In order to show the form of the second numbers of equations (52)
and (53) we give below the first four values of f;(cos a) and F; (), re-
spectively. The series of values may be easily extended by means of
the relations in (45) and (47).

fifcos @)=1, | Fy(f)=1—cos f=2sin* &,

fi(cos a)=cos a, - Fy(B)=4(1—cos’ B)=4%sin® §,
fi(cos @)=3(3 cos? a—1),  Fy(B)=}(cos f—cos’B)=} sin?3 cos 3,
Ja(cos a)=21(5 cos® a—3 cos a); Fy(B)=4%(6cos? f—5 cost B—1).

By meaus of these values equation (52) may be written thus:

+2 sin2§+%cos a sin?

V=2rihprn +3(3 cos? «—1) sin? £ cos 3 . (54)
++%(5 cos® a—3 cos a) (6 cos? 5—5 cost f—1)

+ . ..

VI. EFFECT OF REARRANGED FREE WATER.

18. In case the disturbing mass is as large as the supposed ice mass
of the glacial epoch, the attraction of the rearranged free water on
itself may be appreciable. To determine the exact effect of this attrac-
tion would be a work of great difficulty even if we had the requisite
information, namely, an accurate knowledge of the complicated shapes
of the continents and sea bottom. But we may determine an effect
which will exceed the probable actual effect by supposing the whole
surtace of the earth covered with a film of water free to assume the

(119)



36 FORM AND POSITION OF THE SEA LEVEL. (sULL 48,

proper form for equilibrium under the given forces. To fit this ideal
case formula:(6) may be modified in the following manner:

Let the potential V in (6) be replaced by V44V, where 4V is the
potential due to the rearrangement of the water. Likewise replace
the constant V, byV,+47V,. Then,if 4v denote the corresponding
change in v, equation (6) gives ‘ :

. 3 o .
®+A”—4ropm7r(v+d V=V,—4Vy). . (55)
Now, v44v may be expressed by a series of Laplace’s functions

(which are in this case polar harmonics) thus:

vt dv=rio(Zot+ Dt-Zot . . L),
"in which ¢, is a constant of small numerical value ; and hence, d'enoting;
the density of sea water by p,, we have, as shown by Laplace,’

AV=47'0200/)W7I(Z0+%ZI+%Z2 . 1 Z+ . e e ).

V has alread‘y been expressed, equation (54), in a series of Laplace’s®
functions. Denoting these functions in (54) for brevity by Yo, Y, Y3,
ete.,

V=2rihpa( Yo+ Y1+ Yo+ . . . )

Substituting these values of V, 4V, and v+ 4Jv in (55) there results, if
we make the obviously permissible substitution

h p Uo—

2 pm 4 Opm (V0+AV6),

the following equation:

il 1=222 )= 02 (¥,— 1)\

+rocozl<1_»ifiz> 3,2 v,

z pm
3 3
+ "'()COZg(l— —&0 —_ 2 hp—m Yz =0.
. 3P P
+ ’°C°Z‘<1— (2i+1)p, 2’ o T

According to the theory of Laplace’s functions we must have in this
equation the sums of the functions of the same order separately equal
! Mécanique Céleste, Book III, Chap. II, o
(120)
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1} .

to zero, which amounts to placing each line in the equation equal to
zero. Thus we find -

3} 0
3" on
roColo= (Yo —U,)
1_3Pu ’
P
Shl
1oy = 3{)'" Y
1— 2L
30m
§hﬁ
roColy= 2 P Y.
0Cols;= 30, i3
1=
whence by summation
1= 1=00 N R
V4 Jv="ryy Zi=§hﬁ Y” - 2 . (56)
2 pn 1—3 Pu 1_3Pe
. 1=0 v =0 27;+1 P P

This equation expresses the total effect of the disturbi;]g mass in
altering the sea level, v being the effect which would result if the ocean
were an infinitely rare fluid, and 4v being the increase over v which
would result under the assumed conditions. Obviously, » and 4v may
be expressed separately. Thus

1=

J@:%hg 31:3 p3U° : (57)
m 2i+1)Pr_g Pn_g s
Z( .

=0

VII. EVALUATION OF CONSTANTS V, AND U,.

19. We proceed now to determine the constants Vp of equation (6)
and U, of equations (56) and (57).

It has already been stated that these constants are to be determined
from the condition of equality in volumes contained by the disturbed
and undisturbed surfaces, a condition whose analytical statement is, to
terms of the order we neglect,

us
2re’m / v 8in ada=0.
1]

(121)
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Substituting the value of » from equation (6) in this, there results

/ V sin ada— Vo/ sin ada=0.
0 ~ 0

whence

(@) The easiest way to evaluate this integral is to substitute for ¥ its
value given by equation (54). We get, then, at once

Vo=4rhpr sin? = ﬂ ‘ (59) l

since by the theory of spherical harmonics all terms of the series except
the first vanish in the integration. For the same reason, if we apply
the condition : .

I
/ (v+4v) sin ada=0
0 .

to equation (56), it will appear that
Uy=Y,=2 sin® Lz” (60)

(b) The value of ¥, may also be found by the following process, which
is chiefly interesting on account of its complication as compared with
the process used above. For points within the perimeter of the attract-
ing mass replace Vin (58) by V; of (20), and for points outside the perim-
eterreplace V by V;of (21). Making these substitutions, there results

Vo_2r0hp( / I sin ada+ / I, sin ada) (61)

Substituting the value of I from (24),

]
P sm2 B —sm9_ sin%y;
I, sin ada=4 smgy - sin? y,d (tsm2 )
n T 1—sin Feinty suﬁ— sin?y,

sin? g — sinz-g sin? 3,
tz..

. A . *
1-—sin? 5 sin? 4

(122)

Vo=t / Vsin ada.  (58)
2./ o

-
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Then the last integral becomes

et B Ly 28t
4 cos / Sinty, / E=1p

2

’ — ZE tl (1+t2) 1—- tl) d}/l
=doos'y [ti—l - 1+zl 8o (T—t,) (144 sin 31’
o .
in which
| t1= SlIl g,
and
' sin g oS 11

tg =

(1— sin? Ezsin2 %)t

Substituting these limits in the non-logarithmic part of the integra]
it becomes

whl [fn L
45111 2{./' s]ﬂ/gsulzy-_slnﬁ
£ o (Lt (-t
+2 sin cot /smz V1 ga(l—'tz)(l"“tl.\‘

Integrating by parts all terms of this expression except the first, we get

(K]

<l—sm?ﬁ szy) cos 7/1

su"

1_.2£ c o o\B ) 2
+( smzsm ¥1) cot 11

sin g sjn V1 sin -g

4 sin? 2/? + are sin ( sin g sin y,) '
LB (L+8) (1—-1)
5 cot}“?Ooge (W)) cot 3

—cotz_/? are sin ( sin B sin y;)
22 2 .

This gives

8 .
/ 1, sin ada=2(sin f— G cos G). (62)
' (123)
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The second integral in (61) becomes by substitution of the value of
I, from (25) ) '

2 : a( sin? ﬁ)
=4 sin? zﬁ cos” yadys 7 ( z Lo
' B(sinz g— sinzé_‘ sin? y,)‘ <l—sin2 % sin? y2>ﬁ

B sin g €oS ¥ sing sin? y, €O8 y;
=8 sin’ 5 cos? 3y — 5 —5t —F i dy»
\ , <l—sin2§ sin? y2> ‘<1—sm?§ sin? y, )
1., B 2
y2+§ sin 2y,—2 are sin ( sin 5 sin y,
<l—sin2 g sin? y2>isin Ve
— nd ; j
=4 Siﬂzg Sin ‘/2
arcsin (sin 5_3 sin y, )
+— 3 ,
sinz3
“ 0
This gives ‘
| Lsin ada=2<7r sinzg— sin 84 £ cos /J’). (63)

B
The sum of (62) and (63) is

iz B
27 sin 3 |
which, substituted in (61), gives for V, the same value as (59).

VIII. EQUATIONS OF DISTURBED SURFACE,

20. ‘By reference now to equations (3), (6), (20) to (23), and (59) we
find for the equation of the disturbed surface when the effect of the re-
arranged water is neglected

v=3h/_f_<71_t— sin® g) Do (64)
(124)



WOODWARD. ] EQUATIONS OF DISTURBED SURFKFACE. 41 .

The corresponding expression in polar harmonics is [see equations
(56), (57), and (60)]

i==c0

v=§’h"— [Y.==fi(cos a) F;(B)]. N (65)

m

=1
Under the assumption that the water covers the whole sphere and is

free to adjust itself as stated in Article VI, the equation to the dis-
turbed surface is

vt do=31 2 Jfi(cos a)F: ()
27 Pn 1— 3 Py
= L. T 24T p.

. (66)
i=00 ’

3
5/i(cos @) F, ()
=3h—”—<7I—, —sin? 2ﬁ>+3k £ E ER
Pm Pm | (@i+1) -;332 -3

21. The position of any point of the disturbed surface is thus defined
by the co-ordinates v and «, v being the elevation or depression of the
point relative to the undisturbed spherical surface and «a the angular
distance of the point from the axis of the disturbing mass. I in (64)
and (66) is to be computed from (22) or (23) or their equivalents (24)
and (25), according as the point is within or without the perimeter of
the disturbing mass. The functions f;(cos «) and F,(f) are given by
(45) and (47), respectively. ‘

22, The general character of the disturbed surface when the effect of
the rearranged water is neglected is evident from (64). It is symmetri-
cal with respect to the axis of the attracting mass. It lies without or
within the spherical surface of reference according as I is greater or

less than s sin® g_ The values of I for the point of the disturbed sur-

face at the center of the attracting mass, for points along the border of
the mass, and for the point 180° from the center of the mass, are given
by equations (26), (28), and (30), respectively. If we denote the corre.
sponding values of » by the suffixes 1, 2, 3, we get

\ 0, =3h % (sin B_sime /%)
a=0;

v=3h //)’_m<§ —sin? %) ' . o
a=p;

ms=?h%<2 sin? g —8in? _g ) ,

aA=TI.

© )
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The meaning of these equations may be most readily understood by
reference to Fig. 3. Thus, if the circle FCH represent (in cross-

section) the undisturbed sea level surface of the earth, and a stratum of-
matter, as an ice cap, ABDUF, be added thereto, the new sea-level
surface will assume the form indicated by the dotted line. The values
of »; and v,, as shown in the diagram, are positive, while the value of
v3 is negative. If, on the other'hand, we suppose the space A’B’D'F
to be occupied by matter of less density than the average density of
the earth’s crust, as is the case in a lake basin, the disturbed surface
will fall within the undisturbed surface from I to some line P, and
outside the undisturbed surface from PQ to H, i. e., v; and v, will be
negative and v; positive, or, what amounts to the same th—ing, p in (67)
will be essentially negative.

23. Itis of interest to inquire what angular extent of mass will pro-
duce numerical maxima of v;, v,, and v, supposing the thickness » and
the densities p and p, constant. By means of the usual criteria it is
readily found that

v;=a maximum for £=60°,
V=2 maximum for sin f= % , or §=39° 32, (68)
=a maximum for S=120°,

24. A glance at equation (66) suffices to show that the effect of the
free water, if it covers the whole earth, is simply to produce an exag-
geration of the type of surface defined by (64) and (65). The series in

' (126)
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~ the third member of (66) expressing this exaggeratlon is raplclly con-
verging on account of the dnmmshmg factor

3

2
2i41)FPr _3
( )ﬁu

)

°

which is, since % is about %1,
3
22i+5° )
The essential features of the disturbed surface are, therefore, in any
case, defined by (64) or its equivalent (65); and in most cases the effect
of the rearranged water may be neglected as unimportant, or as of no
greater magnitude than the uncertainties inherent in the data for actual

problems.

‘.

IX. EVALUATION OF THE DEFINITE INTEGRALS I; AND I,.

25. The equations (67) define the position of the disturbed surface in
some of its most characteristic points. To define its position at any
other point we must evaluate the elliptic integral I; or I,, which per-
tains to such point. These integrals have already been expressed
[equation (53)]in a series of polar harmonics, which, if more convergent,
would suffice for computing I, or I,. It is easy, however, to derive
- more convergent and convenient series than that of (53), and this is
the object of the present Article.

First take I, of (24). For brevity put

sin‘a
e 92
- )
sin g—
and
b= sin g .

Then by Maclaurin’s series, of by the binomial theorem, we readily find

13 S
Il—9b/ (1—A4 sin? y;—Bsint y,—Csin®y1— . . .)dyr, (69)
. 0 .

in which o
A= FJuw*(1-1?),

B= jw'(1+20°—30%),

O =7ws(14 2+ 3b*—50°),

(127)
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The even powers of sin y; may each be expanded in a series of the
form

¢+d cos 2y1+6 cos 41+

in which ¢, d, e, etc., are constants. But since

x
/ cos 2nydy =0,
0

we shall need in these expansions only the values of ¢. The value of ¢
in the expansion of (sin y)* is

_2n(2n—1)(2n—2) . . . . (n4l) 1\
e= 1.2.3. . . . = (5)

Applying this formula, and making the integration in (69), there re-
sults '
IL=ba(l—34A—3B—35C0—- . . . )
Hence if we put?

g1=1(1-0),
go= 5 (1—12) (1+30%),
Gr=35 (1—12) (1+-20°4+ 514),

gi=vs57 (1—0°) (54902 + 150+ 350°),
95=55%35 (1—=0%) (T+120°+18b*+280°+ 630%),
o= 1523 kg (L—b?) (214 85D%-4 500440054 10558 - 23151),

Il=b7z(1-—g1w2—gzw4.—ggwe-— . e ),

: (70)
sin S ‘ '

w=-— 2, b=sin§y a’_S_ﬁ-
s ) )

This series converges rapidly, except for values of w near unity. - In
a practical application, to be considered presently, wherein §=38° (70)
gives, using terms up to that in w?, inclusive, I; too great by about 5
per cent. for the case w=1. But this is the most unfavorable case,

1 The general value of g is

41.1.3.5 . . . (=3
+1.1,3.5 .. . (2n-51. ndb?
_ n(n—1)
g 2RCO=D 0= . . . (D) F1.1.8.5 ... @e=D1. 35t
Bo2.d ..ot B 01,805, .. (2n-9).1.3.5’i‘2‘1‘12_’—‘l3"—2-’b6

R I * e e
~1.3.,5 ¢ .0 o . (@n=1)b28 &
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and one moreover for which the exact value of I is known from equa-

tion (28).
26. By a process entirely similar to that followed above, the expan-
sion of (25) gives, writing for brevity, .
v=cosec é s
+I(149?) *
. + 204 (34224374
/ 6 2 4 6
; Legptny] TT0 B b5(543124-3v4 - 5vb) ]
f F153570%(35 4200241844 2054-35+%)
- +i3wr b1°(63+3w2+30v4+30V6+o51/8+63v1°) .
+ . . . . . . . . . . 1 . .

If in this expression we put

N oA TT S NN Y L
Tp=5+ 30" z%Z§b4+z%%‘6b6+mrﬁbg+
ks—“T"f“’%)%Eb'i' Zb4+131072b+ Coe e
k4=§0—4§+3%26b2+1—5§-11§'73 .
k5=—..,—%—$‘2—8+mmb2+ P

—_ 1323
kﬁ_262144+ LI

we find
L=br(kw 4+ kw4 kw4 . . ),
. . (71)
PSRN 2 4
sin o -
w= 3, b= sin %, - aS .
sin g

This series converges somewhat more rapidly than (70). For the
- case in which §=38° and for the extreme value w=1, using terms to
that in w" ivclusive, (71) gives I, too small by about 3 per cent.
*A general expression for the nth term within the brackets, beginning with the -
- third term, for which n=2, is the following
‘+1.3.5. . .(@2n—1)
+1.3.5. . .(2—3)1.n¥%
1.3.5. .. (2.;1—5)1.3.&1"_.—_;74

b..
a = n(n—1)(n-=2)
3.5 23— 3"

n(2n—1)(2m—2) . . (n42) +
P2 @ w2\ 3.5, . @u=1)1.

b o
+1.3.5. . .(.Zn—l)v""

(129)
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27. For points near the border of the disturbing mass I; may be
oxpressed by a more rapidly converging series than (71). Thus from
equation (23)

\ %
L= 1008 f—cos a\ g,
2 A COS P—COS

cos S—cos a=2 sin <ﬁ"_'|2'_ﬂ> sin (“;ﬂ>=2a.
Then ’

'az .ad :
/ [ 2 3 —- ]dp.
(cosp cos @)  (cos p—cos @) (co8p—cos @)
8 dp 1

Now, if
sin (“42)

o COS P—COS « sma sm ( ﬂ)

8
X __gin / @
a , (€0osS p—cos a)

@*X | T dp . Poap
¢2 = P4 9gin? @ -
daz 0%« L[ (cos p—cos a)2+ s , (cosp—cosa)’

Let

X=

ete. ;
whence -
@ 1 X
, (cosp—cosal  sina da’
# g _ 1 (®X_ dX
, (cos p—cos a)” 2 sin? a\ da?
ete. ‘

The integrals in the third and higher terms of the above series are
thus seen to depend on the integral in the second term. Making the
requisite differentiations we find, to terms of the third order inclusive,

) . @ ,a®cos o, a*(3—-2 sin® a) sm( oL
2=ﬂ_<sin a+2 sin’ a+ 4 sin’® o )10 ( >
4 sin
' . (72
5a sin B 3a* cos a sin S
16 sin? « 8 sint « ‘T ) ')’

a= sin “'g/j Sir? “_f:z_ﬁ

(130)



WOQODWARD.] . SLOPE OF DISTURBED SURFACE. 47
X. SLOPE OF DISTURBED SURFACE.

28. Having derived the requisite formulas for computing the position
of any point of the disturbed surface, it remains to determine the slope
of this surface relative to the undisturbed surface.

Differentiating equation (64) with respect to a, and dividing the re-
su}t by the radius of the undisturbed surface 7,, we get

dv _ 3hp dI

. roda” rop, " da ()

b This expresses the slope or inclination of the disturbed to the undis-
turbed surface in a meridian plane through the center of the disturbing

/ mass; it also expresses the deflection of the plumb line in the same
plane.,
In order to apply (73) it is essential to have the general value of
ar
T
Since )
. . a n
W= sz )
=\ =5
sin 5
aw"_n_ .
T35 S0 cot 3 .
and hence (70) gives
S +1gw!
+2g,u°
dI]_ [24
da - OOS— +393w5 . (74)
+494w7
\-!- . . / .
Similarly (71) gives
- +3Kw?
. 3K
gé— — 7 COS @ +§ 2wq—-6 7!"
° da 9 +i Ky . (75)
+IKwt -

+ .
29. Equations (74) and (75) will suffice for the computation of dI/da,

/ except for points near to or at the border of the attracting mass. As
a approaches equality to 3 the above series become less and less con-

vergent, and finally divergent when a=/ or w=1. This may be most

(131)
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readily seen by differentiating (22) or (23) with respect to a, and then
making a=/4. Thus we find

) S . sin p+pT]°
ar 1. dp
. G Tgpsin 51 m: — log, — =—mw.
/ I sin /2—1’ 1,

IS

Likewisa the integrals (24) and (25) become, after differentiating them
with respect to & and then making a=p3,

al ? sec? 1 tan? yidy
1_ . 1 -, (A)
da™ (sec2 _’g+ tan? y, >’
' 0
al, C sed pudys
da” (sec2 /j+tanz )é (B)
P & o
0
: d
_ sec? é sec? yaldy, sec? y, tan? yody,
]
(sec2 B Z 4 tan? ;/2> ' <se02 Lg +tan? y2>
- +dI1

This shows the equality of (A) and (B) since (B) is plainly infinite,
its value being
tan ;/2-|-<sec2 ’g+tan2 Vs )i 2

—1 log,
2 f3
-8ec 9

0

30. This failure of equations (74) and (75) for points at the border of
the attracting mass arises from the fact that the expressions (20) and
(21), though very approximate for the magnitude of the potential V,
are not sufficiently general to give an accurate value of dV/da, or the
attraction in the direction of the arc « for those points. To determine
the slope of the disturbed surface at the immediate border of the dis-
turbing mass a special investigation is requisite.

Since by equations (3) and (6) the slope is expressed by

dv 3 1 av .

o=, =2 76

rda 4 romp,  rda’ (76)
(132)
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we may derive an expression for the attraction d V/rida directly. Tle
exact expression for the horizontal attraction towards the axis of the
mass of any element mass is, using the same notation as in Article III,

4r’dr sin® ’0«5 cos? % dg cos AdA

[(r—r’ )2 +4rr’ sin’ _g] !

H

and theintegral of this is d V/ryda.

Now, as heretofore, lot

r=rot+u, . ri=ry4v.
In addition put
) g:r—r’,
so that
e dp=dr,
‘n=—u for r=n,,
n=h—v for r=ry+h.
Also let
_ ]
&= 21*0 sin 3
whence

d&=r, cos % as,

oos =1~ ().

Making these substitutions and neglecting terms of the order

v 5 \?
fr o (5)
the above expression becomes

&2d&dny cos Ad?t
&)

Integrating with respect to 17, and substituting the limits given above,

there results |
(h—v)dg vdE
[[Ez'i*(h—@)?]* +(gz+vz)é ]COS AdA.

Bull. 48—4 -~ (133)
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1If, now, we suppose the attracted point on the border of the attract:
ing mass, the limits of & will be 0,"and, with sufficient approximation,
27y sin B cos A=c cos A, say. Integrating with respeet to &, and substl- .
_tuting these limits, we get

T E oo
p(h—v) cos Mll log, ( \/ 1+ ¢ cobb))} + C}fisvl

2 2 )
-+ v cos AdA log (\/1_}_0 cos? /L. 60?79.

_ It remains to integrate these last expressions with respeet to A between
the limits 0 and g An application of the formula’ for integration by

-parts will readily transform them to ellipties, but since their element
" functions decrease very rapidly from the lower to the upper limit, the
following procesq1 will suffice. Conmlex the integral

' - @CeosTA | ceos A
j)‘cos Ad?t loge‘<\//1+ P + v >7

in which A.is such thdt <

S A
umby. In the cas_es we have to consider (

> may be neglected in comparlson with

w1ll not exceed <37
¢ Cos A - o T80

if 008 =1}y or A==89° 25’ about. Then, since

logel:\/l v cosM ccos?t]
/l; .
2¢cos A 1 v N
=1°ge{ v [Wz(e‘m)*’ - ]}’

the above integral becomes

' A A
f ¢oS M?L log, 20 008 A = log, %v_c f cos AdA 4 f cos AdA log, cos A
" . 0 : 0

Bt

=<1oge _ 1) sin A + log, (14 sin A)-(sin A—1) log, cos A",

But since sin A is very nearly unity, the last-expression reduces to

' _ log, G%(}) ~1

‘The error of this integral arising from the use of A insfead of 7_2r as the

upper limit is less than

2 .
<2—7L>coslloge {\/1+c cos? A ccosk[’

whlch if cos l——ﬁa and ¢ cos A/v=10, amounts to about TE5T .

1 Given in a somewhat different form by Helmert in Theorieen der hiheren Geo-
dasne, Vol. I1, p. 322.
: (134)
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For the entire attmcbion therefore, of the mass for a point on its
border we get *

av
m=—2p{ (h—v <1oge el —1> +o <loge do —1> }
='—2pf h <logel——— —1> +v log, h;”}-

Finally, restoring in this last expresmon the value of ¢, v1z, =
2ro sin (3, (76) becomes

dv 3 hp Srosmﬁ
W——ﬁmﬂp@{l *“h—v T% lg“e 4 _1} (1)

XI. DISTURBED CENTER OF GRAVITY OF EARTH.

31. Thus far the disturbed surface has been referred to a spherical
surface concentric with the earth’s center of gravity before the dis-
turbance arose. In determining the effects of the ice mass in glacial
times this is the proper surface of reference, since we wish to know the
distortion of the sea level in those times relative to the sea level in
preceding and following epochs. If, however, it is desired to consider
the joint effect in distorting the sea level of existing masses, like the
continents, on the hypothesis that such masses rest on the surface of a
centrobaric sphere, a better surface of reference will obviously be the

‘disturbed or existing center of gravity of the earth. The use of the

latter center will require a slight modification of the preceding formulas
defining the disturbed sea surface.

To determine the radial dlsplacement of the earth’s center of gravity
due to the addition of such a superficial mass as we have considered,
it is on]y necessary to equate the statical moment of that mass to the

- statical moment of the earth’s mass, the moment plane béing perpen-

dicular to the axis of the disturbin g mass at the undisturbed center of

" gravity of the earth., The moment of an elementary ring of angular

radius §, measured from the axis of the disturbing mass, is to our
order of approximation

2rlhpm sin B! cos BldfS.

Hence, if ¢ denote the displacement sought and A the earth’s mass,
B

M6=r03hp7tf 2 sin B’ cos pdp
0

=rhpm sin? 6.

. Therefore, by substitution of the value of M given in equation (3), we

find

m

‘ 3P ipe '
6_Ihp_ sin? G. | (78)
(135)
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Now, the elevation of any point of the disturbed surface relative to.
the sphere in the new position will. be less tlran its elevation relative to
the sphere in the former position Ly an amount whose value to the
. proper degree of approximation is ’

- G oS a,

- being, as heretofore, the angular distance  of the point from the axis
of the disturbing mass. That is, if v’ denote what v becomes by the
change in position at the sphere of reference,

V' =v—0G COS a.

Hence, by virtue of (64) and (78) we find for the equation-of the dis-
turbed surface when the sphere of reference is concentric with the dis-
turbed center of gravity of the earth,

P [ B B '
1;'_3hﬁ:[;—sm2 §<l+cosacoszj>]. (79)

And the inclination of the disturbed surface to the surface of refer-
ence is ’

voda ’I'oﬂ‘pm .
XII. EQUATIONS OF DISTURBED SURFACE WHEN THE DISTURBING
MASS IS OF VARIABLE THICKNESS '

32. Throughout the preceding investigations the thickness of the
attracting mass has been considered uniform. On this account the
range of application of the formulas derived is somewhat narrow. It
may be remarked, however, before proceeding to extend the investiga-
tiecn to more complex masses, that inasmuch as the data for actual
problems will be in general more or less uncertain, or to a large extent
ideal, formulas of a more comprehensive and hence more complex char-
acter are not specially desirable. Approximate calculations of a rather
rough sort in some cases” will be as good as the data for those calcula-
tions. The effects assigned by the foregoing equations will be for the
most part in excess of the probable actual effects, and in so far as com-
putation can contribute arguments pertinent to observed facts the max-
imum effects will be most essential. On the other hand it will be
desirable in some cases to get an idea of the inferior limiting effects.
The most important of these cases relates to the extent of submergence

_attributable to the ice cap of the glacial epoch. There would seem to
* be little probability of uniform thickness in such a cap. Apparently

(136)
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some sort of regular decrease in thickness (with here and there cousid-
erable though comparatively unimportant deviations) from the center
to the perimeter of the mass is more probable. Such a law of decrease
is expressed by the equation

pf)=h=h} 1-{ —F¢ , (81)

in which % is the thickness along any rddial line whose angular distance

from the axis of the mass is 3, , is the thickness along the axis, and /5,
is the angular radius of the perimeter of the mass. In brief, kis a func-
tion of 4, as stated by the first member of the equation. Thke exponent
n must be a positive number and may be for our purposes restricted to
integer values. In order to determine the effects of masses conform-
ing to the above, and, in general, any law requiring symmetry of mass
with respect to a radial axis, we shall devote the present Article to the
necessary extension of the formulas already derived.
33. The differential of equation (64) with respect to 4 gives

2 ‘
d sin
dﬁ =32 ko ( JgA—7 _7_201/3). (82)

This expresses the elevation of the disturbed surface due to an annu.
lus of angular radius 6, of angular width d, and height %, the density p

" being uniform. - If in this equation we make % 4 function of £, or write

h=g(/3), and integrate between the proper limits, the result will be the
elevation of the disturbed surface due to a mass whose thickness con-
forms to the law expressed by ¢(6). Calling, for the sake of distine-
tion, v’/ the new value of the elevation of the disturbed surface, and
the proper limits of g, ﬂl, and f,, the result of this integration is

ﬂzd(I zsin? B )
’v//_”pml[ __._dﬂ—__ P(B)ags. (83)

Tins equation assigns the effect of any homogeneous mass whose
bounding surface is one of reyolution about a radial axis, subject to’
the restriction that the maximum thickness of the mass may be neg-
lected -in comparison with the radius .of the earth. It is obvious,
however, that the integral in (83) may be impracticably complex for
some forms of @(/). Toavoid undue complexity and at the same time
attain results suitable for our special purposes we shall here confine

(137)



54 FORM AND POSITION OF THE SEA LEVEL, [BULL. 48.

attention to that form of ¢(f) expressed by equation (81). TFor this -
function we have, considering the whole mass,
ﬁ1=07 ﬁz—_—ﬁo;

P(8)=0 for £ =,

inlf) =—n<s1n B >Hd<sm ﬂ)

+ Bo
"1
S5

Then, observing that I: =d for 6=0, (83) becomes

P = 7’%;[ o ﬁo/ I(sm ﬂ}”"d<s n/j> + L zsin? 2 Fo ] (84

The definite integral in this expression depends on and will in gen-
eral be no less complex than I, which is defined by (22) to (25). An
examination of (24) and (25) shows that for points of the dlsturbed .
surface within the perimeter of the disturbing mass ’

o n—1 . 7]
/ I smﬂ> dsm__/ L(sin/’;) ldsiu[’i
0 0 : “ R 2 .
Bo n—1
C 4 / L(sinéi) dsing. (85)

-For points of the disturbed surface without the perimeter of the
mass it is only necessary to replace I in (84) by I, of (25), or replace
the limit « in (83) by ). By means of the series (70) and (71), or the
harmonic series (53), (84) may be evaluated for any pomt of the d1s
turbed sorface.

For two points of the disturbed surface, namely, at the center of the .
mass and 180° from that center, (84) yields to direct integration. The
process of evaluation is as follows:

The integral in (84) is a function of «, 6, and n. Let it be symbolized
by flafm). TFor the two points noted above let this function be dis-
tinguished by the suffixes 1 and 2, respectively, so that it becomes

_ Ji{a, S, n) for g=0,
and
f2( a, fo, 1) for a=m.

Then, since from (26), I=7 sin /73; for a=0,

Sila, Bo, n)——+—l7r sin g“ - _(86)

(138)
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Likewise, since from (30), I=27 siuﬁg for a=mn,

sin_g\ " - ,
2 dsin2§.~ (87)

: 6,
Ja(ay o, n)=27 sin’ = —27
’ 4 sin 2o

R 4

. :
=%<4 —2 cos [52—0 —fo co§ec %) for n=1,

7 2 ﬁo__ . 2 Bo =2
_3<4 cos® 7 1>t:m 1 for n=2,

When # is more thau a few units the integral in (87) may be evalu- .
ated by rapidly converging series. Thus, call the required integral B,

- and let ‘
B fo
. sin 5 = sin 5
Then
]“ , Sln_._f n ﬂ
B= 5 d sin® 7
sin 729
0 .
1 ' ) .
1' . ﬁo }£n+ld%
=7 sin? - (88) ‘

2 \/ 1— sinzﬂ’
0 ) 2

; 2!20 i 4& i 6/5_0
1(8111 0} 1811] 5 38111 0

. ’ T2\ g2 ) n44 *3 ny6 T )

2

~ 34. It will be particularly essential for our purposés to evaluate (84)
* for points outside the border of the disturbing mass. The integral re-
quired is, if we write for brevity :

; . P
b:smlz and bo=sm[2£,

: —n by Nl -
™ [ 15
0
)) Now, I, from the equation p@ceding (71), may be written thus:

Ig: 7[(j1b2+j2b4+j3b6+ . e ),
(139) -
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in which jj, f», etc., are obvious functions of a or v=cosec a. Therefore
the above integral becomes

T
+n+2]1b0

n .
b b
nb nf L b= | ATEN (89)
o ) N

+n+6

o
=8, say. -

b\

35. Let the value of 8 in the last equation for points at the border of
_tke disturbing mass where a=/, be denoted by 8;. Also denote by
0"y v,/'y and v,y" the elevatious of the disturbed surface at the center of

the mass, at its border, and 180° from its center. Then equation (84), by
means of the results in (86) to (89), gives the following equatlons analo-
gous to the group (67):

”—37&0 ( (j" ——s1n2ﬂ°>

: a..—.O;
v,/ =3 ,%(Sl‘ni 5 s E), ‘ (90)
’ a:ﬁo; ) i ‘
va”=3ko i( 2 sin? %’—2B ——+7 sin? ﬂ")
a=m.

36. To define the slope of the disturbed surface it is in general nec- -

essary to differentiate (84) with respect to «. The result is of a com-
plex character and subject to discontinuity for points at the border of
the mass. For practical purposes, however, it will suffice to make use
of Av""/da instead of the differential coefficient, and thus determine

average slopes over some hmte portion of a memdlan section of the -

disturbed surface.

37. In discussing the disturbance of the sea level attributable to the
ice mass of the glacial epoch, it will be of intérest to estimate the effect
of the rearranged free water. For this purpose we may extend the
~second term of the third member of equation (66) so as to make it as-
sign the effect of the rearranged water when the mass is of variable
as well as uniform thickness. The process is strictly analogous to that

(140) -
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followed in deriving (83) and (84) from (64). Thus, confining attention
to the form of mass defined by (81), and writing, as in section 34,
sin BN\"

- 2
=h| 1-}
go_(ﬁ) N ‘ sinﬁ

e

= hg(l —-bo_,nb” 9

E(ﬂ)=E(b)’
‘we readily find from (66) .

1= bo
g 5\ \/[ Jilcos ajudy f F(b)bo»-'ab
dv“:Eh[,pﬁ E ; L . (91)

(2i+1)Pn 3

Yw

and

=1L
A few valaes of F,(b) derived from (45) 'aud (47) are the following:

Fib)
(=~ ),

F(b)=

Fyb)=2(b2— 3D+ 21F),

Fyb)=2(b"— 6b'4+100°— 50),

Fub)=2(0*— 100443005 — 35624 14b1), .
Fy(b) =2(b — 155 4 7055 — 1400° 4+ 126510— 42h12),

IFrom these the corresponding integrals

bo N -
nby / F,(b) b
0

can be readily derived. Thus, for example,

2
2

bo + bos
- n— n+46
nby f F5(b)b.’db=‘)n 140 %) (92
- 0

(141)
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38. A common property of the formulas (84) to (92), both mcluswe,
is worthy of notice. They all refer to a mass whose thickness conforms
to the law (81), namely,

in® ﬁ
sin” &

n ﬁO
. sin T

.

@(f)= hzho 1-

When n=c this gives @(f)=h=Dhy, or the thickness of the mass is
uniform. Therefore the formulas (84) to (92) should return to the forms
applicable to a mass of uniform thickness on making n=». Such is
the case. Thus (84) becomes (64), as is readily seen by an application
of the formula for integration by parts. Likewise, for n=w equations
(86), (87), and (89) become (26), (30), and (28), respectively, and the group
(90) assumes the simpler forms of ‘the group (67).

B. APPLICATIONS.

XI11I. RELATIVE POSITIONS OF LEVEL OR EQUIPOTENTIAL SURFACES
IN A LAKE BASIN.

- 89. Consider the question stated in section 2, (a), relative to the level
surfaces in a lake basin. Inthis caseit is required to determine the dif-
ference in elevation at the center of the basin of two level surfaces
which ‘intersect along its perlmeter The first two of equations (90)
give

’01”—3]10 P <Sl—' > 8in ﬂO) . (93)

This.represents the difference in elevation of a level or liquid surface

at the center and at the border of the basin., p must be understood as
the excess or defect in densn;y of the hquld relative to the average

density of the superficial strata of the earth. Thus, if the liquid in

question be water, . ’
p=—(3p,—1)=—1.8, approximately. -
If we differentiate (93), regarding p as variable, the result is

A" =0,y =31,2P <Sl——s 1’3") T

This expresses the required separation of the two level surfaces in
question; i. e., the separation at the center of the basin of two level sur-

faces which intersect at the border and which are the free surfaces of

two lignids whose difference in density is dp._

To illustrate more fully the meaning of (93) and (94) let ABDE in
Tig. 4 represent a cross-section through the axis of the basin. ACB is
a circular arc parallel to the section of the sphere of reference. If the
basin be filled with water the section of the water surface will lie be.
low ACB as AC'B. If the water be removed the corresponding sec-

(142)
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tion of the level surface throngh A and B will fall below AC'B as AC" B.
Hence, in the diagram .

v =y = CC’, A('vz” —)= o,

1

¥Fi6. 4. '
40. To get some numerical values, let us assume the following data:
T1y=1,000 feet, fo=arc of 19, Pu=0"5,
p=—18, dp=1, ,
this latter being approximate difference in density of air and water.
Then-
3hopﬁ=982 feet,

m

31:2P — 545 fect.
P
The assumed value of f§, is equivalent to about 69 miles measured
along the earth’s surface. .
Now, by means of equations (86) to (89), we find the following table -
of results corresponding-to several values of n, which defines the shape

.of the basin—see equation (81). The resunlts in the fifth column of the

table express the difference in elevation of a water surface at the center

~and at the border of the basin; and those in the sixth column express

the depression of the level surface at the center of the basin consequent
upon substituting air for water as the attracting mass.

o
Table of values showing relative positions of level surfaces in a lake basin 140 miles in
diameter and of 1,000 feet maximum (axial) depth.

L R P L R g pey

Feet. Feet.
1 | 0.00436 0. 00161 0. 00275 2.70 1.50 -

2’ 582 245 337 3.31 1.84
3 654 208 356 3.50 1.94
4 698 333 365 3.58 1.99
5 727 359" 368 3.61 2.01
6 748 .879 369 3.62 2.01
7 764 395 369 3.6% 2.01
8 776 407 369 3.62 2.01
9 786 418 368 3.61 2.01.
. | 10 793 427 - 366 3.59 1.99
w0 | 0.00873 0.00556 |. 0,00317 3.11 1.73

- (143)
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It will be observed that the differences in the last two colamns of the
above table rise to a maximum between the arguments n=>5 and 2=9.
That they should do so is evident from an inspection of equations (89),
(93), and (94).

The deflection of the plumb line toward the land along the border of
cuch a lake, supposing it of uniform depth or n=w, would be by
equation (77) 11” or 16", according as the basin is filled with water
or air, and the slope of the water surface at the immediate border
would be 0.28 feet per mile.

41. Aninteresting inference, which might be drawn from the solution
of the above problem, is that in triangulating a large lake we should
expect to see from shore to shore with somewhat less elevations of the
peints of observation than the usual formulas for intervisibility of
points on the earth’s surface would require. This would be a correct
inference, however, only in case the defect in potential due to the water
in the lake basin is not offset by an excess in poteitial due to some
local or general distribution of matter within the earth’s crust.

XIV VARIATIO‘IS OF SEA LEVEL ATTRIBUTABLE TO CONTINENTAL
GLACIERS OR ICE CAPS.

42. As a second application of the preceding theory we shall investi-
gate the attractive effects of the ice mass of the glacial epoch, assum-
ing that the earth’s crust did not yield to the pressure of the ice. This
is the problem of section 2 (b).

This problem in its physical aspects presents two difficulties, the first
of which has not been alluded to in the foxegomg sectlons, and the
second only partially. considered. .

The first of these difficulties is to account for the enormous quantity
of water reqnired to form such an ice mass as is supposed to have cov-
ered our northern hemisphere during the glacial period. This mass has
been usually estimated as not less than 5,000 feet thick at its center,
and to have extended 30° to 90° from that center. It is generally as-
sumed to have diminished in thickness with some approximation to
regularity from the center to the perimeter. The superior limit for this
shape of mass would be a sheet of uniform thickness, and the inferior
limit a meniscus increasing slowly in thickness from its perimeter
towards its axis. Evidently, if the water forming such a mass were
drawn from the ocean, the latter would undergo a considerable diminu-
tion in elevation, and this diminution might nearly counterbalance the
attractive effects of the ice in elevating the water along its border. The
view advanced by Dr. Croll, however, assumes that there is an alterna-
tion of glaciation at the poles, the epoch of minimum ice cap at the
one corresponding to the epoch of maximum ice cap at the other. This,
granting the sufficiency of ice in the two caps, would make the quantity
of free water in the ocean substantially constant. In thé absence of
definite information on this point, it must be admitted that considerable
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uncertainty may properly be attributed to our computed variations of
sea level, although the equivalent lowering of the sea, if the water in
the ice is drawn therefrom. will be determined for each assumed mass.

43. The second difficulty arises from the fact that such a large mass
as we seem compelled to assume for the ice cap would produce an ex-
tensive rearrangement of the sea water; and we ought therefore, in
computing the potential at any point of the disturbed surface, to take
account of this rearrangement. We have shown how to do se in an
ideal case, which presents effects for the elevation or depression and
slope of the disturbed surface greater than the probable actual effects.

The actual effects, as we shall indicate, probably lie about midway be-'

tween those assigned by the formulas for the ideal case and those as-
signed by the formulas which neglect the potential due to the rearranged
free water. But on account of the difficulty in fixing an exact limit for
the actual effects, our compated resalts will be subject to a small range
of uncertainty, which may be regarded, however, as no greater than
the inherent uncertainty in the more important data of the problem.
44. Let us now take for the mean deusity of the earth p,, for the
density of ice p, for the thickness of the ice along its axis ko, and for
the angular extent of the mass G, the following values: \

Pn=5.5, hy=10,000 feet,
p =1t ~ fo=arc of 38°.

This value of S, corresponds to about 2;600 miles measured along the
earth’s surface; it is also very nearly that angular extent of mass, of
uniform thickness, which produces the maximum upheaval of water
along its border. (See section 23.)%

" 45. As we shall compute the effects of masses correspondm g to sev-
cral values of the index n, equation (81), it will be of interest to define
with some precision the shape of the exterior surface of each mass. To
do this it will suffice to give the slope of the surface of any mass at

1 This value for the density of ice is about 8 per cent. too great; but by using it
in the formulas which do not take aeccount of the potential due to the rearranged
free water, we shall get results differing only slightly from the probable results.

2] the water in the ice cap were drawn wholly from the free sea water the angular
radius of a mass producing maximurh upheaval along its border would be much lcss
than the value given by the second of equation (68), for in this case the rise in sea
level due to the attraction of the cap would be offset partly by the fall due to the
withdrawal of the water. The difterence between the rise and fall just mentioned is
v/ of (90), minus z of (96), or

ho sin2 = Bo

£ —
3h°pm ( S PR

3 Po "
b + zsm )
“The value of f#, which will render this difference a maximum is easily found, but
the result is of little interest since the corresponding mass would produce effects
much smaller than the possible effects of continental glaciers.

(145)
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several points in a meridian plane. The differential of efiu@tion (81)
gives '
. BN"
sin £ .
dh nhy .2 . f
— T — — cot 2= 95
VT ) 9 A (99)
2

o

- This expresses the slope or inclination in a meridian plane of the
bounding surface of the attracting mass to the spherical surface of ref-
erence. Using the above values of &, and fS,, and for the radius of the
‘earth {see section 4) log 7,="7.32020, the following table of values has
been computed. The slopes are expressed in feet per mile. Several of
the curves whose slopes are given are delineated (with greatly exagge-
rated radial scale) in Fig. 5.

Table showing meridian slopes of exterior bounding surfaces of assumed ice masses. [See
equations (81) and (95).]

Slopes in feet per mile corresponding to =

n

0° 59 100 150 200 250 300 350 380

Feet. | Feet. | Feet. | Feet. | Feet. | Feet. | Feet. | Feet. | Feet.
1 3.88 3.88 3.46 3.85 3.82 3.78 3.75 3.70 3.67
2 0. 00 1.04 2.07 3.08 4.07 5. 04 5.96 6.84 7.84
3 .00 .21 .83 1.85 3.26 5.02 7.10 9.47 11.00
4 .00 .03 .29 .99 2.32 4.45 7.53 11. 66 14. 67
5 .00 .01 .10 .49 1.55 3.70 7.48 13.46 18.34
6 .00 ," 00 .03 .24 .99 2.95 7.14 14. 92 22.01
7 .00 ] .00 .01 .11 .62 2.29 6. 62 16. 08 25. 68
8 .00 .00 .00 .05 .47 1.73 6.02 16. 97 29. 34

. 9 .00 .00 .00 .02 .23 1.30 5.38 | 17.64 33.01 ¢

10 .00 .00 .00 .01 .13 -. 96 4.75 18.10 36. 68

o 0. 00 0. 00 0.00 0. 00 0. 00 0.00 0. 00 0.00 ©

‘ The numbers in the above table'show that for n=1 the slope of the

bounding surface, as defined by equation (81), is steepest at the axis of
the mass and decreases slowly from the axis towards the border. For
values of n greater than unity the bounding surfaces slope up with

decreasing rapidity from the border to the axis of the mass, the amount -

of slope diminishing to zero at the axis in each case. The features
here enumerated will hold for any extent of mass, i. e., for any value of
So. It will be observed also that the slope for any value of » is di-
rectly proportional to the axial thickness k. Hence the slopes corre-
sponding to any other thickness than that assumed (10,000 feet) may be
readily computed from the table.

46. As to the actual form of the bounding surface of the ice mass
of the glacial epoch we have no precise information. It is generally
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assumed, however, that.the mass was thickest along its axis, and that '
the thickness decreased with some approach to regularity betiween the
-axis and the border.! The slope of ascent along the border has been
estimated as 10 to 35 feet per mile.” Nordenskjold observed a rise of
7,000 feet in 280 miles from the border of the ice plains of Greenland.?

Fig. 5.

. o
Scale for section of sphere=gzraiysuy,
Scale for disturbing mass =zrdsro=3s735%00>

— __sin” %fg} —10.000 fe
=l § 1— 9 Sy Te=10,000 fect,

For-curve 1, n=1; for curve 2, n=2; for curve 3, n=10; for curve 4, n=x.

This corresponds to an' average slope of 23 feet per mile. It seems
most probable that the slope of such a mass would be steepest at its
border and diminish gradually towards its center. Whatever may have
been the actual slopes it is thought that the preceding table affords a
sufficiently comprehensive variety. Our equations, it is true, will as-
sign the effects of an indefinite variety of other forms, but in the
absence of more complete actual data the simple forms whose slopes
have been computed are considered adequate.

!The directly opposite view is maintained by W J McGee. See his paper on
Maximum Synchronous Glaciation, Proceedings of the American Association for the
Advancement of Science, Vol. xxix, 1880.

2 Croll, Climate and Cosmology, p. 244.

3 Ibid., p. 245
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47. Inorder to form an idea of the amount of water congealed in the
masses whose shapes have just been defined we wiil compute the thick.
nesses of spherical shells of radius 7, (radius of earth’s surface), having
equal volumes with the ice masses, respectively. As the sea covers
about three-fourths of the eartl’s surface the products of these thick-
nesses by # will represent approximately the necessary lowering of the
sea level if the water in the ice cap-is drawn from the sea. Since the
thickness of our assumed ice mass along any radial line at an angular
dlstance A from lts axis is by equation (81)

B
sin 7

h=hy] 1—
3 nﬂo
Sy

i

the volume of this mass will be expressed by the integral

Bo
» & sin* S 9
2rl2hom A 1- sin fdB=4 n‘ rothom sin 2.
sin® Po n+2 0
? - .
0 , '

The thickness 7 of a spherical shell of radius r, and equal volumne
with the above is given to a sufﬁcleut degree of approxunatlon by the

relation .
drdrm=4 +A rothy sin? %2 )
whence :
: r= -n-?—Z ho sinZ%O . (96)

From this equation with our working values, 1,=10,000 feet and S,=
389, we find the following values of 7 and 47, corresponding to the
values of n in the preceding table:

Table showing thicknesses T of spherical shells of equal volume with asswmed ice masges, and
. equivalent lowering of seu level 4r.

n T ; 47
Feet, Feet.
1 353 471
2 530 707
3 636 848
4 707 913 !
*5 7 1009
6 795 1060
7 824 1099
8 ‘848 1131
9 867 1156
10 883 1177
© 1060 1413

(148)

¥



woopwarp.] EFFECTS ATTRIBUTABLE TO CONTINENTAL GLACIERS. 65

48. Although, as seen from the last table, the amount of water nec; .
essary to form such an ice cap as we are considering would, if drawn
from the sea, cause a decided lowering thereof, yet the mass of ice
would be very small compared with the mass of the earth. Thus, for
exaimple, the mass of a sheet of uniform thickness 10,000 feet and 382
" angular radius is only. 55455 part of the earth’s mass.

. 49, To determine the position of the disturbed relative.to the undis-
turbed surface it will be sufficient to compute the elevations of the
water at the center of the attracting mass, along its border, and 1800
from the center, by means of formulas (90). As the slope of the dis-
turbed surface near the border of the mass is of most importance, we
shall compute the elevation of the disturbed surface for a circle of
points 1° distant from the border, and thereby deduce the average
slope of the disturbed surface within that distance (69 miles) of the
border. The separate quantities required in this calculation are given
in the following table for the same values of n as those used in the two
preceding tables, It will be remembered that n=w corresponds to an
attracting mass of uniform thickness. The values of §in the last col-
umn of the table have all been computed from equation (89), except the
one for n=w , which has been derived from (72). .

Table of numerical valucs of functions defining position of disturbed surface.

1 0.16278 0.03533 0. 06078 0. 01796 0. 05885
2 21704 . 05300 . 09249 . 02699 . 08946
3 . 24418 . 06360 .11218 . 03243 .10842 |
4 . 26045 . 07066 . 12568 . 03606 . 12139
5 .27181 07571 .13535 . 03867 .13085
6 . 27906 - 07950 14310 | . 04063 . 13809
7 . 28487 . 08244 .14908 "L 04216 . 14380
8 28939 . 08480 115303 .04338 . 14843
0 29301 08672 | - 15795 . 04438 . 15227
10 20597 ~08833 .16135 04522 . 16550
@ 0.32557 0.10600 0.21111 0. 05448 0.19846

For brevity make the following substitutions:

_ n /9'0 o o
N,= l«+1 _ NTZ sin 5
Vg P s S
N=8 +2sm o |
2(51112 /J,O B>——— sin? £° ﬂ"
N.;—Sl

Bull. 48—5 (149)
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Jhen from the preceding. table we get the following table of values:

|

\ n N, N, Ny Ny
1 | ++0.12745 | +0.02545 | —0.01737 | +0.00193
2 | 4 .16404 | + .03949 | — .02601 | <+ .00303
3 | -+ .18038 | + .04858 | — .03117 | -+ .00376
, 4 | +.18979 | + .05502 | — .03460 | -+ .00429
. 5 | 4 .19560 | + .05984 | — .03704 | + .00470 -
! 6 | 4719956 | + .06360 | — .03867 | -} .00:01
: 7 | +.20243 | 4 .06664 | — .04028 | -+ .00528
' 8 | 4 .20450 | + .06913 | — .04142 | + .00550
: 9 | - .20620 | < .07123 | — .0423% | -+ .C0368
10 | +.20764 [ 4 .07302 | — .04311 | + .00385
o | -40.21957 | +0.10511 | —0.05132 | -0.01265

Now, thé factor by which we must multiply Ny, N,, and N; to get the
elevation of the disturbed surface above the undisturbed at the center
of the mass, along its border, and 180° from its center is

\

k 3ho L. =5454.5 feet;

pm

and one sixty-ninth part of this factor multiplied by N, will give the aver-
age slope per mile of the disturbed surface within 1° of the border of
the ice. Hence we get in the table below the results corresponding
to the several values of n. The plus sign indicates elevation and the

minus sign depression of the disturbed relative to the undisturbed
surface.

|
Table showing effects in distorting the sca level of ice caps of the same angular radius, 38°,
and same axial thickness, 10,000 feet, but of varying external slopes, defined by equation (81).

' ; Position of disturbed relative to undis- Average
; | turbed surface. slope per
. | . mile of dis-
‘n ) f!mrbed_t:ﬂg-
; At centerof | Alone border|180° from cen- 1o0f the
‘ ice mas. of ice mass. te[rnggsl.ce border of the
Ay 1c¢ mass.
| Feet. Feet. Feet. Feet.
‘1 -+ 635 <4139 — 95 0.13
i2 + 895 +215 —142 .24
\§ + 985 +265 —170 .30
, 'i" +1035 4300 —189 .34
? +1067 +326 —202 .37
q +1088 +347 —212 .40
7‘\ +1104 +363 ©—220 .42
8. +1116 +377 —226 .43
9 \ 41125 +389 —231 .45
10 " +1133 +398 —235 .46
o | +1198 +573 —281 1.00 .
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50. Asalready explained, the numbers in the second, third, and fourth
columns of the last table assign the position, and those in the fifth col-

- umn the meridian slope of the disturbed surface relative to the undis-

turbed surface, assuming that the ratio of the density of ice to the earth’s
mean density is &, and neglecting the effect of the rearranged free
water. If % were the correct ratio of the densities, and if the sea cov-
ered the whole surface of the earth, and were free to arrange itself in con-
formity with the attractive forces, formulas (66) and (91) show that the
numbers in the second, third, fourth, and fifth columns of the table
should beincreased by about 15, 18, 26, and 18 per cent., respectively, of
their stated amounts. But the ratio % is too great by about 8 per cent.,
so that for this reason the above percentages must be reduced to 7,10,
18, and 10, respectively. Again, only three-fourths, at most, of the
earth’s surface is covered with water, so that the reduced percentages
must be diminished to three fourths their stated amounts. Moreover,
the sea could not penetrate the ice mass in such a manner as to produce
the assumed increase in the potential within its border, and hence the
reduced percentages must be still farther diminished. It is estimated
that the actual effect can not be greater than two-thirds that which
would follow if the water were unrestricted. Accordingly, 2 . §=4% the
above reduced percentages, or 3.5, 5, 9, and 5 per cent., respectively,
would appear to be liberal allowances for the effect of the free water
in exaggerating the deviation of the disturbed from the undistarbed
surface at the points designated, over and above the tabular devia-
tions, In view of the smallness of these possible increments to our
computed quantities we need give the question of the effect of the re-
arranged free watér no further consideration.-

The results in the second column of the table are the heights to
which the water would rise at the center of the ice mass if brought
within it in any manner, as by a canal, and left free to assume equi-
librimmn. If the amount of free water were sufficient it would rise or
fall to the extent indicated in the third and fourth columns, respectively,
at points along the border and at the antipodes of the center of the
mass. :

The slopes given in the fifth column will apply to isolated bodies of
free water adjacent to the ice mass, and also to the sea surface in the
same vicinity, whether there be sufficient water to rise to the Leight
indicated in the second columun or not.!

! Recent observations of the beaches of bodies of water contiguous with the ice
fields of the glacial epoch indicate uniformly that the water surfaces sloped upwards
toward the ice. In a careful exploration of the beaches of Lake Agassiz, an extinct
lake which lay in the valley of the Red River of the North during the glacial epoch,
Professor Upham has fonnd slopes varying from zero to 1.3 feet per mile. (See Bulle-
tin No.39 of the U.S. Geological Survey, on The Upper Beaches and Deltas of the
Glacial Lake Agassiz, by Warren Upham.) Near the south shore of Lake Ontario, in
New York, Mr. G. K. Gilbert has observed slopes as greabt as 5 feet per mile. (See
Science, Vol. I, p. 222.)
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The maximum possible slope of the disturbed surtace would occur at
the immediate border of a mass of uniform thickness. This slope is by
equation (77) for 1=10,000 feet and =389, 1.80 feet per mile, and cor-
responds to a plamb line deflection of 72, Since it is not probable
that the ice cap presented at its border anything like a vertical wall
10,000 feet high, we infer that a mass “whose maximum or axial thick-
ness is 10,000 feet would be quite inadequate to produce a slope of 1.8
feet per mile. '

Again, since all the results in the table are proportional to the axial
thickness of the ice, to produce as great-an average slope as 2 feet
per mile within 1° (69 miles) of the border of a mass having the more
probable slope defined by the index n=6 to n=10, wonld require an
axial thickness in round numbers of 50,000 feet, or 94 miles. The
slope at the immediate border in the extremely improbable case of a
uniform thickness of 50,000 feet would be 5x 1.8 feet=9 feet per mile.

51. To proiuce slopes as great as 4 or 5 feet per mile for any distance
from its immediate border an ice cap must have great thickness, which
implies for any large areal extent a heavy draft on the visible supply
of water. The minimum thicknesses of ice masses of varying radial
extent which would produce an average slope of 5 feet per mile within
10 (69 miles) of their borders are shown in the following table. These
values are computed on the improbable supposition that the masses
are of uniform thickness. The volume of each mass is indicated by the
equivalent lowering of the sealevel, or 47 deduced from equation (96),
the value of # being infinite.

Table showing for ice masses of varying radial extent the minimum thicknesses requisite to
produce an average slope of 5 feet per mile within 1° of the borders.

. Equivalent
o - 0o owering of sea
Ang(,)l;]f::algdnu; Mmm::g; thick- level, indicat-
=5 o5 ing volume
“of mass.
° Feet. Feet.
10 69, 400 703
20 52, 500 2,308
30 52, 600 4, 699
38 50, 600 7,065

For masses having moderate surface slopes near their perimeters tne
axial thicknesses must be about twice as great as the minimum values
given in the table to produce the same average slope of 5 feet per mile
within 1° of the borders. Thus, for the angular extent 380, and
for n=6, say, an average slope of 5 feet per mile would require an
axial thickness of about 125,000 feet, or 24 miles. This corresponds to
a lowering of the sea of about 2.4 miles, and if the quantity of free
water were sufficient, to an elevation of the sea along the border of the

mass.of about 4,000 feet.
(152)
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52, Confining further investigation to our working axial thickness,
10,000 feet, angular radius 389, and ratio of densities %, we may in-
quire as to the extent of the variation in sea level at any point of the
earth’s surface on the supposition of an alternation of glaciation at the
pcles. Tor this purpose it is simply necessary to compute the eleva-
tion of the disturbed surface at the angular distance « of the point in
question from the pole or axis of the ice cap and for the point 180°—a
and take the difference between the results. Since the maximum effects
are of most interest, we shall compute the variations in sea level ol the
assumption'that the ice cap is of uniform thickness. The results, as
may be inferred from the second table on p. 66, will not differ materi-
ally, except for points near the border of the ice, from the results which
would be derived on the assumptlon of a sloping mass corresponding
to the index n=6 to n=10.

To compute the required integrals we may use formulas (70) and (71).
For =38° we find

log ¢1=9.3493, ' log ,=9.7049,
log g,=8.7422, ‘ log %,=8.8079,
log ¢,=8.3452, log %,=$.3849,
log 9,=8.0708, log k,=8.1186,
log gs="7.8644, log k;=7.8004,
log ¢s="7.6987. . log ks=17.7033.

From the formula

R

sin =

[\

W=

sin

el

we compute log w for =109, 209, 309, ete., to 1809, and then the values
I, or, more conveniently, the values of I/ sin g required in (64), readily

follow. The results are given in tabular form below for circles at inter-
vals of 10° from either pole.
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Table showing disturbance of sea level attributable to an ice cap of 38° angdlar radius and
10,000 feet uniform thickness, and variation in sea level atiributable to same mass on the
hypothesis of an alternation of glaciation at the two potes.

. .. | Variationi vel
Angular distance Lfgggﬁtlsﬂofidﬁ;. fron?e;?od?sg a)nl\(ianie-l
from either pole, disturbe‘d surface, | BN tocpoch of max-
or a. oF g ' { imum glaciation, or
* Vo~ Vigo—a.
o Fect. Feet.
0 +1198 1479
10 +1169 1449
20 +1076 1352
30 ) + 893 1163
40 T4 441 702
50 + 185 431
60 + 46 279
70 — 43 170
80 — 106 80 -
40 . — 152 0
109 — 186 80
110 — 213 . 170
120 C - 233 279
" 130 ' — 249 - 434
140 — 261 . 702
150 — 270 1163
- 160 — 276 1152
170 — 280 1419
180 — 28t 1479

A graphical representation of the results in the last two columns of
the above table is given in Fig. 6, the section of the disturbed and un-
disturbed surfaces being so developed that the great circle of the latter
appears as a straight line, AB. The distances between the two curves
representing the disturbed surfaces measured at right angles to the
axis A B indicate the variation in sea level between the epochs of max-
imum and minimum glaciation at either pole.

The variation in slope of the sea surface at any point during tae in-
terval between the extremes of glaciation will equal the sum of the
‘slopes at that point for the two epochs. The maximum variation is,
however, only slightly greater (about 1 per cent.) than the maximuny
slope already computed, and requires, therefore, no further considera-
tion. That portion of the disturbed surface having the greatest slope
is made clearly apparent by the curves in Fig. 6.

TDisturbed Surface,

Fia. 6.
Horizontal scale, yzroiyoon; vertical scale, 353888807 -
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XV. HISTORICAL NOTE.

53. The effect of the glacial accumnlation in disturbing the sea level
has been the subject of considerable discussion. The discussion was
started apparently by Dr. Croll about 1866; and from the widely differ-
ing results quoted by him in his Climate and Time, Chapter XX1V, one
might infer that the mathematicians who have attacked the problem
are completely at loggerheads. There has been, indeed, some diversity
of opinion a3 to the proper method of treating the question, and the
~ work of one writer at least is quite erroneous; but part of the appar-
ent discrepancy in the results quoted by Dr. Croll is due also fo a rad-
ical difference in the data used as a basis for calculation.

The mathewmaticians whose writings on this subject appear to be
worthy of especial consideration are Archdeacon Pratt, Mr. D. D.
Heath, and Sir William Thomson. Their investigations may be found
in the Philosophical Magazine for 1866; Vols. XXXI and XXXII.
Those of Archdeacon Pratt are reproduced substantially in his Figure
. of the Earth, fourth edition, pages 236 to' 238, while those of Sir Will-
iam Thomson are given also in Croll’s Climate and Time, Chapter X XIIL.

54. Pratt.—In the following notice of Pratt’s investigations we shall
refer to the fourth edition of The Figure of the Earth (published. by
McMillan & Co., London and New York, 1871). as it is the more recent
and formal treatise. Although in many respects a valuable text book,
it is marred by some serious errors, one of which we proceed to point out.

Pratt’s investigation is based on the foll owing erroneous proposition
(see page 212, Figure of the Earth), namely :

To prove that the effect of a mass at the earth’s surface, whether above or below,
is to make the sea level rise at any place through a space, g’ where ¥ is the poten-

tial of the mass for a point on the disturbed sea level, which is in the same vertical
line with the place.

By a process of reasoning to which there appears to be no objection
he arrives at this equation, namely,

r+coust=§, (a)

in which 7 is the radius-vector of any point on the disturbed sea sur-
face, V the potential at that point of the disturbing mass, and g is the
well known velocity increment due to the earth’s attraction. The radius
of the undisturbed surface, supposed spherical, being denoted by a,
Pratt says:

Let r=a where =0 or the horizontal attraction of the mass first becomes appre-
ciable.

He thus finds in the above equation

const=—a,

and hence

rise in sca level_—_r—a._-;z, (b)

g
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-

But this reasoning is strangely faulty. V is not zero for r=a; in
fact it is zero only for points infinitely removed from the surface under
consideration. - He should have reasoned thus: Along the line of inter-
section of the disturbed and undisturbed surfaces r=a. Call the par-
ticular value of V along this line V;. Then we have from (a)

const=—a+ Z

°

and hence

V-7,

7 ()

r—a=.

This agrees with our formula (6)’, and the constant Vj is to be deter-
mined from the condition that the disturbed and undisturbed surfaces
contain equal volumes. Formula (a) gives results which are too great

- by the.constant amount .g_", i. e., this formula measures heights above

a spherical surface %" below the undisturbed surface (see section 5).

Vs, it will be observed, is never of a lower order than V and can not
therefore be neglected in comparison with V.

Although Pratt makes use of the correct principle for determmmg
the constant V, in his article 199, he ignores this prineciple altogether
in his article 200, referred to above, and again in his article 213.

55, In his calculation Pratt assumes a sheet of ice 7,000 feet thick at
the pole to extend over a whole hemisphere, decreasing in thickness,
however, as it recedes from the pole in the ratio of the square of the
¢osine of the polar distance. He does not consider the effect of the
rearranged water. His method of determining the potential V is not sat-
isfactory. It consists (see articles 90, 91, and 92, Figure of the Earth)
in a species of mechanical quadrature, by which he computes five specia]
values of the attraction of a ‘hemispherico-spheroidal meniscus,” whose
thickness varies according to the law stated above. I'rom these five
values he derives by the method of indeterminate coefficients a general
formula for the attraction of the meniscus, and from this formula by
integration he gets a general formula for the potential of the mass.
The order of approximation of these formulas is not shown and is not
evident, From a test we shall apply it is inferred that the approxima-
tion is so rough as to render the formulas worthless.

We may readily derive the proper expression for the elevation of the
sea under the conditions assumed by Pratt from our general equation
(83). In this equation, if the thickness at the pole be denoted by %, we
have '

P(B)=ho cos? 3, =0, =1
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Therefore (33) becomes

hop d sin? & /j

0, 2 2

V=3 —= e dp’ cos? fdf—mn cos BdS

_ o lyp z2dl 2 gd

—3n—pm/ @ P | @

The first term in the second member of this equation is ;_r , and the
second term is ? of equation (¢) above. Now,for the ratio of the density

of ice to the mean density of the earth 2 Pratt uses (l_i’ and hence the

constant by which his results should be Himinished, if they were what
they purport to be, is

hy 7000 ..
= f= feet.
=19 feet=>583 feet,

56. We may test the correctness of Pratt’s formula for computing 14

by deriving the elevation of the disturbed surface at the center of hlS
ice sheet. TFor this point we have by equation (26)

I=n smg,

and hence

dI _ = g
355 5

The integral in (d), ﬁherefore, is

r ‘ ’
r [ 2 B _ INE 471IN8 471N _, V2
2,[ cos - cos ﬁdﬂ_n[<§> 5 §> +5<§>],4”_13_,

and (d) becomes

= ] (@

12

This assigns the height of the disturbed above the undlsturbed surface
at the center of the ice mass. Now,

ii_o 18856,
.15
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but Pratt’s formula (see page 237, Figure of the Earth) gives 0.1189, which
is only about 63 per cent. of the true value.! By a fortuitous compen-
sation of errors, however, Pratt’s formula gives a nearly correct result
for the elevation of the sea at the center of the ice cap, the error in the
potential for this point being about equal to the constant omitted. His
formula gives for this elevation 0.1189%,=0.1189x 7000 feet=S832 feet.
The correct value is (0.18856—+)h,="737 feet, which is about 13 per
cent. of itself smaller than Pratt’s value.

57. Heath.—The investigations of Heath may be found in numbers
CCVIII, CCIX, and CCXIII of the Philosophical Magazine. In num-
ber CCVIII he develops the theory of the effect on the sea level
of an ice cap of uniforn thickness and any angular radial extent,
and applies this theory to a numerical example. In number CCIX he
corrects a blunder by which he was led in his previous paper to the
conclusion that the ice cap would produce a rise of sea level in both
hemispheres. His last paper in number CCXIII is chiefly interesting
as a review and criticism of the work of Croll, Archdeacon Pratt, and
Sir William Thomson. . )

The method followed by Heath'is that of Laplace’s functions (spher-
ical harmonics). He takes account of the rearranged water on the
supposition that it covers the whole sphere and is free to permeate the
ice mass. He considers masses of uniform thickness ounly, arguing,
though not very cogently, that this was the probable form of the ice
cap. His mathematical processes are correct in principle, but his for-
mulas defining the position of any point of the disturbed surface are
rather uninviting to the computer on account of the slow convergence
of the series used. His series is the same as that in the second mem-
ber of our equation (66), which we have separated into the definite in-
tegral and rapidly converging series of the third member of. (66).

1That the first term in the second member of (d)' is ?]V: for the point in question is

easily proved directly. Thus, to termsof the order we neglect, the potential of the
mass is ‘

gt
Ve 2 9mr, sin B . hocos? . »df
=p
2rg sin B
ty 2
.r .
=2 rohopr {0 " cos —gcos‘z pdg

=4rohp ﬁél—‘g? 5

Dividing this by g=4rpnm We get

Vopg £ AVE_V 8 ip p L,
Om

Pm 1D 15
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58. In his numerical example Heath assumes an ice sheet of uniform ~
thickuess, 10,000 feet, to extend 30° in every direction from the pole.
For the ratio of the density of ice or sea water to the mean density of
the earth he uses . That is, in the notation of our equation (66) he
has

1=10,000 feet,
=300,

fl:&":l,
Pn Pn G

Heath gives the position of the disturbed surface at the two poles
and at points 35° distant from either pole. He uses fifty terms ot his
series. We will verify one of his results, viz, that assigning the eleva-
tion of the disturbed surface at the center of the ice cap. With the
j above data formula (66) becomes

i=x

5000 A fi(cos &) F,(3)
.v+4v__ﬂ_<I—7r.sm?g>+QoOOE : _T+1_>

.oi=l
N

At the center of the ice cap
a=0,

‘ _ I=n sin g,
Ji(cos a)=1.

The numerical values of the first ten terms of

F(f)
4o41
are, in order,
+0.02300, +0.00058,
+ .01203, — 00008,
-+ .00661, — .00039,
+ .00358, . — .00047,
. + .00172, ~— .00041.
The sum of these is
+0.04817.

Therefore the above equation Lecomes
v+ 4v=959 feet+120 feet = 1,079 feet.

For the same result Mr. Heath gives 1,078 feet.

59. In his review Heath first devotes some space to a eriticism of the
views of Croll and the work of Thomson. Croll had apparently held
the notion that the change in sea level due to an ice cap is essentially
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‘equal to the change in position of the center of gravity of the earth
and cap. This notion isindeed correct for the particular ideal case con-
sidered by Croll and. Thomson, but it is in general quite incorrect.
Heath points out this fact and conclades that the special case discussed
by Croll and Thomson affords us an inadequate conception of the actual
problem.

With reference to the investigation of Archdeacon Pratt, which h:
been published in number CCVIII of the magazine, Heath says:

I must confess, with some diffidence, that it appears to me radically erroneous.

He then proceeds to mention, correctly in the main, but with some
reservation, the defects of Pratt’s method. On one point, however, he
expresses some doubt as to the adequacy of his own process. He is
not sure that the order of approximation of his expression for the po-
tential of the ice cap is sufficient, and thinks this may require closer
investigation. We have cleared up this point in Article IV,

60. Thomson.—The contribution of Sir William Thomson to the dis-
cussion of this subject is appended in the form of a note to a paper by

- Oroll, On the Physical Cause of the Submergence and Emergence of

the Land During the Glacial Epoch, published in number CCIX of the
Philosophical Magazine. The note is brief, but it contains a clear state-
ment of the essential analytical considerations required in the solution
of the general problem, and of the decided simplification which results
when the ice sheet has the special form assumed for the purpose of dis-
cussion by Croll, namely, that of a hemispherical meniscus, whose thick-
ness (or density) varies everywhere as the sine of the latitude. In
analogy with the views of Croll, Thomson devises the following ideal

conditions, which are interesting as presenting the mechanical features -

of the problem in their simplest form. He says:

As an assumption leading to a simple calculation, let us suppose the solid earth to
rise out of the water in a vast number of small flat-topped islands, each bounded by
a perpendicular cliff, and let the proportion of the water area to the whole be equal
in all parts. Let all of these islands in one hemisphere be covered with ice, of thick-
ness according to the law assumed by Mr. Croll, that is, varying in simple proportion
of the sine of the latitude. Let this ice be removed from the first hemisphere and
similarly distributed over the islands in {he second.

Thomson gives no.analysis, but continues:

By working out according to Mr. Croll’s directions, it is easily found that the
change in sea level which this will produce will consist in a sinking in the first hemi-
sphere and rising in the second through heights varying according to the same law
(that is, simple proportionality to sines of latitudes), and amounting at each pole to

(1—w)it
1—aw’
where ¢ denotes the thickness of the ice crust at the pole, ¢ the ratio of the density
of ice, and w that of sea water to the earth’s mean density, and @ the ratio of the
area of ocean to the whole surface.

61. We may readily get Thomson’s result: from equation (66). Thus,

the change in position of any point of the sea surface will be, if we
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represent the thickuess of the ice at any point whose polar distance is
B by hy cos S,

/ ' ﬂv_;—_ﬁd__v) ho cos fdf=
0 :
3\ 1(cos a / dlg}{ﬁ ) cos pag
—ho— .

But from equation (46)

ar(f)_
g ?_f(cos £) sin g;

and by the theory of Laplace’s functions

/”f,-(cos f3) cos @ sin fdS=0,
0 -

except when ¢=1. In this case, since f;(cos §)=cos G, the last integral

becomes
I
/ cos?f sin ﬂdﬂ:%.
0

Therefore, observing that f; (cos a)=cos a, a being the p(‘)lar distance
of any point of the sea surface, we get

¢

T p h
v+ Av) T
/ 4o+ 4v) g hy cos ﬁdﬁ— 1” o cos a. (e)
pm

Now, since the ratio of the area of the ocean to the whole surface of
the earth is assumed in Thomson’s problem to be &, we must replace p
in (e) by (1—w)p and p, by wp,. Making these substitutions, and put-

ting a=0, the second member of (¢) becomes -

' | (=)L
p"pm, (f)
11—l

P
This is Thomson’s result.
Knowing the fact expressed by (¢), namely, that the transfer of such:
a meniscus as we are considering from one hemisphere to the opposite
one would change the sea level at any point by an amount proportional
to the cosine of the polar distance of that point, we may get the result
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(f) by equating the sum of the moments of the transferred ice and
water to the moment of the whole earth. In other words, this partic-
ular case requires only the amount of shifting of the earth’s center of
gravity. . Calling this amount ¢, and taking a plane perpendicular to
the axis of the meniscus at the disturbed center of gravity of the earth
as moment plane, the equation of moments is

(l—w)pjowzmo sin 6, rodf. hycos .7y cos 84+ -

r _ d
@P, f 27r, sin 6, rdf . 61 cos 6. r cos 0=§ 730,071,
0 : :

This gives
(1—&3)710£
61: n ,
1—e
p77‘l

which is the same as (f).
In bis numerical example Thomson takes

hio=6,000 feet,

2
W= g,
ﬁ:l, and &’:%.

° p m 6 / ‘)-m. 1

These data give 379 feet as the change in sea level at the pole during
the interval between the epochs of minimum and maximum glaciation.
This is the greatest change in sea level that could occur under the as-
sumed conditions. :

62. It is to be observed that the numerical results of Pratt(corrected),
Heath, and Thomson are not directly comparable with each other.nor
with the results we have computed in Article XIV, since they are all
based on different data. They represent effects due to causes of the
same kind, but of widely differing magnitudes. No statement of these
results would be intelligible without an accompanying statement of the
data on which they rest. To show clearly how widely different writers
differ in their data the latter have been collected in a tabular form De-
low. It will be remembered that Pratt took no account ot the effect of
the rearranged water:!

! One of the most important contributions to the discussion of the effects of conti-
nental glaciers on the sea level has appeared since the manuscript of this paper was
placed in the printer’s hands, viz: Die Geoiddeformationen der Eiszeit, von Erich
von Drygalski, Dr. Phil. W. Pormetter, Berlin, 1837.
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. Table showing data used by different authors in discussing the problem of glacial submbr-

. gence. o
Ratio of Ratio of
density of | density of Angalar
ice to mean | sea water to
¢ ; ity| rdius of Thickness of ice at
Author. ilegxﬁtbg.ot '“e")‘t?eg:f't'ﬁ't) jcemags. |angular distance from
ﬂ {)o.\ '80 its axis.
° Feet.
)53 13 7 R b P, 90 7,000 cos?B
Heath ...oooiienn ot 3 P 30 10, 000 uniform.
Thomson «.coceeennnn 3 r 90 6, 000 cos B. .
. : sinn 3 8
Woodward....cevanan. ¢ e 38 10, 000 ( 1— g ﬁo)

XVI. VARIATIONS IN SEA LEVEL ATTRIBUTABLE TO CONTINENTAL
MASSES. .

63. To illustrate the use of the theory developed in determining the
disturbance of the sea level attribntable to a continental mass we shall
consideér, in addition to some observations on the general features of
the subject, the special case presented by the largesb of the continents,
namely, Europe and Asia.

In contemplating this problem it is important to distinguish two ex-
treme hypotheses relative to the nature of the earth’s crust. On the
one hand, we may suppose that a continent is simply a superficial ag-
gregation of matter, which, if removed, would leave a sensibly centro-
baric spheroid; in other words, the presence of a continent does not
imply that beneath it the earth’s crust is any less dense than beneath
the ocean. On the other hand, we may suppose that the several radial
element prisms of the earth’s crust are in a state approximating to hy-
drostatic equilibrium, and hence, that the mere existence of a continent
implies a defect of density in the strata beneath it. According as we
proceed from the one hypothesis or the other we shall arrive at widely
differing results, which may be regarded, however, as the limits between

which the facts lie.

64. Assuming, in accordance with the first h ypothesw, that the forma.
tion of the continent in question involved a transfer of the earth’s
center of gravity towards the center of the continent, it will be of in-
terest to compute the position of the disturbed sea surface with respect
to spherical surfaces of the same radius and concentric abous the origi-
nal and disturbed centers of gravity, respectively. For this purpose
we may use formulas (64) and (79)., These are based on the assumption
that the attracting mass is of uniform thickness. A more reasonable
assumption is, perhaps, that the continents slope up rather rapidly, but
not abruptly, from the sea shore, attaining their average height at no
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great distance inland; and more accurate knowledge than we now
possess might render it desirable to use some form of the more general
equation (83), which takes account of variations in thickness of the
attracting mass. As we can not expect, however, at present, to repre-
sent the actual shape of a continent very closely, and as we shall not
attempt to estimate the attraction of the rearranged free water on itself,
- it will be best to confine attenfion to masses of uniform thickness, which
give effects greaterin gencral than the probable actual effects.

65. For the angular radial extent and the relation of thickness and
densities for the continent of Europe and Asia we take the following
data substantially as they are glven by Helmert in his Geodiisie', Part
1I, pp. 313, 314, viz:

p=arc of 389,
3hp/p,,=4,000 meters
=13,124 feet.

The last expression is arrived at by taking for the average depth of
the sea 3,438 meters, and for the average elevation of the continent 440
meters, the density of the continental mass being assumed to be half
the earth’s mean density, or 2.8, and that of sea water 1. Thus we
have a mass 3,438 meters thick, whose effective density is 2.8—1=1.8,
and an additional mass 440 meters thick of density 2.8. These two are
equivalent, so far as their potential to terms of the order we neglect is
concerned, to a single mass of density 1.8 (or4p,) and 4,120 meters
thickness. Hence, in round numbers, the relation above.

The value for the angular radius 3 of the continent is equivalent to
about 2,600 miles, measured along the surface of the earth. Itis the
same radius assumed in Article XIV for the ice mass. This value is
also very nearly that angular extent which a continent of uniform
thickness must have to produce the maximum upheaval of water
along its border (see section 23).

The position of the disturbed surface relative to the two spherical
surfaces concentric with the original and disturbed centers of gravity,
respectively, will be given at intervals of 10° from the center of
the continent to the point opposite, or 130° from that center. The

requisite values of I /z sin /j for this purpose have been computed

from formulas (70) and (71), ubmg the logarlthms of g1, g5, ete., ki, ka,
etc., given on page 69. To determine the slope of the disturbed surtace
with respect to the spherical surfaces of reference (or the deflections of
the plumb line) at intervals of 10° from the center of the continent,
use has been made of equations (73) and (80), the differential coefficients
dI /da being computed from (74) and (75). Omitting the details of
the computation, the nature of which is readily apparent from the

I For {ull title sce page 86.
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equations referred to, the results are embodied in the follcwing table.
The first column of the table gives angular distances increasing by in-
crements of 10° along a great circle from the center of the continent.
The second and third columns give foreach angular distance the elevation
or depression of the disturbed surface relatively to the spherical sur-
faces concentric with the undisturbed and disturbed centers of gravity
of the earth, respectively, elevations being indicated by the plus sign
and depressions by the minus sign. "The fourth and fifth columas give
for each angular distance the deflections of the plumb line or inclina-
tions of the disturbed surface to the spherical surfaces of reference.
The signs of these deflections are minus or plus according as the angle.
between the plumb line or normal at any point of the disturbed surface
and the axis of the continent is greater or less than the angle between:
the radius vector of the same point and the axis of the continent (see
Fig. 7). : : '

Table showing the superior limiting ¢ffects in disturbing the sea level atiributable 1o the
continent of Europe and Asia.

Bull. 48;—6

Elevation or depression of dis- | Inclination of disturbed sur-
turbed surface with respect to— face with reference to—
Angular
distance from | Spherical sur- | Spherical sur- | Spherical sur- | Spherical sur-
center of face concentric | face concentric | face concentric | face concentric
continent. with undis- with dis- with undis- with dis-
tarbed center' | turbed center | turbed center | turbed center
of gravity of gravity of gravity of gravity
of ‘earth. of earth. of earth. of earth.
° Feet. Feet. " "
00 +2,881 +1, 637 —0.0 -~0.0
10 +2, 812 +1,587 — 7.1 — 5.6
20 +2,588 +1,419 ~17.7 ~13.5
30 +2,148 +1,072 —33.9 —27.7
. 40 +1,099 + 146 —51.3 —143.5
50 + 444 — 356 —24.2 —14.8
60 + 111 — 511 —14.7 — 4.1
70 — 104 — 529 —10.0 + 1.6
N 80 — 955 — 4m — 7.2 + 4.9
90 — 365 — 365 — 5.4 + 6.9
100 — 448 — 232 — 4.1 + 8.0
- 1o — 512 — & — 3.2 + 8.4
120 -- 561 + 61 — 2.4 + 8.2
130 — 600" + 200 - 19 + 7.5
140 — 629 + & — 1.4 + 6.5
150 — 650 + 426 — L0 + 5.1
160 — 665 + 504 — 0.7 + 8.5
170 — 673 + 552 - 0.3 + 1.8
180 — 676 + 568 — 0.0 + 0.0
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Axis

F1G. 7.

66. The ‘relations of the disturbed surface to the spherical surfaces
of reference are shown in Fig. 7. The full-line circles in this diagram
represent great circles of the spheres of reference onascale of 53545550575 -
The position of the continent is indicated by the arc AB of the circle,
whose center C is the undisturbed center of gravity of the earth., The
disturbed center of gravity, or the center of the other circle, is at C'.
The position of the disturbed surface is indicated by the dotted line.
The radial distances of this line from the circles of reference and the
distance Detween the centers (¢ and (' are exaggerated 2,500 times.
QPR represents a normal to the disturbed surface at. P.

67. Forthe elevation of the disturbed surface at the immediate border
of the continent we find from the second of equations (67) and from
(79) 1,380 feet or 400 feet, according as the sphere of reference is con-
centric with the undisturbed or with the disturbed center of gravity of
the earth. ’

68. It should e remarked in this connection that the results given
inthe preceding table, and, indeed, all those in this section pertaining
to the continent of Europe and Asia, are such as would exist under the
assumed -conditions if there was no other continent. The complete
problem requires the determination of the resultant action of all the
continents at any point of the sea surface. ¥or a method of determin-
ing this resultant, when the components due to the several continents
are known, the reader may be referred to Helmert’s Geodisie.
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89. To determine the deflection of the plumb line at the level of the
sea along the border of the continent, we observe that according to
our assumed data the portion of the continental mass lying below the
sea level is about 11,000 feet thick and has an effective density of 1.8,
while the portion above the sea level is about 1,400 feet thick and has
an effective density of 2.8, We may compute the deflection of the
plumb line due to each of these portions by means of equation (77) and
add the results to get the total deflection. TFor the lower mass we have
for use in (77)

h=11,000 feet, p=1A8, »=11,000 feet ;
and for the upper mass
h=1,400 feet, p=2.8, ©_v=0 feet.

Hence the deflections due to the upper and lower masses are 138 and
34/ vespectively, and their sum is 172, This deflection is relative to
a radius drawn to the undisturbed center of gravity of the earth.
The deflection relative to a radius drawn to the disturbed center of
gravity is by equation (80) 8'/ less, or 164",

70. Under the conditions of the second hypothesis, which supposes
the several radial element prisms of the earth’s crust in a state border-
ing on hydrostatic equilibrium, it is evident that the disturbances of
the sea level attributable to a continental mass must be of a low order.
They must, in fact, be confined to terms of no higher order than those
which hiave been neglected in our equations defining the position of the
disturbed sea surface. The preciseevaluation of these terms would offer
difficulties practically insuperable in all cases, except those which presens®
thesimplest arrangement of densities in the element prismsof the eartl’s
crust. We may form a sufficiently definite idea of their smallness,
however, by considering the ideal question of the effect on the sea level
of the radial transfer of a stratum of the earth’s crust from some posi-
tion below to some position above the sea surface.

- Let the stratum considered be a portion of a spherical shell ; let its
border be circular and of angular radius 8. The effect on the sea level
will obviously be greatest at the axis of the stratam. Hence, we only
need to derive the change in potential at the sea level and at this axis
due to the transferred stratum. Suppose the stratumraised to a heighs
k; above sea level. Let its uniform thickness in this position be # and
its uniform density p,.- Then, # being the radius vector of any element
of the mass and »/ the radius vector of the sea surface, the potential
of the stratum at its axis and at sea level will be

" +h+6
2o l r2dr sin 60 =
i o Vi r?2rricos 8
BN SR A d
2p17r/ I:\/W-H’Z—rr' cos S—(r— r’):l rer,

7'+ hi
(167)
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. This to terms of the first order inclusive is

4r't X sin E 1+3t1+6hl_ t1'+2h]
: 2 4r! 4y - p
¥ SID-2—

(97)

If we suppose the stratum in its original position is below the sea
surface a distance &, and that its uniform thickness and density in this
position are t, and p,, respectively, the resulting potential at the same
point of the sea surface is

4 potyr sin B (1_3t2+,67f2 t2+2"2/j>. (98)
5.
47" sin 5

Since piti=pute; 1. e., since the mass of the stratum in the two posi-
tions is the same, though its thickness and density may vary, the differ-
ence of (97) and (98) is

47”p1t17[ Slﬂ“ﬁ 3f1+3tzz-?hl+6hg_tl—t2+2h1j—2hg .
2 - 41! sin‘/_)

(99)

This expression shows ‘that a stratnm of the earth’s crust might be
transferred through a considerable distance radially without materially
affecting the sea level.

Thus, for example, suppose

h=1,=10,000 feet, - t=1,=5,000 feet.
Then the fraction in the parenthesis of (99) becomes z5. In other
words, the potential at the sea surface under the center of the stratum
would be only 37 as great as that due to an uncompensated gxternal

stratum or internal vacuity of equal effective mass.
In the case of the continent of Europe and Asia we have (section 69) -

hl=0, 11=1,400 feet-, /)1=2~8-
These in (97) give

1
4’7 sin 2 ﬂ 1400x 2.8( 1+; a
( 20000 60000 sin /j) (a)

4
Likewise for use in (98) we have
k=0, t,=11,000 feet, p=1.8.
These give

497 sin ﬂ 11000 1.8 1— .
( 2550 7640 sin ﬂ) ®)
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The sum of (a) and () reduced to unit density is
. 1 1 .
arimsin Bosof1- 1 1
p ¢
2 ( 3000 9000 sin /j) (0

This is the potential to terms of the first order, inclusive of the whole
continent at its center and at sea level, on the supposition that there
is no defect in density of the underlying strata. But if we suppose a
defect in density -of 0.237 uniformly distributed through a depth of
100.000 feet below the sea level, we must diminish fhe result (¢) by

4 7r/3 93720 _Oi__l_' .
280 840 siug.

1 1
4r’ /’) 23720 +—
) (509 9005111/5 >

or about 335 of the potential due to the uncompensated mass. Under
these conditions of compensation, theretore, the elevation of the seaat
the center of the continent of Europe and Asia would be only about 10
feet, whereas the first hypothesis would require an elevation of about
2,900 feet (see section 65.)

71. Notwithstanding the feeble effect a continental mass, whose radial
elements are in a state approximating to hydrostatic equilibrium, would
have in elevaling or depressing the sea surface, it is conceivable that a
considerable deflection of the plumb line might be produced by such a
mass along its border.” If, for example, we suppose the visible mass of
the continent of Europe and Asia to be compensated by a defect in
density of 0.18 uniformly distributed through a depth of 135,000 feet
below sea level, the deflection of the plumb line along the border of this
continent would be diminished by 117, leaving still a deflection (section
69) of 172"/ —117=>55" relative to the undisturbed sphere of reference.
This deflection, 55", it should be observed, is the maximum possible
value under the assumed conditions. If the degree of compensation as-
sumed actually exists, it is probable that the real maximum deflection
of the plumb line is much less than 55, since our calculation premises -
a vertical coast wall for the continent, whereas it presents for the mos¢
part only a moderately steep slope along the sea shore.

The remainder is

XVIL. LIST OF AUTHORS CONSULTED.

" 72, The authors whose works have been specially consulted in the
preparation of the preceding pages, and the full titles-of bhelr works,
dates of publication, etc., are named below :

Bruns, Dr. Heinrich. Die Figur der Erde. Publication des konigl. preussischen
geoditischen Institutes. Berlin, 1878.
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Clarke, Col. A. R. Geodesy. Oxford, 1880. ,

Fischer, Dr. Philipp. Untersuchungeniiber die Gestaltder Erde. Darmstadt,1868.

Helmert, Dr. F. R, Die matbematischen und physikalischen Theorieen der hiheren
Geodiisie. II Teil. Leipzig, 1884,

Laplace. Mécanique Céleste. Tome 3. Paris, 1878.

Pratt, John H. A Treatise on Attractions, Laplace’s Functions, and the Figure of
the Earth. TFourth edition. London and New York, 1371,

Stokes, G. G Mathematical and Physical Papers, Vol. II, especially the paper On
the Variation of Gravity at the Surface of the Earth, Cambridge University Press,
1883,

Thomson and Tait. Treatise on Natural Philosophy. Vol. I, Part II. Cambridge,
1883. -
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