The Distribution of Rare-Earth Elements in Minerals of the Monazite Family

U.S. GEOLOGICAL SURVEY BULLETIN 2140

AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY

Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List." Publications that may be longer be available.

Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry.

Order U.S. Geological Survey publications by mail or over the counter from the offices listed below.

BY MAIL

Books

Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general interest (such as leaflets, pamphlets, booklets), single copies of Earthquakes & Volcanoes, Preliminary Determination of Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from

U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Subscriptions to periodicals (Earthquakes & Volcanoes and Preliminary Determination of Epicenters) can be obtained ONLY from the

Superintendent of Documents Government Printing Office Washington, DC 20402

(Check or money order must be payable to Superintendent of Documents.)

Maps

For maps, address mail orders to

U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Residents of Alaska may order maps from

U.S. Geological Survey, Earth Science Information Center 101 Twelfth Ave., Box 12 Fairbanks, AK 99701

OVER THE COUNTER

Books and Maps

Books and maps of the U.S. Geological Survey are available over the counter at the following U.S. Geological Survey offices, all of which are authorized agents of the Superintendent of Documents.

- ANCHORAGE, Alaska-Rm. 101, 4230 University Dr.
- LAKEWOOD, Colorado-Federal Center, Bldg. 810
- MENLO PARK, California–Bldg. 3, Rm. 3128, 345 Middlefield Rd.
- **RESTON, Virginia**–USGS National Center, Rm. 1C402, 12201 Sunrise Valley Dr.
- SALT LAKE CITY, Utah–Federal Bldg., Rm. 8105, 125 South State St.
- SPOKANE, Washington–U.S. Post Office Bldg., Rm. 135, West 904 Riverside Ave.
- WASHINGTON, D.C.-Main Interior Bldg., Rm. 2650, 18th and C Sts., NW.

Maps Only

Maps may be purchased over the counter at the following U.S. Geological Survey offices:

- FAIRBANKS, Alaska-New Federal Bldg, 101 Twelfth Ave.
- ROLLA, Missouri-1400 Independence Rd.
- STENNIS SPACE CENTER, Mississippi-Bldg. 3101

The Distribution of Rare-Earth Elements in Minerals of the Monazite Family

By Sam Rosenblum and Michael Fleischer

U.S. GEOLOGICAL SURVEY BULLETIN 2140

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON, D.C.: 1995

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

Library of Congress Cataloging-in-Publication Data

Rosenblum, Sam. The distribution of rare-earth elements in minerals of the monazite family / by Sam Rosenblum and Michael Fleischer. p. cm.—(U.S. Geological Survey bulletin ; 2140) Includes bibliographical references. Supt. of Docs. no.: I 19.3:2140 1. Monazite. 2. Earths, Rare. I. Fleischer, Michael, 1908– II. Title. III. Series. QE75.B9 no. 2140 [QE391.M75] 557.3 s—dc20 95–32912 [549'.72] CIP

CONTENTS

Abstract	1
Introduction	1
Background Information	1
Computation of Atomic Percentages from Analyses	2
Descriptions of Tables and Discussion.	3
Explanation of Tables 2–9	4
References Cited	58

FIGURES

1.	Ternary diagram showing relations in the monoclinic system	
	$(Ce, La, Nd)PO_4$ - CaTh $(PO_4)_2$ -ThSiO ₄	2
2.	Graph showing relations of atomic ratios from the data of table 8	4

TABLES

1.	Computation of atomic percentages and their use in deriving chondrite-normalized ratios	3
2.	Monazite-(Ce) from igneous and metamorphic rocks	5
3.	Monazite-(Ce) from placers	29
4.	Dark monazite-(Ce)	36
5.	Monazite-(La), monazite-(Nd), and gasparite-(Ce)	38
6.	Cheralite	38
7.	Huttonite	39
8.	Average compositions of monazite-(Ce)	40
9.	Previously published average compositions of monazite	41
10.	Sources of data for monazites given in tables 2–7	41
11.	Locality index	55

•

THE DISTRIBUTION OF RARE-EARTH ELEMENTS IN MINERALS OF THE MONAZITE FAMILY

By Sam Rosenblum¹ and Michael Fleischer²

ABSTRACT

Minerals of the monazite structural group include phosphates (predominant), arsenates, and silicates that have the general formula ABO₄, where A=Bi, Ca, Ce, La, Nd, Th, U, Fe, Pb, Y and B=P⁺⁵, As⁺⁵, Al⁺³, and (or) Si⁺⁴. Monazite-family minerals contain essential PO₄ and the light rare-earth elements lanthanum, cerium, and neodymium; they contain minor amounts of other light rare-earth elements and heavy rare-earth elements. Monazite-(Ce) is the predominant species.

Tables 2–4 contain analyses of 772 monazites wherein the 14 naturally occurring rare-earth elements are given in atomic percentages. In addition, a derived atomic percentage for yttrium is given, and values are shown for sigma (Σ) (the sum of La+Ce+Pr), for La-Nd, Sm-Ho, and Er-Lu sums, for weight percentages of RE₂O₃ (RE is the sum of rare-earth elements), ThO₂, and U₃O₈, and for La/Nd. Eighteen analyses for other varieties of monazite, gasparite-(Ce), cheralite, and huttonite are given in tables 5–7. The average compositions of monazite-(Ce) from various sources are given in tables 8 and 9. Analyses of monazite-(Ce) are crossreferenced by author and location in tables 10 and 11.

INTRODUCTION

The monazite structural group of minerals consists of monoclinic arsenates, phosphates, and silicates of the general formula ABO₄, where A=Bi, Ca, Ce, La, Nd, Th, U, Fe, Pb, and Y and B=As⁺⁵, P⁺⁵, Al⁺³, and (or) Si⁺⁴. The presently known minerals in this group are:

Brabantite $CaTh(PO_4)_2$

²Smithsonian Institution, Washington, D.C. 20560.

Cheralite	(Ca,Ce,Th)(P,Si)O ₄
Gasparite-(Ce)	(Ce,La,Nd)AsO4
Huttonite	ThSiO ₄
Monazite-(Ce)	(Ce,La,Nd)(P,Si)O ₄
Monazite-(La)	(La,Ce,Nd)PO ₄
Monazite-(Nd)	(Nd,La,Ce)PO ₄
Rooseveltite	BiAsO ₄

Rooseveltite has not been reported to contain rare-earth elements; hence, it will not be considered further here. Brabantite has been reported to contain 3.05 percent RE_2O_3 (Wang, 1978) (RE is the sum of rare-earth elements), but individual lanthanides were not determined.

The relationships of monazite, cheralite, huttonite, and brabantite are shown in figure 1.

Within the monazite group, the monazite family consists of minerals containing light rare-earth elements (mainly lanthanum, cerium, and neodymium) as essential cations and phosphate as the essential anion. Nonessential thorium, as well as minor amounts of calcium, iron, uranium, and lead, may substitute for as much as 25 percent of the rare-earth elements; and silicon, as well as minor amounts of aluminum, may substitute for as much as 25 percent of the phosphorus, as indicated in Bowie and Horne (1953, fig. 1).

If the cerium content of monazite-(Ce) is exceeded by another rare-earth element or if normally minor elements exceed 10 percent, then the analysis represents an unusual variety (see table 5). Thus, the high uranium content (15.64 percent) of a single analysis as described in the headnote of table 8 would allow a varietal name of monazite-(Ce,U) or uranian monazite-(Ce), according to the system proposed by Levinson (1966) and Bayliss and Levinson (1988).

BACKGROUND INFORMATION

The distribution of the lanthanides and yttrium in monazite family minerals has been the subject of many papers. Monazite was recognized long ago to be a mineral that concentrates the light lanthanides, in accordance with their

¹U.S. Geological Survey, retired; 12165 W. Ohio Place, Lakewood, Colorado 80228.

Figure 1. Relations in the monoclinic system (Ce, La, Nd)PO₄-CaTh(PO₄)₂-ThSiO₄. Modified from Bowie and Horne (1953).

occupancy of positions with co-ordination number ten (10). The considerable effect resulting from the geologic environment of formation on the distribution of the lanthanides was not recognized, however, until the work of Murata and co-workers (1953, 1957, 1958), confirmed in a review by Fleischer and Altschuler (1969).

Other reports describing monazite (and other rare-earth element minerals) in specific rock types include those by Holt (1965) (carbonatites), Marchenko (1967) (gneisses and migmatites), Heinrich and Wells (1980) (several associations), and Clark (1984) (several associations). In addition, papers by Ploshko (1961) and Marchenko and Goncharova (1964) discuss formation of monazite by pneumatolytic and hydrothermal processes. Rosenblum and Mosier (1983) described a dark monazite that is neoblastically formed in carbonaceous shale at temperatures of as much as 300°C in contact-metamorphic zones; other investigators preferred low-grade regional metamorphism for the origin of this variety of monazite.

Finally, we note that some papers dwell on the physical-chemical reasons for fractionation of rare-earth elements found in rocks and minerals. Balashov and Pozharitskaya (1968) indicated that decrease in temperature and change of alkalinity are the main factors determining the composition of rare-earth elements in minerals of carbonatites, but that the distribution of rare-earth elements between coexisting minerals is determined by their crystal chemistry. Wells (1977) condensed a survey of geochemical literature to illustrate the various factors that control partitioning of chemically similar light rare-earth elements. These factors include (1) ionic radius, (2) crystal structure, (3) basicity, (4) oxidation state, and (5) stability of complexes.

COMPUTATION OF ATOMIC PERCENTAGES FROM ANALYSES

The literature is replete with mineral analyses done by a number of different methods and reported in metal or oxide percentages, parts per million, parts per billion, counts per second, and other units. Comparing such data from article to article is usually difficult; thus, a need became apparent for comparable dimensionless data. We recommend that chemical analyses of minerals, reported in any units, be converted into atomic percentages to allow easy comparison of any and all data.

Atomic percentages are calculated by dividing the reported analytical value (in any units) of each element by the atomic weight of the element to obtain an atomic proportion. Each atomic proportion, multiplied by 100 percent and divided by the sum of all the atomic proportions, yields the atomic percent for the element. The sum of all atomic percentages should equal 100 percent.

	Weight	Atomic	Atomic	Chondrite	Chondrite-
Element	percent	proportion	percentage	atomic percentage	normalized ratio
La	24.2	0.17420	24.60	10.14	2.43
Ce	48.1	0.34325	48.47	26.21	1.85
Pr	5.3	0.03761	5.31	3.94	1.35
Nd	17.5	0.12130	17.13	18.92	0.91
Sm .	2.7	0.01796	2.54	5.89	0.43
Eu				2.20	
Gd	1.4	0.00890	1.26	7.48	0.17
Tb	0.1	0.00063	0.09	1.36	0.07
Dy	0.5	0.00308	0.43	9.00	0.05
Но				1.98	
Er	0.1	0.00060	0.08	5.71	0.01
Tm				0.84	
Yb	0.1	0.00058	0.08	5.49	0.01
Lu				0.84	
Total	100.00	0.70811	99.99	100.00	

Table 1. Computation of atomic percentages and their use in deriving chondrite-normalized ratios. [Chondrite atomic percentages were computed from abundances in Evensen and others (1978, p. 1203). Leaders (--) indicate no value reported]

In addition to allowing rapid comparisons of analytical data, atomic percentages of such data may be converted into chondrite-normalized ratios (CNR) by simply dividing these values by the atomic percentages of the same elements in chondrites. In table 1, the fifth column shows the atomic percentages of the 14 lanthanides in the average chondrite (Evensen and others, 1978), and in the sixth column are the chondrite-normalized ratios of the lanthanides in the example.

DESCRIPTIONS OF TABLES AND DISCUSSION

This report is an update of Fleischer and Altschuler (1969) and includes a compilation of all available determinations, as of 1988 (with only two exceptions), of the rare-earth elements (lanthanides and yttrium) in minerals of the monazite structural group, 790 in all. Monazite-(Ce) is the overwhelmingly dominant mineral, accounting for 772 of the analyzed samples.

In tables 2–7, atomic percentages of the lanthanides are listed in order of increasing sigma (Σ) (the sum of the atomic percentages of La+Ce+Pr). Also given is the ratio of the atomic percentage of yttrium to the sum of the atomic percentages of yttrium and all lanthanides [100Y/(Y+Ln)]. This value was computed from the weight percentages of the reported lanthanides and yttrium and is shown in parentheses to indicate that it is not directly comparable to the atomic percentages for the 14 lanthanides (which are summed to 100 percent, excluding yttrium). In addition, the weight percentages of ThO₂ and U₃O₈ in the analyzed samples are given where available. The averages tabulated in tables 8 and 9 show the effect of the type of geological occurrence on the distribution of rare-earth elements in monazite-(Ce)—namely, the general increase of the light lanthanides and the decrease of yttrium from granitic pegmatites to granitic rocks to alkalic rocks and carbonatites. These generally antithetic relations may not be used, however, with any precision to determine provenance. We note that total rare-earth oxide contents increase in monazite from gneisses to granitic rocks to granitic pegmatites to metamorphosed black shales, for the rock types for which averages could be calculated.

From the data of table 8, we plotted points on log-normal graph paper (see fig. 2) for La/Nd (circles) versus sigma and 100Y/(Y+Ln) (squares) versus sigma. For the La/Nd, a straight line was easily drawn from the points for monazites from metamorphosed black shales (F) and granitic pegmatites (A) to those from carbonatites (E) and alkalic rocks (D). Why this trend line indicates a log-normal distribution of the light rare-earth elements is not apparent at this time; however, it is apparent from the moderate rise in the trend line for the circled points that the content of light rare-earth elements increases as sigma increases. An opposite relation for the squared points is expected, but we hesitate to draw a trend line between squared points A and E, considering the divergence of points D and F. Perhaps more data are needed to better define this relation.

If a trend line is drawn between squared points A and D, to show the distribution of heavy rare-earth elements (represented by the yttrium content) in monazites, then we might speculate that heavy rare-earth elements apparently remain static with increasing sigma. In addition, monazites from strongly metamorphosed rocks (C), carbonatites (E), and black shales (F) apparently are depleted in heavy rare-earth elements. The heavy rare-earth element distribution in mon-

Figure 2. Relations of atomic ratios from the data of table 8. Points A–G are discussed in text.

azites from placers (G) lying between squared points A (granitic pegmatite) and B (granitic rocks) indicates sources in the calc-alkaline series, obviously a mixture of pegmatitic and granitic rocks.

The range of composition for rare-earth elements in monazite is relatively less than that in minerals of low rare-earth element content. Also, the variation in the amounts of rare-earth elements in monazite is far less satisfactory as a guide to type of host rock than is true for either apatite (Fleischer and Altschuler, 1969, 1986) or titanite (Fleischer, 1978).

We infer from tables 2 and 3 that the compositions of monazite-(Ce) in granitic rocks and in gneisses are not notably different. Rosenblum and Mosier (1983) showed, however, that the average composition of dark monazites (table 8, column F) is distinct from that of yellow monazites of different genesis, especially in their high europium and low thorium contents.

Table 10 lists authors, localities and sources for monazite analyses in tables 2–7. Table 11 gives localities for monazite-(Ce) analyses in tables 2–4.

EXPLANATION OF TABLES 2–9

The compositions in these tables are given in atomic percentages of the elements, and the sum of the lanthanides in each columns is 100 percent. The ratio 100Y/(Y+Ln) is also an atomic ratio. Footnotes in tables 2 and 3 indicate if any of the following calculations were done:

Footnote 1	Tb+Y calculated as Y
Footnote 2	Eu+Gd calculated as Gd
Footnote 3	Tb+Dy+Y calculated as Y

A leader (-) indicates either not reported or less than 0.1 atomic percent. The entry "Method" gives the analytical method used, with the following abbreviations:

- AAS Atomic absorption spectrophotometry
- CH Chromatography
- EP Electron microprobe
- ICP Inductively coupled plasma
- INA Instrumental neutron activation
- OS Optical spectrography
- XF X-ray fluorescence

The following sums are reported:

La-Nd	Sum of La+Ce+Pr+Nd
Sm-Ho	Sum of Sm+Eu+Gd+Tb+Dy+Ho
ErIn	Sum of Er+Tm+Vh+Lu

Er-Lu Sum of Er+Tm+Yb+Lu

 RE_2O_3 , ThO_2 , and U_3O_8 are in weight percent, as reported by references author (s). La/Nd is the ratio of atomic percentage of La divided by the atomic percentage of Nd.

Acknowledgments.—The writers wish to express their gratitude to the following members of the U.S. Geological Survey for help in improving this paper: Mary Woodruff, for generating table 10, keypunching the initial draft, and checking the computations; Margo Johnson, whose computer expertise was vital in getting this report into final copy form for review; and Edward C.T. Chao, Eugene E. Foord, Andrew E. Grosz (retired), William C. Overstreet (retired), and G.B. Sidder for useful reviews.

	1	2	3	4	5	6	7	8	9	10	11	12
La	11.9	21.5	20.3	9.9	21.3	8.6	13.7	10.3	12.4	10.4	10.3	10.4
Ce	35.4	29.7	32.3	35.2	32.8	39.8	41.7	39.3	37.3	42.1	41.9	41.9
Pr	-	-	-	8.4	-	5.8	-	6.6	8.4	5.8	6.2	6.1
Nd	31.9	23.8	30.4	26.1	28.0	24.1	26.0	38.0	24.2	28.5	24.4	26.6
Sm	12.7	6.0	8.9	11.3	5.3	16.3	9.2	5.8	9.7	10.1	10.1	11.1
Eu	0.8	0.6	0.7	-	0.6	_	-	-	0.2	-	0.5	-
Gd	5.4	4.7	3.3	7.7	4.2	5.4	9.4	-	5.6	3.1	6.6	3.9
Tb	0.6	0.9	0.7	0.5	0.8	-	_	-	0.6	-	_	-
Dv	13	53	2.8	0.9	3 5	-	_	-	1.2	-	-	-
Но	-	-	-	-	-	_	_	-	0.1	-	-	-
Er	_	19	0.2	-	0.8	_	_	-	03	_	-	-
Tm	_	1.7	0.2	_	-		_	_	-	_	_	-
Vh	_	5.6	0.4		27	_	_	_	_	_	_	-
In		5.0	0.4		2.7	-		_	_	_	_	_
100V/(V+In)	(26)	(33.7)	(4.5)	-	(23.1)	(17)	(8.0)			(53)	(4 0)	(4.6)
Method	(2.0)	(33.7) OS	(4.5) OS	- VE	(23.1) OS	(4.7) VE	(0.7) INIA	ED.	YE	(J.J) VE	(4.0) INIA	(4.0) YE
Niethou S-Lat Cat Dr	47.2	51.0	52 6	AP 52.5	541	54.2	11NA 55 A	560	AI 50 1	50.2	50 /	50 /
L=La+Ce+Fi	47.5	75.0	32.0	33.3 70.6	J4.1	54.Z	55.4 01.4	04.2	20.1	J0.J 06 0	20.4 00.0	J0.4 95.0
La-Nu Sm Ua	19.2	17.0	83.0 16.4	79.0	82.1	78.5	81.4 19.6	94.Z	02.3	00.0	02.0	65.0 15.0
Sm-Ho	20.8	17.5	16.4	20.4	14.4	21.7	18.0	5.8	17.4	13.2	17.2	15.0
Er-Lu	-	7.5	0.6	-	3.5	-	-	-	-	-	-	-
RE_2O_3	-	-	-	-	-	-	60.12	68.96	-	-	00.48	-
La/Nd	0.37	0.90	0.67	0.38	0.76	0.36	0.53	0.27	0.51	0.36	0.42	0.39
ThO ₂	-	-	-	-	-	4.1	6.18	0.20	-	3.8	1.21	4.0
U_3O_8		-		-	-	-			-	-	0.26	0.1
	13	14	15	16	17	18	19	20	21	22	23	24
La	24.2	13.7	7.9	11.9	16.6	16.2	19.0	14.2	15.3	19.0	20.9	16.6
Ce	35.9	40.9	47.3	40.1	36.9	38.3	37.9	40.6	38.6	36.4	30.8	40.7
Pr	-	6.0	5.4	9.0	7.8	7.1	5.0	7.1	8.1	6.8	10.7	5.4
Nd	28.1	33.2	36.1	31.1	27.0	20.3	19.9	21.1	20.8	22.1	35.3	14.6
Sm	6.1	4.3	2.3	5.1	3.4	10.2	11.0	8.7	10.5	9.2	1.1	9.7
Eu	0.4	-	0.4	0.3	-	0.2	-	-	-	-	-	-
Gd	2.9	1.9	0.4	2.5	8.3	5.3	7.2	5.2	5.1	4.7	1.2	10.3
Tb	0.4	-	-	-	-	0.7	-	0.6	0.5	0.4	-	-
Dy	1.5	-	0.2	-	-	1.1	-	1.8	0.7	1.0	-	2.4
Но	-	-	-	-	-	0.2	-	0.1	0.2	0.2	-	0.2
Er	0.2	-	-	-	-	0.2	-	0.2	0.2	0.2	-	-
Tm	-	-	-	-	-	-	-	0.1	-	-	-	0.1
Yb	0.3	-	-	-	-	0.2		0.2	-	-	-	-
Lu	-	-	-	-	-	-	-	0.1	-	-	-	-
100Y/(Y+Ln)	(3.7)	(4.2)	(0.3)	(4.6)	(5.0)	-	-	-	-	-	(1.2)	(5.3)
Method	OS	OS	-	OS	OS	XF	XF	XF	XF	XF	OS	-
$\Sigma = La + Ce + Pr$	60.1	60.6	60.6	61.0	61.3	61.6	61.9	61.9	62.0	62.2	62.4	62.7
La-Nd	88.2	93.8	96.7	92.1	88.3	81.9	81.8	83.0	82.8	84.3	97.7	77.3
Sm-Ho	11.3	6.2	3.3	7.9	11.7	17.7	18.2	16.4	17.0	15.5	2.3	22.6
Er-Lu	0.5	-	-	-	_	0.4	_	0.6	0.2	0.2	-	0.1
RE ₂ O ₃	-	-	69.36	-	-	-	-	53.26	-	-	-	-
La/Nd	0.86	0.41	0.22	0.38	0.61	0.80	0.95	0.67	0.74	0.86	0.59	1.14
ThO ₂	-	-	0.17	-	-	-	-	13.00	5.47	-	-	-
$U_3 O_9$	-	-	-	-	-	-	_	-	_	-	-	-

Table 2. Monazite-(Ce) from igneous and metamorphic rocks.	
[Atomic percent except RE ₂ O ₃ , ThO ₂ , and U ₃ O ₈ , which are in weight percent]	

	25	26	27	28	29	30	31	32	33	34	35	36
La	15.2	19.3	21.7	9.1	13.6	19.5	14.4	24.1	18.5	17.6	25.4	15.1
Ce	38.3	38.4	35.3	47.7	45.7	38.9	44.3	39.8	39.9	39.6	29.2	43.3
Pr	9.2	5.1	6.1	6.5	4.2	5.1	5.2	-	5.6	7.1	10.0	6.5
Nd	20.6	19.7	20.3	25.1	14.7	20.5	24.8	28.9	15.5	22.3	33.0	26.2
Sm	10.3	11.2	6.4	7.7	12.7	12.1	4.7	4.7	4.5	6.0	1.0	6.2
Eu	-	-	-	-	-	-	_	0.5	0.2	0.1	-	-
Gd	4.9	6.3	6.2	3.5	8.5	3.9	5.2	1.2	4.5	5.0	1.1	2.7
Tb	0.4	-	-	1	-	-	0.4	0.2	0.7	0.3	-	-
Dv	0.7	-	2.7	0.3	0.6	-	0.6	0.5	3.5	1.6	-	-
Ho	0.2	_	-	-	-	-	-	-	0.9	-	-	-
Er	0.2	_	1.3	0.1	-	-	-	-	2.4	0.3	0.3	-
Tm	-	_	-	-	_	_	-	_	0.3	-	-	-
Yh	_	_	_	_	_	_	04	0.1	3.0	0.1	_	_
In		_	_			_	0.4	0.1	0.5	0.1	_	_
$100V/(V+I_n)$	-	-	(2,2)	$(6 \dot{7})^{1}$	(20)	-	(8.1)	(1.6)	0.5	-	-	(78)
Method	-	-	(2.2) VE	(0.7) CU	(2.9)	-	(0.1) VE	05	- VE	- VE	-	05
Niciliou S-Lat Cat Dr		-	AF (2.1		03	-	AF 62.0	62.0			64.6	64.0
Z=La+Ce+Pr	02.7	02.8	03.1	03.3	03.5	03.3	03.9	03.9	04.0	04.3	04.0	04.9
La-INd	83.3	82.5	83.4	88.4	/8.2	84.0	88.7	92.8	/9.5	80.0	97.6	91.1
Sm-Ho	10.5	17.5	15.3	11.5	21.8	16.0	10.9	/.1	14.3	13.0	2.1	8.9
Er-Lu	0.2	-	1.3	0.1	-	-	0.4	0.1	6.2	0.4	0.3	-
RE_2O_3	-	-	-	55.2	59.2	-	64.5	-	-	-	54.8	-
La/Nd	0.74	0.98	1.07	0.36	0.93	0.95	0.58	0.83	1.19	0.79	0.77	0.58
ThO ₂	-	-	9.0	5.53	8.3	-	4.36	-	-	-	-	16.3
U_3O_8	-	-	-	-	-	-	0.34	-		-	-	-
- <u></u>	37	38	39	40	41	42	43	44	45	46	47	48
La	15.6	19.8	17.3	22.9	25.3	19.8	20.0	21.1	18.2	21.8	20.2	21.8
Ce	43.5	36.0	41.4	34.0	39.7	39.7	40.2	35.1	41.5	35.1	37.9	37.0
Pr	6.7	9.1	6.3	8.1	-	5.7	5.0	9.2	6.3	9.1	8.2	7.5
Nd	25.3	27.5	19.5	20.9	28.6	22.0	22.1	22.2	24.3	24.8	27.7	29.2
Sm	6.0	5.7	6.6	7.4	3.5	12.8	8.3	6.4	5.8	6.0	4.4	1.5
Eu	-	-	0.5	-	0.8	-	-	0.1	-	0.2	-	-
Gd	2.9	1.9	3.3	4.9	1.4	-	4.4	3.6	3.9	3.0	1.6	2.1
Tb	-	-	0.5	-	-	-	-	0.4	-	-	-	-
Dy	-	-	1.8	1.2	0.5	-	-	1.5	-	-	-	-
Но	-	-	0.4	-	-	-	-	0.3	-	-	-	-
Er	-	-	1.8	0.6	0.1	-	-	-	-	-	-	0.5
Tm	-	-	0.2	-	-	-	-	-	-	-	-	-
Yb	-	-	0.4	-	0.1	-	-	0.1	-	-	-	0.1
Lu	-	-	-	-	-	-	-	-	-	-	-	0.3
100Y/(Y+Ln)	(8.3)	(2.6)	-	-	(1.7)	-	(7.4)	(6.2)	-	(3.1)	(0.8)	-
Method	ÔS Ó	ÔS Ó	XF	XF	OS	XF	ÔS Ó	OS Ó	XF	OS Ó	ÔS Ó	OS
Σ=La+Ce+Pr	65.8	64.9	65.0	65.0	65.0	65.2	65.2	654	66.0	66.0	66 3	663
La-Nd	91.1	92.4	84 5	85.9	93.6	87.2	87.3	87.6	90.3	90.8	94.0	95.5
Sm-Ho	89	7.6	13.1	13.5	62	12.8	12.7	12.3	97	92	60	36
Er-Lu	-	-	24	0.6	0.2	12.0		0.1	-	-	5.0	0.0 0 0
RE ₂ O ₂	_	-	2.7	0.0	0.2	-	-	51.6	-	-	-	47.0
La/Nd	0.62	0.72	0.80	1 10	0.80	0 00	0.01	0.05	0.75	0.88	0.73	0.75
ThO	15.5	0.72	0.07	1.10	0.07	0.90	12.1	0.95	0.15	0.00	0.75	-
	13.5	-	-	-	-	-	14.1	1.09	-	-	-	-
0308	-	-	-	-	-	-	-	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

······												
	49	50	51	52	53	54	55	56	57	58	59	60
La	15.7	15.3	16.8	17.2	26.8	16.6	21.8	22.6	14.9	17.1	20.3	17.6
Ce	45.6	43.4	42.2	41.2	40.1	46.3	38.8	39.0	47.5	45.7	38.7	43.5
Pr	5.1	7.7	7.6	8.4	-	4.2	6.8	5.8	5.1	5.0	8.8	7.1
Nd	12.9	26.6	24.9	23.9	25.3	21.9	20.5	20.6	20.4	21.1	24.1	23.2
Sm	9.8	4.0	3.3	3.4	4.2	3.7	6.0	5.7	6.0	8.3	3.8	3.2
Eu	0.2	0.4	-	-	0.7	-	0.1	0.1	2	-	-	-
Gd	6.9	1.7	5.2	5.9	1.5	5.8	3.5	3.8	4.1^{2}	2.8	3.9	5.4
Tb	0.9	0.2	-	-	-	0.3	0.5	0.5	0.3	-	-	-
Dy	1.5	0.4	-	-	0.9	0.7	1.5	1.5	1.4	-	-	-
Но	0.2	-	-	-	-	-	0.2	0.3	0.1	-	-	-
Er	0.4	0.1	-	-	0.2	0.1	-	-	0.2	-	0.4	-
Tm	-	-	-	-	-	-	0.1	-	-	-	-	-
Yb	0.7	0.2	-	-	0.3	0.4	0.2	0.1	-	-	-	-
Lu	0.1	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(20.7)	-	(4.8)	(6.6)	(3.3)	(8.4)	(6.7)	(5.3)	(8.1)	(2.0)	-	(5.0)
Method	XF	XF	OS	OS	OS	XF	OS	OS	CH	XF	OS	OS
S=La+Ce+Pr	66.4	66.4	66.6	66.8	66.9	67.1	67.4	67.4	67.5	67.8	67.8	68.2
La-Nd	79.3	93.0	91.5	90.7	92.2	89.0	87.9	88.0	87.9	88.9	91.9	91.4
Sm-Ho	19.5	6.7	8.5	9.3	7.3	10.5	11.8	11.9	11.9	11.1	7.7	8.6
Er-Lu	1.2	0.3	_	-	0.5	0.5	0.3	0.1	0.2	-	0.4	-
RE ₂ O ₃	-	65.0	-	-	_	60.63	73.1	56.2	-	-	58.5	-
La/Nd	1.22	0.58	0.67	0.72	1.06	0.76	1.06	1.10	0.73	0.81	0.84	0.76
ThO ₂	-	-	-	-	-	7.01	8.90	14.8	-	10.7	-	_
U_3O_8	-	-	-	-	-	0.34	-	-	-	-	-	-
	61	62	63	64	65	66	67	68	69	70	71	72
La	21.0	23.4	18.3	22.5	23.3	18.2	19.0	22.7	24.9	20.9	15.4	18.3
Ce	41.9	38.8	38.7	38.4	45.3	43.3	43.4	42.0	41.6	41.7	46.2	43.4
Pr	5.4	6.2	11.5	7.6	-	7.2	6.4	4.1	4.1	6.2	7.3	7.2
Nd	21.0	20.4	24.9	27.8	23.6	27.5	18.1	21.6	21.0	22.0	23.0	27.3
Sm	4.8	5.3	4.9	1.5	3.4	3.8	9.5	3.5	3.3	5.7	4.3	3.8
Eu	-	0.1	-	_	0.3	-	-	-	-	-	-	_
Gd	5.9	2.9	1.7	2.2	1.8	_	3.6	6.1	5.1	3.5	1.9	-
Tb	-	0.5	-		0.4	-	-	_	-	_	0.1	-
Dv	-	1.9	-	-	1.4	-	-	_	-	-	0.9	-
Ho	-	0.3	-	-	_	-	-	-	-	-	-	-
Er	-	-	-	-	0.2	-		-	-	-	0.3	-
Tm	-	0.1	-	-	-	_	_	_	-	-	0.3	-
Yb	-	0.1	-	-	0.3	-	-	_	-	-	0.3	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	_	(63)	(2.0)	(37)	(49)	_	(83)	(2.6)	(5.3)	-	-	_
Method	XF	OS	05	05	05	_	EP	EP	EP	XF	XF	-
Σ-I a+Ce+Pr	68 3	68 /	68 5	68 5	68.6	68 7	68.8	68.8	70.6	68.8	68.9	68.9
La-Nd	89.3	88.8	00.5 03.4	96.3	92.2	96.2	86.9	90.4	91.6	90.8	91.9	96.2
Sm-Ho	10.7	11.0	66	37	73	3.8	13.1	9.6	84	9.2	7 2	3.8
Er-Lu	-	0.2	0.0	5.7	0.5	5.0	1.5.1	7.0	-	-	0.9	-
RF _a O _a	-	52.6	-	-	0.5	-	53 5	-	-	-	-	-
La/Nd	-	1 12.0	0.74	0.81	0 00	0.66	1.05	1.05	1 10	0.95	0.67	0.67
ThO	-	12.1	0.74	0.01	0.22	0.00	18.5	1.05	-	-	-	-
	-	14.1	-	-	-	-	0.5	-	-	_	-	-
0308	-	-	-	-	-	-	0.0	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	73	74	75	76	77	78	79	80	81	82	83	84
La	24.5	14.3	16.7	17.4	18.5	19.0	22.3	14.3	22.0	24.8	21.9	16.5
Ce	35.4	46.9	44.9	45.9	43.5	43.3	42.4	50.7	41.7	35.7	41.8	47.8
Pr	9.1	8.0	7.6	6.0	7.3	7.2	4.8	4.5	5.8	9.0	5.9	5.3
Nd	25.1	18.4	21.6	19.0	27.5	20.0	21.1	22.8	23.1	25.2	21.9	22.7
Sm	2.2	7.2	4.1	4.6	3.2	4.2	6.5	4.3	4.4	2.2	4.8	6.0
Eu	-	-	-	0.1	-	0.2	-	-	-	-	-	-
Gd	3.0	5.2	3.3	2.8	-	3.7	2.9	3.1	3.0	3.1	3.7	1.7
Tb	-	1	0.3	0.4	-	0.4	-	-	-	-	-	-
Dy	-	-	1.2	1.5	-	1.3	-	-	-	-	-	-
Но	-	-	0.1	0.3	-	0.1	-	0.3	-	-	-	-
Er	0.4	-	0.1	0.2	-	0.3	-	-	-	-	-	-
Tm	-	-	-	0.2	-	-	-	-	-	-	-	-
Yb	0.1	-	0.1	1.5	-	0.3	-	-	-	-	-	-
Lu	0.2	-	-	0.1	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	$(2.7)^1$	-	(4.0)	-	-	(4.6)	(4.0)	-	(5.4)	-	(5.1)
Method	OS CH	I,INA	XF	XF	-	XF	OS	CH	XF	OS	XF	XF
Σ=La+Ce+Pr	69.0	69.2	69.2	69.3	69.3	69.5	69.5	69.5	69.5	69.5	69.6	69.6
La-Nd	94.1	87.6	90.8	88.3	96.8	89.5	90.6	92.3	92.6	94.7	91.5	92.3
Sm-Ho	5.2	12.4	9.0	9.7	3.2	9.9	9.4	7.7	7.4	5.3	8.5	7.7
Er-Lu	0.7	-	0.2	2.0	_	0.6	-	-	-	-	_	-
RE ₂ O ₃	50.9	-	-	-	-	-	-	-	-	-	-	-
La/Nd	0.98	0.78	0.77	0.92	0.67	0.95	1.06	0.63	0.95	0.98	1.00	0.73
ThO_2	-	-	-	_	-	-	10.7	-	-	-	-	10.1
U_3O_8	_	-	-	-	-	-	-	-	-	-	-	-
	85	86	87	88	89	90	91	92	93	94	95	96
La	18.1	24.4	22.5	17.4	17.5	17.9	21.9	17.4	28.6	21.8	19.6	22.2
Ce	51.5	37.8	39.9	47.1	45.9	46.6	41.8	44.4	41.2	39.7	50.3	40.8
Pr	-	7.5	7.3	5.2	6.3	5.3	6.1	8.0	-	8.4	-	7.0
Nd	30.4	19.2	19.9	20.1	24.3	21.8	21.9	22.5	24.5	25.9	30.1	17.4
Sm	-	4.2	5.1	7.5	5.4	6.1	5.0	3.1	3.4	2.0	-	6.6
Eu	-	-	0.1	-	-	-	-	-	0.4	-	-	0.1
Gd	-	5.1	2.7	2.7	-	2.3	3.3	4.6	1.4	2.2	-	3.4
Tb	-	-	0.4	-	-	-	-	-	-	-	-	0.4
Dy	-	1.2	1.81	-	0.6	-	-	-	0.4	-	-	1.6
Но	-	-	0.2	-	-	-	-	-	-	-	-	0.2
Er	-	0.6	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	0.1
Yb	-	-	-	-	-	-	-	-	0.1	-	-	0.2
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(9.3)	-	(5.8)	(1.5)	(3.0)	(1.2)	-	(6.0)	(2.0)	(2.9)	(8.3)	(7.2)
Method	OS	XF	OS	XF	EP	XF	XF	OS	OS	OS	OS	OS
$\Sigma = La + Ce + Pr$	69.6	69.7	69.7	69.7	69.7	69.8	69.8	69.8	69.8	69.9	69.9	70.0
La-Nd	100.0	88.9	89.6	89.8	94.0	91.6	91.7	92.3	94.3	95.8	100.0	87.4
Sm-Ho	-	10.5	10.3	10.2	6.0	8.4	8.3	7.7	5.6	4.2	-	12.3
Er-Lu	-	0.6	0.1	-	-	_	-	-	0.1	-	-	0.3
RE_2O_3	-	-	61.8	-	-	-	-	-	-	-	-	70.7
La/Nd	0.60	1.27	1.13	0.87	0.72	0.82	1.00	0.77	1.17	0.84	0.65	1.28
ThO ₂	11.4	2.0	14.3	11.2	3.3	. 9.5	-	-	-	_	5.3	12.2
U_3O_8	-	-	-	-	-	0.1	-	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	97	98	99	100	101	102	103	104	105	106	107	108
La	20.8	19.6	15.9	20.8	20.3	15.9	22.4	17.9	23.0	28.5	22.4	20.4
Ce	43.1	40.5	46.1	44.0	44.5	48.8	39.4	52.3	36.9	41.8	42.5	43.8
Pr	6.1	9.9	8.1	5.4	5.4	5.5	8.4	-	10.4	-	5.6	6.3
Nd	19.2	22.9	24.7	20.8	22.2	22.8	25.5	29.8	21.6	24.0	22.4	25.8
Sm	4.7	3.5	3.5	5.6	5.8	6.0	2.0	-	6.0	3.5	4.9	1.8
Eu	-	-	-	-	-	-	-	-	-	0.8	-	0.2
Gd	3.5	3.6	1.0	3.4	1.8	1.0	2.1	-	2.1	1.0	2.2	1.2
Tb	1	-	-	-	-	-	-	-	-	-	-	0.2
Dy	1.1	-	0.3	-	-	-	-	-	-	0.3	-	0.3
Но	0.9	-	0.2	-	-	-	-	-	-	-	-	-
Er	0.6	-	0.1	-	-	-	0.2	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	0.1	-	-	-	-	-	-	0.1	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	$(5.4)^1$	(4.1)	(2.1)	-	(3.3)	(1.0)	-	(1.9)	(4.2)	(1.6)	-	-
Method	CH	OS	EP	XF	ÔS Ó	XF	OS	ÔS Ó	OS	ÔS Ó	XF	XF
$\Sigma = La + Ce + Pr$	70.0	70.0	70.1	70.2	70.2	70.2	70.2	70.2	70.3	70.3	70.5	70.5
La-Nd	89.2	92.9	94.8	91.0	92.4	93.0	95.7	100.0	91.9	94.3	92.9	96.3
Sm-Ho	10.2	71	5.0	9.0	7.6	7.0	41	-	81	56	71	37
Er-Lu	0.6	-	0.2	-	-	-	0.2	_	-	0.1	-	-
RE ₂ O ₂	-	_	71.6	_	_	_	54.0	_	_	-	_	523
La/Nd	1.08	0.85	0.64	1.00	0.91	0.70	0.88	0.60	1.06	1 19	1.00	0.79
ThO.	7 37	0.05	0.04	1.00	15.5	0.70	0.00	8.0	1.00	1.17	1.00	0.75
110_2	0.08	-	-	-	15.5	9.9	-	0.0	-	-	-	_
0308	109	110	111	112	113	114	115	116	117	118	119	120
La	18.7	22.3	15.6	21.2	16.5	19.0	18.3	11.3	21.3	11.4	18.9	32.5
Ce	48.1	42.1	49.3	48.1	45 7	42.6	52.4	55 3	42.6	55.4	46.8	33.6
Pr	3.8	6.2	57	1 1	85	42.0 Q 1	52.4	42	6.9	4 1	5.2	40
Nd	20.2	21.6	22 4	22.7	22 4	23.6	20.3	16.2	23.7	16.2	20.7	20.1
Sm	3.6	21.0 1 8	54	12	3 /	23.0	27.5	9.0	23.7	9.0	59	35
Fu	5.0	7.0	5.4	7.2	0.3	5.0	-	2.0	2.0	7.0	5.7	5.5
Gd	47	3.0	1.6	25	1.6	10	-	4.0	23	3.0	25	4 1
Th	4.7	5.0	1.0	2.5	1.0	1.9	-	4.0	2.5	5.9	2.5	4.4
10 Dv	-	-	-	-	0.2	-	-	-	-	-	-	-
Dy Lo	0.9	-	-	-	0.0	-	-	-	- 0.4	-	-	1.0
Fr.	-	-	-	-	- 0.2	-		-	0.4	-	-	-
El Tm	-	-	-	-	0.5	-	-	-	-	-	-	-
1111 Vh	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	0.5	-	-	-	-	-	-	-
	-	-	-	0.4	-	-	-	-	-	-	-	-
100 Y/(Y+Ln)	(12.8)	-	(4.8)	(1.8)	(7.2)	(1.5)	(7.5)	(4.3)	(4.0)	-	(3.2)	(7.2)
Method	US	XF	XF	EP	-	OS	OS -	OS	СН	-	XF	-
$\Sigma = La + Ce + Pr$	70.6	70.6	70.6	70.7	70.7	70.7	70.7	70.8	70.8	70.9	70.9	71.0
La-Nd	90.8	92.2	93.0	92.9	93.1	94.3	100.00	87.0	94.5	87.1	91.6	91.1
Sm-Ho	9.2	7.8	7.0	6.7	6.1	5.7	-	13.0	5.5	12.9	8.4	8.9
Er-Lu	-	-	-	0.4	0.8	-	-	-	-	-	-	-
RE_2O_3	57.4	-	-	69.1	-	-	-	59.9	-	-	-	-
La/Nd	0.93	1.03	0.70	0.95	0.74	0.81	0.62	0.70	0.90	0.70	0.91	1.62
ThO ₂	8.3	-	9.2	-	-	-	5.7	7.35	-	-	7.7	-
U_3O_8	0.30	-	-	-	-	-	-	0.24	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	121	122	123	124	125	126	127	128	129	130	131	132
La	24.3	19.6	17.7	22.9	15.5	21.2	21.4	22.6	20.3	24.3	24.1	19.7
Ce	42.1	44.8	47.5	43.4	49.9	44.0	43.4	43.4	44.4	43.3	38.3	46.2
Pr	4.7	6.7	5.9	4.9	5.8	6.0	6.4	5.3	6.6	3.7	9.0	5.5
Nd	17.7	19.1	22.5	19.9	22.0	23.0	23.6	18.9	20.6	21.0	19.9	20.5
Sm	7.6	4.2	5.2	3.5	5.7	4.3	2.6	6.0	3.5	2.8	4.5	6.2
Eu	-	0.2	-	-	-	-	0.2	-	0.2	0.3	0.1	-
Gd	3.6	3.6	1.2	2.6	1.1	-	1.3	3.8	2.1	2.2	2.0	1.9
Tb	-	0.3	-	-	-	-	0.2	-	0.3	0.3	0.3	-
Dy	-	1.2	-	1.3	-	-	0.4	-	1.2	1.1	1.4	-
Но	-	0.1	-	-	-	1.5	0.1	-	0.2	-	0.3	-
Er	-	0.1	-	1.3	-	-	0.2	-	0.3	0.3	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	0.1	-	0.2	-	-	0.2	-	0.3	0.7	0.1	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(4.6)	(5.0)	(6.3)	(2.9)	(6.9)	(8.6)	-	-	-	-	(5.4)	(2.4)
Method	OS	XF	XF	CH	XF	OS	XF	XF	XF	-	OS	XF
Σ=La+Ce+Pr	71.1	71.1	71.1	71.2	71.2	71.2	71.2	71.3	71.3	71.3	71.4	71.4
La-Nd	88.8	90.2	93.6	91.1	93.2	94.2	94.8	90.2	91.9	92.3	91.3	91.9
Sm-Ho	11.2	9.6	6.4	7.4	6.8	5.8	4.8	9.8	7.5	6.7	0.1	-
Er-Lu	-	0.2	-	1.5	_	_	0.4	-	0.6	1.0	8.6	8.1
RE ₂ O ₃	-	_	-	52.4	_	-	49.2	-	59.8	-	36.3	-
La/Nd	1.37	1.03	0.79	1.15	0.70	0.92	0.91	1.20	0.99	1.16	1.21	0.96
ThO ₂	1.59	-	7.1	7.80	7.3	19.4	-	-	-	-	7.65	10.4
U_3O_8	_	-	-	-	0.1	-	-	-	-	-	-	0.1
	133	134	135	136	137	138	139	140	141	142	143	144
La	18.9	20.0	25.0	26.5	19.5	17.9	14.9	13.5	24.7	19.6	20.7	26.1
Ce	46.9	44.9	41.3	40.4	46.4	50.1	52.9	58.4	39.6	46.5	45.6	41.1
Pr	5.6	6.5	5.2	4.9	5.9	3.9	4.1	-	7.7	5.9	5.8	4.9
Nd	20.7	25.6	19.2	19.5	21.2	17.4	19.4	28.1	19.0	21.2	18.9	21.6
Sm	6.1	1.8	5.6	4.1	4.1	3.4	4.6	-	4.4	4.0	5.0	2.6
Eu	-	-	-	-	0.4	-	2.4	-	0.1	0.4	-	0.5
Gd	1.8	1.2	3.7	2.7	2.0	5.1	1.7	-	2.2	2.0	4.0	2.6
Tb	-	-	-	-	0.1	0.5	-	-	0.4	0.1	-	-
Dy	-	-	-	1.9	0.4	0.9	-	-	1.6	0.3	-	-
Ho	-	-		-	_	_	-	-	0.2	-	-	0.1
Er	-	-	-	-	-	0.1	-	-	-	-	-	0.3
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	0.7	_	-	0.1	-	-	0.2
Lu	-	-	-	-	-	-	-	_	-	-	_	-
100Y/(Y+Ln)	(1.9)	_	-	-	-	(12.4)	-	(6.6)	(5.5)	-	(6.4)	(5.3)
Method	XF	-	XF	XF	_	XF	EP	OS	OS	-	OS	-
$\Sigma = La + Ce + Pr$	71.4	714	71.5	71.8	71.8	71.9	71.9	71.9	72.0	72.0	72.1	72 1
La-Nd	92.1	97.0	90.7	913	93.0	89 3	91 3	100.0	91.0	93.2	91.0	937
Sm-Ho	79	3.0	93	87	7.0	9.0	87	-	89	6.8	9.0	5.8
Er-Lu	-	-	-	0.7	7.0	0.8	0.7	-	0.7	-	-	0.5
RE ₂ O ₂	_	_	-	-	-	56.29	47 2	-	59.0	_	-	-
La/Nd	0.91	0.78	1 30	1 36	0.92	1.03	0.77	0.48	1 30	0.92	1 10	1 21
ThO	11.8	-	-	-	0.92	8 35	25.4	2.40	10.2	-	17.5	3.6
U_2O_2	-	-	-	-	_	0.55	- 2.5.7	-	-	_	-	-
0						0.00						

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	145	146	147	148	149	150	151	152	153	154	155	156
La	23.6	18.6	22.0	21.6	19.3	23.2	19.8	24.7	27.7	18.7	20.9	17.0
Ce	43.3	47.0	45.0	41.4	47.0	45.7	46.6	41.9	39.7	47.0	44.6	51.0
Pr	5.3	6.6	5.2	9.2	5.9	3.3	5.9	5.7	4.9	6.6	6.8	4.4
Nd	19.7	20.3	20.9	22.8	24.2	24.8	17.5	18.8	19.3	20.3	20.8	18.0
Sm	5.1	3.6	4.6	2.7	0.4	1.4	4.1	3.6	3.8	3.6	4.3	3.5
Eu	-	0.3	-	-	0.7	-	2	-	-	0.3	-	2
Gd	3.0	2.6	2.3	2.1	0	1.6	3.4 ²	2.3	2.9^{2}	2.5	2.6	2.8^{2}
Tb	-	0.2	-	-	0.3	-	1	-	1	0.2	-	1
Dy	-	0.6	-	-	-	-	0.9	1.4	0.6	0.6	-	1.8
Но	-	0.2	-	-	-	-	0.4	-	0.2	0.2	-	0.1
Er	-	-	-	0.2	-	-	1.0	1.4	0.4	-	-	0.7
Tm	-	-	-	-	-	-	-	-	0.2	-	-	0.1
Yb	-	-	-	-	-	-	0.4	0.2	0.3	-	-	0.6
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	-	-	-	-	(3.5)	$(4.9)^1$	(1.5)	$(5.3)^{1}$	-	-	$(12.8)^1$
Method	XF	-	XF	OS	-	OS	CH	CH	CH	-	EP	CH
Σ=La+Ce+Pr	72.2	72.2	72.2	72.2	72.2	72.2	72.3	72.3	72.3	72.3	72.3	72.4
La-Nd	91.9	92.5	93.1	95.0	96.4	97.0	89.8	91.1	91.6	92.6	93.1	90.4
Sm-Ho	8.1	7.5	6.9	4.8	3.6	3.0	8.8	7.3	7.5	7.4	6.9	8.2
Er-Lu	-	_	_	0.2	-	_	1.4	1.6	0.9	-	-	1.4
RE ₂ O ₃	-	-	-	52.8	67.89	57.1	52.42	58.0	55.14	-	68.92	55.6
La/Nd	1.20	0.92	1.05	0.95	0.80	0.94	1.13	1.31	1.44	0.92	1.00	0.94
ThO ₂	-	-	-	-	-	4.10	8.52	5.50	8.50	-	-	8.0
U_3O_8	-	-	-	-	-	0.08	-	-	-	-	-	-
	157	158	159	160	161	162	163	164	165	166	167	168
La	21.5	23.9	22.4	19.3	22.7	22.7	24.6	24.4	25.0	21.7	27.4	21.1
Ce	41.6	42.5	44.2	47.3	45.3	39.0	39.4	43.1	42.4	45.2	41.0	45.9
Pr	9.3	6.1	6.0	6.0	4.6	11.1	8.8	5.5	5.6	6.2	4.9	6.3
Nd	23.0	22.7	18.1	21.3	21.6	20.6	23.9	22.1	24.8	18.3	18.9	22.8
Sm	2.6	2.9	4.0	3.4	4.0	5.1	2.0	4.9	1.2	3.7	3.3	2.4
Eu	-	-	0.2	0.2	-	0.2	0.1	-	-	-	0.1	-
Gd	2.0	1.9	2.7	1.8	1.8	1.3	1.2	-	1.0	3.2	2.5	0.7
Tb	-	-	0.3	0.2	-	-	-	-	-	0.1	0.3	0.2
Dy	-	-	1.1	0.5	-	-	-	-	-	1.3	1.2	0.5
Ho	-	-	0.1	-	-	-	-	-	-	-	0.3	-
Er	-	-	0.4	-	-	-	-	-	-	0.3	-	0.1
Tm	-	-	0.3	-	-	-	-	-	-	-	-	-
Yb	-	-	0.1	-	-	-	-	-	-	-	0.1	-
Lu	-	-	0.1	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(1.8)	(0.9)	(3.5)	-	(4.6)	(1.2)	(1.8)	-	(1.4)	-	(5.7)	-
Method	OS	-	XF	-	XF	OS	ÔS Ó	XF	CH	XF	OS	-
Σ=La+Ce+Pr	72.4	72.5	72.6	72.6	72.6	72.8	72.8	73.0	73.0	73.1	73.3	73.3
La-Nd	95.4	95.2	90.7	93.9	94.2	93.4	96.7	95.1	97.8	91.4	92.2	96.1
Sm-Ho	4.6	4.8	8.4	6.1	5.8	6.6	3.3	4.9	2.2	8.3	7.7	3.8
Er-Lu	-	-	0.9	-	-	-	-	-	-	0.3	0.1	0.1
RE ₂ O ₂	-	-	-	-	_	-	· _	-	-	-	63.8	-
La/Nd	0.93	1.05	1.24	0.91	1.05	1.10	1.03	1.10	1.01	1.19	1.45	0.92
ThO	-	5.7	-	-	-	-	-	-	-	-	6.46	-
U_2O_2	_	0.1	-	-	-	-	-	-	-	-	-	-
~ 1~ ^												

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	169	170	171	172	173	174	175	176	177	178	179	180
La	21.6	21.0	19.3	22.4	24.4	27.3	24.8	23.8	20.2	21.9	27.6	24.3
Ce	45.3	52.3	47.8	45.5	41.0	41.6	43.5	40.9	47.1	47.0	39.9	45.0
Pr	6.4	-	6.3	5.5	8.1	4.6	5.2	8.9	6.3	4.8	6.2	4.4
Nd	23.7	26.7	18.7	19.0	18.0	20.0	20.7	21.5	24.4	13.7	14.9	16.0
Sm	1.8	-	3.6	3.6	4.1	3.1	3.7	2.0	0.8	3.5	4.7	3.8
Eu	-	-	-	2	0.1	0.2	-	-	0.1	0.2	-	2
Gd	0.6	-	2.9	2.3^{2}	2.2	1.9	2.1	2.9	0.7	2.5	3.4	3.7^{2}
Tb	-	-		1	0.3	0.2	-	-	0.2	0.6	_	1
Dv	0.4	-	1.4	0.6	1.5	0.8	-	-	0.2	1.6	3.3	1.8
Ho	-	-	-	0.5	0.2	0.3	-	-	-	0.6	-	
Er	0.2	-	-	0.6	-	-	-	-	-	1.1	-	0.4
Tm	-	_	_	-	_	_	_	-	-	0.6	-	-
Yh	_	_	_	_	0.1	_	_	_	-	1.1	_	0.6
In	_			-	0.1	-			_	0.8	_	-
$100 V/(V \perp I n)$		(10.3)	(31)	$(7.4)^{1}$	(5.1)	(2 3)	-	(1.5)		(1.6)	(133)	$(0.5)^{1}$
Method	-	05	(J.1) YE	(7.4) CU	(3.1)	(23)	VE VE	VE	YE	(1.0) YE	05	(0.5) СН
Σ-LatCat Dr	- 22 2	72.2	72 /	72 4	725	725	72.5	72.6	72.6	727	727	727
La Nd	73.3	100.0	/5.4	/3.4	15.5	13.3	15.5	/5.0	75.0	13.1	15.1	15.1
Ca-INU Sm Ho	97.0	100.0	92.1	92.4	91.5	95.5	94.2	95.1	90.0	07.4	00.0	09.7
SIII-HO	2.8	-	7.9	7.0	8.4	0.5	5.8	4.9	2.0	9.0	11.4	9.5
Er-Lu	0.2	-	-	0.6	0.1	-	-	-	-	3.0	-	1.0
KE_2O_3	-	- 70	-	43.65	/3.3	00.1	-	-	53.8	44.8	- 1.05	45.4
La/Nd	0.91	0.79	1.03	1.18	1.36	1.37	1.20	1.11	0.83	1.60	1.85	1.52
ThO ₂	-	6.3	3.0	9.41	11.5	5.92	-	-	-	-	4.4	8.62
$U_3 O_8$	-	-	-		-	-	-	-	-	-	-	-
.	181	182	183	184	185	186	187	188	189	190	191	192
La	19.1	24.8	22.5	23.5	18.2	24.0	26.2	28.2	19.8	21.5	27.6	24.4
Ce	48.2	43.5	45.5	45.6	49.5	40.9	37.5	40.8	48.9	46.9	41.7	44.0
Pr	6.4	5.4	5.8	4.7	6.1	8.9	10.2	5.0	5.3	5.6	4.7	5.6
Nd	20.1	20.7	10.2	18.6	20.2	21.3	21.4	18.5	18.7	19.1	19.8	20.5
Sm	3.7	3.9	11.8	3.4	2.0	1.9	1.8	3.4	3.9	3.8	3.1	3.3
Eu	2	-	-	-	0.2	-	-	0.1	2	0.1	0.2	2
Gd	1.74	1.7	4.2	3.5	2.3	2.8	2.6	2.2	2.3-	2.2	1.9	1.92
Tb	I	-	-	-	0.2	-	-	0.3	1	0.2	0.2	-
Dy	0.8	-	-	0.7	0.8	-	-	1.1	0.6	0.4	0.6	-
Но	-	-	-	-	0.1	-	-	0.3	0.1	-	0.2	0.3
Er	-	-	-	-	0.2	0.2	0.3	-	0.2	0.1	-	-
Tm	-	-	-	-	-	-	-	-	0.1	-	-	-
Yb	-	-	-	-	0.2	-	-	0.1	0.1	0.1	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	$(3.9)^1$	-	(8.4)	(6.8)	-	-	-	(4.3)	$(6.1)^1$	-	(2.3)	(0.3)
Method	CH	XF	EP	OS	-	OS	OS	OS	СН	-	OS	CH
Σ=La+Ce+Pr	73.7	73.7	73.8	73.8	73.8	73.8	73.9	74.0	74.0	74.0	74.0	74.0
La-Nd	93.8	94.4	84.0	92.4	94.0	95.1	95.3	92.5	92.7	93.1	93.8	94.5
Sm-Ho	6.2	5.6	16.0	7.6	5.6	4.7	4.4	7.4	6.9	6.7	6.2	5.5
Er-Lu	-	-	-	-	0.4	0.2	0.3	0.1	0.4	0.2	-	-
RE_2O_3	58.8	-	46.3	60.6	-	56.8	57.15	65.9	55.6	-	63.2	49.6
La/Nd	0.95	1.20	2.21	1.26	0.90	1.13	1.22	1.52	1.06	1.13	1.39	1.19
ThO ₂	-	-	19.5	7.1	- /	-	-	6.44	8.0	-	6.34	-
U_3O_8	-	-	1.6	-	-	-	-	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	193	194	195	196	197	198	199	200	201	202	203	204
La	18.7	25.6	25.9	21.1	26.2	23.0	24.9	25.0	23.9	23.4	30.0	23.4
Ce	55.3	44.2	42.5	46.6	37.6	44.8	44.7	43.8	44.9	45.3	39.4	45.6
Pr	-	4.3	5.7	6.4	10.3	6.3	4.6	5.4	5.4	5.5	4.9	5.3
Nd	26.0	16.0	18.5	19.2	21.5	22.3	17.3	20.0	20.8	21.6	18.8	20.3
Sm	-	3.6	4.3	2.9	1.8	1.4	2.7	3.4	3.3	2.3	3.4	3.5
Eu	-	-	-	-	-	-	-	-	-	0.5	-	-
Gd	-	1.5	3.1	2.2	2.6	1.5	2.6	2.4	1.7	0.8	2.2	1.7
Tb	-	0.7	-	0.1	-	-	-	-	-	0.1	1.3	-
Dv	-	2.7	-	1.2	-	0.3	1.3	-	-	0.3	-	-
Ho	-	0.7	-	-	-	-	-	-	-	0.2	-	-
Er	_	0.7	-	0.3	-	0.2	1.7	_	-	-	-	0.2
Tm	_	-	-	-	-	-	-	_	-	-	-	-
Yb	-	-	_	-	_	0.1	0.2	-	-	-	-	-
Lu	-	-	-	-	-	0.1	-	-	-	-	-	-
100Y/(Y+Ln)	(7.2)	(26)	-	-	(26)	(1.5)	(1.5)	-	-	-	-	(2.6)
Method	OS	XF	XF	XF	OS	OS	CH	XF	XF	XF	XF	OS
$\Sigma = La + Ce + Pr$	74.0	74.1	74.1	74 1	74 1	74 1	74 2	74.2	74.2	74.2	74.3	74.3
La-Nd	100.0	90.1	92.6	93 3	95.6	96.4	91.5	94.2	95.0	95.8	93.1	94.6
Sm-Ho	-	92	74	64	44	3.2	6.6	5.8	5.0	4.2	69	5.2
Er-Lu	-	0.7	-	0.3	-	0.4	19	-	-	-	-	0.2
RE ₂ O ₂	_	37.1	-	-	_	-	56.6	-	_	-	-	-
La/Nd	0.72	1.60	1 40	1 10	1 22	1.03	1 44	1 25	1 15	1.08	1.60	1.15
ThO	17.0	-	1.40	-	1.22	8.61	6.00	-	-	-	-	9.63
	-	_	_	_	_	0.01	-	_	_	_	_	0.13
	205	206	207a	207b	208	209	210	211	212	213	214	215
La	19.9	25.0	23.8	24.2	20.5	22.4	23.2	23.7	23.8	24.4	25.6	23.8
Ce	48.8	49.4	45.0	46.2	49.0	46.2	45.2	45.4	50.8	44.8	40.0	45.7
Pr	5.6	_	5.6	5 1	4.0	5.9	6.2	55	_	55	02	5.4
Nd	5.0			J.T	4.7	~ ~ ~ ~ ~	0.2	5.5		5.5	1.4	
Sm	23.3	16.8	18.9	17.8	4.9	17.0	17.3	19.7	25.4	20.4	18.1	19.9
En	23.3 2.4	16.8 2.3	18.9 3.8	17.8 3.3	19.0 2.8	17.0 3.2	17.3 3.4	19.7 3.7	25.4	20.4 3.3	18.1 3.6	19.9 3.2
Cu	23.3 2.4	16.8 2.3	18.9 3.8	17.8 3.3	19.0 2.8 2	17.0 3.2	17.3 3.4	19.7 3.7	25.4	20.4 3.3	18.1 3.6	19.9 3.2
Gd	23.3 2.4 -	16.8 2.3 - 6.5	18.9 3.8 - 2.9	17.8 3.3 - 3.1	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \end{array} $	17.0 3.2 - 3.4	0.2 17.3 3.4 - 2.9	19.7 3.7 - 2.0	25.4	5.5 20.4 3.3 - 1.6	18.1 3.6 - 3.0	19.9 3.2 - 2.0
Eu Gd Tb	23.3 2.4 - -	16.8 2.3 6.5	18.9 3.8 - 2.9	3.4 17.8 3.3 - 3.1	$ \begin{array}{c} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \\ 1 \end{array} $	17.0 3.2 - 3.4 0.1	0.2 17.3 3.4 - 2.9 0.1	5.5 19.7 3.7 - 2.0	25.4	20.4 3.3 - 1.6 -	18.1 3.6 - 3.0	19.9 3.2 - 2.0
Gd Tb Dy	23.3 2.4 - -	16.8 2.3 - 6.5 -	18.9 3.8 - 2.9 -	3.4 17.8 3.3 - 3.1 -	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^{2} \\ 1.0 \end{array} $	17.0 3.2 - 3.4 0.1 1.4	0.2 17.3 3.4 - 2.9 0.1 1.3	5.5 19.7 3.7 - 2.0 -	25.4	20.4 3.3 - 1.6 -	18.1 3.6 - 3.0 -	19.9 3.2 - 2.0 -
Gd Tb Dy Ho	23.3 2.4 - -	16.8 2.3 - 6.5 - -	18.9 3.8 - 2.9 - -	17.8 3.3 - 3.1 -	$ \begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ \end{array} $	17.0 3.2 3.4 0.1 1.4	0.2 17.3 3.4 - 2.9 0.1 1.3	19.7 3.7 - 2.0 -	25.4	20.4 3.3 - 1.6 -	18.1 3.6 - - -	19.9 3.2 - 2.0 -
Gd Tb Dy Ho Er	23.3 2.4 - - -	16.8 2.3 - 6.5 - -	18.9 3.8 - 2.9 - -	17.8 3.3 - 3.1 - -	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \\ 1.0 \\ 0.1 \\ - \end{array} $	17.0 3.2 3.4 0.1 1.4 - 0.4	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4	19.7 3.7 - 2.0 - -	25.4	3.3 20.4 3.3 - 1.6 - - -	18.1 3.6 - 3.0 - - 0.4	19.9 3.2 - 2.0 -
Gd Tb Dy Ho Er Tm	23.3 2.4 - - - -	16.8 2.3 - 6.5 - - -	18.9 3.8 - 2.9 - - -	17.8 3.3 3.1 - - -	$ \begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ -\\ 0.1 \end{array} $	17.0 3.2 - 3.4 0.1 1.4 - 0.4	17.3 3.4 - 2.9 0.1 1.3 - 0.4	19.7 3.7 - 2.0 - - -	25.4	3.3 20.4 3.3 - 1.6 - - - -	18.1 3.6 - - 0.4	19.9 3.2 - 2.0 - -
Gd Tb Dy Ho Er Tm Yb		16.8 2.3 - 6.5 - - - -	18.9 3.8 - 2.9 - - - -	17.8 3.3 3.1 - - -	$ \begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^2\\ 1.0\\ 0.1\\ -\\ 0.1\\ -\\ -\\ 0.1\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	17.0 3.2 - 3.4 0.1 1.4 - 0.4	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 -	19.7 3.7 - 2.0 - - - - -	25.4	3.3 20.4 3.3 - 1.6 - - - - -	18.1 3.6 - - 0.4 - 0.1	19.9 3.2 - 2.0 - - -
Gd Tb Dy Ho Er Tm Yb Lu	23.3 2.4 - - - - -	16.8 2.3 - 6.5 - - - - -	18.9 3.8 - 2.9 - - - - -	17.8 3.3 - - - - -	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \\ 1.0 \\ 0.1 \\ - \\ 0.1 \\ - \\ - \\ - \\ - \\ - \\ \end{array} $	17.0 3.2 - 3.4 0.1 1.4 - 0.4	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 -	19.7 3.7 - 2.0 - - - - -	25.4	3.3 20.4 3.3 - 1.6 - - - - - - -	18.1 3.6 - - 0.4 - 0.1	19.9 3.2 - 2.0 - - - -
Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln)	5.0 23.3 2.4 - - - - -	16.8 2.3 - 6.5 - - - - - - (4.5)	18.9 3.8 - 2.9 - - - - - - (9.2)	17.8 3.3 - 3.1 - - - - (9.1)	4.9 19.0 2.8 2.6^{2} 1.0 0.1 - 0.1 - $(1.9)^{1}$	17.0 3.2 - 3.4 0.1 1.4 - 0.4 -	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - -	19.7 3.7 - 2.0 - - - - - - - -	25.4 - - - - - - - - - - - (8.4)	3.3 20.4 3.3 - 1.6 - - - - - - - - -	18.1 3.6 - 3.0 - - 0.4 - 0.1	19.9 3.2 - 2.0 - - - - - - -
Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method	5.0 23.3 2.4 - - - - - - - - - EP	16.8 2.3 - 6.5 - - - - (4.5) INA	18.9 3.8 - 2.9 - - - - (9.2) OS	17.8 3.3 - 3.1 - - - (9.1) OS	$(1.9)^{1}$	17.0 3.2 - 3.4 0.1 1.4 - - - - XF	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - (8.4) OS	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	18.1 3.6 - 3.0 - - 0.4 - 0.1 - - OS	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$	5.0 23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - - (4.5) INA 74.4	18.9 3.8 - 2.9 - - - - (9.2) OS 74.4	17.8 3.3 - 3.1 - - - (9.1) OS 75.8	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \\ 1.0 \\ 0.1 \\ - \\ 0.1 \\ - \\ (1.9)^1 \\ CH \\ 74.4 \\ \end{array} $	17.0 3.2 - 3.4 0.1 1.4 - - - - XF 74.5	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - (8.4) OS 74.6	20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	18.1 3.6 - 3.0 - - 0.4 - 0.1 - - 0.1 - - 0.5 74.8	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd	5.0 23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2	18.9 3.8 - 2.9 - - - - (9.2) OS 74.4 93.3	17.8 3.3 - 3.1 - - - (9.1) OS 75.8 93.6	$(1.9)^{1}$ (1.	17.0 3.2 - 3.4 0.1 1.4 - - - - XF 74.5 91.5	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6 91.9	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - - (8.4) OS 74.6 100.0	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	9.2 18.1 3.6 - 3.0 - - 0.4 - 0.1 - - 0.1 - - 0.5 74.8 92.9	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho	23.3 2.4 - - - - EP 74.3 97.6 2.4	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2 8.8	18.9 3.8 - 2.9 - - - (9.2) OS 74.4 93.3 6.7	17.8 3.3 - 3.1 - - (9.1) OS 75.8 93.6 6.4	$ \begin{array}{r} 4.9 \\ 19.0 \\ 2.8 \\ 2 \\ 2.6^2 \\ 1.0 \\ 0.1 \\ - \\ 0.1 \\ - \\ (1.9)^1 \\ CH \\ 74.4 \\ 93.4 \\ 6.5 \\ \end{array} $	17.0 3.2 - 3.4 0.1 1.4 - - - - XF 74.5 91.5 8.1	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6 91.9 7.7	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - - (8.4) OS 74.6 100.0 -	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	9.2 18.1 3.6 - 3.0 - 0.4 - 0.4 - 0.1 - OS 74.8 92.9 6.6	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu	5.0 23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2 8.8	18.9 3.8 - 2.9 - - - (9.2) OS 74.4 93.3 6.7	17.8 3.3 - - - - - - (9.1) OS 75.8 93.6 6.4	$\begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ -\\ 0.1\\ -\\ (1.9)^{1}\\ CH\\ 74.4\\ 93.4\\ 6.5\\ 0.1\\ \end{array}$	17.0 3.2 - 3.4 0.1 1.4 - 0.4 - - XF 74.5 91.5 8.1 0.4	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6 91.9 7.7 0.4	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - (8.4) OS 74.6 100.0 -	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	9.2 18.1 3.6 - 3.0 - 0.4 - 0.4 - 0.1 - OS 74.8 92.9 6.6 0.5	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃	5.0 23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2 8.8 - 71.63	18.9 3.8 - 2.9 - - - (9.2) OS 74.4 93.3 6.7 -	17.8 3.3 - - - - - - - - - - - - - - - - - -	$ \begin{array}{r} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ -\\ 0.1\\ -\\ (1.9)^{1}\\ CH\\ 74.4\\ 93.4\\ 6.5\\ 0.1\\ 53.29\end{array} $	17.0 3.2 3.4 0.1 1.4 - 0.4 - - XF 74.5 91.5 8.1 0.4	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6 91.9 7.7 0.4	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - - - - - - - - - - - - - -	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	9.2 18.1 3.6 - 3.0 - 0.4 - 0.4 - 0.1 - OS 74.8 92.9 6.6 0.5 45.7	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd	23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2 8.8 - 71.63 1.49	18.9 3.8 - 2.9 - - - (9.2) OS 74.4 93.3 6.7 - - 1.26	17.8 3.3 - 3.1 - - (9.1) OS 75.8 93.6 6.4 - - 1.36	$\begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ -\\ 0.1\\ -\\ (1.9)^{1}\\ CH\\ 74.4\\ 93.4\\ 6.5\\ 0.1\\ 53.29\\ 1.08\end{array}$	17.0 3.2 3.4 0.1 1.4 - 0.4 - - XF 74.5 91.5 8.1 0.4 - 1.32	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - XF 74.6 91.9 7.7 0.4 - 1.34	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - - - - - - - - - - - - - -	20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	18.1 3.6 - 3.0 - - 0.4 - 0.1 - 0.4 - 0.1 - 0.4 - 0.1 - 0.5 74.8 92.9 6.6 0.5 45.7 1.41	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -
Gd Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd ThO ₂	5.0 23.3 2.4 - - - - - - - - - - - - - - - - - - -	16.8 2.3 - 6.5 - - - (4.5) INA 74.4 91.2 8.8 - 71.63 1.49 1.94	18.9 3.8 - 2.9 - - - (9.2) OS 74.4 93.3 6.7 - 1.26 21.3	17.8 3.3 - 3.1 - - (9.1) OS 75.8 93.6 6.4 - 1.36 19.5	$\begin{array}{c} 4.9\\ 19.0\\ 2.8\\ 2\\ 2.6^{2}\\ 1.0\\ 0.1\\ -\\ 0.1\\ -\\ (1.9)^{1}\\ CH\\ 74.4\\ 93.4\\ 6.5\\ 0.1\\ 53.29\\ 1.08\\ 16.30\\ \end{array}$	17.0 3.2 3.4 0.1 1.4 - 0.4 - - XF 74.5 91.5 8.1 0.4 - 1.32	0.2 17.3 3.4 - 2.9 0.1 1.3 - 0.4 - - - - XF 74.6 91.9 7.7 0.4 - 1.34	19.7 3.7 - 2.0 - - - - - - - - - - - - - - - - - - -	25.4 - - - - - - - - - - - - - - - - - - -	3.3 20.4 3.3 - 1.6 - - - - - - - - - - - - - - - - - - -	18.1 3.6 - 3.0 - - 0.4 - 0.1 - - 0.4 - 0.1 - - 0.4 - - 0.4 - - 0.1 - - - 0.4 - - - 0.4 - - - - - 0.4 - - - - - - - - - - - - - - - - - - -	19.9 3.2 - 2.0 - - - - - - - - - - - - - - - - - - -

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	216a	216b	217	218	219	220	221	222	223	224	225	226
La	23.7	23.3	22.9	25.5	23.8	21.8	20.3	25.5	20.9	18.9	22.9	21.9
Ce	45.5	47.0	46.1	40.2	45.6	47.1	49.6	40.6	48.7	51.6	47.4	46.5
Pr	5.7	5.4	6.0	9.3	5.6	6.2	5.2	9.0	5.6	4.7	4.9	6.8
Nd	20.4	19.8	16.2	18.4	19.8	18.9	20.1	21.3	15.3	15.9	16.2	17.0
Sm	3.6	3.4	6.3	3.7	3.2	2.7	1.6	2.0	5.2	3.4	2.6	3.3
Eu	-	-	-	-	-	_	-	0.2	-	0.1	-	0.3
Gd	1.1	1.1	2.5	2.9	2.0	2.0	2.9	1.2	4.3	2.6	5.5	1.8
Tb	-	-	-	-	-	-	-	-	3	0.3	-	0.3
Dy	-	-	-	-	-	1.1	0.1	-	3	1.6	0.5	1.3
Ho	-	-	-	-	-	-	_	-	-	-	_	0.1
Er	-	-	-	-	-	0.2	0.2	0.2	-	0.3	-	0.4
Tm	-	-	-	-	-	-	-	-	-	0.2	-	-
Yb	-	-	-	-	-	-	-	-	-	0.4	-	0.3
Lu	-	-	-	_	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(1.0)	(1.0)	(7.2)	(5.5)	-	-	_	-	$(2.8)^3$	(1.2)	(4.4)	-
Method	ÔS Ó	os	EP	OS	XF	XF	OS	CH	INA	XF	ÔS Ó	XF
$\Sigma = La + Ce + Pr$	74.9	75.7	75.0	75.0	75.0	75.1	75.1	75.1	75.2	75.2	75.2	75.2
La-Nd	95.3	95.5	91.2	93.4	94.8	94.0	95.2	96.4	90.5	91.1	91.4	92.2
Sm-Ho	4.7	4.5	8.8	6.6	5.2	5.8	4.6	3.4	9.5	8.0	8.6	7.1
Er-Lu	-	-	-	-	-	0.2	0.2	0.2	-	0.9	-	0.7
RE ₂ O ₂	-	-	60.3	-	-	-	-	58.5	-	38.4	62.2	-
La/Nd	1.16	1.18	1.41	1.39	1.20	1.15	1.01	1.20	1.37	1.19	1.41	1.29
ThO ₂	10.9	7.7	5.6	-	-	-	-	-	-	-	5.6	-
U_3O_8	-	-	0.4	-	-	-	-		-	-	-	-
	227	228	229	230	231	232	233	234	235	236	237	238
La	21.0	24.0	22.6	24.3	23.6	21.9	23.6	21.4	24.8	23.2	20.5	21.9
Ce	47.3	46.2	46.9	45.8	46.9	47.6	41.8	48.7	45.5	47.0	50.2	47.7
Pr	6.9	5.0	5.7	5.2	4.8	5.9	10.0	5.3	5.1	5.2	4.8	5.9
Nd	17.7	19.2	20.0	18.6	21.7	17.0	18.8	19.2	19.8	21.4	16.8	16.9
Sm	3.2	3.3	2.4	3.8	3.0	2.5	1.8	3.5	3.0	1.4	2.8	2.5
Eu	-	-	0.1	0.2	-	0.1	-	-	-	0.1	-	0.1
Gd	2.0	2.3	1.3	1.9	-	2.1	3.7	1.9	1.8	1.1	2.6	2.1
Tb	0.2	-	0.2	-	-	0.3	-	-	-	0.2	0.5	0.3
Dy	1.2	-	0.6	-	-	1.4	-	-	-	0.3	1.0	1.4
Но	0.2	-	-	-	-	0.3	-	-	-	0.1	0.2	0.3
Er	0.1	-	0.1	0.2	-	0.6	0.3	-	-	-	0.2	0.6
Tm	-	-	-	-	-	-	-	-	-	-	0.2	-
Yb	0.2	-	0.1	-	-	0.3	-	-	-	-	0.2	0.3
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	(4.4)	-	(3.1)	-	(12.8)	-	(6.7)	-	-	(1.0)	-
Method	XF	XF	XF	OS	EP	XF	OS	OS	XF	XF	XF	XF
Σ=La+Ce+Pr	75.2	75.2	75.2	75.3	75.3	75.4	75.4	75.4	75.4	75.4	75.5	75.5
La-Nd	92.9	94.4	95.2	93.9	97.0	92.4	94.2	94.6	95.2	96.8	92.3	92.4
Sm-Ho	6.8	5.6	4.6	5.9	3.0	6.7	5.5	5.4	4.8	3.2	7.1	6.7
Er-Lu	0.3	-	0.2	0.2	-	0.9	0.3	-	-	-	0.6	0.9
RE_2O_3	56.2	-	-	-	66.53	-	57.0	-	-	44.6	43.4	-
La/Nd	1.19	1.25	1.13	1.31	1.09	1.29	1.26	1.11	1.25	1.08	1.22	1.30
ThO ₂	-	-	-	9.97	-	-	-	3.66	-	-	-	-
U.O.				0.20		_	_	_	_	_	_	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	239	240	241	242	243	244	245	246	247	248	249	250
La	22.3	22.0	25.4	19.7	20.3	24.8	25.3	25.7	21.1	21.4	26.6	23.3
Ce	49.8	47.7	45.0	47.6	49.3	45.8	45.2	46.0	48.6	47.4	43.7	42.0
Pr	3.4	5.8	5.1	8.3	6.0	5.1	5.2	4.1	6.2	7.1	5.7	10.7
Nd	18.7	19.3	19.6	20.7	21.89	19.0	20.1	15.3	17.1	20.0	17.3	18.4
Sm	3.1	4.8	2.9	3.7	2.6	3.4	2.4	2.7	3.2	2.5	4.1	1.9
Eu	-	-	-	-	-	-	2	-	0.1	-	-	-
Gd	1.7	-	2.0	-	-	1.9	1.3^{2}	2.4	2.2	1.2	2.6	3.7
Tb	-	-	-	-	-	-	1	-	0.1	-	-	-
Dy	0.6	-	-	-	-	-	0.5	2.2	1.0	0.4	-	-
Но	0.1	0.4	-	-	-	-	-	-	0.2	-	-	-
Er	0.2	-	-	-	-	-	-	1.3	0.1	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	0.1	-	-	-	-	-	-	0.3	0.1	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	(5.7)	-	-	-	-	$(1.2)^{1}$	(2.6)	-	-	(2.0)	(3.7)
Method	EP	XF	XF	XF	-	XF	CH	-	XF	XF	СН	OS
Σ=La+Ce+Pr	75.5	75.5	75.5	75.6	75.6	75.7	75.7	75.8	75.9	75.9	76.0	76.0
La-Nd	94.2	94.8	95.1	96.3	97.4	94.7	95.8	91.1	93.0	95.9	93.3	94.4
Sm-Ho	5.5	5.2	4.9	3.7	2.6	5.3	4.2	7.3	6.8	4.1	6.7	5.6
Er-Lu	0.3	-	-	-	-	-	-	1.6	0.2	-	-	-
RE_2O_3	48.32	-	-	-	-	-	63.03	-	-	56.0	-	-
La/Nd	1.19	1.14	1.30	0.95	0.93	1.31	1.26	1.68	1.23	1.07	1.54	1.27
ThO ₂	-	5.93	-	-	-	-	6.14	-	-	-	-	-
U_3O_8	-	-	-	-	-		-	-	-	-	-	-
	251	252	253	254	255	256	257	258	259	260	261	262
La	21.2	25.3	22.5	22.2	26.0	24.0	21.1	24.4	23.7	24.3	23.7	25.7
Ce	49.1	45.9	47.4	49.4	50.0	46.2	49.9	45.4	47.6	46.8	47.4	45.7
Pr	5.7	4.8	6.1	4.4	-	5.9	5.1	6.3	4.9	5.1	5.1	4.9
Nd	18.6	18.7	19.0	21.2	24.0	18.7	19.2	19.5	13.4	18.7	19.0	19.0
Sm	2.7	3.2	3.3	2.8	-	2.9	2.5	3.7	6.9	3.6	2.9	3.2
Eu	0.1	-	-	-	-	-	2	- '	-	-	-	-
Gd	1.5	2.1	1.5	-	-	1.7	1.82	-	3.5	1.5	1.9	1.5
Tb	0.3	-	-	-	-	-	I	-	-	-	-	-
Dy	0.7	-	-	-	-	0.5	0.3	0.7	-	-	-	-
Но	0.1	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	0.2	-	-	0.1	0.1	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	- 1	-	-	-	-	-
100Y/(Y+Ln)	-	-	-	-	(9.1)	(4.0)	(5.8)	(4.6)	(6.4)	-	-	-
Method	XF	XF	OS	EP	OS	ID	CH	EP	EP	XF	XF	XF
$\Sigma = La + Ce + Pr$	76.0	76.0	76.0	76.0	76.0	76.1	76.1	76.1	76.2	76.2	76.2	76.3
La-Nd	94.6	94.7	95.0	97.2	100.00	94.8	95.3	95.6	89.6	94.9	95.2	95.3
Sm-Ho	5.4	5.3	4.8	2.8	-	5.1	4.6	4.4	10.4	5.1	4.8	4.7
	-	-	0.2	-	-	0.1	0.1	-	-	-	-	-
Er-Lu									<0 0			
Er-Lu RE ₂ O ₃	-	-	-	52.13	-	46.8	63.75	-	60.2	-	-	-
Er-Lu RE ₂ O ₃ La/Nd	- 1.14	- 1.35	- 1.18	52.13 1.05	1.08	46.8 1.28	63.75 1.10	1.25	60.2 1.77	1.30	1.25	1.35
$Er-Lu \\ RE_2O_3 \\ La/Nd \\ ThO_2 \\ V = 0$	- 1.14 -	- 1.35 -	- 1.18 6.46	52.13 1.05	1.08 15.3	46.8 1.28 8.12	63.75 1.10 4.00	- 1.25 11.6	60.2 1.77 4.5	- 1.30 -	- 1.25 -	- 1.35 -

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	263	264	265	266	267	268	269	270	271	273	273	274
La	25.9	22.1	25.7	26.9	26.4	25.5	19.2	25.6	23.2	21.7	19.3	21.0
Ce	46.4	49.7	46.0	44.4	45.2	51.0	51.5	45.9	48.1	52.3	53.4	49.3
Pr	4.1	4.6	4.8	5.2	4.9	-	5.9	5.1	5.3	2.7	4.0	6.5
Nd	15.5	18.4	18.4	18.5	18.8	23.5	16.8	17.6	19.6	18.0	18.6	16.0
Sm	2.7	2.4	2.9	3.0	3.2	-	3.8	3.0	1.4	2.9	3.0	2.4
Eu	-	0.2	-	-	-	-	-	-	0.1	-	-	0.1
Gd	2.4	1.2	2.2	2.0	1.5	-	2.1	2.8	1.2	1.6	1.1	1.3
Tb	-	0.2	-	-	-	-	1	-	0.2	-	-	0.2
Dy	1.4	0.7	-	-	-	-	0.7	-	0.7	0.5	0.4	1.3
Но	-	-	-	-	-	-	-	-	0.2	0.1	-	0.3
Er	1.3	0.2	-	-	-	-	-	-	-	0.2	0.1	0.6
Tm	-	0.1	-	-	-	-	-	-	-	-	-	0.1
Yb	0.3	0.2	-	-	-	-	-	_	-	-	0.1	0.8
Lu	-	-	-	_	_	-	-	-	-	-	-	0.1
100Y/(Y+Ln)	(2.6)	-	-	_	_	(8.0)	$(0.9)^1$	-	-	-	-	-
Method	CH	XF	XF	XF	XF	05	CH	XF	XF	EP	XF	XF
$\Sigma = I_{a+Ce+Pr}$	76.4	76.4	76.5	76.5	76.5	76.5	76.6	76.6	76.6	76 7	76 7	76.8
La-Nd	91.9	9/ 8	Q1 Q	95.0	05.3	100.0	03/	94.2	96.2	94 7	95.3	92.8
Sm-Ho	6.5	74.0 17	5 1	5.0	47	100.0	6.6	58	3.8	5 1	15	5.6
Fr-Lu	1.6	4.7	5.1	5.0	4.7	-	0.0	5.0	5.0	0.2	0.2	1.6
	62.4	0.5	-	-	-	-	-	-	55 1	40.05	68.2	1.0
L o/Nd	1.67	1 20	1 40	- 1 45	-	-	-	-	1 19	49.05	1.04	1 2 1
ThO	1.07	1.20	1.40	1.45	1.40	11.09	1.14 0.40	1.45	1.10	1.21	1.04	1.51
	0.75	-	-	-	-	11./	0.40	-	-	-	-	-
0308	-	-	-	-	- 270		281	-				- 286
19	273	270	211	270	279	280	201	282	203	204	263	280
Ce	23.1 178	47.1	20.2 42.1	25.5 46.4	22.0 50.7	51.6	42.0	51.0	52.8	46.8	20.J 45.5	20.J
Dr	47.8	47.1	42.1	40.4	30.7	51.0	42.9	17	2.0	40.0 5 Q	4J.J 5 1	1 0
FI Nd	J.9 10 4	4.5	0.5	/.1	4.1	-	12.0	1.7	2.0	J.0 17.2	J.1 175	1.0
INU Sm	10.4	19.0	19.5	19.0	20.5	25.2	15.9	14.7	2 1	17.5	17.5	10.5
SIII	2.1	2.4	2.3	2.0	2.0	-	4.2	5.1	5.1	2.7	5.2	4.4
	-	-	-	0.2	0.72	-	0.7	0.1	0.1	$2 \rho^2$	-	-
Ga	1.8	1.8	1.6	0.6	0.7-	-	3.8	2.6	1.7	2.0-	2.4	0.4
	0.2	-	-	0.1	0.0	-	-	-	-	0.4	-	-
Dy U-	0.6	-	-	0.4	0.2	-	-	1.9	0.6	0.4	-	-
HO	-	-	-	0.1	-	-	0.1	-	0.1	0.3	-	-
EI Tre	0.1	-	-	-	-	-	0.4	0.4	0.2	0.4	-	-
1m Ni	-	-	-	-	-	-	-	-	-	-	-	-
YD	-	-	-	0.2	-	-	-	0.3	0.1	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(7.2)	(2.2)	(1.9)	-	(0.9)'	(7.2)	(2.4)	(10.1)	-	(8.7)*	-	(21.5)
Method	-	OS	OS	XF	СН	OS	-	XF	EP	CH	XF	-
$\Sigma = La + Ce + Pr$	76.8	76.8	76.8	76.8	76.8	76.8	76.9	76.9	76.9	76.9	76.9	76.9
La-Nd	95.2	95.8	96.1	96.4	97.1	100.0	90.8	91.6	94.1	94.2	94.4	95.2
Sm-Ho	4.7	4.2	3.9	3.4	2.9	-	8.8	7.7	5.6	5.4	5.6	4.8
Er-Lu	0.1	-	-	0.2	-	-	0.4	0.7	0.3	0.4	-	-
RE_2O_3	-	-	-	-	61.0	-	-	-	53.99	50.13	-	-
La/Nd	1.26	1.33	1.36	1.19	1.08	1.09	2.01	1.59	1.25	1.40	1.50	1.55
ThO ₂	-	6.7	-	-	7.23	9.7	-	-	-	5.77	-	-
U_3O_8	-	-	-	-	-	-	-	-	-	-	-	-

Table 2. Monazite-(Ce) from igneous and metamorphic rocks-Continued.

	287	288	289	290	291	292	293	294	295	296	297	298
La	23.8	23.1	22.8	26.4	22.3	26.6	25.9	25.0	24.1	24.1	25.9	22.5
Ce	46.8	48.0	48.3	42.1	48.1	46.9	46.2	52.1	47.9	48.3	46.3	51.1
Pr	6.3	5.8	5.8	8.4	6.6	3.6	5.0	-	5.2	4.8	5.0	3.6
Nd	18.3	18.4	18.9	19.2	16.2	14.8	18.5	22.9	12.7	17.2	18.5	18.7
Sm	2.4	2.1	1.6	2.2	2.6	1.9	2.9	-	3.7	2.8	2.8	1.8
Eu	-	-	-	-	0.2	-	-	-	0.2	-	-	0.3
Gd	1.6	1.8	2.0	1.5	1.7	3.3	1.5	-	2.8	2.8	1.5	1.3
Тb	0.1	0.2	-	-	0.2	0.5	-	-	0.3	-	-	-
Dy	0.7	0.5	0.2	-	1.1	2.0	-	-	1.9	-	-	0.7
Ho	-	-	-	-	0.2	0.2	-	-	0.3	-	-	-
Er		0.1	0.3	0.2	0.3	-	-	-	0.4	-	-	-
Tm	-	_	-	-	-	0.2	-	-	0.1	-	-	-
Yb	-	_	0.1	-	0.5	-	-	_	0.4	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	_	-	(32)	-	-	(2,3)	-	(63)	_	-	_	-
Method	XF	XF	05.2)	05	XF	XE	XF	05	XF	XF	XF	_
Σ-L a+Ce+Pr	76.0	76.0	76.0	76.0	77.0	77 1	77 1	77 1	77.2	77 2	77 2	77 2
La-Nd	95.2	05.3	05.8	06.1	03 7	01.0	05.6	100.0	80.0	01 A	05 7	05.0
Sm-Ho	4.8	16	38	37	60	70)).0 // /	100.0	02.2	56	43	41
Er Lu	4.0	4.0	0.4	0.2	0.0	0.2	4.4	-	9.2	5.0	4.5	-4.1
PE O	-	0.1	0.4	51.15	0.0	0.2	-	-	0.9	-	-	-
KL_2O_3	- 1.20	-	-	1 20	- 1 20	-	-	-	- 1.00	1 40	-	1 20
	1.50	1.20	1.21	1.56	1.30	1.60	1.40	10.0	1.90	1.40	1.40	1.20
HO_2	-	-	9.17	-	-	-	-	10.0	-	-	-	-
0308			0.10	-	-	-	-	-	207	-	- 200-	2001
	299	300	301	302	303	304	305	300	16.2	308	309a	3090
La	24.4	23.9 40.1	28.3	29.0 42.1	20.0	25.0	24.1 49.4	20.9	10.3	23.0	22.3 41.6	24.3
Ce D-	47.0	40.1	43.5	45.1	43.8	4/3.	40.4	40.5	55.5	40.7	41.0	47.4
PI NJ	J.1 10.1	3.3 10.4	3.3	5.Z	5.0	5.0	J.1	4.4	0.0	3.9 19.0	9.1	10.4
ING See	18.1	18.4	18.9	19.0	18.3	15.5	14.4	17.5	17.5	18.2	20.1	19.4
Sm	2.7	3.3	3.8	1.8	2.8	5.0	5.4	2.9	3.0 2	1.5	3.3	1.8
Eu	-	-	-	0.3	-	-	-	-	1.02	-	-	0.2
Ga	1.9	1.0	-	0.9	1.5	2.0	2.6	2.2	1.9-	1.9	2.6	-
	-	-	-	-	-	-	-	-	-	-	-	
Dy	-	-	-	0.1	-	-	-	-	-	0.3	1.0	0.3
HO	-	-	-	-	-	-	-	-	-	-	-	0.1
Er	-	-	-	-	-	-	-	-	-	0.4	-	- 0 1
1m	-	-	-	-	-	-	-	-	-	-	-	0.1
10 Lu	-	-	-	-	-	-	-	-	-	0.1	-	-
	-	-	-	-	-	-	-	-	-	-	-	-
100 Y/(Y+Ln)	-	(0.9)	-	-	-	(1.4)	(1.7)	-	(2.0)	(3.2)	(2.8)	-
Method	XF	OS	XF	XF	XF	EP	EP	XF	СН	-	XF	XF
$\Sigma = La + Ce + Pr$	77.3	77.3	77.3	77.3	77.4	77.5	77.6	77.6	77.6	77.6	73.0	78.1
La-Nd	95.4	95.7	96.2	96.9	95.7	93.0	92.0	94.9	95.1	95.8	93.1	97.5
Sm-Ho	4.6	4.3	3.8	3.1	4.3	7.0	8.0	5.1	4.9	3.7	6.9	2.4
Er-Lu	-	-	-	-	-	-	-	-	-	0.5	-	0.1
RE_2O_3	-	-	-	-	-	63.4	59.7	50.0	-	54.71	54.0	54.0
La/Nd	1.35	1.30	1.50	1.48	1.45	1.61	1.67	1.55	0.93	1.26	1.11	1.26
ThO ₂	-	9.3	-	-	-	4.1	5.6	-	-	7.64	2.39	2.39
U_3O_8	-	-	-	-	-	0.1	0.2	-	-	0.29	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	309c	310	311	312	313	314	315	316	317	318	319	320
La	23.2	25.2	24.6	25.7	26.9	23.3	26.9	20.0	23.8	22.3	23.1	26.2
Ce	52.9	48.3	48.2	47.0	46.6	51.3	40.3	52.8	51.9	51.5	48.9	47.1
Pr	5.5	4.2	4.9	5.1	4.3	3.3	10.7	5.1	2.3	4.2	6.0	4.7
Nd	16.3	16.2	17.3	17.8	17.9	15.2	18.5	22.1	15.6	16.6	17.3	18.1
Sm	1.7	3.0	3.3	3.0	2.9	3.1	1.4	-	2.8	2.7	2.3	2.5
Eu	0.1	0.2	-	-	-	0.1	-	-	0.1	0.1	0.1	-
Gd	0.2	1.3	1.7	1.4	1.4	1.8	2.0	-	2.3	1.8	1.4	1.4
Tb	-	0.2	-	-	-	-	-	1	-	-	0.2	-
Dy	0.1	0.9	-	-	-	1.7	-	-	1.0	0.6	0.5	-
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	0.2	-	0.1	0.1	0.2	-
Tm	-	0.2	-	-	-	-	-	-	-	-	-	-
Yb	-	0.3	-	-	-	0.2	-	-	0.1	0.1	-	-
Lu	-	-	-	- .	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	(1.0)	(4.4)	-	-	(6.5)	-	$(15.1)^{1}$	(6.0)	(2.7)	-	-
Method	СН	XF	OS	XF	XF	XF	OS	CH	XF	XF	XF	XF
$\Sigma = La + Ce + Pr$	81.6	777	777	77.8	77.8	77 9	77 9	77 9	78.0	78.0	78.0	78.0
La-Nd	97.9	93.9	95.0	95.6	95.7	93.1	96.4	100.0	93.6	94.6	95 3	96.1
Sm-Ho	2.1	5.6	5.0	44	43	67	34	-	6.2-	5.2	4 5	39
Er-Lu	-	0.5	-	-	-	0.7	0.2	_	0.2	0.2	0.2	-
RE ₂ O ₂	54.0	47.5	-	_	-	-	50.8	-	-	-	52.9	_
La/Nd	1 42	1 56	1 42	1 44	1 50	1 53	1 45	0.90	1 53	1 34	1 34	1 45
ThO	2 39	-	11.0	-	-	-	-	-	187	7 57	-	-
U_2O_2	-	_	-	-	-	_	-	-	-	-	-	-
	321	322	323	324	325	326	327	328	329	330	331	332
La	30.1	26.8	23.9	26.7	24.7	25.6	14.3	24.4	20.1	23.5	22.8	23.0
Ce	42.6	40.5	51.9	46.2	47.0	47.4	56.5	47.3	50.8	49.6	49.5	52.0
Pr	5.3	10.7	2.3	5.2	6.4	5.1	7.3	6.5	7.3	5.1	6.0	3.3
Nd	18.3	18.5	15.5	17.8	17.9	18.9	20.0	17.1	17.6	18.8	14.7	15.2
Sm	3.5	1.4	2.8	2.5	1.7	3.0	1.3	1.6	1.7	2.1	5.3	3.0
Eu	-	_	0.1	-	0.1	-	0.2	-	_	2	_	0.1
Gd	-	2.1	2.3	1.6	1.3	-	0.4	2.5	1.4	0.9^{2}	1.7	2.3
Tb	-	-	-	-	-	-	-	-	-	3	-	
Dy	-	1.0	-	0.5	-	-	-	0.4	0.5	3	-	0.9
Ho	0.2	-	_	-	-	-	-	_	-	-	_	_
Er	-	-	0.1	-	0.3	_	-	0.1	0.4	-	-	0.1
Tm	-	-	-	-	-	-	-	-	-	-	-	_
Yb	-	-	0.1	-	0.1	-	-	0.1	0.2	-	-	0.1
Lu	-	-	_	-	-	-	-	-	-	-	-	_
100Y/(Y+Ln)	(3.3)	(1.1)	(6.4)	-	(2.0)	-	-	(3.1)	(2.4)	$(0.6)^3$	(5.4)	(6.1)
Method	OS	OS	XF	XF	OS	XF	-	OS	XF	CH	EP	XF
$\Sigma = La + Ce + Pr$	78.0	78.0	78.1	78.1	78.1	78.1	78.1	78.2	78.2	78.2	78.3	78.3
La-Nd	96.3	96.5	93.6	95.9	96.0	97.0	98.1	95 3	95.8	97.0	93.0	93.5
Sm-Ho	3.7	3.5	6.2	4.1	3.6	3.0	1.9	4.5	3.6	3.0	7.0	6.3
Er-Lu	-	-	0.2	-	04	-	-	0.2	0.6	-	-	0.2
RE ₂ O ₃	-	-	-	-	-	-	-	-	-	64.6	61.3	-
La/Nd	1.64	1.45	1.54	1.50	1.38	1.35	0.72	1.43	1.14	1.25	1.55	1.51
ThO ₂	0.18	-	-	-	1.04	-	-	-	-	5.60	6.5	-
U_3O_8	-	-	_	_	1.38	-	-	0.25	-	-	0.2	-
5 0								~				

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.2 51.3 21.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- - -
Eu 0.1 2 $ 0.2$ $ 0.1$ $ 0.2$ 0.2 $ 0.1$ Gd 2.1 1.1^2 1.6 1.4 1.8 0.4 0.7 1.6 1.5 1.4 0.5 Tb $ ^1$ $ 0.3$ $ 0.1$ $ 0.5$ 0.3 $ -$ Dy 1.1 0.5 $ 0.5$ $ 0.3$ $ 1.0$ 1.3 $ -$ Ho $ 0.2$ $ 0.1$ $ -$	- -
Gd2.1 1.1^2 1.6 1.4 1.8 0.4 0.7 1.6 1.5 1.4 0.5 Tb-1- 0.3 - 0.1 - 0.5 0.3 Dy1.1 0.5 - 0.5 - 0.3 - 1.0 1.3 Ho- 0.2 - 0.1	-
Tb - 1 - 0.3 - 0.1 - 0.5 0.3 - - Dy 1.1 0.5 - 0.5 - 0.3 - 1.0 1.3 - - Ho - 0.2 - 0.1 - - - - - -	-
Dy 1.1 0.5 - 0.5 - 0.3 - 1.0 1.3 Ho - 0.2 - 0.1	
Ho - 0.2 - 0.1	_
	-
$\mathbf{Fr} = 0.1 0.4 - 0.3 - 0.7 - 0.9 - - -$	_
	-
Wh 01 03 - 02 08	_
	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5.6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 5
	/8.3
$La - Nd \qquad 93.7 \qquad 93.3 \qquad 93.8 \qquad 93.1 \qquad 93.3 \qquad 93.7 \qquad 96.8 \qquad 91.3 \qquad 94.0 \qquad 90.0 \qquad 98.1$	100.0
Sm-H0 6.1 4.0 4.2 4.4 4.7 3.6 3.2 6.0 5.4 4.0 1.9	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-
RE_2U_3 - 60.84 - 61.8 - 65.1 - 42.5 61.21	-
LaNd 1.56 1.64 1.50 1.56 1.46 1.86 1.36 1.95 1.73 1.50 1.18	1.27
$1hO_2$ - 4.26 3.32 7.7	8.1
$U_3 O_8$ 0.87	-
345 346 347 348 349 350 351 352 353 354 355	356
La 24.1 26.6 20.3 27.8 24.5 26.1 25.2 27.0 28.5 19.3 24.2	27.7
Ce 52.2 47.2 52.4 45.6 52.8 47.9 48.1 41.9 44.0 54.3 52.4	46.7
Pr 2.4 4.9 6.0 5.4 1.5 4.8 5.5 9.9 6.4 5.3 2.3	4.5
Nd 15.7 16.1 16.7 13.5 14.9 16.6 17.6 17.8 14.3 14.5 15.5	16.1
Sm 2.6 2.4 1.9 3.0 3.0 1.9 1.5 1.5 3.3 2.6 2.6	2.1
Eu - $\frac{1}{2}$ - 0.7 - $\frac{1}{2}$ - 0.6 0.2 0.1	2
Gd 2.0 1.62 2.2 3.5 1.9 1.62 1.2 1.8 2.9 1.9 1.7	1.74
Tb - 0.2 - 0.2 -	1
Dy 0.9 0.6 0.3 - 1.2 0.5 0.6 1.2 1.0	1.2
	-
Ho - 0.2 - 0.1 - 0.1 0.1 - 0.1 -	
Ho - 0.2 - 0.1 - 0.1 0.1 - 0.1 - Er - 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1	-
Ho - 0.2 - 0.1 - 0.1 0.1 - 0.1 - Er - 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 Tm - - 0.4 0.1 0.3 - 0.1 - 0.2 0.1	-
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 0.2 0.1	- - -
Ho - 0.2 - 0.1 - 0.1 0.1 - - 0.1 - Er - 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 - Tm - - 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 Yb 0.1 - 0.1 0.2 - - - 0.2 0.1 Lu - - 0.1 - 0.1 0.2 - - 0.2 0.1	
Ho - 0.2 - 0.1 - 0.1 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - 0	- - (1.9) ¹
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 0.2 0.1 Lu $100Y/(Y+Ln)$ (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6)-(5.2)MethodXFCHXF-XFCHXFOS-XFXF	- (1.9) ¹ CH
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 0.2 0.1 Lu100Y/(Y+Ln) (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6) - (5.2) MethodXFCHXF-XFCHXFOS-XFXF Σ =La+Ce+Pr78.778.778.778.878.878.878.878.878.978.978.9	- (1.9) ¹ CH 78.9
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 0.2 0.1 Lu100Y/(Y+Ln) (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6) - (5.2) MethodXFCHXF-XFCHXFOS-XFXF Σ =La+Ce+Pr78.778.778.778.878.878.878.878.878.978.978.9La-Nd94.494.895.492.393.795.496.496.693.293.494.4	- (1.9) ¹ CH 78.9 95.0
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 0.2 0.1 Lu100Y/(Y+Ln) (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6) - (5.2) MethodXFCHXF-XFCHXFOS-XFXF Σ =La+Ce+Pr78.778.778.778.878.878.878.878.878.978.978.9La-Nd94.494.895.492.393.795.496.496.693.293.494.4Sm-Ho5.5 4.8 4.4 7.3 6.1 4.1 3.6 3.3 6.8 6.2 5.4	- (1.9) ¹ CH 78.9 95.0 5.0
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 0.2 0.1 Lu100Y/(Y+Ln) (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6) - (5.2) MethodXFCHXF-XFCHXFOS-XFXF $\Sigma=La+Ce+Pr$ 78.7 78.7 78.7 78.8 78.8 78.8 78.8 78.8 78.9 78.9 78.9 La-Nd 94.4 94.8 95.4 92.3 93.7 95.4 96.4 96.6 93.2 93.4 94.4 Sm-Ho 5.5 4.8 4.4 7.3 6.1 4.1 3.6 3.3 6.8 6.2 5.4 Er-Lu 0.1 0.4 0.2 0.4 0.2 0.5 - 0.1 $ 0.4$ 0.2	(1.9) ¹ CH 78.9 95.0 5.0
Ho- 0.2 - 0.1 - 0.1 0.1 0.1 -Er- 0.4 0.1 0.4 0.1 0.3 - 0.1 - 0.2 0.1 TmYb 0.1 - 0.1 - 0.1 0.2 Yb 0.1 - 0.1 - 0.1 0.2 Lu100Y/(Y+Ln) (3.8) $(1.9)^1$ - (2.4) (4.8) $(2.8)^1$ (1.6)-(5.2)MethodXFCHXF-XFCHXFOS-XFXF $\Sigma=La+Ce+Pr$ 78.778.778.778.878.878.878.878.878.978.978.9La-Nd94.494.895.492.393.795.496.496.693.293.494.4Sm-Ho5.54.84.47.36.14.13.63.36.86.25.4Er-Lu0.10.40.20.40.20.5-0.1-0.40.2RE ₂ O ₃ -58.4861.69-59.7 <td>(1.9)¹ CH 78.9 95.0 5.0 - 61.21</td>	(1.9) ¹ CH 78.9 95.0 5.0 - 61.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.9) ¹ CH 78.9 95.0 5.0 - 61.21 1.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.9) ¹ CH 78.9 95.0 5.0 - 61.21 1.72 5.32

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	357	358	359	360	361	362	363	364	365	366	367	368
La	26.4	28.6	28.4	29.5	23.0	27.1	28.6	29.2	27.2	17.2	27.4	23.9
Ce	47.4	43.0	43.3	45.0	51.5	46.8	41.0	41.7	46.3	56.8	51.9	52.3
Pr	5.1	7.3	7.2	4.5	4.6	5.3	9.6	8.3	5.8	5.3	-	3.2
Nd	17.6	17.9	18.0	15.5	15.1	15.2	17.4	20.8	16.9	17.7	20.7	15.2
Sm	2.5	1.3	1.3	3.9	2.9	2.3	1.5	-	2.7	1.8	-	2.4
Eu	-	0.2	0.2	-	-	2	-	-	2	2	-	0.1
Gd	1.0	1.6	1.6	1.6	1.6	1.4^{2}	1.9	-	1.1^{2}	1.2^{2}	-	1.5
Tb	-	-	-	-	-	I	-	-	1	-	-	-
Dy	-	-	-	-	-	0.6	-	-	-	-	-	1.4
Но	-	-	-	-	1.2	0.3	-	-	-	-	-	-
Er	-	0.1	-	-	-	0.7	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	0.1	0.3	_	-	_	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	_	-	-	-	(5.0)	$(2 4)^{1}$	(1,3)	-	$(2,2)^1$	(1.6)	(63)	(4.5)
Method	XF	OS	OS	XF	XF	CH	05	XF	CH	CH	05	XF
Σ=La+Ce+Pr	78.0	78.0	78.0	70 0	70.1	70.2	70.2	70.2	79.3	70.3	70.3	79.4
La-Nd	96.5	Q6 8	96.0	94.5	04.2	04.4	06.6	100.0	06.2	97.0	100.00	94.6
Sm-Ho	25	2.1	3.1	5.5	57	16	3.4	100.0	3.8	3.0	100.00	5 /
Er Lu	5.5	0.1	5.1	5.5	0.1	4.0	5.4	-	5.0	5.0	-	5.4
RE O	-	60.0	-	-	0.1	20.60	-	-	- 62.08	55 1	-	-
L_2O_3	-	1.60	- 1 50	1.00	-	39.09	-	-	1.61	0.07	1 2 2	1 57
	1.50	1.00	1.56	1.90	1.52	1.70	1.04	1.40	2.00	0.97	1.32	1.57
	-	-	-	-	-	0.94	-	-	5.00	-	0.2	-
0308	-		-	-	-		-					-
	369	3/0	3/1	372	3/3	3/4	3/5	3/6	<u> </u>	378	3/9	380
La	23.8	23.8	20.1	25.7	29.7	24.2 53.9	27.7	31.3	25.4	23.2	23.2	27.8
Ce D	49.1	53.6	49.7	50.4	45.9	52.8	4/.1	43.2	54.1	51.8	52.9	41.6
PI	4.5	-	3.7	3.4	3.9	2.5	4.7	5.0	-	4.0	3.5	10.2
NU Sur	18.0	18.0	12.3	13.0	15.0	15.3	16.8	18.0	20.5	14.8	14.9	10.8
Sm	2.3	2.4	2.6	2.7	1.6	2.5	2.4	1.8	-	2.8	2.5	1.8
Eu	-	-	0.2	-	-	-	-		-	-	0.1	- 0.02
Gd	-	-	1.5	1.5	2.6	1.8	1.3	0.7	-	1.6	1.6	0.9-
Ib	-	-	0.4	0.4	0.2	-	-	-	-	-	-	
Dy	0.3	0.2	1.3	1.1	1.1	0.8	-	-	-	1.0	1.3	0.6
Ho	-	-	0.2	0.2	-	-	-	-	-	-	-	0.1
Er	-	-	0.7	0.5	-	-	-	-	-	-	-	0.1
1m	-	-	0.3	0.3	-	-	-	-	-	-	-	-
Yb	-	-	0.5	0.5	-	0.1	-	-	-	0.2	-	0.1
Lu	-	-	0.5	0.3	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(2.7)	(2.6)	(1.2)	(1.0)	(1.2)	(3.6)	-	-	(8.9)	(5.4)	(3.7	(1.5)
Method	EP	EP	XF	XF	XF	XF	XF	XF	OS	XF	XF	СН
$\Sigma = La + Ce + Pr$	79.4	79.4	79.5	79.5	79.5	79.5	79.5	79.5	79.5	79.6	79.6	79.6
La-Nd	97.4	97.4	91.8	92.5	94.5	94.8	96.3	97.5	100.0	94.4	94.5	96.4
Sm-Ho	2.6	2.6	6.2	5.9	5.5	5.1	3.7	2.5	-	5.4	5.5	3.4
Er-Lu	-	-	2.0	1.6	-	0.1	-	-	-	0.2	-	0.2
RE_2O_3	57.65	59.06	48.8	49.4	48.3	-	-	-	-	-	-	58.92
La/Nd	1.43	1.43	2.12	1.98	1.98	1.58	1.65	1.74	1.24	1.57	1.56	1.65
ThO ₂	8.04	8.07	-	-	-		-	-	12.2	-	-	7.07
U_3O_8	0.64	0.91	-	-	-	-	-	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	201	201	202	201	205	204	207	200	200	200	201	202
La	22.9	22.1	25.0	24 0	23.4	26.2	24.0	2300	26.6	28 3	23.6	<u> </u>
Ce	53.4	53.4	23.0 52.4	24.0 49.2	51.1	20.2 49.0	53.1	23.2 53.2	20.0 48.8	20.5 46.6	23.0 53.4	523
Pr	34	42	23	65	5 2	46	27	34	40.0	40.0	29	34
Nd	14.8	14.9	15.0	15.5	18.2	14.0	14.8	1/1 0	153	16.0	14.7	147
Sm	2.5	19	2.5	22	14	5 1	2 5	24	2.6	2.5	2.5	24
Eu	0.1	-	2.5	0.1	2	5.1	0.1	0.1	0.1	2.5	0.1	0.2
Gd	1.2	14	1.8	1.0	0.7^2	07	17	1.6	15	1.0	17	1.5
Th	-	0.2	-	0.1	3	-	1.7	-	0.1	-	-	-
Dv	12	0.2	0.9	0.1	3	_	1.0	1.0	0.1	0.7	1.0	13
Но	-	0.2	-	0.7	_	_	-	-	-	-	-	-
Er	0.4	0.2	-	0.1	-	_	_	-	-	-	0.1	-
Tm	-	0.2	_	-	_	_	_	_	0.1	_	-	-
Yb	0.1	0.7	0.1	03	-	-	0.1	0.2	-	_	_	_
Lu	-	-	-	-	_	-	-	-	-	-	-	_
100Y/(Y+Ln)	(4.6)	(0.6)	$(4 \ 4)$	_	$(1 \ 1)^3$	(1.6)	(3.9)	(55)	-	_	(4 4)	(4.0)
Method	XF	XF	XF	XF	CH	EP	XF	XF	XF	СН	XF	XF
$\Sigma = L_{a+Ce+Pr}$	79 7	79.7	70 7	79.7	79.7	79.8	70.8	70.8	79.8	79.8	79.9	79.9
La-Nd	94 5	94.6	94.7	95.2	97.9	94.2	94.6	94.7	95.1	95.8	94.6	94.6
Sm-Ho	50	43	52	A 2	21	5.8	53	51	4.8	4 2	53	54
Er-Lu	0.5	11	0.1	0.6	2.1	5.0	0.1	0.2	4.0 0.1		0.1	5.4
RF.O.	0.5	1.1	0.1	0.0	64.6	647	0.1	0.2	0.1	67.2	0.1	
La/Nd	1 55	1.48	- 1.67	1 55	1 20	1.82	1.62	1 56	1 74	1 77	1.61	1.65
ThO	1.55	1.40	1.07	1.55	5.6	0.7	1.02	1.50	-	1.68	1.01	1.05
	_	-		_	5.0	13			_	0.035	_	_
0308	393	394	395	396	397	398	399	400	401	402	403	404
La	20.4	24.4	23.9	25.4	15.5	26.8	24.5	28.4	23.1	23.5	25.9	24.2
Ce	54.3	53.8	52.8	52.9	42.5	44.1	55.5	46.6	53.8	51.2	49.9	54.0
Pr	5.2	1.8	3.3	1.7	22.0	9.1	_	5.1	3.2	5.4	4.3	2.0
Nd	17.3	14.1	14.6	14.7	15.6	17.2	20.0	14.4	14.5	15.1	17.0	14.1
Sm	2.2	2.6	2.5	2.5	3.0	1.3	-	1.5	2.4	2.2	2.8	2.6
Eu	2	-	0.1	0.1	-	-	-	0.1	-	0.1	-	_
Gd	0.6^{2}	1.7	1.6	1.8	1.4	1.4	-	-	1.9	1.6	-	1.6
Tb	-	_	-	-	-	-	-	-	-	0.1	-	-
Dy	-	1.4	1.1	0.8	-	-	-	1.4	0.9	0.6	0.1	1.3
Ho	-	-	-	-	-	0.1	-	0.9	-	0.1	-	-
Er	-	0.1	-	-	-	-	-	1.2	0.1	-	-	0.1
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	0.1	0.1	0.1	-	-	-	0.4	0.1	0.1	-	0.1
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(0.9)	(4.2)	(4.6)	(3.3)	(1.2)	-	(0.7)	-	(4.2)	-	(1.9)	(3.9)
Method	CH	XF	XF	XF	CH	OS	OS	OS	XF	XF	EP	XF
$\Sigma = La + Ce + Pr$	79.9	80.0	80.0	80.0	80.0	80.0	80.0	80.1	80.1	80.1	80.1	80.2
La-Nd	97.2	94.1	94.6	94.7	95.6	97.2	100.0	94.5	94.6	95.2	97.1	94.3
Sm-Ho	2.8	5.7	5.3	5.2	4.4	2.8	-	3.9	5.2	4.7	2.9	5.5
Er-Lu	-	0.2	0.1	0.1	_	_	-	1.6	0.2	0.1	-	0.2
RE ₂ O ₃	-	-	-	-	-	54.4	-	-	-	-	60.08	-
La/Nd	1.18	1.73	1.64	1.73	0.99	1.56	1.23	1.97	1.59	1.56	1.52	1.72
ThO ₂	-	-	_	-	-	-	13.7	0.2	-	-	8.27	-
$U_3 O_8$	-	-	-	-	-	-	-	-	_	-	0.82	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	405	406	407	408	409	410	411	412	413	414	415	416
La	25.0	27.0	28.2	25.3	20.6	24.5	26.6	27.7	26.9	27.1	29.5	27.2
Ce	53.7	44.0	52.0	54.9	53.6	51.5	49.5	52.6	48.0	53.2	46.6	53.2
Pr	1.5	9.2	-	-	6.1	4.3	4.2	-	5.4	-	4.3	-
Nd	14.9	17.2	17.2	19.8	16.7	17.1	17.3	17.4	18.0	19.7	15.5	19.6
Sm	2.4	1.2	2.4	-	2.5	2.5	2.3	2.2	1.0	-	1.6	-
Eu	-	-	-	-	_	-	-	-	0.1	-	-	-
Gd	1.7	1.4	-	-	-	-	-	-	0.6	-	2.5	-
Tb	-	-	-	-	_	-	-	-	-	-	-	-
Dy	0.7	-	0.2	-	0.5	0.1	0.1	0.1	-	-	-	-
Ho	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	_	-
Yb	0.1	-	-	-	_	_	-	-	_	-	_	-
Lu	-	-	-	-	_	_	_	_	_	_	_	-
$\frac{100Y}{(Y+L_n)}$	(3.6)	(1.9)	(2,7)	(62)	(3.5)	(27)	(1.9)	(1.8)	-	(7.4)	_	(0.6)
Method	XF	OS	EP	05	(3.3) FP	(2.7) FP	EP	FP	XF	05	XF	05
Σ=La+Ce+Pr	80.2	80.2	80.2	80.2	80.3	80.3	80.3	80.3	80.3	80.3	80.4	80.4
La-Nd	00.2 05 1	07 /	07 /	100.0	07.0	07.4	07.6	077	08	100.0	05.0	100.4
Sm-Ho	/ 8	26	26	100.0	2.0	26	21	27.7	90. 17	100.0	95.9 4 1	100.0
Fr-Lu	4.0	2.0	2.0	-	5.0	2.0	2.4	2.5	1.7	-	4.1	-
RE-O	0.1	-	58 52	-	-	50 72	-	50.05	-	-	-	-
L_2O_3	- 1.68	-	164	1 20	-	J9.72 1.42	1 5 4	1 50	-	-	-	- 1 20
Tho	1.08	1.57	7.50	1.20	1.25	1.45	1.34	7.14	1.49	1.30	1.90	1.39
	-	-	7.59	9.1	-	8.91	7.55	7.10	-	7.5	-	-
0308		419	- 410		- 421				425	426		
	26.3	20.5	24.0	25.8	22.6	25.8	423 97	22.0	28.1	24.7	25.1	24.6
Ce	20.5	29.J 17 1	24.9 51.0	23.0 50.5	22.0 52.0	23.8 40.0	65.7	23.0 52.5	42 Q	24.1 52.6	23.1 51.5	24.0 51.0
Dr	49.8	47.1	16	10.5	10	49.9	67	33.J 4 1	43.0 97	24	JI.J 4 1	31.9
Nd	4.4	14.0	4.0	4.2	4.0	4.0	116	4.1	0.7	2.4 12.9	4.1	4.2
Sm	11.0	14.9	14.9	10.1	10.4	17.0	11.0	10.4	17.1	15.8	10.5	10.5
5m Fu	2.7	1.1	2.0	2.5	1.9	2.4	4.0	1.9	1.0	2.4	2.5	2.1
Cd	0.1	-	1 62	-	1.02	-	-	1.02	-	-	-	-
Uu Th	1.5	1.7	1.0	-	1.2	-	3.0	1.0	1.5	2.0	-	-
10 Du	0.3	0.2	0.4	-	-	-	-	3	-	-	-	-
Dy	1.1	1.2	0.4	0.9	-	0.1	-		-	1.0	0.3	0.1
nu Er	0.3	0.2	0.1	-	-	-	-	-	-	-	-	-
LI Tm	0.1		0.2	-	-	-	-	-	-	-	-	-
Thi Vh	0.3	0.2	0.2	-	-	-	-	-	-	-	-	-
	0.7	-	0.5	-	-	-	-	-	-	0.1	-	-
	0.2	-	-	-	-	-	-	- (2,03)	-	-	-	-
100 r/(r+Ln)	(0.9)	(1.2) VE	(3.9)	(1.9)	(1.1)	(2.2)	(0.15)	(2.8°)	(1.2)	(4.6)	(3.0)	(1.9)
Method	XF	XF	CH	EP	СН	EP	XF	СН	OS	XF	EP	EP
Z=La+Ce+Pr	80.5	80.5	80.5	80.5	80.5	80.5	80.6	80.6	80.6	80.7	80.7	80.7
La-Nd	92.1	95.4	95.4	96.6	96.9	97.5	92.2	97.0	97.7	94.5	97.2	97.2
Sm-Ho	6.4	4.4	4.1	3.4	3.1	2.5	7.8	2.9	2.3	5.4	2.8	2.8
Er-Lu	1.5	0.2	0.5	-	-	-	-	-	-	0.1	-	-
KE_2O_3	49.2	48.2	61.76	60.38	56.3	59.71	50.6	53.45	-	-	54.87	60.8
La/Nd	2.27	1.98	1.67	1.60	1.38	1.52	0.75	1.40	1.64	1.79	1.52	1.49
ThO ₂	-	-	6.20	7.85	-	9.05	5.77	5.55	-	-	10.89	8.44
U_3O_8	-	-	-	-	-	0.55	-	-	-	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

						-						
	429	430	431	432	433	434	435	436	437	438	439	440
La	19.5	25.7	24.3	24.6	28.4	24.9	22.7	26.3	27.7	28.0	23.9	23.7
Ce	55.2	49.9	56.5	51.2	47.8	51.4	52.0	49.2	53.2	44.5	51.2	53.9
Pr	6.1	5.2	-	5.1	4.7	4.6	6.2	5.4	-	8.4	5.9	3.4
Nd	17.0	17.0	19.2	14.0	16.2	16.6	17.2	17.6	19.1	19.1	13.4	14.5
Sm	2.2	2.2	-	1.9	1.9	2.4	1.9	0.9	-	-	2.8	2.3
Eu	-	-	-	0.2	-	-	-	0.1	-	-	2	-
Gd	-	-	-	1.0	1.0	-	-	0.5	-	-	1.6^{2}	1.0
Tb	-	-	-	-	-	-	-	-	-	-	1	-
Dy	-	-	-	1.6	-	0.1	-	-	-	-	1.2	1.1
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	0.4	-	-	-	-	-	-	-	0.1
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	(5.4)	(9.2)	-	-	(2.4)	-	(0.4)	(6.5)	-	$(2.5)^{1}$	(3.6)
Method	XF	EP	OS	XF	XF	EP	EP	XF	OS	XF	CH	XF
$\Sigma = La + Ce + Pr$	80.8	80.8	80.8	80.9	80.9	80.9	80.9	80.9	80.9	80.9	81.0	81.0
La-Nd	97.8	97.8	100.0	94.9	97.1	97.5	98.1	98.5	100.0	100.0	94.4	95.1
Sm-Ho	2.2	2.2	-	4.7	2.9	2.5	1.9	1.5	-	_	5.6	4.4
Er-Lu	-		-	0.4	-	-	-	-	_	-	-	0.1
RE ₂ O ₂	_	-	-	-	-	62.46	62.33	69.4	_	-	62.75	-
La/Nd	115	1 51	1 27	1 76	1 75	1 50	1 32	1 49	1 45	1 47	1 78	1.63
ThO	-	2 45	75	-	-	8 71	1.52	-	6.9	-	-	-
	_	-	-	_	-	0.71	-	-	-	_	_	-
	441	442	443	444	445	446	447	448	449	450	451	452
La	24.4	25.7	25.8	26.0	30.0	29.8	24.6	27.0	26.0	26.0	26.7	27.5
Ce	51.6	50.3	50.2	50.0	51.1	45.4	51.8	48.8	50.4	50.6	49.7	53.7
Pr	5.0	5.0	5.0	5.1	-	6.0	4.8	5.4	4.8	4.6	4.8	-
Nd	15.7	16.6	16.6	16.3	18.9	12.0	16.0	16.1	16.2	16.3	17.3	18.8
Sm	2.2	2.4	2.4	2.6	-	2.4	2.5	1.6	1.9	2.4	1.5	-
Eu		-	-		-	0.6	-	0.3	-	-	-	-
Gd	0.8	-	-	-	-	2.9	-	0.6	0.7	-	-	-
Th	-	-	-	-	-	-	-	0.1	-	-	-	-
Dv	0.3	-	-	-	-	-	0.3	0.1	-	0.1	-	-
Ho	-	-	-	-	_	0.2	-	-	-	-	-	-
Er	-	-	_	-	_	0.5	-	-	-	-	-	_
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	_	0.2	-	-	-	-	-	-
Lu	_	-	-	-	_	-	-	-	-	-	-	-
100Y/(Y+Ln)	_	(6.5)	(52)	(6.6)	(8.0)	(6.2)	(2.8)	(0.3)	(1.6)	(1.8)	-	(7.5)
Method	_	EP	EP	EP	05	(0.2)	EP	AAS	OS	EP	EP	OS
$\Sigma = L_{a+Ce+Pr}$	81.0	81.0	81.0	81.1	81.1	81.2	81.2	81.2	81.2	81.2	81.2	81.2
La-Nd	96.7	97.6	97.6	97.4	100.0	93.2	97.2	97.3	974	97.5	98.5	100.0
Sm-Ho	20.7	24	21	26	100.0	61	28	27	26	25	15	-
Fr-Lu		2.4	2.4	2.0	-	0.1	2.0	-	<i>2</i> .0			_
REO	-	-	-	-	-	0.7	50 55	60.88	-	61 40	68 56	-
$L_2 \cup 3$	- 1 55	- 1 55	1 55	-	1 50	- 218	1 51	1 69	1.60	1.40	1 54	1 46
ThO	-	1.55	2.55	2 12	61	2.40	8 A5	-	13.0	8.04	1.54	7.0
U ₂ O ₂	-	-	-	2.72	-	ے۔ ۱ -	0.75	-	-	0.64	-	-
~ <u>3</u> ~8	-	-	-	-	-	-	0.24	-	-	0.04	-	-

Table 2. Monazite-(Ce) from igneous and metamorphic rocks-Continued.

Table 2. Monazite-(Ce) from igneous and metamorphic rocks-Continued.

	453	454	455	456	457	458	459	460	461	462	463	464
La	28.7	26.4	26.3	22.3	22.8	23.4	30.2	31.5	22.6	22.2	31.3	25.0
Ce	49.0	54.9	49.1	53.4	52.7	52.3	51.3	50.0	47.9	48.3	47.1	52.4
Pr	3.6	-	6.0	5.7	6.0	5.8	-	-	11.1	11.1	3.2	4.2
Nd	14.0	18.7	16.4	16.6	16.2	16.5	18.5	18.5	13.0	13.1	14.6	15.8
Sm	0.9	-	1.5	1.6	1.5	1.0	-	-	2.2	2.3	0.9	2.4
Eu	0.2	-	2	0.1	-	0.2	-	-	-	-	0.2	-
Gd	2.2	-	0.7^{2}	0.2	0.5	0.5	-	-	2.9	3.0	1.6	-
Tb	0.2	-	3	-	-	-	-	-	-	-	0.2	-
Dy	1.2	-	3	0.1	0.3	0.3	-	-	-	-	0.9	0.2
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	0.3	_	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	_	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(0.7)	(5.7)	$(1.0)^3$	-	-	(0.6)	(3.1)	(5.2)	-	(2.5)	(0.9)	(2.2)
Method	XF	OS	CH	XF	XF	-	OS	OS	OS	OS	XF	EP
$\Sigma = La + Ce + Pr$	81.3	81.3	81.4	81.4	81.5	81.5	815	81.5	81.6	81.6	81.6	81.6
La-Nd	95.3	100.0	97.8	98.0	977	98.0	100.0	100.0	94.6	94 7	96.2	97.4
Sm-Ho	47	-	22	2.0	23	2.0	-	-	51	53	3.8	2.6
Er-Lu	-	_	2.2	2.0	2.5	2.0			0.3	5.5	5.0	2.0
RE ₂ O ₂	49.8	_	60.5	54.0	61.0	68.03	_	_	50.5	_	50.4	60.68
La/Nd	2.05	1 41	1.60	1 34	1 /1	1 42	1.63	1 70	1 74	- 1.69	2 14	1 58
ThO.	2.05	70	1.00	2 30	2.9	1.42	0.4	5.0	1./4	1.09	2.14	8 13
		7.9	1.4/	0.03	5.0	-	9.4	5.9	-	-	-	2.15
0308	465	466	467	468	- 469	470	471	472	473	474	475	476
La	21.4	23.7	27.6	22.9	26.8	29.6	29.8	27.2	26.7	23.2	22.7	27.6
Ce	54 7	53.2	50.8	53.0	50.2	46.3	46.3	50.5	51.0	53.9	53.7	50.3
Pr	5 5	4.8	3 5	6.2	51	63	61	4.6	46	53	60	4 5
Nd	16.0	13.6	13.9	14.5	16.0	13.2	13.7	15.4	15.5	15.0	15.2	15.8
Sm	14	2.0	19	21	1.0	2.0	2.0	22	21	14	1 4	18
Eu	2	-	-	2	0.2	2.0	0.2	-	-	-	-	-
Gd	1.0^{2}	0.9	23	0.8^{2}	- 0.2	2.1	19	_	_	12	04	_
Th	-	0.2	2.5	1		2.1	1.2	_	_	1.2	0.4	_
Dv	_	0.6	_	0.2	0.2	_	_	0.1	0.1	_	03	_
Ho	_	-	_		0.2	_	_	0.1	-	_	-	_
Er	-	0.2		0.2	03		_	_	_	_	0.1	_
Tm	_	0.2	_	0.2	0.5	_	_	_	_		0.1	
Yh	-	0.3	_	0.1	0.2	_	_	_	_	_	0.2	_
Lu	_	0.2	_	0.1	0.2		_	_	_	_	0.2	_
$100 \mathbf{V} / (\mathbf{V} + \mathbf{I} \mathbf{n})$	(1 1)	(0.2)	(1.7)	$(4 \text{ m})^{1}$	(2.0)	(1.0)	(1 0)	(22)	(2 M)	(1.1)	-	(<u>0</u> 8)
Method	(1.1) CH	(0.4) YE	05	(4.0) CU	(2.9) VE	(1.9)	(1.9)	(2.2) ED	(2.0) ED	(1.1) CH	YE	(0.0) ED
S-Lat Cat Pr	01.6	AI [*] 01.7	03 01 0		АГ 02.1	-	- -	EF 92.2	EF 93.2	СП 92.4	AF 92.4	EF 97.4
$\Delta - La + Cc + r r$	07.6	01.7	01.9	02.1	02.1	02.2	02.2	02.3	02.3	02.4	02.4	02.4
Sm Uo	97.0	93.5	95.8	90.0	98.1	95.4	95.9	91.1	97.8	97.4	97.0	98.2
SHI-HU Fr Lu	2.4	<i>3.1</i>	4.2	3.1	1.4	4.0	4,1	2.3	2.2	2.0	2.1	1.8
	-	1.0	-	0.3	0.5	-	-	-	-	-	0.3	
RE_2U_3	-	40.2	03.2	03.0	-	-	-	01.44	1.70	30.00	52.7	02.01
La/INU ThO	1.54	1./4	1.99	1.58	1.68	2.24	2.18	1.//	1.72	1.55	1.49	1.75
100_2	-	-	4.6	5.46	-	2.6	1.8	8.45	8.33	-	-	6.42
U_3U_8	-	-	trace	-	-	-	-	0.50	0.58	-	-	0.77

<u> </u>												
	477	478	479	480	481	482	483	484	485	486	487	488
La	22.0	21.7	30.7	28.7	27.1	27.9	22.9	28.0	27.0	34.7	23.5	18.2
Ce	57.0	54.7	45.2	50.0	51.4	50.1	49.8	49.8	51.4	38.6	54.8	58.8
Pr	3.5	6.1	6.8	4.0	4.2	4.7	10.1	5.1	4.6	9.7	4.8	6.1
Nd	10.4	15.1	11.9	13.8	14.9	16.4	12.5	15.6	15.3	17.0	13.9	14.8
Sm	1.8	1.2	1.0	1.4	2.2	0.9	2.2	1.5	1.2	-	1.9	1.5
Eu	-	0.4	0.2	-	-	-	-	-	-		2	2
Gd	4.9	0.6	0.2	1.4	-	-	2.3	-	0.5	-	1.1^{2}	0.6^{2}
Tb	-	-	-	0.4	<u>1</u>	-	-	-	-	-	-	3
Dy	0.2	0.2	0.4	0.1	0.2	-	-	-	-	-	-	3
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	0.2	-	1.8	0.2	-	-	0.2	-	-	-	-	-
Tm	-	-	1.6	-	-	-	-	-	-	-	-	-
Yb	-	-	0.2	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(0.3)	(0.6)	-	(0.6)	(2.3)	-	-	-	(0.3)	-	(1.4)	$(3.4)^3$
Method	EP	-	XF	XF	EP	XF	XF	XF	OS	XF	CH	CH
$\Sigma = La + Ce + Pr$	82.5	82.5	82.7	82.7	82.7	82.7	82.8	82.9	83.0	83.0	83.1	83.1
La-Nd	92.9	97.6	94.6	96.5	97.6	99.1	95.3	98.5	98.3	100.0	97.0	97.9
Sm-Ho	6.9	2.4	1.8	3.3	2.4	0.9	4.5	1.5	1.7	-	3.0	2.1
Er-Lu	0.2	-	3.6	0.2	_	_	0.2	-	-	-	-	-
RE ₂ O ₃	-	70.11	62.5	52.3	59.55	-	54.7	-	-	-	-	60.05
La/Nd	2.12	1.44	2.58	2.08	1.82	1.70	1.83	1.79	1.76	2.04	1.69	1.23
ThO ₂	-	-	-	-	-	7.47	_	_	6.7	-	-	7.95
U_3O_8	-	-	-	-	-	-	_	-	_	-	-	_
	489	490	491	492	493	494	495	496	497	498	499	500
La	20.6	28.6	23.5	27.8	31.2	29.3	26.5	28.3	24.7	27.5	31.21	27.7
Ce	60.3	50.7	55.1	55.5	47.5	50.0	53.5	55.5	53.8	51.3	48.4	56.5
Pr	2.3	4.0	4.7	-	4.8	4.3	3.8	-	5.4	5.2	4.6	-
Nd	5.9	7.9	13.2	16.7	14.9	14.1	14.0	16.2	13.5	15.0	14.2	15.8
Sm	0.8	-	2.5	-	1.6	1.8	1.5	-	1.6	0.6	1.5	-
Eu	0.1	-	2	-	-	0.3	2	-	2	-	-	-
Gd	1.5	-	0.5^{2}	-	-	0.2	0.7^{2}	-	0.8^{2}	0.4	0.1	-
Tb	0.2	-	1	-	-	-	3	-	0.1	-	-	-
Dy	2.0	5.4	0.3	-	-	-	3	-	0.1	-	-	-
Но	0.2	-	-	-	-	-	-	-	-	-	-	-
Er	0.9	1.7	0.2	-	-	-	-	-	-	-	-	-
Tm	0.1	-	-	-	-	-	-	-	-	-	-	-
Yb	4.7	1.7	-	-	-	-	-	-	-	-	-	-
Lu	0.4	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	-	$(0.9)^1$	(0.6)	-	-	$(2.8)^3$	(0.4)	(2.1)	(0.3)	(0.4)	(0.4)
Method	XF	XF	CH	OS	XF	EP	CH	OS	CH	-	-	OS
$\Sigma = La + Ce + Pr$	83.2	83.3	83.3	83.3	83 5	83.6	83.8	83.8	83.9	84.0	84.2	84.2
La-Nd	89.1	91.2	96.5	100.0	98.4	977	97.8	100.0	97.4	99.0	98.4	100.0
Sm-Ho	4.8	5.4	3.3	-	1.6	2.3	2.2	-	2.6	1.0	1.6	-
Er-Lu	6.1	3.4	0.2	-	-			-	-		-	-
RE ₂ O ₃	-	-	60.85	-	-	57 45	56.2	-	59.01	69.36	56.63	-
La/Nd	3 49	3 62	1 78	1 66	2.09	2.08	1 89	1 75	1 83	1 83	2.20	1.75
ThO	-	-	4 1 5	84	-	-	2.78	87	-	0.17	-	9.1
$U_2 O_2$	-	-	-	-	-	-	-	-	-	-	-	-
- 5 - 6												

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	501	502	503	504	505	506	507	508	509	510	511	512
La	24.1	27.3	26.5	28.2	31.7	33.9	26.6	35.0	32.1	22.9	25.4	31.3
Ce	55.0	53.2	52.9	56.5	48.9	42.5	54.0	47.3	48.7	50.3	55.2	49.8
Pr	5.3	3.9	5.1	-	4.3	8.8	4.8	3.1	4.7	12.6	5.2	4.7
Nd	13.1	13.5	14.3	15.3	14.4	12.1	10.6	11.6	12.8	7.7	12.6	14.2
Sm	1.5	1.8	0.7	-	0.7	1.7	2.6	1.0	0.9	-	0.9	-
Eu	0.1	-	0.1	-	-	0.1	-	-	0.3	2.2	0.2	-
Gd	0.7	-	0.4	-	-	0.8	1.1	0.8	0.4	-	0.4	-
Tb	0.1	-	-	-	-	-	-	0.4	-	2.3	-	-
Dy	0.1	0.3	-	-	-	0.1	0.3	0.6	0.1	-	0.1	-
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	0.2	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	- ,	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(2.0)	(3.2)	-	(0.5)	-	(3.2)	(1.5)	(0.3)	(0.5)	(1.4)	-	-
Method	-	EP	-	OS	XF	XF	CH	XF	-	OS	-	XF
$\Sigma = La + Ce + Pr$	84.4	84.4	84.5	84.7	84.9	85.2	85.4	85.4	85.5	85.8	85.8	85.8
La-Nd	97.5	97.9	98.8	100.0	99.3	97.3	96.0	97.0	98.3	93.5	98.4	100.0
Sm-Ho	2.5	2.1	1.2	-	0.7	2.7	4.0	2.8	1.7.	4.5	1.6	-
Er-Lu	-	-	-	-	-	-	-	0.2	-	-	-	-
RE_2O_3	59.01	48.57	70.84	-	-	68.6	-	54.1	70.99	-	69.66	-
La/Nd	1.84	2.02	1.85	1.84	2.20	2.80	2.51	3.02	2.51	2.97	2.02	2.20
ThO ₂	2.42	12.61	0.23	9.4	-	0.11	6.25	-	-	-	-	-
U_3O_8	-	-	-	-	-	-	-	-	-	-	-	-
	513	514	515	516	517	518	519	520	521	522	523	524
La	27.3	21.2	31.3	24.5	27.5	28.1	29.5	30.5	30.5	25.7	32.1	25.1
Ce	53.3	58.4	50.1	55.7	54.4	54.2	53.2	52.1	50.9	56.8	51.2	57.5
Pr	5.4	6.6	5.0	6.4	4.9	4.5	4.3	4.5	5.8	4.7	4.0	5.1
Nd	10.1	10.1	13.6	11.2	11.1	12.1	11.9	9.7	10.3	12.0	11.4	11.1
Sm	-	1.3	-	1.5	1.1	1.1	1.1	1.4	1.4	0.5	1.1	0.9
Eu	-	0.4	-	-	-	-	-	-	-	2	-	-
Gd	0.2	0.4	-	0.4	0.3	-	-	1.2	0.8	0.3^{2}	0.2	0.2
Tb	-	0.2	-	-	-	-	-	-	-	3	-	-
Dy	-	0.6	-	0.3	0.4	-	-	0.4	0.3	3	-	0.1
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	3.7	-	-	-	0.1	-	-	0.1	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	0.6	-	-	0.2	-	-	0.1	-	-	-	-
Lu	-	0.2	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(0.15)	(0.3)	-	-	-	-	-	(3.6)	(2.7)	$(0.4)^3$	-	-
Method	XF	-	XF	-	-	OS	OS	EP	XF	CH	XF	XF
Σ=La+Ce+Pr	86.0	86.2	86.4	86.6	86.8	86.8	87.0	87.1	87.2	87.2	87.3	87.7
La-Nd	96.1	96.3	100.0	97.8	97.9	98.9	98.9	96.8	97.5	99.2	98.7	98.8
Sm-Ho	0.2	2.9	-	2.2	1.8	1.1	1.1	3.0	2.5	0.8	1.3	1.2
Er-Lu	3.7	0.8	-	-	0.3	-	-	0.2	-	-	-	-
RE_2O_3	-	-	-	-	-	62.6	-	-	63.1	-	-	-
La/Nd	2.70	2.10	2.30	2.19	2.48	2.32	2.48	3.14	2.96	2.14	2.82	2.26
ThO ₂	-	-	-	-	-	0.2	2.8	-	4.5	-	-	-

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

 Table 2. Monazite-(Ce) from igneous and metamorphic rocks—Continued.

	525	526	527	528	529	530	531	532	533	534	535	536
La	24.9	27.3	39.3	35.6	40.2	35.2	38.9	40.3	37.0	40.8	36.8	29.1
Ce	58.5	56.8	45.0	49.4	44.4	50.0	46.1	44.4	48.5	43.9	48.6	56.8
Pr	4.7	4.1	4.0	3.4	3.9	3.3	3.6	3.9	3.1	4.1	3.5	3.1
Nd	10.7	10.3	10.7	11.0	9.6	11.1	9.6	9.6	9.9	10.2	10.3	8.2
Sm	0.8	0.8	1.0	0.6	0.7	0.4	-	0.5	1.0	1.0	0.6	1.0
Eu	2	-	-	-	0.1	-	0.4	0.1	-	-	0.1	0.1
Gd	0.4^{2}	0.3	-	-	0.6	-	1.4	0.6	0.1	-	-	0.7
Tb	3	-	-	-	0.1	-	-	0.1	-	-	-	0.1
Dy	3	0.3	-	-	0.3	-	-	0.4	0.3	-	-	0.5
Ho	-	-	-	-	-	-	-	-	0.1	-	-	-
Er	-	0.1	-	-	-	-	-	-	-	-	0.1	0.2
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	0.1	-	-	0.1	-	-	-	0.2
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	$(5.6)^3$	-	-	(0.3)	(0.9)	-	(1.1)	(0.9)	-	(2.0)	(0.1)	(4.3)
Method	ĊĤ	-	-	EP	-	-	-	-	EP	OS	OS	XF
$\Sigma = La + Ce + Pr$	88.1	88.2	88.3	88.4	88.5	88.5	88.6	88.6	88.6	88.8	88.9	89.0
La-Nd	98.8	98.5	99.0	99.4	98.1	99.6	98.2	98.	98.5	99.0	99.2	97.2
Sm-Ho	1.2	1.4	1.0	0.6	1.8	0.4	1.8	1.7	1.5	1.0	0.7	2.4
Er-Lu	-	0.1	-	-	0.1	-	-	0.1	-	-	0.1	0.4
RE ₂ O ₂	_	-	-	62.92	65.20	-	-	9.2	59.24	-	68.1	-
La/Nd	2.33	2.65	3.67	3.24	4.19	3.17	4.05	4.2	3.74	4.00	3.57	3.55
ThO ₂	-	-	-	3.23	-	-	1.8	-	11.6	-	0.08	-
U_2O_2	-	-	_	-	_	-	-	-	0.4	-	-	-
	537	538	539	540	541	542	543	544	545	546	547	548
La	34.7	25.8	35.5	37.6	24.3	29.7	39.5	39.4	32.8	35.2	35.3	44.9
Ce	51.0	61.1	49.4	45.2	59.9	55.0	46.4	46.3	52.6	50.8	50.9	44.9
Pr	3.3	2.2	4.2	6.3	5.0	4.5	3.4	3.8	4.2	3.7	3.5	-
Nd	9.8	9.2	9.6	10.9	8.1	9.8	9.9	8.5	9.5	8.9	9.8	10.2
Sm	0.9	1.2	1.1	-	1.1	0.4	0.8	-	0.4	0.6	0.5	-
Eu	-	2	-	-	-	-	-	0.6	-	0.3	-	-
Gd	0.3	0.5^{2}	0.2	-	0.6	0.4	-	1.3	0.4	0.5	-	-
Tb	-	3	-	-	-	-	-	-	-	-	-	-
Dv	-	3	-	-	0.3	0.2	-	-	0.1	-	-	-
Ho	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	0.4	-	-	-	-	-	-	-
Tm	-	_	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	0.3	-	-	0.1	-	-	-	-
Lu	-	-	-	-	_	-	-	-	-	-	-	-
100Y/(Y+Ln)	-	$(0.8)^3$	(0.7)	-	(1.6)	(0.3)	-	(1.7)	(0.2)	(0.2)	-	(2.0)
Method	EP	CH	-	XF	CH	-	XF	-	-	-	XF	ÔS Ó
$\Sigma = La + Ce + Pr$	89.0	89.1	89.1	89.1	89.2	89.2	89.3	89.5	89.6	89.7	89.7	89.8
La-Nd	98.8	98.3	98.7	100.0	97.3	99.0	99.2	98.0	99.1	98.6	99.5	100.0
Sm-Ho	1.2	17	13	-	2.0	10	0.8	19	0.9	1.4	0.5	
Er-Lu	-	-	-	-	0.7	-	-	0.1	-	-	-	-
RE ₂ O ₂	-	63 9	-	-	63.2	-	-	-	69.96	70.36	-	_
La/Nd	3 54	2.80	3 70	3 4 5	3.00	3 03	3 99	4 64	3 4 5	3 96	3.60	4.40
ThO ₂	-	5.07	-	-	31	-	-	-	0.29	-	3.0	-
U_2O_8	-	-	-	-	-	-	-	_	-	-	-	-

Table 2.	Monazite-(Ce)	from igneous	and metamorp	hic rocks—Continu	ied.
Table 2.	Monazite-(Ce)	from igneous	and metamorp	hic rocks—Continu	le

	549	550	551	552	553	554	555	556	557
La	21.9	37.8	36.9	36.8	37.7	39.5	33.2	37.9	38.4
Ce	65.0	48.7	49.4	49.1	48.9	47.2	53.1	49.5	48.9
Pr	3.0	3.5	3.7	4.2	3.5	3.5	3.9	3.1	3.6
Nd	9.0	9.2	9.6	9.4	9.4	8.5	9.1	9.0	8.4
Sm	0.7	0.8	0.2	0.5	0.5	0.7	0.4	0.5	0.2
Eu	-	-	-	-	-	0.2	-	-	-
Gd	0.4	-	-	-	-	0.3	0.2	-	0.4
Tb	-	-	-	-	-	-	-	-	-
Dy	-	-	0.2	-	-	0.1	0.1	-	0.1
Ho	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-
Tm	-	-	_	-	-	-	-	-	-
Yb	-	-	-	-	-	_	-	-	_
Lu	-	-	_	_	-	-	-	-	-
100Y/(Y+Ln)	_	_	(1.3)	_	-	(0.5)	-	-	(0, 2)
Method	XF	_	EP	XF	XF	-	-	XF	-
$\Sigma = L_{a+Ce+Pr}$	89.9	90.0	90.0	90.1	90.1	90.2	90.2	90.5	90.9
La-Nd	98.9	99.2	99.6	90.1	90.1	98.7	90.2	99.5	99.3
Sm-Ho	11	0.8	0.4	0.5	0.5	13	07	0.5	07
Fr-I u	1.1	0.0	0.4	0.5	0.5	1.5	0.7	-	-
PE.O.	-	-	-	-	-	-	-	-	60.05
L_2O_3	2 43	-	- 2.94	2.01	-	-	2 65	- 4.21	4 57
ThO	2.45	4.11	5.64	5.91	4.01	4.05	3.05	4.21	4.37
110_2	-	-	-	-	-	-	-	-	0.40
0308	-		-			-	-	-	
T -	25.4		560	561	562	563	20.1	565	
La	35.4	33.2	32.4	37.4	30.8	35.6	39.1	40.4	
Ce	52.2	54.4	56.0	50.1	58.2	50.2	50.8	47.0	
Pr	3.4	3.4	2.7	3.8	2.6	5.9	2.0	4.7	
Nd	8.2	8.5	8.5	8.7	8.0	7.3	6.6	6.6	
Sm	0.5	0.3	0.1	-	0.1	0.7	0.2	-	
Eu	-	-	-	-	-	-	-	-	
Gd	-	0.1	0.3	-	0.3	0.3	0.5	1.3	
Tb	-	-	-	-	-	-	-	-	
Dy	0.3	0.1	-	-	-	-	0.3	-	
Но	-	-	-	-	-	-	-	-	
Er	-	-	-	-	-	-	0.3	-	
Tm	-	-	-	-	-	-	-	-	
Yb	-	-	-	-	-	-	0.2	-	
Lu	-	-	-	-	-	-	-	-	
100Y/(Y+Ln)	(0.6)	-	-	-	-	-	-	(4.1)	
Method	EP	XF	XF	XF	XF	СН	XF	EP	
Σ=La+Ce+Pr	91.0	91.0	91.1	91.3	91.6	91.7	91.9	92.1	
La-Nd	99.2	99.5	99.6	100.0	99.6	99.0	98.5	98.7	
Sm-Ho	0.8	0.5	0.4	-	0.4	1.0	1.0	1.3	
Er-Lu	-	-	-	-	-	-	0.5	-	
RE_2O_3	-	-	-	-	-	70.3	-	35.24	
La/Nd	4.32	3.91	3.81	4.30	3.85	4.88	5.92	6.12	
ThO ₂	-	-	-	0.7	-	-	-	11.34	
U_3O_8	-	-	-	-	-	-	-	15.64	

¹Tb+Y calculated as Y. ²Eu+Gd calculated as Gd. ³Tb+Dy+Y calculated as Y.

Table 3. Monazite-(Ce) from placers.
[Atomic percent except RE_2O_3 , ThO_2 , and U_3O_8 , which are in weight percent]

	1	2	2					0		10	11.	114
La	12.7	16.4	3	4	5	6	7	8	9	10	11a	11b
La	12.7	10.4	19.1	19.2	10.0	28.0	20.0	19.5	18.3	17.8	20.4	25.5
Ce D-	41.5	41.5	37.1	40.2	40.5	29.3	37.9	41./	41.1	44.5	42.8	45.7
Pr	5.1	4.7	7.3	4.9	8.0	7.6	7.4	4.5	8.1	5.7	4.8	4.9
Nd	32.7	24.8	28.7	14.2	24.0	28.2	24.7	26.1	23.5	17.8	22.2	17.2
Sm	7.4	7.2	6.9	-	3.3	4.7	5.7	6.3	3.3	-	5.8	2.9
Eu	-	-	-	-	-	-	-	-	-	-	-	-
Gd	-	5.4	-	-	7.8	-	3.1	1.9	5.7	-	4.0	3.8
Tb	-	-	-	1	-	-	-	-	-	1	-	-
Dy	0.8	-	0.9	8.2	-	2.2	0.4	-	-	5.3	-	-
Ho	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	5.4	-	-	0.8	-	-	2.8	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	5.5	-	-	-	-	-	2.8	-	-
Lu	-	-	-	2.4	-	-	-	-	-	3.3	-	-
100Y/(Y+Ln)	(2.5)	(5.4)	(6.7)	$(2.7)^1$	(6.8)	(11.3)	-	(3.5)	(4.9)	$(3.2)^1$	(3.5)	(3.5)
Method	EP	OS	EP	CH	OS	EP	XF	OS	OS	CH	XF	XF
Σ=La+Ce+Pr	59.1	62.6	63.5	64.3	64.9	64.9	65.3	65.7	67.5	68.0	68.0	76.1
La-Nd	91.8	87.4	92.2	78.5	88.9	93.1	90.0	91.8	91.0	85.8	90.2	93.3
Sm-Ho	8.2	12.6	7.8	8.2	11.1	6.9	9.2	8.2	9.0	5.3	9.8	6.7
Er-Lu	-	-	-	13.3	-	-	0.8	-	-	8.9	-	-
RE ₂ O ₃	-	59.2	-	54.0	-	-	-	60.6	-	55.34	-	
La/Nd	0.39	0.66	0.67	1.35	0.69	0.99	0.81	0.75	0.78	1.00	0.92	1.48
ThO ₂	6.6	6.49	9.2	1.14	-	5.9	0.67	6.67	-	1.01	-	-
$U_2 O_2$	-	0.50	-	0.41	_	-	-	0.40	-	0.41	-	-
	11c	11d	11e	11f	12	13	14	15	16	17	18	19
La	26.7	27.7	28.3	28.8	17.9	16.2	18.2	16.8	19.0	20.5	17.0	20.3
Ce	48.5	48.9	49.7	50.3	45.2	44.2	44.6	47.0	45.2	41.1	43.9	43.5
Pr	4.5	4.8	4.3	4.7	5.1	8.0	5.6	5.0	4.6	7.4	8.3	5.6
Nd	15.0	13.1	12.7	11.9	25.2	23.2	24.0	24.5	24.9	22.0	22.6	21.6
Sm	2.0	2.4	1.9	15	59	2.8	64	5.9	5.0	3.3	3.1	5.4
Eu		-	-	-	-	-	-	-	-	-	-	-
Gd	33	31	31	28	-	56	_	_	-	57	41	2.0
Th	-	-	-	-	_	-	_	_	_	-	-	-
Dv	-	_	_	_	0.7	_	12	0.8	13	-	_	16
Ho	-	-	_	_	<u> </u>	_	-	-	-	_	_	-
Er	_	_	-	_	_	_	-	_	_	_	_	-
 Tm	_	_	_	_	-	-	_	_	-	_	_	_
Yh	-	_	_	-	-	-	-	_	-	-	_	-
Lu	-	_	-	-	-	-	-	-	-	-	-	-
$100\mathbf{Y}/(\mathbf{Y} \perp \mathbf{I} n)$	(1.6)	(12)	(1.1)	-	(3.6)	- (4 1)	- (4 1)	- (1.8)	(83)	(5.6)	- (5 4)	(5.0)
Method	(1.0) YF	(1.2) YE	(I.I) VE	- VE	(3.0) ED	(4.1) OS	(4.1) ED	(4.0) ED	(0.J) ED	(J.U) OS	(J. 4) OS	(J.7) OS
$\Sigma = L_{0} + C_{0} + D_{m}$	707	AI [.] 01.4	AF 01 2	AF 02.0	60 C	US 20 4	EF 20 4	EF 200	20 0	60.0	60.0	60.4
L-Latuetri	19.1	01.4 01.5	02.3	05.0 05.7	08.2	08.4	08.4	08.8	03.8	09.0	01.2	09.4
La-INU Sm Lla	94.7	94.5	95.0	95.7	93.4	91.0	92.4	93.3	93.7	91.0	91.8	91.0
Sill-rio	5.5	5.5	5.0	4.3	6.6	8.4	7.6	0.7	6.3	9.0	1.2	9.0
ET-LU	-	-	-	-	-	-	-	-	-	-	-	-
KE_2O_3	-		-		-	0	-		-	-	-	50.0
La/Nd	1.78	2.11	2.23	2.42	0.71	0.70	0.76	0.69	0.76	0.93	0.75	0.94
ThO ₂	-	-	1.01	-	8.2	-	-	7.4	6.4	-	-	6.09
U_3O_8	-	-	-	-	-	-	-	-	-	-	-	5.43

Table 3.	Monazite-(Ce)	from placers-	Continued.
----------	---------------	---------------	------------

	20	21	22	23	24	25	26	27	28	29	30	31
La	17.3	15.7	15.3	18.5	12.4	19.4	19.0	15.4	16.5	20.0	17.2	19.6
Ce	46.8	49.3	48.7	45.9	55.2	45.8	43.9	48.9	48.7	43.9	47.0	44.7
Pr	5.3	4.5	5.5	5.2	2.0	4.5	6.8	5.7	4.8	6.1	5.9	5.8
Nd	24.6	22.8	23.7	17.9	17.9	24.7	25.7	22.8	24.4	24.6	23.0	25.0
Sm	4.6	6.6	5.9	4.8	9.6	3.7	4.3	6.0	-4.3	4.0	6.0	3.6
Eu	-	-	-	0.2	1.0	-	-	-	-	-	-	-
Gd	-	-	-	6.2	1.8	-	-	-	-	-	-	-
Tb	-	-	-	0.2	_	-	-	-	-	-	-	-
Dy	1.4	1.1	0.9	0.8	0.1	1.9	0.3	1.2	1.3	1.4	0.9	1.3
Ho	-	-	-	0.1	_	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	0.2	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(7.0)	(1.0)	(0.5)	(4.6)	(1.3)	(9.6)	(3.3)	(2.2)	(4.5)	(7.6)	(5.6)	(6.7)
Method	EP	EP	EP	-	XF	EP	EP	EP	EP	EP	EP	EP
$\Sigma = La + Ce + Pr$	69.4	69 5	69 5	69.6	69.6	69 7	69 7	70.0	70.0	70 Q·	70.1	70.1
La-Nd	94.0	92.3	93.2	87.5	87.5	94.4	95.4	92.8	94.4	94.6	93.1	95.1
Sm-Ho	60	77	6.8	12.3	12.5	5.6	4.6	7 2	5.6	54	69	4.9
Er-Lu	-	-	-	0.2	-	-	-	-	-	-	-	-
RE ₂ O ₂	-	-	_	-	_	_	_	_	-	-	-	-
L_2O_3	0.70	0.69	0.65	1.03	0.69	0.79	0 74	0.68	0.68	0.81	0.75	0 78
$Th\Omega_{a}$	14.4	57	73	1.05	0.09	10.3	55	7.8	63	13.4	11.0	10.70
	-	5.7	-	-	_	10.5	-	-	-	-	-	-
0308	32	33	34	35	36	37	38	39	40	41	42	43
La	17.6	21.3	21.4	21.4	18.1	22.2	17 7	15.4	19.0	17.9	20.3	17.0
Ce	47.8	43 5	45 1	45.4	48.2	43.2	48.9	48 1	47.9	48.9	45.9	49.5
Pr	4 9	57	4.6	45	5.0	59	40.9	8 1	47	4.8	5.6	5 5
Nd	24.2	22.9	21.2	21.5	22.5	23.9	22.9	16.6	23.2	23.8	23.2	21.3
Sm	4.6	5.2	4.6	53	<u> </u>	4 1	4.6	8.0	<u> </u>	37	44	6.0
Fu		5.2	4.0	5.5	7.7	7.1		0.0		-	-	-
Gd	_	_	31	20	-	_	_	3.8	-	_	_	_
Сu Th	_	_	5.1	2.0	-	-		5.0	_	_	_	_
Dv	0.0	14			- 1.8	07	1.0	_	11	0.9	0.6	07
Ho	-	1.4	-	_	1.0	-	1.0	-		-	-	-
Fr	-	_		-	_		_	_	_	_	_	_
Tm	_		_	_	_					_		_
Vh				-	-	_				_	_	_
Tu Tu	_		_				_	_	_	_	_	_
$100 \mathbf{V} / (\mathbf{V} \perp \mathbf{I} n)$	(11)	(3.6)	(1.6)	(3.5)	(6.2)	(12)	(13)	(6.2)	(17)	(3.0)	(4.1)	(0.9)
Method	(4.1) ED	(J.0) EP	05	05	(0.2) ED	(4.2) FD	(1 .3) FP	(0.2) CH	(1 ./) EP	(J.)) FP	EP	(0.)) FP
$\Sigma = I_{2} + C_{2} + D_{r}$	70.2	70.5	71.1	71.2	71.2	71.2	715	71.6	71.6	71.6	71.9	72.0
Latutti I 2-Nd	01.5	03 /	073	028	11.3	05 2	01.0	/1.0 88.7	0/ 8	05/	05.0	03 3
Sm-Ho	54.5	55.4 6.6	72.3 77	72.0 70	55.0	19	5 6	11 9	5 7	λ. 4	50.0 50	67
Sill-110	5.5	0.0	1.1	1.2	0.2	4.0	5.0	11.0	5.2	4.0	5.0	0.7
	-	-	-	-	-	-	-	- 62.25	-	-	-	-
NE ₂ U ₃ La/Nd	- 0.72	0.02	1.01	1 00	-	-	-	00.00	- 0.82	0.75		- 0.80
	0.75	0.93	1.01	1.00	U.81 12 15	0.95	16 20	0.93	0.02	11 2	0.00 5 1	122
IIO_2	0.0	10.9	0.33	5 42	13.13	11.4	10.39	2.03	11.4	11.4	J.4	12.3
$0_{3}0_{8}$	-	-	0.41	5.45	-	-	-	-	-	-	-	-

 Table 3. Monazite-(Ce) from placers—Continued.

	44	45	46	47	48	49	50	51	52	53	54	55
La	20.3	17.4	19.4	19.3	17.5	19.6	17.6	22.9	18.9	19.9	20.6	21.0
Ce	45.5	49.8	48.1	48.7	50.2	48.5	50.6	45.4	49.5	46.4	46.3	46.8
Pr	6.2	4.8	4.6	4.4	4.8	4.4	4.5	4.6	4.5	6.7	6.3	5.5
Nd	22.1	23.0	23.9	22.9	19.9	23.7	22.4	20.9	23.7	23.2	21.2	18.4
Sm	5.2	4.2	3.1	3.3	6.2	2.9	4.1	4.2	2.8	3.5	4.9	4.5
Eu	-	-	-	-	-	-	-	-	-	-	-	0.1
Gd	-	-	-	-	-	-	-	2.0	-	-	-	1.9
Tb	-	-	-	-	-	-	-	-	-	-	-	0.2
Dy	0.7	0.8	0.9	1.4	1.4	0.9	0.8	-	0.6	0.3	0.7	1.0
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	0.4
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	0.2
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(3.9)	(2.8)	(2.1)	(8.7)	(5.1)	(3.6)	(3.1)	(4.2)	(2.6)	(1.6)	(4.2)	(3.1)
Method	EP	EP	EP	EP	EP	EP	EP	OS	EP	EP	EP	-
Σ=La+Ce+Pr	72.0	72.0	72.1	72.4	72.5	72.5	72.7	72.9	72.9	73.0	73.2	73.3
La-Nd	94.1	95.0	96.0	95.3	92.4	96.2	95.1	93.8	96.6	96.2	94.4	91.7
Sm-Ho	5.9	5.0	4.0	4.7	7.6	3.8	4.9	6.2	3.4	3.8	5.6	7.7
Er-Lu	-	-	-	-	-	-	-	-	-	-	-	0.6
RE ₂ O ₃	-	-	-	-	-	-	-	58.5	-	-	-	-
La/Nd	0.92	0.75	0.82	0.84	0.88	0.83	0.79	1.10	0.80	0.86	0.97	1.14
ThO ₂	4.3	6.8	9.45	9.2	6.4	10.8	8.0	7.0	4.5	5.5	0.55	-
U_3O_8	-	-	-	-	-	-	-	0.32	-	-	-	-
	56	57	58	59	60	61	62	63	64	65	66	67
La	18.8	19.9	23.4	18.9	20.6	21.6	19.0	17.6	17.3	27.6	20.4	23.9
Ce	49.4	48.0	45.4	48.6	48.1	47.0	48.7	51.2	51.8	39.9	48.3	45.4
Pr	5.1	5.4	4.6	5.9	4.9	5.0	5.9	4.8	4.5	6.2	5.0	4.5
Nd	21.4	22.1	20.4	22.3	20.8	21.9	22.1	22.2	23.0	14.9	23.6	20.4
Sm	4.6	-	4.2	4.3	5.1	3.6	3.6	3.4	2.8	4.7	2.2	3.4
Eu	-	-	-	-	-	-	-	-	-	-	-	0.9
Gd	-	-	2.0	-	-	-	-	-	-	3.4	-	1.5
Tb	-	-	-	-	-	-	-	-	-	-	-	-
Dy	0.7	4.6	-	-	0.5	0.9	0.7	0.8	0.6	3.3	0.5	-
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(2.7)	(7.6)	(4.3)	-	(2.1)	(2.77)	(3.9)	(3.5)	(2.9)	(13.3)	(1.0)	(2.5)
Method	EP	EP	ÔS	XF	EP	EP	EP	EP	EP	OS	ÉP	ÔS Ó
$\Sigma = La + Ce + Pr$	73.3	73.3	73.4	73.4	73.6	73.6	73.6	73.6	73.6	73.7	73.7	73.8
La-Nd	94.7	95.4	93.8	95.7	94.4	95.5	95.7	95.8	96.6	88.6	97.3	94.2
Sm-Ho	5.3	4.6	6.2	4.3	5.6	4.5	4.3	4.2	3.4	11.4	2.7	5.8
Er-Lu	-	-	-	-	-	-	-	-	_		-	-
RE ₂ O ₃	-	-	59.0	-	-	-	-	-	-	-	-	-
La/Nd	0.88	0.90	1.15	0.85	0.98	0.99	0.86	0.79	0.75	1.85	0.86	1.17
ThO ₂	0.95	2.3	7.07	-	9.2	9.2	7.3	9.7	7.8	-	13.5	2.00
U_3O_8	-	-	0.07	-	-	-	-	-	-	-	-	-
<i></i>												

Table 3. Monazite-(Ce) from placers—Contin
--

	68	69	70	71	72	73	74	75	76	77	78	79
La	21.6	18.1	19.7	23.6	23.4	22.9	24.1	20.9	19.5	23.5	18.3	22.8
Ce	47.6	51.2	49.0	46.3	46.0	46.0	45.4	48.1	50.0	44.2	50.6	45.3
Pr	4.6	4.5	5.1	4.0	4.6	5.1	4.5	5.0	4.6	6.5	5.3	6.1
Nd	21.2	21.2	21.9	22.0	20.6	20.8	21.1	22.1	21.6	21.8	22.2	22.5
Sm	3.4	3.8	3.6	3.2	3.4	3.4	3.4	3.2	2.9	3.6	3.1	3.0
Eu	-	-	-	-	-	0.2	0.2	-	-	-	-	-
Gd	1.6	-	-	-	2.0	1.6	1.5	-	-	-	_	-
Tb	-	-	-	-	-	-	-	-	-	-	-	-
Dy	-	1.2	0.7	0.9	-	-	-	0.7	1.4	0.4	0.3	0.3
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(4.4)	(64)	(2.4)	(5.6)	(4.2)	(3.3)	(3.0)	(3.3)	(6.4)	(3.0)	(1.2)	(7.3)
Method	OS	EP	EP	EP	ÔS Ó	OS Ó	OS Ó	EP	EP	EP	EP	EP
Σ=La+Ce+Pr	73.8	73.8	73.8	73.9	74.0	74.0	74.0	74.0	74.1	74.2	74.2	74.2
La-Nd	95.0	95.0	95.7	95.9	94.6	94.8	95.1	96.1	95.7	96.0	96.4	96.7
Sm-Ho	5.0	5.0	4.3	4.1	5.4	5.2	4.9	3.9	4.3	4.0	3.4	3.3
Er-Lu	-	-	-	-	-	-	-	-	-	-	-	-
RE ₂ O ₂	-	-	-	-	-	_	_	-	-	-	-	-
La/Nd	1.02	0.85	0.90	1.07	1 14	1.10	1.14	0.95	0.90	1.08	0.82	1.01
ThO ₂	-	8.8	7.15	8.4	-	6.24	-	4.2	6.9	8.2	8.8	9.1
$U_{2}O_{2}$	-	-	-	-	-	-	-	-	-	-	-	-
	80	81	82	83	84	85	86	87	88	89	90	91
La	20.3	23.5	18.9	21.6	18.4	19.9	19.2	20.9	19.3	24.4	19.6	18.9
Ce	48.7	45.9	50.0	47.5	49.5	51.3	50.8	48.6	50.7	45.8	50.5	51.7
Pr	5.3	4.9	5.5	5.4	6.6	3.3	4.5	5.1	4.6	4.5	4.6	4.3
Nd	21.6	21.9	19.6	21.4	21.6	21.9	22.0	21.9	22.1	21.0	21.9	20.9
Sm	3.2	3.3	4.5	2.2	3.2	2.7	2.6	2.8	2.8	3.4	2.9	3.3
Eu	-	-	_	-	-	-	-	-	-	0.2	-	-
Gd	-	-	-	-	-	-	-	-	-	0.7	-	-
Tb	-	-	-	-	-	-	-	-	_	-	_	-
Dy	0.9	0.5	1.5	0.9	0.7	0.9	0.9	0.7	0.5	-	0.5	0.9
Ho	-	_	-	-	-	_	-	-	-	-	-	-
Er	-	-	_	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	_	-	_	-	-	_
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(4.5)	(1.0)	(8.4)	(6.0)	(5.7)	(8.8)	(0.9)	(3.8)	(1.6)	(3.3)	(3.9)	(4.8)
Method	EP	OS	EP	EP								
$\Sigma = La + Ce + Pr$	74.3	74.3	74.4	74.5	74 5	74.5	74.5	74.6	74.6	74.7	74.7	74.9
La-Nd	95.9	96.2	94.0	95.9	96.1	96.4	96.5	96.5	96.7	95.7	96.6	95.8
Sm-Ho	4.1	3.8	6.0	4.1	39	3.6	3.5	3.5	3.3	4.3	3.4	4.2
Er-Lu	-	-	-	-	-	-	-	-	-	-	-	-
RE ₂ O ₃	-	-	-	-	-	-	_	_	-	58.3	-	-
La/Nd	0.94	1.07	0.96	1.01	0.85	0.91	0.87	0.95	0.87	1.16	0.89	0.90
ThO ₂	10.1	7.2	15.6	9.7	59	9.7	5.0	7.8	11.5	7.5	8.2	5.4
U_3O_8	-	-	-	-	-	-	-	-		0.3	-	-
N 10												

 Table 3. Monazite-(Ce) from placers—Continued.

	92	93	94	95	96	97	98	99	100	101	102	103
La	23.0	20.4	20.1	21.7	20.5	23.4	21.2	23.6	22.1	23.7	22.8	22.1
Ce	46.7	49.5	49.7	47.4	49.8	46.3	49.4	47.2	47.8	47.1	46.9	48.7
Pr	5.3	5.1	5.2	5.9	4.8	5.5	4.6	4.5	5.4	4.6	5.7	4.6
Nd	18.8	21.5	21.67	21.7	20.5	19.7	21.0	20.6	20.7	19.6	20.6	21.5
Sm	3.1	2.9	2.7	3.0	3.5	3.8	2.7	3.4	3.2	3.4	3.1	2.6
Eu	0.1	-	-	-	-	-	-	-	-	-	-	-
Gd	1.8	-	-	-	-	-	-	0.7	-	1.6	0.9	-
Tb	0.2	-	-	-	-	-	-	-	-	-	-	-
Dy	0.7	0.6	0.7	0.3	0.9	1.3	1.1	-	0.8	-	-	0.5
Но	0.1	-	-	-	-	-	-	-	-	-	-	-
Er	0.2	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(3.0)	(3.2)	(3.7)	(3.7)	(5.0)	-	(4.0)	(3.3)	(3.7)	(3.1)	(0.7)	(1.4)
Method	-	EP	EP	EP	EP	-	EP	OS	EP	OS	OS	EP
Σ=La+Ce+Pr	75.0	75.0	75.0	75.0	75.1	75.2	75.2	75.3	75.3	75.4	75.4	75.4
La-Nd	93.8	96.5	96.6	96.7	95.6	94.9	96.2	95.9	96.0	95.0	96.0	96.9
Sm-Ho	6.0	3.5	3.4	3.3	4.4	5.1	3.8	4.1	4.0	5.0	4.0	3.1
Er-Lu	0.2	-	-	-	-	-	-	-	-	-	-	-
RE ₂ O ₃	-	-	-	-	-	-	-	62.6	-	61.45	-	-
La/Nd	1.22	0.95	0.93	1.00	1.00	1.19	1.01	1.15	1.07	1.21	1.11	1.03
ThO ₂	-	7.9	9.3	6.0	9.8	-	8.2	4.44	8.6	4.91	12.4	11.6
U_3O_8	-	-	-	-	-	-	-	0.23	-	0.26	-	-
	104	105	106	107	108	109	110	111	112	113	114	115
La	26.0	21.6	26.7	20.8	19.7	18.1	22.4	22.1	24.9	24.4	22.7	21.2
Ce	44.3	48.5	44.5	49.2	50.9	52.7	48.1	49.6	45.9	47.7	49.4	49.9
Pr	5.2	5.4	4.5	5.8	5.2	5.0	5.4	4.3	5.5	4.3	4.3	5.4
Nd	19.2	20.9	19.2	19.9	20.5	20.7	20.3	19.0	18.4	16.0	17.9	19.2
Sm	2.8	3.0	2.9	2.4	2.7	3.0	3.5	3.8	3.7	3.0	2.9	3.3
Eu	-	-	-	0.2	-	-	-	-	-	0.1	0.2	-
Gd	1.7	-	1.5	1.0	-	-	-	-	-	1.9	1.7	-
Tb	0.1	-	-	-	-	-	-	-	-	0.1	0.2	-
Dy	0.7	0.6	0.7	0.6	1.0	0.5	0.3	1.2	1.6	0.9	0.6	1.0
Но	-	-	-	-	-	-	-	-	-	0.1	-	-
Er	-	-	-	0.1	-	-	-	-	-	0.5	0.1	-
Tm	-	-	-	-	-	-	-	-	-	0.5	-	-
Yb	-	-	-	-	-	-	-	-	-	0.4	-	-
Lu	-	-	-	-	-	-	-	-	-	0.1	-	-
100Y/(Y+Ln)	(2.4)	(2.6)	-	(2.4)	(5.0)	(1.2)	(1.7)	(4.5)	-	(4.4)	(3.4)	(3.2)
Method	CH	EP	XF	-	EP	EP	EP	EP	OS	-	XF	EP
Σ=La+Ce+Pr	75.5	75.5	75.7	75.8	75.8	75.8	75.9	76.0	76.3	76.4	76.4	76.5
La-Nd	94.7	96.4	94.9	95.7	96.3	96.5	96.2	95.0	94.7	92.4	94.3	95.7
Sm-Ho	5.3	3.6	5.1	4.2	3.7	3.5	3.8	5.0	5.3	6.1	5.6	4.3
Er-Lu	-	-	-	0.1	-	-	-	-	-	1.5	0.1	-
RE_2O_3	-	-	-	51.21	-	-	-	-	-	-	60.32	-
La/Nd	1.35	1.03	1.39	1.05	0.96	0.87	1.10	1.16	1.35	1.53	1.27	1.10
ThO ₂	-	9.7	-	3.85	11.0	6.8	3.1	10.5	10.3	-	7.4	4.6
U_3O_8	-	-	-	-	-	-	-	-	-	-	-	-

	116	117	118	119	120	121	122	123	124	125	126	127
La	25.8	23.7	19.8	20.0	25.2	21.5	23.7	21.3	19.6	21.2	23.1	27.1
Ce	45.1	47.1	52.4	50.7	46.6	49.2	47.7	51.8	52.9	49.7	49.4	45.6
Pr	5.6	5.2	4.4	6.0	4.9	6.0	5.4	3.7	4.4	6.2	4.8	4.7
Nd	19.3	19.6	20.5	18.9	19.1	19.3	18.0	19.6	20.2	17.8	18.2	17.8
Sm	3.5	3.1	2.3	2.4	3.0	3.3	3.5	2.0	2.4	4.0	2.5	3.8
Eu	-	-	_	0.2	_	-	-	0.1	-	-	0.2	-
Gd	-	1.3	-	1.0	1.2	-	-	1.2	-	-	1.4	-
Tb	-	-	-	-	-	-	-	-	-	-	0.1	-
Dv	-	-	0.6	0.6	-	0.7	-	0.3	0.5	1.1	0.3	1.0
Ho	0.7	-	-	-	-	-	1.7	-	_	-	_	_
Er	-	-	-	0.2	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	_	_	-
Yb	-	_	-	-	-	-	-	-	-	-	-	-
Lu	_	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(2.9)	(2.3)	(1.6)	(3.0)	(4.8)	(3.8)	(12.2)	-	(2.2)	(9.8)	(2.2)	(4.4)
Method	OS	OS	EP	-	05	EP	OS	XF	EP	EP	XF	os
$\Sigma = La + Ce + Pr$	76 5	76.0	76.6	767	767	767	76.8	76.8	76.9	77 1	77 3	774
La-Nd	95.8	95.6	97.1	95.6	95.8	96.0	94.8	96.4	97.1	94.9	95.5	95.2
Sm-Ho	4 2	44	29	4 2	4.2	4.0	52	3.6	29	51	4 5	4.8
Er-Ln			2.9	4.2 0.2	4.2	4.0	5.2	5.0	2.)*	5.1	т .5	0
RF ₂ O ₂		_	-	51.31	-	-	-	62 37	_		58.8	_
L 203	134	1 21	0.07	1.07	1 2 2	1 1 1	1 3 2	1 00	0.07	1 10	1 27	1 52
ThO	7 35	11.0	75	2.85	7.52	1.11	6.2	6.06	5.6	12.1	64	5 20
	-	-	1.5	2.05	1.2	4.2	0.2	0.00	5.0	12.1	0.4	-
	128	129	130	131	132	133	134	135	136	137	138	139
La	25.0	20.4	24.4	27.5	24.7	22.7	23.7	26.5	26.9	24.1	19.2	24.7
Ce	47.9	53 3	49.2	45.9	49.5	52.1	50.6	474	49.4	50.6	56.0	50.9
Pr	5.2	44	47	5.0	43	39	4 5	49	44	43	43	4.2
Nd	17.6	18.8	173	17.4	19.5	18.1	173	18.0	16.6	16.6	18.1	15.9
Sm	2.5	24	23	4.2	1.8	24	23	2.5	24	2.5	18	2.2
En	-	-	0.3	-	-	-	-	-	-	0.3	-	0.3
Gd	14	-	13	_	_	_	11	07	03	11	_	13
Th	-	-	0.1	_	_	_	0.1	-	-	0.1	_	0.1
Dv	0.1	07	0.1	-	0.2	0.8	0.1	_	_	0.3	0.6	0.3
Ho	-	-	-	_	-	-	-	-	_	-	-	-
Er	0.2	-	0.1	_	_	_	0.1	_	_	0.1	-	0.1
Tm	-	_	-	-	-	-	-	_	-	-	_	-
Yh	0.1	-	_	_	_	_	_	-	_	_	-	-
Lu	-	_	_	_	_	_	_	_	_	_	_	-
100Y/(Y+Ln)	(35)	(3 3)	(25)	-	(2 1)	(3.0)	(1.5)	(2.6)	(22)	(22)	(0,7)	(2 2)
Method	(5.5)	EP	XE	05	(2.1) FP	(J.0) FP	XF	05	XF	XF	EP	XF
Σ=I a+Ce+Pr	78 1	78 1	78.3	78 /	78.5	787	78.8	78.8	80.7	70.0	79.5	70.8
La-Nd	95.7	96.9	95.6	058	08.0	96.8	96.1	96.8	973	95.6	97.6	95.0
Sm-Ho	4.0	3.1	/ 3	10	20.0	30.0	38	30.0	27.5	13	24	4.2
Er-Lu	- - .0 () 3	J.1 -	0.1	7.2	2.0	<i>ند. د</i>	0.1	J.2		0.1		01
RE ₂ O ₂	-	-	63 12	-	-	_	58.64	-	_	58 77	-	58.22
La/Nd	1 42	1 09	1 41	- 1 58	- 1 27	1 25	1 37	1 47	1.62	1 45	1.06	1 55
ThO	-	6.8	7.0	-	9.2	47	6.5	12.7	-	6.6	3.6	73
$U_2 O_8$	-	-	-	61	-		-	-	_	-	-	-
0				5.1								

	140	141	142	143	144	145	146	147	148	149	150	151
La	22.9	25.6	24.5	18.5	25.9	27.2	20.1	22.2	20.1	26.4	24.4	30.1
Ce	52.5	50.2	51.1	55.3	50.0	49.7	53.9	51.3	56.9	51.7	56.0	52.4
Pr	4.5	4.3	4.5	6.5	4.7	3.8	6.8	7.4	4.4	4.2	5.3	3.9
Nd	16.3	15.6	16.1	15.8	16.7	12.4	12.2	16.0	15.8	14.6	13.7	12.1
Sm	3.3	2.3	2.1	3.6	1.6	1.2	5.1	2.5	2.5	1.8	0.6	0.9
Eu	-	0.2	0.1	-	-	0.1	-	-	-	-	-	0.1
Gd	-	1.3	0.9	-	1.0	5.5	-	-	-	0.8	-	0.3
Tb	-	0.1	0.1	-	-	-	-	-	-	0.1	-	0.1
Dy	0.5	0.3	0.5	0.3	-	0.1	1.9	0.6	0.3	0.3	-	-
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	0.1	0.1	-	0.1	-	-	-	-	0.1	-	0.1
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(4.7)	(2.5)	(1.5)	(4.6)	(0.9)	(0.9)	(5.2)	(3.2)	(0.8)	(1.7)	-	(0.5)
Method	EP	XF	XF	EP	OS	XF	EP	EP	EP	XF	EP	XF
Σ=La+Ce+Pr	79.9	80.1	80.1	80.3	80.6	80.7	80.8	80.9	81.4	82.3	85.7	86.4
La-Nd	96.2	95.7	96.2	96.1	97.3	93.1	93.0	96.9	97.2	96.9	99.4	98.5
Sm-Ho	3.8	4.2	3.7	3.9	2.6	6.9	7.0	3.1	2.8	3.0	0.6	1.4
Er-Lu	-	0.1	0.1	-	0.1	-	-	-	-	0.1	-	0.1
RE_2O_3	-	58.03	58.60	-	-	62.51	-	-	-	58.24	68.90	61.86
La/Nd	1.40	1.64	1.52	1.17	1.55	2.19	1.65	1.39	1.27	1.81	1.78	2.49
ThO ₂	11.4	7.9	8.4	3.3	8.1	7.5	11.7	6.3	5.75	8.1	1.28	6.6
U_3O_8	-	-	-	-	0.3	-	-	-	-	-	-	-

 Table 3. Monazite-(Ce) from placers—Continued.

¹Tb+Y calculated as Y.

Table 4. Dark monazite-(Ce).
[Atomic percent except RE_2O_3 , ThO_2 , and U_3O_8 , which are in weight percent]

	1	2	3	4	5	6	7	8	9	10	11	12
La	10.5	11.4	18.5	14.0	15.3	16.4	15.7	19.6	15.8	17.8	18.2	17.9
Ce	40.2	41.4	33.3	42.9	44.0	43.8	44.4	42.3	44.4	44.2	44.5	44.0
Pr	6.4	6.8	9.1	6.1	6.1	5.5	6.0	4.2	6.0	5.7	5.2	7.4
Nd	320	28.5	25.5	28.4	25.5	23.6	24.9	25.6	25.1	25.9	25.7	24.5
Sm	7.6	6.5	5.4	6.0	5.2	5.0	5.3	5.1	5.1	4.5	3.7	3.1
Eu	0.9	1.2	1.7	0.7	0.9	0.8	0.9	1.0	0.9	0.6	0.6	0.6
Gd	2.4	3.8	6.1	1.9	3.0	4.9	2.8	1.5	2.7	1.3	2.1	1.9
Tb	-	-	-	-	-	-	-	0.2	-	-	-	-
Dy	-	0.4	0.4	-	-	-	-	0.3	-	-	-	0.3
Но	-	-	-	-	-	-	-	-	-	-	-	-
Er	-	-	-	-	-	-	-	0.2	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	0.3
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(1.3)	(1.4)	-	(1.3)	(2.5)	(1.0)	(2.5)	(0.6)	(2.6)	(1.2)	(1.2)	(1.6)
Method	ÔS Ó	XF	OS	OS Ó	XF	XF	XF	XF	XF	OS	OS	-
Σ =La+Ce+Pr	57.1	59.6	60.9	63.0	65.4	65.7	66.1	66.1	66.2	67.7	67.9	69.3
La-Nd	89.1	88.1	86.4	91.4	90.9	89.3	91.0	91.7	91.3	93.6	93.6	93.8
Sm-Ho	10.9	11.9	13.6	8.6	9.1	10.7	9.0	8.1	8.7	6.4	6.4	5.9
Er-Lu	-	-	-	-	-	-	-	0.2	-	-	-	0.3
RE ₂ O ₂	70.70	67.45	55.70	72.72	-	-	-	66.32	-	67.55	61.4	52.75
La/Nd	0.33	0.40	0.73	0.49	0.60	0.69	0.63	0.77	0.63	0.69	0.71	0.73
ThO	0.75	0.32	0.001	0.35	-	-	-	0.54	-	1.0	0.53	0.66
LLO.	-	-	-	-	_	_	_	_	-	_	_	-
					-							
0308	13	14	15	16	17	18	19	20	21	22	23	24
 La	13 19.8	14 21.3	15 17.9	16 20.3	17 21.2	18 23.3	19 19.9	20 19.5	21 19.6	22 20.5	23 23.0	24 20.3
La Ce	13 19.8 44.9	14 21.3 44.1	15 17.9 47.9	16 20.3 44.7	17 21.2 44.8	18 23.3 43.0	19 19.9 46.7	20 19.5 46.5	21 19.6 46.6	22 20.5 46.2	23 23.0 43.5	24 20.3 46.2
La Ce Pr	13 19.8 44.9 5.7	14 21.3 44.1 5.2	15 17.9 47.9 5.0	16 20.3 44.7 5.9	17 21.2 44.8 5.3	18 23.3 43.0 5.1	19 19.9 46.7 4.8	20 19.5 46.5 5.6	21 19.6 46.6 5.4	22 20.5 46.2 5.0	23 23.0 43.5 5.4	24 20.3 46.2 5.5
La Ce Pr Nd	13 19.8 44.9 5.7 24.7	14 21.3 44.1 5.2 24.3	15 17.9 47.9 5.0 23.9	16 20.3 44.7 5.9 23.9	17 21.2 44.8 5.3 23.2	18 23.3 43.0 5.1 22.6	19 19.9 46.7 4.8 22.8	20 19.5 46.5 5.6 23.5	21 19.6 46.6 5.4 23.5	22 20.5 46.2 5.0 23.4	23 23.0 43.5 5.4 22.2	24 20.3 46.2 5.5 22.1
La Ce Pr Nd Sm	13 19.8 44.9 5.7 24.7 2.8	14 21.3 44.1 5.2 24.3 3.1	15 17.9 47.9 5.0 23.9 3.1	16 20.3 44.7 5.9 23.9 3.4	17 21.2 44.8 5.3 23.2 3.6	18 23.3 43.0 5.1 22.6 3.4	19 19.9 46.7 4.8 22.8 2.9	20 19.5 46.5 5.6 23.5 3.2	21 19.6 46.6 5.4 23.5 3.1	22 20.5 46.2 5.0 23.4 3.0	23 23.0 43.5 5.4 22.2 3.3	24 20.3 46.2 5.5 22.1 3.4
La Ce Pr Nd Sm Eu	13 19.8 44.9 5.7 24.7 2.8 0.5	14 21.3 44.1 5.2 24.3 3.1 0.4	15 17.9 47.9 5.0 23.9 3.1 0.3	16 20.3 44.7 5.9 23.9 3.4 0.5	17 21.2 44.8 5.3 23.2 3.6 0.5	18 23.3 43.0 5.1 22.6 3.4 0.6	19 19.9 46.7 4.8 22.8 2.9 0.4	20 19.5 46.5 5.6 23.5 3.2 0.5	21 19.6 46.6 5.4 23.5 3.1 0.4	22 20.5 46.2 5.0 23.4 3.0 0.4	23 23.0 43.5 5.4 22.2 3.3 0.5	24 20.3 46.2 5.5 22.1 3.4 0.6
La Ce Pr Nd Sm Eu Gd	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9
La Ce Pr Nd Sm Eu Gd Tb	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9
La Ce Pr Nd Sm Eu Gd Tb Dy	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - -	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 -	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - -	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 -	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 -	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - -	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 -	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - -	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - -	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 -	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - -	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln)	$ \begin{array}{r} 13 \\ 19.8 \\ 44.9 \\ 5.7 \\ 24.7 \\ 2.8 \\ 0.5 \\ 1.6 \\ - \\ - \\ - \\ (1.1) \end{array} $	$ \begin{array}{r} 14 \\ 21.3 \\ 44.1 \\ 5.2 \\ 24.3 \\ 3.1 \\ 0.4 \\ 1.6 \\ - \\ - \\ - \\ (1.4) \end{array} $	$ \begin{array}{r} 15\\ 17.9\\ 47.9\\ 5.0\\ 23.9\\ 3.1\\ 0.3\\ 1.5\\ -\\ 0.4\\ -\\ -\\ -\\ (4.6)\\ \end{array} $	$ \begin{array}{r} 16 \\ 20.3 \\ 44.7 \\ 5.9 \\ 23.9 \\ 3.4 \\ 0.5 \\ 1.3 \\ - \\ - \\ - \\ - \\ (1.2) \end{array} $	$ \begin{array}{r} 17 \\ 21.2 \\ 44.8 \\ 5.3 \\ 23.2 \\ 3.6 \\ 0.5 \\ 1.4 \\ - \\ - \\ - \\ (1.2) \end{array} $	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - (1.5) (1.5)	$ \begin{array}{r} 19 \\ 19.9 \\ 46.7 \\ 4.8 \\ 22.8 \\ 2.9 \\ 0.4 \\ 1.5 \\ - \\ - \\ - \\ (1.4) \end{array} $	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - - - - - - - - - - - - - - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - - - - - - - - - - - - - - - -	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - - - - - - - - - - - - - - - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - - - - - - - - - - - - - - - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - - - (1.4) OS	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - - (4.6) XF	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - - - - - - - - - - - - - - - -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - - - - - - - - - - - - - - - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - - - - - - - - - - - - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - - - - - - - - - - - - - - - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - - - - - - - - - - - - - - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - (0.8) OS	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - - (3.5) OS	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - - - - - - - - - - - - - - - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - - (1.4) OS 70.6	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - - - - - - - - - - - - - - - -	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - - - - - - - - - - - - - - - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - - - - - - - - - - - - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - - - - - - - - - - - - - - - -	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - - - - - - - - - - - - - - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - (0.8) OS 71.6	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - (3.5) OS 71.9	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - (1.1) OS 70.4 95.1	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - - (1.4) OS 70.6 94.9	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - - (1.2) OS 70.9 94.8	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - - - - - - - - - - - - - - - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - - - - - - - - - - - - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - (0.8) OS 71.6 95.1	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - (0.8) OS 71.6 95.1	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - (3.5) OS 71.9 94.1	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - (1.1) OS 70.4 95.1 4.9	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - (1.4) OS 70.6 94.9 5.1	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7 5.3	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - (1.2) OS 70.9 94.8 5.2	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - (1.2) OS 71.3 94.5 5.5	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - (1.5) OS 71.4 94.0 6.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2 4.8	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - (0.8) OS 71.6 95.1 4.9	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - (0.8) OS 71.6 95.1 4.9	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - (3.5) OS 71.9 94.1 5.9	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - (1.4) OS 72.0 94.1 5.9
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - (1.1) OS 70.4 95.1 4.9	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - (1.4) OS 70.6 94.9 5.1	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7 5.3	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - (1.2) OS 70.9 94.8 5.2	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - (1.2) OS 71.3 94.5 5.5	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - (1.5) OS 71.4 94.0 6.0	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2 4.8	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - (0.8) OS 71.6 95.1 4.9	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - (0.8) OS 71.6 95.1 4.9	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - (1.35) OS 71.7 95.1 4.9	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - (3.5) OS 71.9 94.1 5.9	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - (1.4) OS 72.0 94.1 5.9 -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - (1.1) OS 70.4 95.1 4.9 - 71.8	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - (1.4) OS 70.6 94.9 5.1 - 55.08	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7 5.3 - 56.4	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - (1.2) OS 70.9 94.8 5.2 - 69.95	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - (1.2) OS 71.3 94.5 5.5 - 71.96	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - (1.5) OS 71.4 94.0 6.0 - 60.99	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2 4.8 - 55.56	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - (0.8) OS 71.6 95.1 4.9 - 65.02	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - (0.8) OS 71.6 95.1 4.9 - 64.90	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - (1.35) OS 71.7 95.1 4.9 - 54.57	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - (3.5) OS 71.9 94.1 5.9 - 49.8	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - (1.4) OS 72.0 94.1 5.9 - 60.07
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - - - - - - - - - - - - - - - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - (1.4) OS 70.6 94.9 5.1 - 55.08 0.88	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7 5.3 - 56.4 0.75	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - (1.2) OS 70.9 94.8 5.2 - 69.95 0.85	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - - - - - - - - - - - - - - - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - - - - - - - - - - - - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2 4.8 - 55.56 0.87	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - - - - - - - - - - - - - - - - -	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - (0.8) OS 71.6 95.1 4.9 - 64.90 0.83	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - (1.35) OS 71.7 95.1 4.9 - 54.57 0.88	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - - - - - - - - - - - - - - - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd ThO ₂	13 19.8 44.9 5.7 24.7 2.8 0.5 1.6 - - - - - - - - - - - - - - - - - - -	14 21.3 44.1 5.2 24.3 3.1 0.4 1.6 - - - - (1.4) OS 70.6 94.9 5.1 - 55.08 0.88 0.59	15 17.9 47.9 5.0 23.9 3.1 0.3 1.5 - 0.4 - - (4.6) XF 70.8 94.7 5.3 - 56.4 0.75	16 20.3 44.7 5.9 23.9 3.4 0.5 1.3 - - - - (1.2) OS 70.9 94.8 5.2 - 69.95 0.85 0.65	17 21.2 44.8 5.3 23.2 3.6 0.5 1.4 - - - - - - - - - - - - - - - - - - -	18 23.3 43.0 5.1 22.6 3.4 0.6 2.0 - - - - - - - - - - - - - - - - - - -	19 19.9 46.7 4.8 22.8 2.9 0.4 1.5 - - - - (1.4) OS 71.4 94.2 4.8 - 55.56 0.87 0.58	20 19.5 46.5 5.6 23.5 3.2 0.5 1.2 - - - (0.8) OS 71.6 95.1 4.9 - 65.02 0.83 0.60	21 19.6 46.6 5.4 23.5 3.1 0.4 1.4 - - - - (0.8) OS 71.6 95.1 4.9 - 64.90 0.83 1.02	22 20.5 46.2 5.0 23.4 3.0 0.4 1.5 - - - - - - - - - - - - - - - - - - -	23 23.0 43.5 5.4 22.2 3.3 0.5 2.1 - - - - - - - - - - - - - - - - - - -	24 20.3 46.2 5.5 22.1 3.4 0.6 1.9 - - - - - - - - - - - - - - - - - - -

Table 4. Dark monazite-(Ce)—Continued.

	25	26	27	28	29	30	31	32	33	34	35	36
La	19.7	19.8	17.6	24.7	22.0	21.4	21.6	22.0	21.7	21.9	17.2	22.0
Ce	47.1	47.5	48.9	42.4	45.5	46.1	46.4	46.2	46.9	48.8	51.4	47.5
Pr	5.6	5.5	6.4	5.8	5.5	5.5	5.3	5.2	5.5	3.4	5.7	4.9
Nd	20.3	21.6	21.1	19.9	22.1	22.5	21.8	21.8	20.5	20.6	18.6	21.3
Sm	3.5	3.2	2.9	4.7	2.7	2.7	3.2	2.9	3.4	2.7	4.2	2.6
Eu	0.6	0.6	0.5	0.1	0.4	0.4	0.4	0.5	0.5	0.8	0.3	0.4
Gd	2.0	1.8	2.2	2.4	1.8	1.4	1.3	1.4	1.5	1.1	2.1	1.3
Tb	0.2	-	-	-	-	-	-	-	-	0.2	0.1	-
Dy	0.7	-	0.4	-	-	-	-	-	-	0.3	0.4	-
Но	0.1	-	-	-	-	-	-	-	-	-	-	-
Er	0.2	-	-	-	-	-	-	-	-	0.2	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
Yb	-	-	-	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(1.7)	(1.2)	(1.4)	(5.6)	(1.0)	(1.3)	(1.1)	(1.1)	(1.2)	(0.8)	(1.7)	(1.3)
Method	-	OS	-	OS	OS	OS	OS	OS	OS	XF	-	OS
Σ =La+Ce+Pr	72.4	72.8	72.9	72.9	73.0	73.0	73.3	73.4	74.1	74.1	74.3	74.4
La-Nd	92.7	94.4	94.0	92.8	95.1	95.5	95.1	95.2	94.6	94.7	92.9	95.7
Sm-Ho	7.1	5.6	6.0	7.2	4.9	4.5	4.9	4.8	5.4	5.1	7.1	4.3
Er-Lu	0.2	-	-	-	-	-	-	-	-	0.2	-	-
RE_2O_3	-	61.47	46.36	65.21	70.69	56.85	58.70	63.21	62.26	66.82	-	50.82
La/Nd	0.97	0.92	0.83	1.24	1.00	0.95	0.99	1.01	1.06	1.06	0.92	1.03
ThO ₂	-	0.5	0.06	9.6	0.70	0.82	0.70	0.83	0.70	0.53	-	0.58
U ₃ O ₈	-	-	-	-	-			-	-	-	-	-
	37	38	39	40	41	42	43	44	45	46	47	
La	17.3	23.6	23.9	21.1	24.3	22.1	25.3	29.1	31.7	26.3	21.3	
Ce	51.6	46.1	47.5	49.2	47.7	52.4	50.2	48.1	48.3	57.9	63.5	
Pr	5.7	5.4	4.9	6.3	5.0	4.1	4.5	4.8	2.9	2.6	7.0	
Nd	18.8	19.3	19.9	18.6	20.1	17.7	16.3	170	100	20		
Sm							10.5	17.0	13.8	2.0	-	
	4.2	3.1	2.2	2.0	2.3	1.4	2.2	0.8	13.8	3.8	5.2	
Eu	4.2 0.3	3.1 0.5	2.2 0.4	2.0 0.5	2.3 0.6	1.4 0.7	2.2 0.4	0.8 0.2	13.8 1.6 0.3	2.8 3.8 0.3	5.2 0.4	
Eu Gd	4.2 0.3 2.1	3.1 0.5 1.5	2.2 0.4 1.2	2.0 0.5 2.0	2.3 0.6	1.4 0.7 1.3	2.2 0.4 1.1	0.8	13.8 1.6 0.3 0.9	2.8 3.8 0.3 4.6	5.2 0.4 2.6	
Eu Gd Tb	4.2 0.3 2.1	3.1 0.5 1.5 0.2	2.2 0.4 1.2	2.0 0.5 2.0	2.3 0.6	1.4 0.7 1.3 0.1	2.2 0.4 1.1	0.8 0.2 -	13.8 1.6 0.3 0.9 0.1	2.8 3.8 0.3 4.6 0.1	5.2 0.4 2.6	
Eu Gd Tb Dy	4.2 0.3 2.1	3.1 0.5 1.5 0.2 0.3	2.2 0.4 1.2	2.0 0.5 2.0 - 0.2	2.3 0.6 - -	1.4 0.7 1.3 0.1	2.2 0.4 1.1	0.8 0.2	13.8 1.6 0.3 0.9 0.1 0.3	2.8 3.8 0.3 4.6 0.1 1.5	5.2 0.4 2.6	
Eu Gd Tb Dy Ho	4.2 0.3 2.1	3.1 0.5 1.5 0.2 0.3	2.2 0.4 1.2 -	2.0 0.5 2.0 - 0.2	2.3 0.6 - -	1.4 0.7 1.3 0.1	2.2 0.4 1.1 -	0.8 0.2 - - -	13.8 1.6 0.3 0.9 0.1 0.3	2.8 3.8 0.3 4.6 0.1 1.5	5.2 0.4 2.6 -	
Eu Gd Tb Dy Ho Er	4.2 0.3 2.1 - -	3.1 0.5 1.5 0.2 0.3	2.2 0.4 1.2 - -	2.0 0.5 2.0 - 0.2 - 0.1	2.3 0.6 - - -	1.4 0.7 1.3 0.1 - 0.2	2.2 0.4 1.1 - -	0.8 0.2 - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1	5.2 0.4 2.6 -	
Eu Gd Tb Dy Ho Er Tm	4.2 0.3 2.1 - -	3.1 0.5 1.5 0.2 0.3	2.2 0.4 1.2 - -	2.0 0.5 2.0 - 0.2 - 0.1	2.3 0.6 - - - -	1.4 0.7 1.3 0.1 - 0.2	2.2 0.4 1.1 - -	0.8 0.2 - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 -	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1	5.2 0.4 2.6 - -	
Eu Gd Tb Dy Ho Er Tm Yb	4.2 0.3 2.1 - - -	3.1 0.5 1.5 0.2 0.3 -	2.2 0.4 1.2 - - -	2.0 0.5 2.0 - 0.2 - 0.1 -	2.3 0.6 - - - -	1.4 0.7 1.3 0.1 - - 0.2 -	10.5 2.2 0.4 1.1 - - -	0.8 0.2 - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 -	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1	5.2 0.4 2.6 - - -	
Eu Gd Tb Dy Ho Er Tm Yb Lu	4.2 0.3 2.1 - - -	3.1 0.5 1.5 0.2 0.3 - -	2.2 0.4 1.2 - - - -	2.0 0.5 2.0 - 0.2 - 0.1 -	2.3 0.6 - - - - -	1.4 0.7 1.3 0.1 - - 0.2 -	2.2 0.4 1.1 - - -	0.8 0.2 - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 -	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1	5.2 0.4 2.6 - - -	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln)	4.2 0.3 2.1 - - - (1.6)	3.1 0.5 1.5 0.2 0.3 - - - (1.7)	2.2 0.4 1.2 - - - (1.2)	2.0 0.5 2.0 - 0.2 - 0.1 - - - (0.5)	2.3 0.6 - - - - - (1.3)	1.4 0.7 1.3 0.1 - - - - - - - (0.7)	10.5 2.2 0.4 1.1 - - - - - - (0.8)	0.8 0.2 - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9)	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - - (1.7)	5.2 0.4 2.6 - - - - (2.0)	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method	4.2 0.3 2.1 - - - (1.6) OS	3.1 0.5 1.5 0.2 0.3 - - - (1.7) CH	2.2 0.4 1.2 - - - (1.2)	2.0 0.5 2.0 - 0.2 - 0.1 - - (0.5) XF	2.3 0.6 - - - - (1.3) OS	1.4 0.7 1.3 0.1 - - - - - - - (0.7) XF	2.2 0.4 1.1 - - - (0.8) OS	- - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - - (1.7)	5.2 0.4 2.6 - - - (2.0)	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$	4.2 0.3 2.1 - - (1.6) OS 74.6	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1	2.2 0.4 1.2 - - (1.2) - 76.3	2.0 0.5 2.0 - 0.2 - (0.5) XF 76.6	2.3 0.6 - - - - (1.3) OS 77.0	1.4 0.7 1.3 0.1 - - - - (0.7) XF 78.6	2.2 0.4 1.1 - - - (0.8) OS 80.0	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8	5.2 0.4 2.6 - - - (2.0) - 91.8	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1 94.4	2.2 0.4 1.2 - - (1.2) - 76.3 96.2	2.0 0.5 2.0 - 0.2 - (0.5) XF 76.6 95.2	2.3 0.6 - - - - (1.3) OS 77.0 97.1	1.4 0.7 1.3 0.1 - 0.2 - (0.7) XF 78.6 96.3	2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7	2.6 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8 89.6	5.2 0.4 2.6 - - - (2.0) - 91.8 91.8	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4 6.6	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1 94.4 5.6	2.2 0.4 1.2 - - (1.2) - 76.3 96.2 3.8	2.0 0.5 2.0 - 0.2 - (0.5) XF 76.6 95.2 4.7	2.3 0.6 - - - - (1.3) OS 77.0 97.1 2.9	1.4 0.7 1.3 0.1 - - - (0.7) XF 78.6 96.3 3.5	10.3 2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3 3.7	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7 3.2	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8 89.6 10.3	5.2 0.4 2.6 - - - (2.0) - 91.8 91.8 8.2	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4 6.6	3.1 0.5 1.5 0.2 0.3 - (1.7) CH 75.1 94.4 5.6	2.2 0.4 1.2 - - (1.2) - 76.3 96.2 3.8 -	2.0 0.5 2.0 - 0.2 - (0.5) XF 76.6 95.2 4.7 0.1	2.3 0.6 - - - (1.3) OS 77.0 97.1 2.9 -	1.4 0.7 1.3 0.1 - - - (0.7) XF 78.6 96.3 3.5 0.2	10.3 2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3 3.7 -	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7 3.2 0.1	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8 89.6 10.3 0.1	5.2 0.4 2.6 - - - (2.0) - 91.8 91.8 8.2	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4 6.6 - 44.74	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1 94.4 5.6 -	2.2 0.4 1.2 - - (1.2) - 76.3 96.2 3.8 - 56.85	2.0 0.5 2.0 - 0.2 - 0.1 - (0.5) XF 76.6 95.2 4.7 0.1 68.45	2.3 0.6 - - - (1.3) OS 77.0 97.1 2.9 - 59.32	1.4 0.7 1.3 0.1 - - (0.7) XF 78.6 96.3 3.5 0.2 62.46	10.5 2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3 3.7 - 60.04	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7 3.2 0.1 66.09	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) 86.8 89.6 10.3 0.1 -	5.2 0.4 2.6 - - - (2.0) 91.8 91.8 8.2 -	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4 6.6 - 44.74 0.92	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1 94.4 5.6 - 1.22	2.2 0.4 1.2 - - (1.2) - 76.3 96.2 3.8 - 56.85 1.20	2.0 0.5 2.0 - 0.1 - (0.5) XF 76.6 95.2 4.7 0.1 68.45 1.13	2.3 0.6 - - - (1.3) OS 77.0 97.1 2.9 - 59.32 1.21	1.4 0.7 1.3 0.1 - - - (0.7) XF 78.6 96.3 3.5 0.2 62.46 1.25	2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3 3.7 - 60.04 1.55	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7 3.2 0.1 66.09 2.30	2.6 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8 89.6 10.3 0.1 - 9.39	5.2 0.4 2.6 - - - (2.0) 91.8 91.8 8.2 -	
Eu Gd Tb Dy Ho Er Tm Yb Lu 100Y/(Y+Ln) Method $\Sigma=La+Ce+Pr$ La-Nd Sm-Ho Er-Lu RE ₂ O ₃ La/Nd ThO ₂	4.2 0.3 2.1 - - (1.6) OS 74.6 93.4 6.6 - 44.74 0.92 1.3	3.1 0.5 1.5 0.2 0.3 - - (1.7) CH 75.1 94.4 5.6 - 1.22	2.2 0.4 1.2 - - (1.2) - 76.3 96.2 3.8 - 56.85 1.20 0.78	2.0 0.5 2.0 - 0.1 - (0.5) XF 76.6 95.2 4.7 0.1 68.45 1.13 0.66	2.3 0.6 - - - (1.3) OS 77.0 97.1 2.9 - 59.32 1.21 0.78	1.4 0.7 1.3 0.1 - - 0.2 - (0.7) XF 78.6 96.3 3.5 0.2 62.46 1.25 1.40	2.2 0.4 1.1 - - - (0.8) OS 80.0 96.3 3.7 - 60.04 1.55	0.8 0.2 - - - - - - - - - - - - - - - - - - -	13.8 1.6 0.3 0.9 0.1 0.3 - 0.1 - (1.9) XF 82.9 96.7 3.2 0.1 66.09 2.30 0.36	2.8 3.8 0.3 4.6 0.1 1.5 - 0.1 - (1.7) - 86.8 89.6 10.3 0.1 - 9.39 0.06	5.2 0.4 2.6 - - - (2.0) - 91.8 91.8 8.2 - - 1.3	

Table 5. Monazite-(La), monazite-(Nd), and gasparite-(Ce). [Atomic percent except RE_2O_3 , ThO_2 , and U_3O_8 , which are in weight percent. Entries 1–3 are monazite-(La), entries 4–8 are monazite-(Nd), and entry 9 is gasparite-(Ce)]

	1	2	3	4	5	6	7	8	9
La	35.1	44.5	41.7	5.7	8.2	3.6	12.8	24.4	22.1
Ce	12.8	33.4	37.9	29.9	15.2	28.9	30.3	27.0	51.4
Pr	8.9	3.3	11.3	4.6	17.1	9.4	-	8.8	7.0
Nd	30.0	18.5	9.1	39.0	54.6	43.0	34.3	30.9	19.5
Sm	5.2	0.3	-	12.4	2.9	12.1	13.8	5.0	-
Eu	1.8	-	-	2.1	0.3	-	0.8	-	-
Gd	3.8	-	-	4.9	1.7	3.0	5.7	2.9	-
Tb	0.3	-	-	0.4	-	-	0.7	-	-
Dy	1.6	-	-	0.7	-	-	1.5	1.0	-
Но	-	-	-	-	-	-	-	-	-
Er	0.5	-	-	0.3	-	-	-	-	-
Tm	-	-	-		-	-	-	-	-
Yb	-	-	-	-	-	-	0.1	-	-
Lu	-	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(2.7)	-	-	(1.7)	-	-	(2.7)	-	-
Method	EP	CH	XF	XF	-	EP	OS	-	EP
Σ=La+Ce+Pr	56.8	81.2	90.9	40.2	40.5	41.9	43.1	60.2	80.5
La-Nd	86.8	99.7	100.0	79.2	95.1	84.9	77.4	91.1	100.0
Sm-Ho	12.7	0.3	-	20.5	4.9	15.1	22.5	8.9	-
Er-Lu	0.5	-	-	0.3	-	-	0.1	-	-
RE_2O_3	-	67.34	-	68.03	-	70.19	-	69.6	55.31
La/Nd	1.17	2.41	4.58	0.15	0.15	0.08	0.37	0.79	1.13
ThO ₂	-	-	-	0.12	-	-	-	-	1.95
U ₃ O ₈	-	-	-	-	-	-		-	-

Table 6. Cheralite. [Atomic percent except RE_2O_3 , ThO_2 , and U_3O_8 , which are in weight percent]

	1	2	3	4
La	19.5	18.3	20.3	20.7
Ce	45.1	48.1	48.2	50.7
Pr	4.4	5.9	5.9	5.6
Nd	21.5	22.9	19.9	17.7
Sm	6.3	4.8	4.1	3.8
Eu	0.9	-	-	-
Gd	1.5	-	1.3	1.2
Tb	0.2	-	0.1	0.1
Dy	0.2	-	0.2	0.2
Но	-	-	-	-
Er	-	-	-	-
Tm	0.4	-	-	-
Yb	-	-	-	-
Lu	-	-	-	-
100Y/(Y+Ln)	(0.4)	-	(0.6)	(0.7)
Method	EP	XF	ICP	ICP
Σ=La+Ce+Pr	69.0	72.3	74.4	77.0
La-Nd	90.5	95.2	94.3	94.7
Sm-Ho	9.1	4.8	5.7	5.3
Er-Lu	0.4	-	-	-
RE_2O_3	27.25	-	38.2	31.9
La/Nd	0.91	0.80	1.02	1.17
ThO ₂	31.64	-	27.5	25.7
U_3O_8	4.33	-	2.05	6.24

	1	2	3	4	5	6	7
La	-	17.9	14.9	18.6	16.4	20.2	19.7
Ce	-	52.4	56.2	48.4	58.9	60.2	71.3
Pr	-	-	-	5.9	4.2	-	-
Nd	-	29.7	28.9	22.5	20.5	19.6	9.0
Sm	-	-	-	4.6	-	-	-
Eu	-	-	-	-	-	-	-
Gd	11.0	-	-	-	-	-	-
Tb	5.2	-	-		-	-	-
Dy	25.3	-	-	-	-	· _	-
Но	5.0	-	-	-	-	-	-
Er	24.7	-	-	-	-	-	-
Tm	2.4	-	-	-	-	-	-
Yb	24.0	-	-	-	-	-	-
100Y/(Y+Ln)	(40.2)	-	-	-	-	-	-
Method	OS	EP	EP	XF	EP	EP	EP
Σ=La+Ce+Pr	0	70.3	71.1	72.9	79.5	80.4	91.0
La-Nd	0	100.0	100.0	95.4	100.0	100.0	100.0
Sm-Ho	46.5	-	-	4.6	-	-	-
Er-Lu	53.5	-	-	-	-	-	-
RE_2O_3	5.5	11.7	13.6	24.61	16.7	4.5	20.5
La/Nd	-	0.60	0.52	0.83	0.80	1.03	2.18
ThO ₂	43.2	64.0	63.6	40.56	58.3	69.9	56.4
U_3O_8	2.44	0.83	< 0.47	1.63	<0.47	1.04	< 0.47
SiO ₂	17.2	13.5	10.4	10.05	11.1	12.8	8.1
P_2O_5	0.7	7.1	8.9	10.00	10.5	7.4	11.2

Table 7. Huttonite.	
$[Atomic \ percent \ except \ RE_2O_3, \ ThO_2 \ , \ and \ U_3O_8, \ SiO_2, \ and \ P_2O_5, \ which \ are \ in \ weight \ percent]$	

Table 8. Average compositions of monazite-(Ce).

[Atomic percent except RE_2O_3 , ThO_2 , and U_3O_8 , which are in weight percent. Entries A–E are from table 2: A, average of 117 analyses for granitic pegmatite; B, average of 187 analyses for granite, granodiorite, and quartz monzonite; C, average of 44 analyses for gneiss; D, average of 13 analyses for alkalic rocks and alkalic pegmatite; E, average of 25 analyses for carbonatite. Entry F is average of 47 analyses for dark monazites (table 5). Entry G is average of 151 analyses for placers (table 4). Note : The averages for rare-earth element compositions do not include data from analyses in which La, Ce, Pr, or Nd was not determined; however, determinations of 100Y/(Y+Ln) and for ThO₂ or U₃O₈ from such analyses were used in calculating the averages above. The averages for U₃O₈ are considered to be uncertain. For example, for entry A, the average of 1.18 percent becomes 0.40 percent if the highest determinations (5.43, 6.1 percent) are omitted]

	A	B	С	D	Е	F	G
La	21.2	24.2	25.2	29.7	28.3	20.5	21.5
Ce	45.4	48.1	43.5	51.8	49.3	46.0	48.2
Pr	5.8	5.3	8.5	4.3	4.8	5.4	5.3
Nd	19.3	17.5	20.2	12.5	15.2	22.0	21.0
Sm	5.1	2.7	2.1	1.3	1.7	3.5	2.0
Eu	-	-	0.1	-	-	0.6	-
Gd	2.5	1.4	0.2	0.1	0.4	1.9	0.8
Tb	0.1	0.1	0.1	-	-	-	-
Dy	0.4	0.5	0.1	-	0.1	0.1	0.3
Но	-	-	-	-	0.1	-	-
Er	0.1	0.1	-	0.3	0.1	-	-
Tm	-	-	-	-	-	-	-
Yb	0.1	0.1	-	-	-	-	-
Lu	-	-	-	-	-	-	-
100Y/(Y+Ln)	(3.8)	(3.3)	(2.6)	(4.4)	(0.8)	(1.55)	(4.0)
Number of determinations	138	120	24	6	6	44	145
Σ=La+Ce+Pr	72.4	77.6	77.2	85.8	82.4	71.9	75.0
La-Nd	91.7	95.1	97.4	98.3	97.6	93.9	96.0
Sm-Ho	8.1	4.7	2.6	1.4	2.3	6.1	4.0
Er-Lu	0.2	0.2	-	0.3	0.1	-	-
RE ₂ O ₃	58.9	56.5	55.3	-	-	61.6	-
Number of determinations	17	79	20	-	-	38	-
ThO ₂	9.0	6.3	6.0	-	2.1	0.9	7.9
Number of determinations	80	71	3	-	8	37	130
U_3O_8	1.18	0.62	-	-	-	-	1.16
Number of determinations	20	18		-	-	-	13

TABLES

 Table 9. Previously published average compositions of monazite.

 [Atomic percent. Entry 1 (Fleischer and Altschuler, 1969), 104 granitic pegmatites. Entries 2–5 (Lyakhovich and

Balanova, 1971): entry 2, 5 granitic pegmatites; entry 3, 19 granites of palingenic intrusions; entry 4, 14 metasomatic granites; entry 5, 22 gneisses and migmatites. Entries 6–7 (Fleischer and Altschuler, 1969): entry 6, 123 granites, granodiorites, and quartz monzonites; entry 7, 23 alkalic rocks and carbonatites. Entry 8 (Mineev, 1963), average for all monazites]

····	1	2	3	4	5	6	7	8
La	20.6	18.0	21.3	21.7	24.2	24.0	31.3	23.9
Ce	44.2	45.7	48.8	49.4	42.4	46.6	51.2	46.0
Pr	5.7	7.1	5.6	5.7	8.3	5.4	4.3	5.5
Nd	20.0	16.8	18.5	18.6	20.8	18.2	11.2	18.8
Sm	5.1	3.7	2.3	2.3	2.0	3.1	0.7	3.7
Eu	0.1	0.2	0.1	-	-	-	-	-
Gd	3.8	2.8	1.3	1.7	2.1	1.9	0.3	1.7
Tb	0.1	0.3	0.2	0.1	-	-	-	-
Dy	0.2	3.3	1.2	0.3	-	0.7	0.4	0.2
Но	-	0.3	0.2	0.1	-	-	-	-
Er	0.1	1.0	-	0.1	0.2	0.1	0.40	0.1
Tm	-	-	0.3	-	-	-	-	
Yb	0.1	0.8	-	-	-	-	0.2	0.1
Lu	-	-	-	-	-	-	-	-
100Y/(Y+Ln)	(4.9)	-	-	-	-	(3.6)	(0.7)	-
$\Sigma = La + Ce + Pr$	70.5	70.8	75.7	76.8	74.9	76.0	86.8	75.4
La-Nd	90.5	87.6	94.2	95.4	95.7	94.2	98.0	94.2
Sm-Ho	9.3	10.6	5.3	4.5	4.1	5.7	1.4	5.6
Er-Lu	0.2	1.8	0.5	0.1	0.2	0.1	0.6	0.2
La/Nd	1.03	1.07	1.15	1.17	1.16	1.31	2.79	1.27

Table 10. Sources of data for monazites given in tables 2–7.

Sample no.	Reference (author and da	ite)	Locality	Source
			TABLE 2	
1	Shukolyukov and others	1979	Alakurtti, northern Karelia, U.S.S.R.	
2	Shukolyukov and others	1979	Northern Karelia, U.S.S.R.	
3	Shukolyukov and others	1979	Chkalov, northern Karelia, U.S.S.R.	
4	Zhirov and others	1961	Alakurtti, northern Karelia, U.S.S.R.	Granite pegmatite.
5	Shukolyukov and others	1979	Chkalov, northern Karelia, U.S.S.R.	
6	Heinrich and others	1960	Brown Derby mine, Gunnison County, Colorado	Granite pegmatite.
7	Mittelfehldt and Miller	1983	Sweetwater pluton, California	Pegmatite.
8	Andersen	1986	Fen district, Norway	Carbonatite.
9	Kalita	1961	Kapraovo, Karelia, U.S.S.R.	Granite pegmatite.
10	Heinrich and others	1960	Brown Derby mine, Gunnison County, Colorado	Granite pegmatite
11	Rapp and Watson	1986	Raade, Norway	Pegmatite.
12	Heinrich and others	1960	Brown Derby mine, Gunnison County, Colorado	Pegmatite.
13	Shukolyukov and others	1979	Chernaya Salma, Karelia, U.S.S.R.	
14	Murata and others	1957	Jamestown, Colorado	Aplite-pegmatite zone.
15	Zhang and Tao	1986	Bayan Obo, China	Aegirine-type ore.
16	Ivantishin and others	1964	Ukrainian shield	Granite.
17	McCarty	1935	New Mexico.	
18	Kalita	1961	Kaita, Karelia, U.S.S.R.	Granite pegmatite.
19	Vainshtein and others	1956b	Karelia, U.S.S.R.	Granite pegmatite.
20	Kornetova and Kazakova	1982	Siberia, U.S.S.R.	Pegmatite.
21	Kalita	1961	Alakurtti, Karelia, U.S.S.R.	Granite pegmatite.
22	Kalita	1969	Northwestern Karelia, U.S.S.R.	Granite pegmatite.
23	Ivantishin and others	1964	Ukrainian shield	Granite gneiss.
24	Semenov and Khomyakov	1981	Northern Karelia, U.S.S.R.	
25	Kalita	1969	Eastern Baltic shield	Granite pegmatite.
26	Quoted by Vlasov	1964	Chernaya Salma, Karelia, U.S.S.R.	Granite pegmatite.
27	Sahama and Vahatalo	1941	Luikohlahti, Karelia, U.S.S.R.	Granite pegmatite.

Sample no.	Reference (author and da	te)	Locality	Source
	(autor and da		TABLE 2—Continued	Bouree
28	Kornetova and Osolodkina	1966	Siberia, U.S.S.R.	Granite pegmatite.
29	Leonova and Nikitin	1962	Karelia, U.S.S.R.	Granite pegmatite.
30	Vainshtein and others	1956b	Chernaya Salma, Karelia, U.S.S.R.	Pegmatite.
31	Hugo	1970	Styr Kraal, South Africa.	Granite pegmatite.
32	Shukolyukov and others	1979	Temryuk, Karelia, U.S.S.R.	
33	Kalita	1961	Neblogera, Karelia, U.S.S.R.	Granite pegmatite.
34	Zhirov and others	1961	Northern Karelia, U.S.S.R.	Granite pegmatite.
35	Zayats and Kuts	1964	Dniepr region, Ukraine	Biotite gneiss.
36	Murata and others	1957	Grans, Sao Paulo, Brazil	Granite pegmatite; inner part of crystal 37.
37	Murata and others	1957	Grans, Sao Paulo, Brazil	Granite pegmatite; outer part of crystal 36.
38	Ivantishin and others	1964	Ukraine	Granite pegmatite.
39	Kalita	1961	Nuoleinnieme, Karelia, U.S.S.R.	Granite pegmatite.
40	Sahama and Vahatalo	1939	Impilahti, Karelia, U.S.S.R.	
41	Shukolyukov and others	1979	Given, Karelia, U.S.S.R.	
42	Vainshtein and others	1955	Karelia, U.S.S.R.	Pegmatite.
43	Murata and others	1953	Crabtree Creek, North Carolina.	Pegmatite.
44	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
45	Vainshtein and others	1956b	Mozambique	Pegmatite.
46	Ivantishin and others	1964	Ukrainian shield	Granite pegmatite.
47	Ivantishin and others	1964	Kirovgrad-Zhitomir	Granite.
48	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Archean garnet-biotite gneiss.
49	Semenov	1963	Southern Asia	Spodumene pegmatite.
50	Khomyakov	1964	Western Tannu-Ola, U.S.S.R.	Calcite vein.
51	McCarty	1935	Not known.	
52	McCarty	1935	Cleveland County, North Carolina.	
53	Shukolyukov and others	1979	Glukhovets, U.S.S.R.	
54	Hugo	1970	Debares, South Africa.	Granite pegmatite.
55	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
56	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
57	Orsa and others	1967	Ukraine	Garnet-muscovite pegmatite.
58	Heinrich and others	1960	Petaca, New Mexico	Granite pegmatite.
59	Zayats and Kuts	1964	Ukraine	Archean biotite gneiss.
60	McCarty	1935	McDowell County, North Carolina.	
61	Vainshtein and others	1955	Brazil.	
62	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
63	Ivantishin and others	1964	Ukraine	Pegmatitic granite.
64	Ivantishin and others	1964	Ukraine	Gneiss.
65	Shukolyukov and others	1979	Not known.	
66	Quoted by Vlasov	1964	Mongolia	Alkali hydrothermalite
67	Mannucci and others	1986	Val Vigazzo, Italy	Pegmatite
68	Mohr	1984	North Carolina	Core of zoned porphyroblast
69	Mohr	1984	North Carolina	Rim of zoned porphyroblast
70	Vainshtein and others	1956b	Hittero, Norway.	
71	Zhirov and others	1961	Impilahti, Karelia, U.S.S.R.	Granite pegmatite.
72	Zhang and Tao	1986	Bayan Obo, China	Main ore.
73	Zayats and Kuts	1964	Gnilopat River basin, Ukraine	Archean biotite gneiss.
74	Fujii	1961	Fukushima Prefecture, Japan.	
75	Zhirov and others	1961	Kupchinit, Karelia	Granite pegmatite.
76	Zhirov and others	1961	Popernaloke, Karelia	Granite pegmatite.
77	Zhang and Tao	1986	Bayan Obo, China	East ore, dolomite.
78	Zhirov and others	1961	Tedino, Karelia, U.S.S.R.	Granite pegmatite.
79	Murata and others	1953	Petaca, New Mexico	Granite pegmatite.
80	Shmakin and Shiryayeva	1970	Gutero, Biryasin area, Siberia, U.S.S.R.	Pegmatite.
81	Vainshtein and others	1956b	Kurumkan, eastern Siberia, U.S.S.R.	Cordierite gneiss.
82	Ivantishin and others	1964	Ukraine	Gneiss.
83	Vainshtein and others	1956b	Pysstinoc, Siberia, U.S.S.R.	Quartzite.

 Table 10. Sources of data for monazites given in tables 2–7—Continued.

 Table 10. Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and da	ate)	Locality	Source
			TABLE 2—Continued	
84	Heinrich and others	1960	Chaffee County, Colorado	Granite pegmatite.
85	Murata and others	1958	Gramma, Sao Paulo, Brazil	Granite pegmatite.
86	Sahama and Vahatalo	1941	Turku, Finland	Granit.e
87	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
88	Heinrich and others	1960	Petaca, New Mexico	Granite pegmatite.
89	Pluhar	1979	Takua Pa, southern Thailand	Granite pegmatite.
90	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
91	Vainshtein and others	1956b	Zhezholev, Ukraine.	
92	McCarty	1935	Arendel, Norway.	
93	Shukolyukov and others	1979	Eki Varaki, northern Karelia, U.S.S.R.	
94	Ivantishin and others	1964	Chudnov-Berdichevskii, Ukraine	Granite.
95	Murata and others	1958	Pemba, Minas Gerais, Brazil	Granite pegmatite.
96	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
97	Konetova	1963	Siberia, U.S.S.R.	Granite pegmatite.
98	Ivantishin and others	1964	Ukraine	Gneiss.
99		1975	Troland, Norway	Granite pegmatite.
100	Vainshtein and others	19566	Arendal, Norway	Pegmatite.
101	Murata and others	1953	Amelia, Virginia	Granite pegmatite.
102	Heinrich and others	1960	Pecos, New Mexico	Granite pegmatite.
103	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Garnet-biotite gneiss.
104	Murata and others	1958	Ferros, Minas Gerais, Brazil	Granite pegmatite.
105	Ivantishin and others	1964	Nirovgrad-Znitomir, Ukraine	Granite.
106	Shukolyukov and others	1979 1056h	Nova Pavlova, Karella, U.S.S.K.	Desmatite
107	vanshein and others	19300	Gnilopyat River, Okraine	Cronite
108	Lyaknovich	1962	Eastern Sayan	Granite.
109	Vainshtein and others	1902 1056b	Chkalov, Kareha Zhalzhoek Likroina	Grainte pegmatite.
110	Valiantich and others	19500	Chaffee County Colorado	Granite negratite
112	Bernstein	1082	North Carolina	Quartz vein in slate
112	Ouoted by Vlasov	1964	Furopean S S R	Alkali granite
113	Ivantishin and others	1964	Kirovarad-Zhitomir, Ukraine	Granite
115	Murata and others	1958	Minas Gerais Brazil	Granite pegmatite
115	Leonova and Nikitin	1962	Chkalov Karelia USSR	Granite pegmatite.
117	Shmakin and Shirvayeya	1970	Moma Siberia USSR	Pegmatit.e
118	Kalita	1969	Eastern Baltic shield, U.S.S.R.	Granite pegmatite.
119	Heinrich and others	1960	Petaca, New Mexico	Granite pegmatite.
120	Kostin and Volzhenkova	1965	Not stated	Ouartz-oligoclase vein in
				gabbro.
121	Murata and others	1953	Portland, Connecticut	Granite pegmatite.
122	Zhirov and others	1961	Tedina, Karelia, U.S.S.R.	Granite pegmatite.
123	Heinrich and others	1960	Park County, Colorado	Granite pegmatite.
124	Marchenko	1967	Southeast Ukraine	Biotite gneiss.
125	Heinrich and others	1960	Park County, Colorado	Granite pegmatite.
126	Wylie	1950	Normanville district, Australia	Pegmatite.
127	Lyakhovich	1962	Talitsk massif, Gornyi Altai	Biotite granite.
128	Vainshtein and others	1956b	Arendal, Norway.	
129	Lyakhovich and Barinskii	1961	Kurokhol massif, western Tuva	Granite.
130	Fishman and others	1968	Sol'ner massif, Polar Urals	Granite.
131	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
132	Heinrich and others	1960	Petaca, New Mexico	Granite pegmatite.
133	Heinrich and others	1960	Petaca, New Mexico	Granite pegmatite.
134	Zhang and Tao	1986	East ore, Bayan Obo, China.	
135	Vainshtein and others	1956b	Tedino, Karelia, U.S.S.R.	
136	Pavlenko and others	1959	Uzuntaig massif, eastern Tuva	Granosyenite.
137	Fishman and others	1968	Source of the Bolshaya Pobk River, U.S.S.R.	
138	Hugo	1970	Kroma Puts, South Africa	Pegmatitic granodiorite.
139	Kucha	1980	Bogatyne area, Lower Silesia, Poland.	~ .
140	Murata and others	1958	Sao Bento, Rio Grande do Norte, Brazil	Granite pegmatite.

Table 10.	Sources	of data	for	monazites	given	in ta	bles	2-	 -7—Continuec 	1.
-----------	---------	---------	-----	-----------	-------	-------	------	----	----------------------------------	----

Sample no.	Reference (author and dat	te)	Locality	Source
	Actes chee (author and au		TABLE 2—Continued	Jource
141	Lee and Bastron	1967	Mt Wheeler area Nevada	Granodiorite-quartz monzonite
142	Komov and others	1974	Polar Urals	Hydrothermal quartz vein
143	Murata and others	1953	Hollis. North Carolina	Quartz monzonite pegmatite.
144	Komov and others	1974	Pamirs, Siberia, U.S.S.R.	Albitized quartzite.
145	Vainshtein and others	1956b	Kiev district. Ukraine	Kaolinized granite.
146	Bukanov and Shvetsova	1966	Near-Polar Urals	Ouartz vein.
147	Vainshtein and others	1956a	Borshchevoch Ridge, Transbaikal	(average of 10).
148	Zavats and Kuts	1964	Pobozhe. Ukraine	Garnet-biotite gneiss.
149	Zhang and Tao	1986	Bayan Obo, China	Riebeckite-type ore.
150	Zavats and Kuts	1964	Azov region, U.S.S.R.	Biotite gneiss.
151	Bel'kov	1979	Kola Peninsula, U.S.S.R.	Metasomatic granite.
152	Marchenko	1967	Southeast Ukraine	Biotite-garnet gneiss.
153	Shukolyukov and others	1979	Not given.	
154	Komov and others	1974	Polar Urals	Ouartz vein (same as 146?).
155	Graeser and Schwander	1987	Italy	Pegmatite vein in gneiss.
156	Povilaitis and Varshal	1969	Kuu massif. Kazakstan	Metasomatic feldspar rock.
157	Ivantishin and others	1964	Ukraine	Gneiss.
158	Haapala and others	1969	Puumala, Finland	Biotite vein in Precambrian
	F			granite.
159	Zhiroy and others	1961	Chkalov, Karelia, U.S.S.R.	Granite pegmatite.
160	Bukanov and Shvetsova	1966	Near-Polar Urals	Ouartz vein.
161	Choong	1971	Malaysia	(average of 5).
162	Ivantishin and others	1964	Ukraine	Kirovgrad-Zhitomir granite.
163	Ivantishin and others	1964	Ukraine	Gneiss.
164	Pavlenko and others	1959	llektag massif, eastern Tuva	Biotite granite.
165	Shmakin and Shirvayeva	1970	Gutaro-Birvagin area, Siberia, U.S.S.R.	Pegmatite.
166	Znamenskii and others	1967	Myakulski River, eastern Sayan	Two-mica granite.
167	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
168	Mineev	1963	Tarbagatay, Kazakhstan	Exocontact metasomatite.
169	Mineev	1963	Tarbagatay, Kazakhstan	Exocontact metasomatite.
170	Murata and others	1958	Uba, Minas Gerais, Brazil	Granite pegmatite.
171	Bearth	1934	Perdatech, Switzerland	Alpine cleft.
172	Bel'kov	1979	Kola Peninsula, U.S.S.R.	Leucocratic granite.
173	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
174	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
175	Vainshtein and others	1956b	Azov region, U.S.S.R.	Pegmatite.
176	Ivantishin and others	1964	Chudnov-Berdichevskii, Ukraine	Granite.
177	Lyakhovich	1962	Kuu massif, Kazakhstan	Granite.
178	L'vov	1965	Borisovskii massif, Kochkar, Urals	Pegmatite.
179	Trace	1960	Hicks Dome, Illinois	Cherty residuum overlying
				limestone.
180	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz-monzonite.
181	Kovalenko and others	1971	Buge-Gaziyan, Mongolia	Microclinite.
182	Vainshtein and others	1956b	Temryuk, Azov region, U.S.S.R.	
183	Mannucci and others	1986	Val Vigezzo, Italy	Pegmatite.
184	Leonova and Nikitin	1962	Perti Vokera, Karelia, U.S.S.R.	Granite pegmatite.
185	Kapustin	1986	Novopoltov massif, U.S.S.R.	Carbonatite.
186	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Biotite gneiss.
187	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Garnet-biotite gneiss.
188	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
189	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Metasomatic feldspar rock.
190	Semenov and Khomyakov	1981	India	Strongly magnetic.
191	Lee and Bastron	1967	Mt. Wheeler area, Nevada	Granodiorite-quartz monzonite.
192	Kirillov and Ryzhova	1968	Karelia, U.S.S.R.	Sulfatian carbonatite.
193	Murata and others	1958	Nazarene, Minas Gerais, Brazil	Granite pegmatite.
194	L'vov and Zhangurov	1968	Borisovskii massif, Urals	Pegmatite.
195	Vainshtein and others	1956b	Hittero, Norway	Pegmatite.
196	Znamenskii and others	1967	Tickhaya River, eastern Sayan	Biotite granite.

 Table 10. Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and da	te)	Locality	Source
			TABLE 2—Continued	
197	Ivantishin and others	1964	Ukraine	Gneiss
198	Kuts	1966	Azov region USSR	Xenolith in granite
199	Marchenko	1967	Southeast Ukraine	Garnet-biotite pegmatite
200	Vainshtein and others	1956h	Yuzhakova Ukraine	Granite
200	Vainshtein and others	1956b	Torgevitsy Ukraine	Granite
201	I vakbovich	1962	Fast Savan	Granite
202	Paylenko and others	1050	Milzei massif, eastern Tuva	Alaskite
203	Kute	1959	Relmichava Azov region USSP	Alaskite.
204	White and Nelen	1087	Foote mine, North Carolina	Permatite
205	Mittelfehldt and Miller	1083	Sweetwater Washington pluton California	Granite
200	Murata and others	1905	Juiz de Fore, Mines Coreia, Prezil	Granite negrestite outer part of
207a	White and others	1930	Juiz de Feia, Millas Ociais, Biazii	orante pegmane, outer part or
2075	Murate and others	1059	Iviz de Ferre Mines Carrie Brazil	Civital.
2070	Pal'kov	1930	Juiz de Fera, Minas Gerais, Diazii	Metacomotio granito
208	Zeensonaleii end athem	1979	Kola Peninsula, U.S.S.R.	Distite exercise
209	Znamenskii and others	1907	Eastern Sayan	Biotite granite.
210	Znamenskii and others	1907	Eastern Sayan	Biotite granite.
211	Vainshieln and others	19300	Kalchik River, Ukraine	Pegmatite.
212	Murata and others	1958	Juiz de Fera, Minas Gerais, Brazil	Granite pegmatite.
213	Vainshtein and others	19560	Temryuk, Azov region, U.S.S.R.	Pegmatite.
214	Zayats and Kuts	1964	Pobozhe, Ukraine	Archean biotite gneiss.
215	Vainshtein and others	1955	Torgevitsy, Ukraine	Granite.
216a, b	Murata and others	1957	Shelby district, North Carolina	Quartz monzonite (same species
				collected separately).
217	Mannucci and others	1986	Alps, Italy	Pegmatite.
218	Ivantishin and others	1964	Ukraine	Proterozoic gneiss
219	Vainshtein and others	1955	Zhelzhoskii, Ukraine	Gneissic granite (same as 215?).
220	Znamenskii and others	1967	Tiskhaya River, eastern Sayan	Biotite granite.
221	Kuts	1966	Berda River, Azov region, U.S.S.R.	Aplitic granite.
222	Zayats and Kuts	1964	Sluch River basin, Azov region	Proterozoic biotite gneiss.
223	Fujii	1961	Ishikawa-Cho, Fukushima Prefecture, Japan	
224	L'vov	1965	Borisovskii massif, Urals	Kyanite schist.
225	Leonova and Nikitin	1962	Lake Laakensko, Karelia, U.S.S.R.	Granite pegmatite.
226	Lyakhovich	1962	Eastern Sayan	Biotite granite.
227	Yalovenko and Yur'yeva	1967	Lazovatka, Ukraine	Granite.
228	Vainshtein and others	1955	Brazil	Granite.
229	Lyakhovich	1962	Eldzhurtin massif, Caucasus	Biotite granite.
230	Kuts	1966	Torgevitsy, Ukraine	Pegmatite.
231	Anderson	1986	Fen district, Norway	Carbonatite
232	Semenov	1963	Ras-Iz, Polar Urals	Plagiogranite pegmatite.
233	Zayats and Kuts	1964	Sluch River basin, Ukraine	Garnet-biotite gneiss
234	Murata and others	1957	Yucca Valley, California	Granite pegmatite.
235	Vainshtein and others	1955	Torgevitsy, Ukraine	Pegmatite.
236	Lyakhovich	1962	Korovischin massif, Gornyi Altai	Granite.
237	L'vov	1965	Varlamoff massif, Urals	Granite.
238	Lyakovich	1968	Urals	Quartz vein
239	Jefferies	1985	Carnmenellis pluton, Cornwall, England	Biotite granite
240	Wylie	1950	Cooglegong, W. Australia	Pegmatite.
241	Vainshtein and others	1956b	Temryuk, Azov region, U.S.S.R.	
242	Vainshtein and others	1956b	Blyunov mine, Urals	Pegmatite.
243	Zhang and Tao	1986	Bayan Obo, China	Main magnetic ore.
244	Vainshtein and others	1956b	Kiev district, U.S.S.R.	Granite.
245	Bel'kov	1979	Kola Peninsula, U.S.S.R.	Metasomatic granite.
246	Yurk and others; quoted by Lazarenko and others	1980	Ukraine	Aplitic granite.
247	Lyakhovich	1962	Ukraine	Biotite granite
247	Yalovenko nd Yur'yeva	1967	Rovno Ukraine	Pegmatite granite
240	Shmakin and Shirvayeva	1970	Gutero-Birvasin area Siberia USSR	i oginanio granito.
250	Ivantishin and others	1964	Ukraine	Gneiss
250	2. and only only offers	1704		

1	6
T	υ

 Table 10.
 Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and da	ite)	Locality	Source
			TABLE 2—Continued	
251	Lyakhovich	1962	Talitsk massif, Gornyi Altai	Biotite granite.
252	Vainshtein and others	1956b	Fukushima, Japan.	
253	Kuts	1966	Temryuk, Azov region, U.S.S.R.	Pegmatite.
254	Andersen	1986	Fen district, Norway	Carbonatite
255	Murata and others	1958	Juiz de Fera, Minas Gerais, Brazil	Granite pegmatite.
256	Charoy	1986	Cornwall, England	Granite.
257	Povilaitis and Varshal	1969	Kuu massif, Kazakhstan	Quartz-scheelite vein in
				serpentinite.
258	Pluhar	1979	Phukat, southern Thailand	Granite pegmatite.
259	Mannucci and others	1986	Alps. Italy	Pegmatite.
260	Vainshtein and others	1956b	Temryuk, Azov region, U.S.S.R.	0
261	Vainshtein and others	1955	Ostropol, Ukraine	Granite.
262	Vainshtein and others	1956b	Urals	Granite.
263	Marchenko	1967	Southeast Ukraine	Aplitic biotite granite.
264	Lvakhovich	1968	Kazakhstan	Biotite granite.
265	Vainshtein and others	1955	Urals	Two-mica granite.
266	Vainshtein and others	1955	Krivoi Rog Ukraine	
267	Vainshtein and others	1956h	Krutocheg Urals	Granite
268	Murata and others	1958	Juiz de Fera Minas Gerais Brazil	Granite pegmatite
269	Korpetova	1963	Siberia II S S R	Granite pegmatite
270	Vainshtein and others	1956b	Buziyka Ilkraine	Kaolinized granite
270	I vakhovich	1962	Talitek massif Gornyi Altai	Biotite granite
271	Jefferies	1985	Carnmenellis pluton Cornwall England	Biotite granite
272	Kanustin	1965	Vuorijarvi Karelia USSP	Carbonatite
275	I vakhovich	1062	Vuolijaivi, Kalena, O.S.S.K.	Granite
274	Kuts guoted by Lazaranko	102	Rocinkai massii, Orais	Aplitic granite
215	and others	1960	Delua, Oklaine	Aprilie granite.
276	Murata and others	1057	Shelby district North Carolina	Sillimanite schist
270	Ivantishin and others	1957	Jikroine	Gneise
277	I vakhovich	1062	Eastern Seven	Granite
270	Dovilatis and Varshal	1060	Lasterii Sayan	Quartz walframita vain in
219	r ovitatus and v arshar	1909	Kuu massii, Kazakiistan	Qualtz-womannie veni m
280	Murata and others	1059	luiz de Fere Mines Carois Brozil	grensite negrotite
200	Komey and others	1936	Juiz de Fera, Minas Gerais, Brazil	Quarta vain
201	A lakeing and Tayothave	1974	Polar Urais Dile Mountaine, Duleanie	Qualiz vein.
202	Aleksiev and Tsvetkova	1902	Kila Mountains, Bulgana	Diatite granite
283	Dellenes	1985	Carnmenellis pluton, Cornwall, England	Biotite granite.
284	Bel Kov	1979	Kola Peninsula, U.S.S.R.	Granodiorite-tonalite.
285	Vainshtein and others	19560	Kirovgrad, Ukraine	Granite.
280	Knamrabaev and Azimov	1964	Aktau massif, western Uzbekistan	Granite pegmatite.
207	Zillov and others	1901	Kneto-Lambina, Karelia, U.S.S.K.	Distite survite
200		1962	Exaterinov massir, Ukraine	Biotite gramte.
209	Kuls	1900	Anatolskii, Azov region, U.S.S.K.	Granite.
290	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Archean biotite granite.
291	Lyakhovich	1968	Eastern Sayan	Biotite granite.
292	L vov and Zhangurov	1968	Dzebyk region, eastern Urals	
293	Vainshtein and others	1956a	Borshchevoch Ridge, Transbaikal	Gneissic granite (average of 6).
294	Murata and others	1958	Ferros, Minas Gerais, Brazil	Granite pegmatite.
295	Lyakhovich	1962	Kochkar massif, Urals	Pegmatite.
296	Vainshtein and others	1955	Badeiba, Transvaal	Pegmatite.
297	vainshtein and others	1956b	Temryak, Azov region, U.S.S.R.	Pegmatite.
298	Lyakhovich and Kasaeva	1968	Kabaridi-Balkarsk, U.S.S.R.	Precambrian granite.
299	Vainshtein and others	1955	Korea	Pegmatite.
300	Murata and others	1953	Shelby district, North Carolina	Quartz monzonite pegmatite.
301	Pavlenko and others	1966	Milzei massif, eastern Tuva	Biotite granite.
302	Lyakhovich and Barinskii	1961	Edygai massif, western Tuva	Quartz vein.
303	Vainshtein and others	1956b	Temryuk, Azov region, U.S.S.R.	Pegmatite.
304	Mannucci and others	1986	Alps, Italy	Fissure.
305	Mannucci and others	1986	Alps, Italy	Pegmatite.

 Table 10. Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and da	te)	Locality	Source
			TABLE 2—Continued	
306	Gavrilova and Turanskaya	1958	Kirovgrad, Ukraine	Granite.
307	Orsa and others	1967	Middle Dniepr region, Ukraine	Pegmatitic granite.
308	Lazarenko and others	1980	Ukraine.	
309a, b, c	Ploshko and Knyazeva	1965	Urushten complex, Caucasus	Three analyses of one sample.
310	L'vov	1965	Demerinskii massif, Urals	Granite gneiss.
311	Murata and others	1957	Chesterfield, Virginia	Granite.
312, 313	Vainshtein and others	1956b	Gorevka, Ukraine.	
314	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Granite.
315	Zayats and Kuts	1964	Gnilopyat River basin, Ukraine	Archean biotite gneiss.
316	Nedashovskii and others	1969	Far Eastern U.S.S.R.	Alkali granite.
317, 318	Vainshtein and others	1956b	Gorovka, Ukraine	Granite.
319	Lyakhovich	1962	Murzinsk massif, Urals	Granite.
320	Vainshtein and others	1955	Ostrope, Austria	Pegmatite.
321	Wylie	1950	Olary, South Australia	Gold mine.
322	Ivantishin and others	1964	Chudnov-Berdesinskii, Ukraine	Granite.
323	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
324	Vainshtein and others	1956b	Suberov, Ukraine.	
325	Kuts	1966	Anatolisk, Azov region, U.S.S.R.	Granite.
326	Vainshtein and others	1956b	Kurumkan, eastern Siberia, U.S.S.R.	
327	Zhang and Tao	1986	Bayan Obo, China.	East ore
328	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
329	Semenov	1963	Transbaikal	Granite.
330	Povilaitis and Varshal	1969	Kuu massif, Kazakhstan	Quartz vein.
331	Mannucci and others	1986	Alps, Italy	Pegmatite.
332	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
333	Alekslev and Tsvetkova	1962	Kila Mountains, Bulgaria	Biotite granite.
225	Bel KOV	1979 1056h	Kola Peninsula, U.S.S.K.	Alkan granite.
226	Palalinatskii and Elina	19300	Zaseninskoi, eastern Siberia, U.S.S.K.	Alkali granita
227	Belonpetskil and Enna	1907	Not given Van Deinederf, South Africa	Aikan granite.
337	by Semenov	1903	van Keinsdori, South Africa	Hydrothermal granite.
338	Bermanec and others	1988	Yugoslavia	Hydrothermal vein in syenite.
339	Murata and others	1957	Shelby district, North Carolina	Biotite schist.
340	L' vov	1965	Samarskii massif, Urals	Granite.
341	Batieva	1976	Kola Peninsula, U.S.S.R.	Alkali granite.
342	Vainshtein and others	1956b	Pastinnec, eastern Siberia, U.S.S.R.	
343	Khomyakov	1964	Tannu-Ola	Quartz syenite.
344	Murata and others	1958	San Rafael, Rio Grande do Norte, Brazil	Granite.
345	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
346	Bel kov	1979	Polar Urals	Alkalı granite.
347	Kapustin	1966	Nama Vara, Karelia, U.S.S.R.	
348	Komov and others	1974	Polar Urals	Quartz vein.
349	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
350	Berkov	19/9	Polar Urais	Aikan gramte.
252	Zavata and Kuta	1902	Transdalkal Desig of Sluck Diver, Ukreine	Diotite granne.
552	Zayais and Kuts	1904	Basin of Sluch River, Okraine	proterozoic gamet-biotite
252	Kamov and athens	1074	Dalar Urala	gneiss.
555 251	Komov and others	19/4	rolai Utals Cornyi Altoi	Qualtz veni. Degmatite
255	Aleksiev and Tevethove	1900	Ourry Ana Rila Mountaine, Bulgaria	i ognano. Biotite granite
355	Rel'kov	1902	Kila Mountains, Duigalla Kola Deningula	Alkali granite
250	Vainshtein and others	17/9 10566	Temryuk Azov region USSD	Pegmatite
358	Zavats and Kute	19500	Shuch River basin Ukraine	Riotite gneiss
350	Ivantishin and others	1964	Ilkraine	Lower Proterozoic gneiss (same
		1055		as 358?).
360	Vainshtein and others	1956a	Borshchevoch ridge, Transbaikal	Granite.
361	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
362	Bel'kov	1979	Kola Peninsula, U.S.S.R.	Metasomatic granite.

Sample no	Reference (author and date	<u></u>	Locality	Source
Sample no.	Reference (author and date		TABLE 2—Continued	Source
363	Ivantishin and others	1964	Likraine	Gneiss
364	Borovskii and Gerasimovskii	1945	Urusika River, Siberia, U.S.S.R	Granite pegmatite
365	Bel'kov	1979	Kola Peninsula II S S R	Alkali granite
366	Orsa and others	1967	Middle Drienr region Ukraine	Pegmatitic granite
367	Murata and others	1958	Mar de Espinha Minas Gerais Brazil	Granite pegmatite
368	Aleksiev and Tsyetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
369. 370	Jefferies	1985	Cornwall England	Biotite granite.
371, 372	L'vov	1965	Samarskiji massif. Urals	Granite.
373	L'voy and Zhanguroy	1968	Dzhabyk region eastern Urals	Granite
374	Aleksiev and Tsyetkova	1962	Rila Mountains Bulgaria	Biotite granite.
375	Vainshtein and others	1956b	Zasentiske, eastern Siberia, U.S.S.R.	210110 8.1110
376	Van Wambeke	1977	Karonge deposit, Burundi Republic.	
377	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Granite pegmatite.
378. 379	Aleksiev and Tsyetkova	1962	Rila Mountains Bulgaria	Biotite granite.
380	Bel'kov	1979	Kola Peninsula USSR	Metasomatic granite.
381	Aleksiev and Tsyetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
382	L'vov	1965	Varlamoffski massif Urals	Granite
383	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite
384	Lyakhovich	1962	Ilkraine	Biotite granite.
385	Povilaitis and Varshal	1969	Kuu massif Kazakhstan	Metasomatic albite-quartz
565	rovitatis and varshar	1707	Kuu mussii, Kuzukiisun	replacement of granite
386	Mannucci and others	1986	Rauris Italy	Fissure
387 388	A leksiev and Tsvetkova	1062	Rila Mountaine, Bulgaria	Biotite granite
380	Zhirov and others	1061	Rha Wountains, Burgana Eki Varaka, northern Karelia, U.S.S.R	Granite pegmatite
390	Kupriyanova and others	1964	European S S R	Quartz-fluorite-molybdenite
570	Rupityalova and others	1704	European S.S.R.	vein
301 302	Aleksiev and Tsvetkova	1062	Rila Mountains, Bulgaria	Biotite granite
303	Orsa and others	1962	Zaporozh'ye Ukraine	Plagiomigmatite
394_396	Aleksiev and Tsvetkova	1967	Rila Mountaine Bulgaria	Biotite granite
307	Shirwayaya	1902	Mamsk region Siberia USSP	Muscovite pegmatite
398	Kuts	1966	Ingulets region, Elkraine	Gneiss
399	Murata and others	1958	Consicao de Meto Ventre Minas Gerais Brazil	Granite pegmatite
400	McKie	1962	Kangankunde Malawi	Carbonatite.
401	Aleksiev and Tsyetkova	1962	Rila Mountains Bulgaria	Biotite granite.
402	Lyakovich	1968	Kazakhstan	Biotite granite
403	Jefferies	1985	Cornwall England	Biotite granite.
404, 405	Aleksiev and Tsyetkova	1962	Rila Mountains Bulgaria	Biotite granite.
406	Ivantishin and others	1964	Ukraine	Gneiss
407	Jefferies	1985	Cornwall England	Biotite granite.
408	Murata and others	1958	Mar de Espinha Minas Gerais, Brazil	Granite pegmatite.
409	Pluhar	1979	Takua Pa, southern Thailand	Granite pegmatite.
410-412	Jefferies	1985	Cornwall England	Biotite granite.
413	Semenov and Barinskii	1958	Tennet, Yakutia	Alkaline pegmatite.
414	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Granite pegmatite.
415	Vainshtein and others	1955	Aldan	Pegmatite.
416	Murata and others	1958	Juiz de Fera, Minas Gerais, Brazil	Schist wallrock of pegmatite.
417	L'vov	1965	Varlamoff massif. Urals	Granite.
418	L'vov and Zhangurov	1968	Dzhabyk region, eastern Urals	Granite.
419	Bel'kov	1979	Kola Peninsula	Metasomatic granite.
420	Jefferies	1985	Cornwall, England	Biotite granite.
421	Orsa and others	1967	Middle Dniepr region, Ukraine	Granite.
422	Jefferies	1985	Cornwall, England	Biotite granite.
423	Kukharenko and others	1961.	Namo Vara, Karelia	Carbonatite
424	Povilaitis and Varshal	1969	Kuu massif, Kazakhstan.	
425	Ivantishin and others	1964	Ukraine	Gneiss.
426	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.
427-428	Jefferies	1985	Cornwall, England	Biotite granite.
429	Vainshtein and others	1956b	Il'men Mountains, Urals	Pegmatite.

 Table 10.
 Sources of data for monazites given in tables 2–7—Continued.

Table 10. Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and dat	e)	Locality	Source						
TABLE 2—Continued										
430	Shlyukova	1986	Khibina massif, Kola Peninsula, U.S.S.R.	Pegmatite.						
431	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Granite pegmatite.						
432	Lyakhovich	1968	Kazakhstan	Granite.						
433	Vainshtein and others	1956a	Borshchevoch ridge, Transbaikal	Granite (average of 8).						
434	Vainshtein and others	1956b	Il'men Mountains, Urals	Pegmatite.						
435	Andersen	1986	Fen district, Norway	Carbonatite.						
436	Proshchenko	1967	Eastern Siberia, U.S.S.R.	Albitite.						
437	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Granite pegmatite.						
438	Borovskii and Gerasimovskii	1945	Elizavetinsk, Urals	Granite pegmatite.						
439	Kovalenko and others	1971	Ink-Khairken, Mongolia	Microclinite.						
440	Aleksiev and Tsvetkova	1962	Rila Mountains, Bulgaria	Biotite granite.						
441	Semenov and Khomyakov	1981	India	Weakly magnetic concentrate.						
442-444	Shlyukova	1986	Khibina massif, Kola Peninsula, U.S.S.R.							
445	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Schist wallrock of granite pegmatite.						
446	Komov and others	1974	Pamirs, Siberia, U.S.S.R.	Quartz-carbonate vein.						
447	Jefferies	1985	Cornwall, England	Biotite granite.						
448	Papunen and Lindsjo	1972	Korsnas, Finland	Skarn, lead deposit.						
449	Murata and others	1957	Hollis, North Carolina	Quartz monzonite dike.						
450	Jefferies	1985	Cornwall, England	Biotite granite.						
451	Andersen	1986	Fen district, Norway	Carbonatite.						
452	Murata and others	1958	Mar de Espinha, Minas Gerais, Brazil	Granite pegmatite.						
453	L'vov and Zhangurov	1968	Dzhabyk region, eastern Urals	Granite						
454	Murata and others	1958	Mar de Espínha, Minas Gerais, Brazil	Carbonatite.						
455	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Granite.						
450	Plosnko Valassanka and Variassa	1961	Malaya Laba River, Caucasus, U.S.S.R.	Talc-actinolite rock.						
457	Talovenko and Tur eva	190/	Roches, Ukraine	Granite.						
450	Zhang and Tao	1980	Bayan Obo, China Isia da Fanas Minas Causia Durail	Main ore.						
459	Murate and others	1938	Juiz de Ferios, Minas Gerais, Brazil	Granite pegmatite.						
400	Zewate and Kute	1930	Mar de Espinina, Minas Gerais, Brazin	Archeon biotite anglies						
401	Layars and Nuis	1904		Graiss (same as 4612)						
463	L'yoy and Zhanguroy	1904	Dzhabyk region eastern Urals	Granite						
463	Lefferies	1085	Cornwall England	Biotite granite						
465	Orsa and others	1967	Zaporzhoe Ukraine	Plagiogranite						
466	L'vov	1965	Demarinskij massif Urals	Granite						
467	Leonova and Nikitin	1962	Karelia USSR	Granite pegmatite						
468	Povilaitis and Varshal	1959	Kuu massif Kazakhstan	Metasomatic feldspar rock						
469	Semenov	1963	Magadcherea, U.S.S.R.	Pegmatite.						
470	Komov and others	1974	Polar Urals	Ouartz vein.						
47 1	Komov and others	1974	Pamirs, Siberia, U.S.S.R.	Dolomitized quartzite.						
472, 473	Jefferies	1985	Cornwall, England	Biotite granite.						
474	Vladykin and others	1982	Mongolia	Arfvedsonite granite.						
475	Lyakhovich	1967	Azov region, U.S.S.R.	C						
476	Jefferies	1985	Cornwall, England	Biotite granite.						
477	Kretser and Zamoryanskaya	1986	Not given.	-						
478	Zhang and Tao	1986	Bayan Obo, China	Main ore.						
479	Meliksetyan	1963	Megri pluton, Armyan S.S.R.	Syenite.						
480	L'vov and Zhangurov	1968	Sucundu region, eastern Urals	Granite.						
481	Jefferies	1985	Cornwall, England	Biotite granite.						
482	Vainshtein and others	1955	Central Asia	Quartz vein.						
483	Zayats and Kuts	1964	Pobuzhe, Ukraine	Garnet-biotite gneiss.						
484	Vainshtein and others	1956b	Pyat Palsen, Aldan	Graphite granite.						
485	Murata and others	1958	Shelby district, North Carolina	Biotite gneiss.						
486	Borovskii and Gerasimovskii	1945	Andermanskii, Uriskiken River, Siberia, U.S.S.R.	Granite.						
48/	Orsa and others	196/	Middle Dhiepr region, Ukraine	Plagiomigmatite.						
488	Formattis and Varshal	1939	Kuu massii, Kazakhstan	vein granite.						

Table 10. S	Sources of (data for	monazites	given in	tables	2-7-	-Continued.
-------------	--------------	----------	-----------	----------	--------	------	-------------

Sample no.	Reference (author and dat	e)	Locality	Source
			TABLE 2—Continued	
489	Mineev and others	1962	Vishnevye Mountains, Urals	Alteration product of chevkinite,
				fenite.
490	Es'kova and Ganzeev	1964	Urals	Fenitized granite pegmatite.
491	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Quartz-wolframite vein in
10.0				gneiss.
492	Murata and others	1958	San Rafael, Rio Grande do Norte, Brazil	Pegmatite.
493	Vainshtein and others	1961	Eastern Sayan	Carbonatite.
494	Murata and others	1957	Mt. Pass, California	Carbonatite.
495	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Vein granite.
496	Murata and others	1958	Sabinopolis, Brazil	Granite pegmatite.
497	Vinogradov and Elina	1968	Northwestern Kola Peninsula, U.S.S.R.	Granite.
498	Znang and Tao	1980	East ore, Bayan Obo, China	Aegime-rich ore.
499	Kuznetsova and others	1980	Northern Siberia, U.S.S.K.	Dolomite-ankerite carbonalite.
500	Nurata and others	1958	Sabinopolis, Brazil	Granite pegmatite.
501	Dubrovskii	1908	Yuroeisk complex, Kola Peninsula	Biotite granite
502	Zhang and Tag	1983	Cornwall, England	L ete stage vein
503	Zhang and Tao	1960	East ore zone, Bayan Obo, China Sabinopolia, Brozil	Cronite normatite
505	Vainshtain and others	1956	Saumopons, Brazii	Diamic peginane.
505	Serdwichenko and others	1955	Utais Byolomocio	Precambrian biotite gneiss
507	Chistyakova and Kazakova	1967	Byciolussia Kazakhstan	Granite pegmatite
508	L'yoy and Zhanguroy	1908	Razakiisian Chalvahin district aastarn Urals	Granite Granite
500	Zhang and Tao	1906	Bayan Obo, China	Glainte.
510	Ivantishin and others	1960	Likroine	Gneiss
511	Zhang and Tao	1904	Bayan Obo, China	Glielss.
512	Vainshtein and others	1961	Fastern Savan	Carbonatite
513	Kalenor and others	1963	Far Fastern U.S.S.R	Pseudomorph after loparite in
515		1705		hydrothermally altered svenite.
514	Zhang and Tao	1986	Bayan Obo, China	Late-stage vein.
515	Kapustin	1966	Eastern Savan	Carbonatite.
516	Mineev	1968	Northwestern Tarbagatau, Kazakhstan	Pegmatite.
517	Mineev	1968	Northwestern Tarbagatau, Kazakhstan	Biotite apogranite.
518	Chistov	1965	Eastern Siberia, U.S.S.R.	Carbonatite.
519	Murata and others	1953	Mt. Pass, California	Carbonatite.
520	Vetoshkina and others	1980	Ploska Mountain, Kola Peninsula, U.S.S.R.	Amazonite pegmatite.
521	Semenov and others	1967	Tarbagatau, Kazakhstan	Quartz-fluorite pegmatite.
522	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Granite.
523	Zuev and Kosterin	1961	Central Asia	Hydrothermal (average of 4).
524	Lyakhovich	1968	Kazakhstan	Biotite granite.
525	Povilaitis and Varshal	1959	Kuu massif, Kazakhstan	Granite.
526	Mineev	1968	Northwestern Tarbagatau, Kazakhstan	Biotite apogranite.
527	Quoted by Vlasov	1964	Mongolia	Alkali hydrothermalite.
528	Michael	1988	Bishop Tuff, California	Inclusion in pyroxene.
529	Zhang and Tao	1986	Bayan Obo, China	Aegirine-rich ore.
530	Semenov and others	1978	Tamil Nadu, India	Carbonatite.
531	Komov and others	1974	Pamirs	Quartzite.
532	Zhang and Tao	1986	Bayan Obo, China	Aegirine-rich ore (same as 529?).
533	Jobbins and others	1977	Sri Lanka	Gem.
534	Murata and others	1957	Magnet Cove, Arkansas	Aplite-pyrite dike in carbonatite.
535	Bloomfield and Garson	1965	Kangankunde Hill, Malawi	Carbonatite.
536	Semenov	1963	Kazakhstan	Greisen.
537	Plaksenko and others	1982	Shiryaeva, pluton, U.S.S.R.	Gabbro-dolerite.
538	Povilaitis and Varshal	1969	Kuu massif, Kazakhstan	Granite.
539	Nuznetsova and others	1980	Northern Siberia, U.S.S.K.	Dolomite-ankerite carbonatite.
540	DOFOVSKII and Gerasimovskii	1945	Kounrad deposit, Balknesh, U.S.S.R.	Granite.
341	маспенко	1907	Southeastern Ukraine	nyuromerinai gneissic xenonin in
540	Zhang and Tac	1086	Payan Obo, China	Sycille. Late-stage vein
544	znang and Tau	1200	Dayan Obo, China	Law-stage veni.

Table 10.	Sources	of data	for mor	nazites	given	in t	ables	2 - 7	Continue	d.
-----------	---------	---------	---------	---------	-------	------	-------	-------	----------	----

Sample no.	Reference (author and da	te)	Locality	Source
			TABLE 2—Continued	
543	Pavlenko and others	1959	Dugdin massif, eastern Tuva	Pegmatite schlieren in
I.				granosyenite.
544	Komov and others	1974	Polar Urals	Quartz vein.
545	Zhang and Tao	1986	East ore, Bayan Obo, China	Banded layer.
546	Zhang and Tao	1986	Bayan Obo, China.	
547	Vainshtein and others	1955	Kazakhstan	Hydrothermally altered pegmatite.
548	Rose and others	1958	Magnet Cove, Arkansas	Carbonatite.
549	Lyakhovich	1962	Eldzhurtin massif, northern Caucasus.	
550	Quoted by Vlasov	1964	Kounrad, Kazakhstan.	
551	Pluhar	1979	Phuket, southern Thailand	Granite pegmatite.
552	Vainshtein and others	1955	Vishnevye Mountains, Urals	Carbonate vein.
553	Vainshtein and others	1955	Central Kazakstan.	Quartz vein.
554	Zhang and Tao	1986	Bayan Obo, China	
555	Es'kova and Ganzeev	1964	Vishnevye Mountains, Urals	Dolomite vein in ultramafic rock.
556	Vainshtein and others	1955	Kazakhstan	Hydrothermally altered pegmatite.
557	Zhang and Tao	1986	Bayan Obo, China	Dolomite type, main ore.
558	Pluhar	1979	Phuket, southern Thailand	Granite pegmatite.
559	Es'kova and Ganzeev	1964	Vishnevye Mountains, Urals	Alkalic muscovite-corundum
540		10/1		pegmatite.
560	Es kova and Ganzeev	1964	Vishnevye Mountains, Urals	Albitite in miaskite.
561	Heinrich and Levinson	1961	Ravalli County, Montana	Carbonatite.
562	Zhabin and Svyazhin	1962	Vishnevye Mountains, Urals	Albitite.
563	Somina and Bulakh	1966	Eastern Sayan	Carbonatite.
564	Es kova and Ganzeev	1964	Vishnevye Mountains, Urais	Alkali pegmatite.
	Gramaccioii and Segeistad	1978		Pegmatite.
1	Dlubor	1070	Panang Dravinga, southern Theiland	
1	Flunar Flinter and others	19/9	Kanang Province, southern Thalland.	Alluvial
2	Pluber	1905	Dhong Nga Province, southern Theiland	Anuviai.
J 1	r Iuliai Nekrasov	1979	Kular region Ear Eastern U.S.S.P.	SiO. 12.04 percent: P.O. 24.08
7	INCREASON	1912	Kulai legioli, Pai Eastern 0.5.5.K.	percent. 1_{205} 24.00
5	McCarty	1935	China	F
6	Pluhar	1979	Phuket Province, southern Thailand.	
7	Li and Grebennikova	1962	Siberia, U.S.S.R.	
8	Flinter and others	1963	Parak, Malaysia	Alluvial.
9	McCarty	1935	India.	
10	Nekrasov	1972	Kular region, Far Eastern U.S.S.R.	SiO ₂ 12.04 percent; P ₂ O ₅ 24.08
				percent.
11a-f	Richartz	1961	Brazil	Black sand (separated into
				magnetic fractions; listed in
				order of increasing magnetism.
12	Pluhar	1979	Ranang Province, southern Thailand.	
13	McCarty	1935	India.	
14–16	Pluhar	1979	Ranang Province, southern Thailand.	
17	McCarty	1935	Idaho.	
18	McCarty	1935	Florida.	
19	Flinter and others	1963	Kadah State, Malaysia	Alluvial.
20-22	Pluhar	1979	Ranang Province, southern Thailand.	
23	Hedrick	1988	Florida.	
24	Zemel	1936	Aldan, U.S.S.R.	Gold placer.
25	Pluhar	1979	Ranang Province, southern Thailand.	
26	Pluhar	1979	Phang Nge Province, southern Thailand.	
27, 28	Pluhar	1979	Ranang Province, southern Thailand.	
29	Pluhar	1979	Phang Nge Province, southern Thailand.	
30–33	Pluhar	1979	Ranang Province, southern Thailand.	A 11
34	Flinter and others	1963	Silian, Malaysia	Alluvial.
35	Finter and others	1963	Irong Parak, Malaysia	Alluvial.
36–38	Pluhar	1979	Ranang Province, southern Thailand.	

~	1
ר	1
-	_

 Table 10. Sources of data for monazites given in tables 2–7—Continued.

Sample no.	Reference (author and da	nte)	Locality	Source
			TABLE 3—Continued	
39	Lozinski	1969	Baltic Sea coast	Black sand.
40-43	Pluhar	1979	Ranang Province, southern Thailand.	
44	Pluhar	1979	Phang Nge Province.	
45-50	Pluhar	1979	Ranang Province, southern Thailand.	
51	Flinter and others	1963	Kanper Perak, Malaysia	Alluvial.
52	Pluhar	1979	Ranang Province, southern Thailand.	
53, 54	Pluhar	1979	Phang Nge Province, southern Thailand.	
55	Hedrick	1988	Eastern Australia	
56. 57	Pluhar	1979	Ranang Province, southern Thailand.	
58	Flinter and others	1963	Serenhan Malaysia	Alluvial.
59	Kosterin and others	1962	Maritime Province, Far Eastern, U.S.S.R.	
60	Pluhar	1979	Physical Province, southern Thailand.	
61–64	Pluhar	1979	Ranang Province, southern Thailand.	
65	Trace	1960	Hardin County, Illinois	Cherty residuum overlying
				limestone.
66	Pluhar	1979	Ranang Province, southern Thailand,	
67	Flinter and others	1963	Semeling, Kedah State, Malaysia	Alluvial.
68	Flinter and others	1963	Batu Gugel, Perak State, Malaysia	Alluvial.
69-71	Pluhar	1979	Ranang Province, southern Thailand.	
72	Flinter and others	1963	Pertang, Perak State, Malaysia	Alluvial.
73	Flinter and others	1963	Bider. Perak State. Malaysia	Alluvial.
74	Flinter and others	1963	Petaling, Salanger State, Malaysia	Alluvial.
75	Pluhar	1979	Ranang Province, southern Thailand.	
76	Pluhar	1979	Ranang Province, southern Thailand.	
77	Pluhar	1979	Phang Nge Province, southern Thailand.	
78	Pluhar	1979	Ranang Province, southern Thailand.	
79	Pluhar	1979	Phang Nge Province, southern Thailand.	
80, 81	Pluhar	1979	Ranang Province, southern Thailand.	
82	Pluhar	1979	Phang Nge Province, southern Thailand.	
83	Pluhar	1979	Ranang Province, southern Thailand.	
84	Pluhar	1979	Phang Nge Province, southern Thailand.	
85	Pluhar	1979	Ranang Province, southern Thailand.	
86–88	Pluhar	1979	Ranang Province, southern Thailand.	
89	Flinter and others	1963	Selangor State, Malaysia	Alluvial.
90, 91	Pluhar	1979	Ranang Province, southern Thailand.	
92	Soong	1978	Taiwan	Beach sand.
93	Pluhar	1979	Phukat Province, southern Thailand.	
94	Pluhar	1979	Ranang Province, southern Thailand.	
95	Pluhar	1979	Phang Nge Province, southern Thailand.	
96	Pluhar	1979	Phang Nge Province, southern Thailand.	
97	Pluhar	1979	Ranung Province, southern Thailand.	
98	Hedrick	1988	India.	
99	Flinter and others	1963	Sunghai, Perak State, Malaysia	Alluvial.
100	Pluhar	1979	Ranung Province, southern Thailand.	
101	Flinter and others	1963	Pulau Besur, Malacca State, Malaysia	Alluvial.
102	Murata and others	1953	Travancore, India.	
103	Pluhar	1979	Ranung Province, southern Thailand.	
104	Hwang and others	1981	Australia.	
105	Pluhar	1979	Ranung Province, southern Thailand.	
106	quoted by Vlasov (v. 2, p. 283)	1964	Korea.	
107	Chen and others	1973	Taiwan	Beach sand.
108-110	Pluhar	1979	Ranang Province, southern Thailand.	
111	Pluhar	1979	Phang Nge Province, southern Thailand.	
112	Wylie	1950	Scottsdale district, Tasmania.	
113	Hedrick	1988	China.	
114	Rosenblum	1974	Liberia	Beach sand.

Table 10.	Sources of	of data	for mona	izites	given	in	tables	2-7-	–Continue	d.
-----------	------------	---------	----------	--------	-------	----	--------	------	-----------	----

Sample no.	Reference (author and c	late)	Locality	Source
			TABLE 3—Continued	
115	Pluhar	1979	Phuket Province, southern Thailand.	
116	Wylie	1950	Byron Bay, New South Wales, Australia.	
117	Murata and others	1957	Byron Bay, New South Wales,	Split of sample 116
118	Pluhar	1979	Ranang Province, southern Thailand.	
119	Chen and others	1973	Taiwan	Beach sand.
120	Murata and others	1953	Pacific Grove, California.	
121	Pluhar	1979	Ranang Province, southern Thailand.	
122	Wylie	1950	Stannum, New South Wales, Australia	Alluvial.
123	Smirnov	1969	Riphaen sediments, Middle Dniester area, Ukraine.	
124	Pluhar	1979	Ranang Province, southern Thailand.	
125	Pluhar	1979	Phang Nge Province, southern Thailand.	
126	Rosenblum	1974	Liberia	Beach sand.
127	Wylie	1950	Cape Everard, Victoria, Australia	Beach sand.
128	Hedrick	1988	W. Australia.	
129	Pluhar	1979	Ranang Province, southern Thailand.	
130	Rosenblum	1974	Liberia	Beach sand.
131	wylie Division	1950	King Island, Australia	Beach sand.
132	Plunar	1979	Ranang Province, southern Thailand.	
133	Plunar	1979	Phuket Province, southern Thailand.	Deeph cond
134	Nurate and others	1974	Liberia Desifia Crova, California	Beach sand.
135	Heinrich and others	1955	Pacific Grove, California.	Split of sample 125
130	Rosenblum	1900	Liboria	Beach sand
138	Pluhar	1070	Phylet Province southern Thailand	Beach saild.
130	Rosenblum	1974	Liberia	Beach sand
140	Pluhar	1979	Banang Province, southern Thailand	Beach saile.
141, 142	Rosenblum	1974	Liberia	Beach sand
143	Pluhar	1979	Phong Nge Province, southern Thailand	Bouon Sund.
144	Hammond	1946	Travancore. India	Beach sand.
145	Rosenblum	1974	Liberia	Beach sand.
146	Pluhar	1979	Phang Nge Province, southern Thailand.	
147	Pluhar	1979	Phuket Province, southern Thailand.	
148	Pluhar	1979	Ranang Province, southern Thailand.	
149	Rosenblum	1974	Liberia	Beach sand.
150	Styles and Young	1983	Afu Hills, Nigeria.	
151	Rosenblum	1974	Liberia	Beach sand.
			TABLE 4	
1	Rosenblum and Mosier	1983	Kivu, Zaire	Alluvial.
2	Nekrasova and Nekrasov	1983	Indigirka River, northeastern Yakutia	Alluvial.
3	Kosterin and others	1962	Maritime Province, eastern Siberia, U.S.S.R.	Cassiterite placer.
4	Rosenblum and Mosier	1983	Kivu, Zaire	Alluvial.
5–7	Donnot and others	1973	Brittany, France	Paleozoic gray schist.
8	Nekrasova and Nekrasov	1983	Indigirka River, northeastern Yakutia.	
9	Donnot and others	1973	Brittany, France	Paleozoic gray schist.
10	Rosenblum and Mosier	1983	Kivu, Zaire	Alluvial.
11	Rosenblum and Mosier	1983	France	Alluvial.
12	Chen, Li, and Wu	1973	Taiwan	Beach sand.
13	Rosenblum and Moser	1983	Livengood, Alaska	Alluvial.
14	Rosenblum and Moser	1983	Taiwan	Beach sand.
15	Serdyuchenko and Kochetkov	1974	liman, U.S.S.K.	Kiphaen shale.
16, 17	Rosenblum and Mosier	1983	Kivu, Zaire	Alluvial.
18	Rosenblum and Mosier	1983	Ruby, Alaska	Alluvial.
19	Rosenblum and Mosier	1983	Southwestern Taiwan	Beach sand.
20	Rosenblum and Mosier	1983	Eagle, Alaska	Alluvial.
21	Rosenblum and Mosier	1983	Teller, Alaska	Alluvial.
22	Rosenblum and Mosier	1983	Southwestern Taiwan	Beach sand.

Sample no.	Reference (author and dat	e)	Locality	Source
			TABLE 4—Continued	
23	Rosenblum and Mosier	1983	Montana	Alluvial.
24	Rosenblum and Mosier	1983	Rio San Juan, Peru	Alluvial.
25	Soong	1978	Taiwan	Beach sand.
26	Rosenblum and Mosier	1983	Rio Morro, Peru	Alluvial.
27	Chen, Li, and Wu	1973	Taiwan	Beach sand.
28, 29	Rosenblum and Mosier	1983	Taiwan	Beach sand.
30	Rosenblum and Mosier	1983	Tanana, Alaska	Alluvial.
31	Rosenblum and Mosier	1983	Livengood, Alaska	Alluvial.
32	Rosenblum and Mosier	1983	Talkeetna, Alaska	Alluvial.
33	Rosenblum and Mosier	1983	Livengood, Alaska	Alluvial.
34	Nekrasova and Nekrasov	1983	Obrivisty River, northeastern Yakutia	Alluvial.
35	Soong	1978	Taiwan	Beach sand.
36	Rosenblum and Mosier	1983	Taiwan	Beach sand.
37	Soong, quoted by Rosenblum	1983	Southwestern Taiwan	Beach sand (same as sample
	and Mosier			35?)
38	Hwang and others	1981	Taiwan	Beach sand.
39	Rosenblum and Mosier	1983	Tanana Alaska	Alluvial
40	Nekrasova and Nekrasov	1983	Sclar River, northeastern Yakutia	Alluvial
41	Rosenblum and Mosier	1983	Tanana Alaska	Alluvial
42	Nekrasova and Nekrasov	1983	Dzhatuk River, northeastern Vakutia	Alluvial
43	Rosenblum and Mosier	1983	Onbir Alaska	Alluvial
45	Soong	1978	Taiwan	Beach sand
45	Nekrasova and Nekrasov	1083	Vera River, northeastern Vakutia	A lluvial
45 76	Vaquero	1905	Spain	Alluvial
40 17	Soong	1979	Span Toiwon	Beach sand
		1770	TABLE 5	
1	Maksimovic and Panto	1983	Liverici Yugoslavia	Bauxite
2	Semenov	1969	llimaussaa Greenland	Alkalic rock
3	Borovskij and Gerasimovskij	10/15	Balkhash	Granite
1	Nekrosova and Nekrosov	1092	Dalkilasii Urusalakh Divar Sibaria, USSD	Dark monazita
	Proshchenko, quoted by	1965	Northern Valutia	Alkali granite nagmatite
5	Vlasov, v. 1, p. 243	1704		Aikan granne pegmane.
6	Graeser and Schwander	1987	Italy	Pegmatite vein in gneiss.
7	Shukolyukov and others	1979	Alakurtti, northern Karelia, U.S.S.R.	
8	Maksimovic and Panto	1980	Greece	Marmora bauxite deposit.
9	Graeser and Schwander	1987	Italy	Pegmatite vein in gneiss.
			TABLE 6	
1	Bowles and others	1980	Kuttakhuzhi, Travancore, India	Kaolinized pegmatite.
2	Pavlenko and others	1959	Bayankul massif, eastern Tuva	Amazonite pegmatite.
3,4	Foord and others	1993	Kuttakuzhi, Trivandrum, Kerala State, India	Pegmatite dike.
			TABLE 7	
1	Kosterin and Zuev	1962	Not given	Veinlet in granophyre.
2, 3	Kucha	1980	Bogatyn area, Lower Silesia, Poland	Huttonite-monazite.
4	Pavlenko and others	1966	Southeastern Siberia, U.S.S.R.	"Cerphosphorhuttonite," amazonite pegmatite.
5	Kucha	1980	Bogatyn area, Lower Silesia, Poland	Huttonite-monazite.
6	Kucha	1980	Bogatyn area, Lower Silesia, Poland	Huttonite-monazite
7	Kucha	1980	Bogatyn area Lower Silesia, Poland	Huttonite-monazite

Table 10. Sources of data for monazites given in tables 2–7-Continued.

Table 11. Locality index.

Country	Table	Sample number
Purundi Danuhlia		Africa
Liberia	23	570 114 126 130 134 137 130 141 142 145 140 151
Molowi	2	114, 120, 150, 154, 157, 159, 141, 142, 145, 149, 151
Mozambique	2	400, 555
Nigeria	2	150
South Africa	2	31 54 138 206 337
Zaire	4	1, 4, 10, 16, 17
		Asia
"South Asia"	2	49
China	2	15, 72, 77, 134, 149, 243, 327, 458, 478, 498, 503, 509, 511, 514, 529, 532, 542, 545, 546, 554, 557
	3	5, 113
India	2	190, 441, 530
	3	9, 13, 98, 102, 144
Japan	2	74, 223, 252
Korea	2	299
	3	106
Malaysia	2	161
	3	2, 8, 19, 34, 35, 51, 58, 67, 68, 72–74, 89, 99, 101
Mongolia	2	66, 181, 439, 474, 527
Sri Lanka	2	533
Taiwan	3	92, 107, 119
	4	12, 14, 19, 22, 25, 27–29, 35–38, 44, 47
Thailand	2	89, 258, 409, 551, 558
	3	1, 3, 6, 12, 14, 15, 16, 20–22, 25–33, 36–38, 40–50, 52–54, 56, 57, 60–64, 66, 69–71, 75–88, 90, 91, 93–97, 100, 103, 105, 108–111, 115, 118, 121, 124, 125, 129, 132, 133, 138, 140, 143, 146–148
U.S.S.R.		
Siberia	2	20, 28, 80, 83, 97, 117, 165, 249, 269, 364, 397, 486
	3	7
Central Asia	2	482, 523
East Siberia, Far Eastern		
U.S.S.R., Maritime Province	2	81, 316, 326, 335, 342, 375, 436, 513, 518
	3	4, 10, 59
	4	3
Northern Siberia	2	499, 539
Aldan	2	415, 484
	3	24
Balkhash	2	540
Gornyi Altai	2	127, 236, 251, 271, 354
Kabaridi-Balkarsk, A.S.S.R.	2	298
Kazakhstan	2	156, 168, 169, 177, 189, 257, 264, 279, 330, 385, 402, 424, 432, 455, 468, 488, 491, 495, 507, 516, 517, 521, 522, 524–526, 536, 538, 547, 550, 553, 556
Pamirs	2	144, 446, 471, 531
Polar Urals	2	130, 142, 146, 154, 160, 232, 281, 346, 348, 350, 353, 470, 471, 544
Sayan	2	108, 166, 196, 202, 209, 210, 220, 226, 278, 291, 493, 512, 515, 563
Tannu-Ola	2	50, 343
Timan	4	15
Transbaikal	2	147, 293, 329, 351, 360, 433
Tuva	2	129, 136, 164, 203, 301, 302, 543
Urals	2	178, 194, 224, 237, 238, 242, 262, 265, 267, 274, 292, 295, 310, 319, 340, 371–373, 382, 417, 418, 429, 434, 438, 453, 463, 466, 480, 489, 490, 505, 508, 552, 555, 559, 560, 562, 564
Uzbekistan	2	286
Yakutia	2	413
	4	2, 8, 34, 40, 42, 45

Country	Table	Sample number
		Australia
Australia	2	126
	3	131
East Australia	3	55, 104
South Australia	2	321
New South Wales	3	116, 117, 122
Tasmania	3	112
Victoria	3	127
West Australia	2	240
	3	128
		Europe
Austria	2	320
Bulgaria	2	282, 314, 323, 328, 332, 333, 345, 349, 355, 361, 368, 374, 378, 379, 381, 383, 387, 388,
		391, 392, 394–396, 401, 404, 405, 426, 440
England	2	239, 256, 272, 283, 369, 370, 403, 407, 410-412, 420, 422, 427, 428, 447, 450, 464, 472,
		473, 476, 481, 502
Finland	2	86, 158, 448
France	4	5–7, 9, 11
Italy	2	67, 155, 183, 217, 259, 304, 305, 331, 386, 565
Norway	2	8, 11, 70, 92, 99, 100, 128, 195, 231, 254, 435, 451
Poland	2	139
Spain	4	46
Switzerland	2	171
U.S.S.R.	2	53, 113, 137, 185, 390, 469, 537
Azov region	2	150 175 182 198 204 213 221 222 241 253 260 289 297 303 325 357 475
Baltic region	$\frac{1}{2}$	25 118
Battle Tegloti	2	30
Armania	2	57 470
Armenia	2	477
Byelorussia	2	
Caucasus	2	229, 309a, b, c, 456, 549
Karelia and Kola Peninsula	2	1-5, 9, 13, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32–34, 39–42, 71, 75, 76, 78, 93, 106, 109, 116,
		122, 135, 151, 159, 172, 184, 192, 208, 225, 245, 273, 284, 287, 334, 341, 347, 356, 362, 365,
* ** ·	-	380, 389, 419, 423, 430, 442–444, 467, 497, 501, 520
Ukraine	2	16, 23, 35, 38, 46–48, 57, 59, 63, 64, 73, 82, 91, 94, 98, 103, 105, 107, 110, 114, 124, 145,
		148, 152, 157, 162, 163, 176, 186, 187, 197, 199–201, 211, 214, 215, 218, 219, 227, 230,
		233, 235, 244, 246–248, 250, 261, 263, 266, 270, 275, 277, 285, 288, 290, 306–308, 312,
		313, 315, 317, 318, 322, 324, 352, 358, 359, 363, 366, 384, 393, 398, 406, 421, 425, 457,
		461, 462, 465, 483, 487, 510, 541
	3	123
Yugoslavia	2	338
		North America
United States		
Alaska	4	13, 18, 20, 21, 30–33, 39, 41, 43
Arkansas	2	534, 548
California	2	7, 206, 234, 494, 519, 528
	3	120, 135, 136
Colorado	2	6, 10, 12, 14, 84, 111, 123, 125
Connecticut	2	121
Florida	3	18, 23
Idaho	3	17
Illinois	2	179
	3	65
Montana	2	561
	ĩ	23
Nevada	2	22 44 55 56 62 87 90 96 131 141 167 173 174 180 188 191
New Mexico	2	17 58 79 88 102 119 132 133
North Carolina	2	13 57 60 68 60 112 113 102 116 h 776 200 220 110 195
Virginia	2	43, 32, 00, 00, 07, 112, 143, 203, 210a, 0, 270, 300, 337, 447, 403 101-211
• ngma	2	101, 511

 Table 11.
 Locality index—Continued.

Table 11. Locality index—Continued.

Country	Table	Sample number
		South America
Brazil	2	36, 37, 61, 85, 95, 104, 115, 140, 170, 193, 207a,b, 212, 228, 255, 268, 280, 294, 344, 367, 377, 399, 408, 414, 416, 431, 437, 445, 452, 454, 459, 460, 492, 496, 500, 504
	3	11a-f
Peru	4	24, 26
		No locality given
	2	51, 65, 120, 153, 336, 477

REFERENCES CITED

- Aleksiev, Elena, and Tsvetkova, V., 1962, Mineralogical and chemical study of monazites from granites of the Rila Mountains: Bulgarska Akademiia na Naukite, Sofia, Geologicheski Institut, Trudove Vurkhu Geologiiata na Bulgariia, Seriia Geokhimiia i Polezni Izkopaemi, v. 3, p. 5–24. [In Bulgarian with German and Russian summaries.]
- Amli, Reidar, 1975, Mineralogy and rare-earth geochemistry of apatites and xenotime from the Gloseheria granite pegmatite, southern Norway: American Mineralogist, v. 60, p. 607–620.
- Andersen, Tom, 1986, Compositional variation of some rare-earth minerals from the Fen complex (Telemark, S.E. Norway)—Implications for the mobility of rare earths in a carbonatite system: Mineralogical Magazine, v. 50, p. 503–509.
- Balashov, Yu.A., and Pozharitskaya, L.K., 1968, Factors regulating the behavior of rare earth elements in the carbonatite process: Geokhimiia 1968, p. 285–303. [In Russian; translation in Geochemistry International, v. 5, p. 271–288.]
- Batieva, I.D., 1976, Petrology of alkalic granitoids of the Kola Peninsula: Nauka, p. 1–224. [In Russian.]
- Bayliss, Peter, and Levinson, A.A., 1988, A system of nomenclature for rare-earth mineral species—Revision and extension: American Mineralogist, v. 73, p. 422–423.
- Bearth, P., 1934, X-ray spectroscopic analysis of a turnerite from the Tavetsch: Schweizerische Mineralogische Petrographische Mitteilungen, v. 14, p. 442–446. [In German.]
- Bel'kov, I.V., 1979, Accessory minerals of the granitoids of the Kola Peninsula: Nauka, p. 1–185. [In Russian.]
- Belolipetskii, A.P., and Elina, N.A., 1967, Composition of rare earths in accessory minerals in veins of alkaline granites: Materialy po Mineralogii Kol'skogo Poluostrova Leningrad, v. 5, p. 124–128. [In Russian.]
- Bermanec, V., Tibljas, D., Gessner, M., and Kniewald, G., 1988, Monazite in hydrothermal veins from Alinci, Yugoslavia: Contributions to Mineralogy and Petrology, v. 38, p. 139–150.
- Bernstein, L.R., 1982, Monazite from North Carolina, having the alexandrite effect: American Mineralogist, v. 67, p. 356–359.
- Bloomfield, K., and Garson, M.S., 1965, The geology of the Kirk Range–Lusungwe Valley area: Malawi Geological Survey Department Bulletin 17, p. 1–234.
- Borovskii, I.B., and Gerasimovskii, V.I., 1945, Rare earths in minerals: Academie Sciences U.S.S.R., Comptes Rendus, v. 49, 353–356.
- Bowie, S.H.U., and Horne, J.E.T., 1953, Cheralite, a new mineral of the monazite group: Mineralogical Magazine, v. 30, p. 93–99.
- Bowles, J.F.W., Jobbins, E.A., and Young, S.R., 1980, A re-examination of cheralite: Mineralogical Magazine, v. 43, p. 885–888.
- Bukanov, V.V., and Shvetsova, I.V., 1966, Typomorphic features of accessory monazite from a vein of Alpine type of the Near-Polar Urals: Mineralogicheskii Sbornik (L'vov University), v. 20, p. 595–599. [In Russian.]
- Charoy, B., 1986, The genesis of the Cornubian batholith (southwest England)—The example of the Carnmenellis pluton: Journal of Petrology, v. 27, p. 571–604.

- Chen, M.C., Li, K.T., and Wu, K.C., 1973, A study of black monazite in Taiwan heavy sand: Mining and Metallurgy (Taiwan), v. 17, no. 3, p. 61–72. [In Chinese.]
- Chistov, L.B., 1965, Features of the rare-earth mineralization of ore of the crust of weathering of carbonatite deposits of eastern Siberia: Geologiia Rudnykh Mestorozhdenii, v. 7, no. 3, p. 75–81. [In Russian.]
- Chistyakova, M.B., and Kazakova, M.E., 1968, Rare-earth minerals from crystal-bearing cavities in granitic pegmatites, Kazakhstan: Akademiia Nauk S.S.S.R. Mineralogicheskii Muzei Trudy, Moscow, v. 18, p. 245–249. [In Russian.]
- Choong, M.Y., 1971, The analysis of rare earths in monazite by x-ray spectrometry: Malaysia Geological Survey, Annual Report for 1969, p. 113–115.
- Clark, A.M., 1984, Mineralogy of the rare-earth elements, *in* Henderson, P., ed., Developments in geochemistry, 2—Rare-earth element geochemistry: Elsevier, Amsterdam, p. 33–61.
- Donnot, M., Guigues, J., Lulzac, Y., Magnien, A., Parfenoff, A., and Picot, P., 1973, A new type of europium deposit—Gray monazite with europium in nodules in the Paleozoic schists of Brittany: Mineralium Deposita, v. 8, p. 7–18. [In French.]
- Dubrovskii, M.I., 1968, Accessory minerals of rocks of the Yuroaivsk granitic complex: Materialy po Mineralogii Kol'skogo Poluostrova Leningrad, v. 6, p. 111–112. [In Russian.]
- El-Hinnawi, E.E., 1964, Mineralogical and geochemical studies in Egyptian (U.A.R.) black sands: Beitrage Mineralogie und Petrographie, v. 9, p. 519–532.
- Es'kova, E.M., and Ganzeev, A.A., 1964, Rare-earth elements in accessory minerals of Vishnevye Mountains: Geokhimiia 1964, p. 1267–1279. [In Russian; translation in Geochemistry International 1964, p. 1152–1163.]
- Evensen, N.M., Hamilton, P.J., and O'Nions, R.K., 1978, Rare-earth abundances in chondritic meteorites: Geochimica et Cosmochimica Acata, v. 42, p. 1199–1212.
- Fishman, M.V., Yushkin, N.F., Goldin, B.A., and Kalinin, E.F., 1968, Mineralogy, typomorphism, and genesis of accessory minerals of igneous rocks of the northern Urals and Timan: Nauka, Leningrad, p. 1–251. [In Russian.]
- Fleischer, Michael, 1978, Relation of the relative concentration of lanthanides in titanite to type of host rocks: American Mineralogist, v. 63, p. 869–875.
- Fleischer, Michael, and Altschuler, Z.S., 1969, Relationship of the rare-earth composition of minerals to geological environment: Geochimica et Cosmochimica Acta, v. 33, p. 725–732.
- Flinter, B.H., Butler, J.R., and Harral, G.M., 1963, A study of alluvial monazite from Malaysia: American Mineralogist, v. 48, p. 1210–1226.
- Foord, E.E., Fitzpatrick, J.J., Crock, J.G., and Lichte, F.E., 1993, A further re-examination of cheralite, (LREE,Ca,Th,U)(P,Si)O₄, from the type locality: Trends in Mineralogy, Research Trends, Trivandrum, India, p. 103–105.
- Fujii, Isao, 1961, Distribution of rare-earth elements in rare-earth minerals from Japan, Korea, and northeastern China: Journal of the Mineralogical Society of Japan, v. 5, p. 167–180. [In Japanese; abstract in Mineralogical Abstracts, v. 16, p. 50 (1963).]

- Gavrilova, L.K., and Turanskaya, R.V., 1958, Distribution of rare earths in rock-forming and accessory minerals of certain granites: Geokhimiia 1958, p. 124–129. [In Russian; translation in Geochemistry 1958, p. 163–170.]
- Graeser, Stefan, and Schwander, Hans, 1987, Gasparite-(Ce) and monazite-(Nd)—Two new minerals of the monazite group from the Alps: Schweizerische Mineralogische und Petrographische Mitteilungen, v. 67, p. 103–117.
- Gramaccioli, C.M., and Segelstad, T.V., 1978, A uranium- and thorium-rich monazite from a South-Alpine pegmatite at Fiona, Italy: American Mineralogist, v. 63, p. 757–761.
- Haapala, Ilmeri, Ervamaa, Pentti, Lofgren, Arvo, and Ojanpera, Pentti, 1969, An occurrence of monazite in Puumala, eastern Finland: Bulletin of the Geological Society of Finland, v. 41, p. 117–124.
- Hammond, R.F., 1946, Technology and uses of monazite sand: American Institute of Mining and Metallurgical Engineers, Mining Technology, v. 10, Technical Publication 2037, p. 1–5.
- Hedrick, J.B., 1988, Availability of rare earths: Ceramic Bulletin, v. 67, p. 858-861.
- Heinrich, E.W., Borup, R.A., and Levinson, A.A., 1960, Relationships between geology and compositions of some pegmatitic monazites: Geochimica et Cosmochimica Acta, v. 19, p. 222–231.
- Heinrich, E.W., and Levinson, A.A., 1961, Carbonatitic niobium-rare-earth deposits, Ravalli County, Montana: American Mineralogist, v. 46, p. 1424–1447.
- Heinrich, E.W., and Wells, R.G., 1980, The diversity of rare-earth mineral deposits and their geological domains, *in* McCarthy, G.J., and Rhyne, J.J., eds., The rare earths in modern science and technology: New York-London, Plenum Press, p. 511–516.
- Holt, D.M., 1965, The Kangankunde Hill rare-earth prospect, Malawi: Malawi Geological Survey Bulletin 20, p. 1–130. [Abstract in Mineralogical Abstracts, v. 17, p. 369 (1965).]
- Hugo, P.J., 1970, The pegmatites of the Kenhardt and Gordonia districts, Cape Province: South Africa Department of Mines, Geological Survey Memoir 58, p. 1–94.
- Hwang, Jon-Mau, Shih, Jeng-Shang, Yeh, Yu-Chai, and Wu, Shaw-Chii, 1981, Determination of rare-earths in monazite sand and rare-earth impurities in high-purity rare earth oxides, by high-performance liquid chromatography: Analyst (London), v. 106, p. 869–873.
- Ivantishin, M.N., Kul'skaya, C.A., Gornyi, G.Ya., and Eliseeva, G.D., 1964, Geochemistry and analytical chemistry of the cerium sub-group in rare-earth elements; Part 1, Accessory rare-earth minerals and elements of the Ukrainian crystalline shield: Akademiia Nauk Ukrainian S.S.R., Seriia Petrografiia, Mineralogiia, Geokhimiia, no. 21, p. 1–168. [In Russian.]
- Jefferies, N.L., 1985, The distribution of the rare-earth elements within The Carnmenellis pluton, Cornwall: Mineralogical Magazine, v. 49, p. 495–504.
- Jobbins, E.A., Tresham, A.E., and Young, B.R., 1977, Gem monazite from Sri Lanka: Journal of Gemology, v. 15, p. 295–297.
- Kalenov, A.D., Anikeev, V.I., and Sokova, E.P., 1963, A case of complex replacement of loparite: Akademiia Nauk S.S.S.R. Doklady, v. 152, p. 183–186. [In Russian.]
- Kalita, A.P., 1961, Rare-earth pegmatites of Alakutti and the Ladoga region: Akademiia Nauk S.S.S.R., Institut Mineralogi-

ia, Geokhimii, Kristallokhimii Redkikh Elementov, p. 1–118. [In Russian.]

- Kapustin, Yu.L., 1966, Geochemistry of rare-earth elements in carbonatites: Geokhimiia 1966, p. 1311–1321. [In Russian; translation in Geochemistry International, v. 3, no. 6, p. 1054–1064.]
- Khamrabaev, I.Kh., and Azimov, P.T., 1964, Rare-earth and niobotantalate accessory minerals in granites and pegmatites of the Aktau massif, western Uzbekistan: Akademiia Nauk Uzbekskoi S.S.R., Tashkent, Institut Geologiia i Geofiziki, Voprosy Mineralogiiai Geokhimii, p. 172–183. [In Russian.]
- Khomyakov, A.P., 1964, Distribution of rare-earth elements in carbonate-hematite veins of western Tannu-Ola: Geokhimiia 1964, p. 85–88. [In Russian; translation in Geochemistry International 1964, p. 50–53.]
- Kirillov, A.S., and Ryzhova, R.I., 1968, Geochemistry of rare-earth elements in carbonatites of the Karelian-Kola Province: Leningrad University, Mineralogiiai, Geokhimiya, v. 3, p. 87–97. [In Russian.]
- Komov, I.L., Mel'nikova, E.M., and Kokarev, G.N., 1974, Some typomorphic features of accessory monazite from hydrothermal quartz veins and altered rocks of Pamir and the Urals: Akademiia Nauk S.S.S.R. Mineralogicheskii Muzei Trudy, Moscow, v. 23, p. 87–93. [In Russian.]
- Kornetova, V.A., 1963, Association of ilmenorutile and monazite in Siberian pegmatites: Akademiia Nauk S.S.S.R. Mineralogiia Muzei Trudy, Moscow v. 14, p. 96–107. [In Russian.]
- Kornetova, V.A., and Kazakova, M.E., 1982, Monazite and its association in some pegmatites of Siberia: Novye Dannye Mineralogiia, v. 30, p. 191–194. [In Russian.]
- Kornetova, V.A., and Osolodkina, G.A., 1966, Aquamarine from crystal-bearing pegmatite and monazite deposited in cavities of its leaching: Akademiia Nauk S.S.S.R. Mineralogiia Muzei Trudy, Moscow v. 17, p. 216–220. [In Russian.]
- Kosterin, A.V., Alekhine, K.N., and Kizyura, V.E., 1962, Monazite of unusual genesis: Akademiia Nauk S.S.S.R., Dalnevostochniyi Filial, Vladivostok, Soobshcheniia, no. 15, p. 23–26. [In Russian.]
- Kosterin, A.V., and Zuev, V.N., 1962, Hydrothermal huttonite: Vsesoiuznoe Mineralogicheskoe Obshchestvo Zapiski, v. 91, p. 99–102. [In Russian.]
- Kostin, N.E., and Volzhenkova, A.Ya., 1965, The effect of country rock on the composition of rare-earth mineralization: Geologiia Rudnykh Mestorozhdenii, v. 7, no. 1, p. 95–98. [In Russian.]
- Kovalenko, V.I., and others, 1971, Rare-metal granitic rocks of Mongolia: Nauka, Moscow, p. 1–230. [In Russian.]
- Kucha, Henryk, 1980, Continuity in the monazite-huttonite series: Mineralogical Magazine, v. 43, p. 1031–1034.
- Kukharenko, A.A., Bulakh, A.G., and Baklanova, K.A., 1961, Sulfate-monazite from carbonatites of the Kola Peninsula: Vsesoiuznoe Mineralogicheskoe Obshchestvo Zapiski, v. 90, p. 373–381. [In Russian.]

- Kupriyanova, I.I., Volkova, M.I., and Goroshchenko, Z.I., 1964, Rare-earth minerals of a molybdenum deposit in the European part of the U.S.S.R.: Akademiia Nauk S.S.S.R. Mineralogicheskii Muzei Trudy, Moscow, v. 15, p. 123–133. [In Russian.]
- Kuts, V.P., 1966, Features of the distribution, morphology, and composition of accessory monazites from crystalline rocks of the Azov region, Mineralogicheskii Sbornik (L'vov University), v. 20, p. 279–284. [In Russian.]
- Kuznetsova, I.N., Rozinova, E.L., and Mishchenko, K.S., 1980, Accessory rare-earth mineralization in dolomite-ankerite carbonatites and their weathering crusts in the northern Siberian platform, *in* Alkalic magmatism and apatite-bearing of northern Siberia: Nauchno-issledovatel'skii Institut Geologiia Arktikii, Leningrad, p. 101–111. [In Russian.]
- Lazarenko, E.K., and others, 1980 [1981], Mineralogy of the Azov region, Kiev: Nauk Dumka, p. 1–430. [In Russian.]
- Lee, D.E., and Bastron, Harry, 1967, Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada: Geochimica et Cosmochimica Acta, v. 31, p. 339–356.
- Leonova, V.A., and Nikitin, Yu.V., 1962, Mineralogy of monazites of pegmatitic vein of Chupa: Vsesoiuznoe Mineralogischeskoe Obshchestvo Zapiski, v. 91, p. 136–145. [In Russian.]
- Levinson, A.A., 1966, A system of nomenclature for rare-earth minerals: American Mineralogist, v. 51, p. 152–158.
- Li, A.F., and Grebennikova, C.T., 1962, Low-thorium monazite: Vsesoiuznoe Mineralogicheskoe Obshchestvo, Vostochno-Sibirskoe Otdelenie Zapiski, Irkutsk, no. 4, p. 155–161. [In Russian.]
- Lozinski, Jan, 1969, The chemical composition of monazites from beach sands of the Baltic Sea: Polska Akademiia Nauk, Kom. Nauk Mineralogiia, Prace Mineralogiia, no. 16, p. 43–49. [In Polish with English summary.]
- L'vov, B.K., 1965, Petrology, mineralogy, and geochemistry of granitic rocks of the Kochkarsk region, Urals: Leningradskii Gosudarstvennyi Universitet, p. 1–164. [In Russian.]
- L'vov, B.K., and Zhangurov, A.A., 1968, Accessory monazite from granites and metamorphic rocks of the eastern Ural anticlinorium, *in* Accessory minerals of igneous rocks: Nauka, Moscow, p. 196–204. [In Russian.]
- Lyakhovich, V.V., 1962, Rare-earth elements in accessory minerals of granitic rocks: Geokhimiia 1962, p. 37–52. [In Russian; translation in Geochemistry 1962, p. 39–55.]
- ——1967, Features of the distribution of the rare-earth elements between accessory minerals of granites: Geokhimiia 1967, p. 828-833. [In Russian; translation in Geochemistry International 1967, p. 691–695.]
- ——1968, Accessory minerals, their genesis, composition, classification, and indicator characteristics: Nauka, Moscow, p. 1–276. [In Russian.]
- Lyakhovich, V.V., and Balanova, T.T., 1971, Averge contents and composition of rare-earth elements in accessory minerals of granitic rocks: Geokhimiia, v. 2, p. 131–143. [In Russian.]
- Lyakhovich, V.V., and Barinskii, R.L., 1961, Features of the composition of rare earths in accessory minerals of granitic rocks: Geokhimiia 1961, p. 467–479. [In Russian; translation in Geochemistry 1961, p. 495–509.]

- Lyakhovich, V.V., and Kasaeva, T.A., 1968, Accessory minerals and correlation of intrusive rocks: Mineralogiicheskii Sbornik (L'vov University), v. 22, p. 132–138. [In Russian.]
- Maksimovich, Zoran, and Panto, Gyorgy, 1980, Bastnaesite-(La) and monazite-(Nd)—A new variety of monazite from the Marmara bauxite deposit, Greece: Srpska Akademija Nauka i Umetnosti, Belgrade, Odeljenje Prirodno-Matematickih Nauka, Bulletin, v. 72, no. 20, p. 35–42. [Abstract in American Mineralogist, v. 68, p. 849 (1983).]
- Mannucci, Gregorio, Dielle, Valeria, Gramaccioli, C.M., and Pilati, Tullio, 1986, A comparative study of some pegmatitic and fissure monazite from the Alps: Canadian Mineralogist, v. 24, p. 469–474.
- Marchenko, E.Ya., 1967, Certain characteristics of accessory monazite from Precambrian crystalline rocks in southeastern Ukrainian S.S.R.: Akademiia Nauk S.S.S.R., Doklady, v. 176, p. 153–155. [In Russian; translation in Doklady Academy Science, U.S.S.R., Earth Science Series, v. 176, p. 142–145.]
- Marchenko, E.Ya., and Goncharova, E.I., 1964, Role of halides in the formation and subsequent alteration of pneumatolytic-hydrothermal monazite: Akademiia Nauk S.S.S.R., Doklady, v. 155, p. 349–352. [In Russian.]
- McCarty, C.N., 1935, The quantitative estimation of some of the rare-earth ores by means of their arc spectra: Urbana, University of Illinois, Ph.D. thesis, p. 1–8.
- McKie, Duncan, 1962, Goyazite and florencite from two African carbonatites: Mineralogical Magazine, v. 33, p. 281–287.
- Meliksetyan, B.M., 1963, The geochemistry of yttrium and the rare earths in granitic rocks of the Megri pluton: Akademiia Nauk Armianskoi S.S.R., Yerevan, Geologicheskie i Geograficheskie Nauki, Izvestiia, v. 16, no. 3, p. 45–49. [In Russian.]
- Michael, P.J., 1988, Partition coefficients for rare-earth elements in mafic minerals of high silica rhyolites—The importance of accessory mineral inclusions: Geochimica et Cosmochimica Acta, v. 52, p. 275–282.
- Mineev, D.A., 1963, Geochemical differentiation of the rare-earth elements: Geokhimiia 1963, p. 1082–1100. [In Russian; translation in Geochemistry 1963, p. 1129–1149.]
- Mineev, D.A., Makarochkin, B.A., and Zhabin, A.G., 1962, Study of the behavior of lanthanides in the process of alteration of rare-earth minerals: Geokhimiia 1962, no. 6, p. 590–597. [In Russian.]
- Mittelfehldt, D.W., and Miller, C.F., 1983, Geochemistry of the Sweetwater Wash pluton, California—Implications for "anomalous" trace element behavior during differentiation of felsic magma: Geochimica et Cosmochimica Acta, v. 47, p. 109–124.
- Mohr, D.A., 1984, Zoned porphyroblasts of metamorphic monazite in the Anakeeste Formation, Great Smoky Mountains, North Carolina: American Mineralogist, v. 69, p. 292–300.
- Murata, K.J., Dutra, C.V., Teiseira da Costa, M., and Branco, J.J.R., 1958, Composition of monazites from pegmatites in eastern

Minas Gerais, Brazil: Geochimica et Cosmochimica Acta, v. 16, p. 1–14.

- Murata, K.J., Rose, H.J., Jr., and Carron, M.K., 1953, Systematic variation of rare earths in monazite: Geochimica et Cosmochimica Acta, v. 4, p. 292–300.
- Murata, K.J., Rose, H.J., Jr., Carron, M.K., and Glass, J.J., 1957, Systematic variation of rare earths in cerium-earth minerals: Geochimica et Cosmochimica Acta, v. 11, p. 141–151.
- Nedashkovskii, P.G., Lagovskaya, E.A., and Demchenko, V.S., 1969, Principles of a change in the composition of rare earth elements in accessory minerals of alkaline granites and related alkaline metasomatites: Akademiia Nauk S.S.R., Dal'nevostockniyi Filial, Vladivostok, Dal'nevostochnyi Geologicheskii Institut, Geokhimicheskie Tsikly Dal'nego Vostoka, p. 29–36. [In Russian; abstract in Chemical Abstracts, v. 73, no. 24, 122523 (1970).]
- Nekrasov, I.Ya., 1972, New data on a mineral of the monazite-cheralite-huttonite group: Akademiia Nauk S.S.S.R. Doklady, v. 204, p. 941–943. [In Russian.]
- Nekrasova, R.A., and Nekrasov, I.Ya., 1983, Kularite as an authigenic variety of monazite: Akademiia Nauk S.S.S.R. Doklady, v. 268, p. 688–693. [In Russian.]
- Orsa, V.I., Eliseeva, G.D., and Kazantseva, A.I., 1967, Rare-earth assemblages in the accessory minerals of the ancient crystalline rocks of the Middle Dneipr region: Geokhimiia 1967, p. 243–247. [In Russian; translation in Geochemistry International, v. 4, no. 1, p. 170–173 (1967).]
- Papunen, Heikki, and Lindsjo, O., 1972, Apatite, monazite, and allanite—Three rare-earth minerals from Koranas, Finland: Bulletin of the Geological Society of Finland, v. 44, p. 123–129.
- Pavlenko, A.S., Orlova, L.P., and Akhmanova, N.V., 1966, Cerphosphorhuttonite—A mineral of the monazite group: Akademiia Nauk S.S.S.R. Mineralogicheskii Muzei Trudy, Moscow, v. 16, p. 166–174. [In Russian.]
- Pavlenko, A.S., Vainshtein, E.E., and Turanskaya, N.V., 1959, Certain regularities in the behavior of rare earths and yttrium in magmatic and post-magmatic processes: Geokhimiia 1959, p. 291–309. [In Russian; translation in Geochemistry 1959, p. 357–380.]
- Plaksenko, A.N., Frolov, S.M., and Polezhaeva, L.I., 1982, The genesis of monazite from basic rocks: Akademiia Nauk S.S.S.R. Doklady, v. 264, p. 693–697. [In Russian.]
- Ploshko, V.V., 1961, Pneumatolytic-hydrothermal monazite of Malaya Laba River, northern Caucasus: Akademiia Nauk S.S.S.R. Izvestiia, Seriia Geologicheskaia, Moscow, 1961, no. 1, p. 86–93. [In Russian.]
- Ploshko, V.V., and Knyazeva, D.N., 1965, Rare earths, yttrium, and thorium in post-magmatic processes of acidic intrusions of the Urushten complex, northern Caucasus, *in* Accessory elements as criteria of the comagmatic metallogenic specialization of magmatic complexes: Nauka, Moscow, p. 146–152. [In Russian.]
- Pluhar, Emanuel, 1979, Geochemistry of monazites from Thailand and its application to prospecting for tin ores: Berliner Geowissenschaftlichen Abhandlungen, ser. A, no. 12, p. 1–53. [In German.]
- Povilaitis, M.M., and Varshal, G.M., 1959, Some typomorphic features of accessory monazite from intrusive and post-magmatic formations of the Kuu Granitic massif, central Kazakstan, *in*

Typomorphic minerals: Nauka, Moscow, p. 195–209. [In Russian.]

- Proshchenko, E.G., 1967, Rare-earth minerals from albitites of Eastern Siberia, *in* Mineralogy of hydrothermalites of alkalic massifs: Nauka, Moscow, p. 103–136. [In Russian.]
- Rapp, R.P., and Watson, E.B., 1986, Monazite solubility and dissolution kinetics—Implications for the thorium and light rare earth chemistry of felsic magmas: Contributions to Mineralogy and Petrology, v. 94, p. 304–316.
- Richartz, W., 1961, Crystal chemical study and magnetic treatment of monazite: Fortschritt Mineralogie, v. 39, p. 53–59. [In German.]
- Rose, H.J., Jr., Blade, L.V., and Ross, Malcolm, 1958, Earthy monazite from Magnet Cove, Arkansas: American Mineralogist, v. 43, p. 995–997.
- Rosenblum, Sam, 1974, Analyses and economic potential of monazite in Liberia: U.S. Geological Survey Journal of Research, v. 2, no. 6, p. 689–692.
- Rosenblum, Sam, and Mosier, E.L., 1983, Mineralogy and occurrence of europium-rich dark monazite: U.S. Geological Survey Professional Paper 1181, p. 1–67.
- Sahama, T.G., and Vahatalo, Veikko, 1939, The rare-earth content of wiikite: Finland Geologinen Tutkimuslaitos Bulletin, no. 125, p. 97–109.
- ——1941, X-ray spectroscopic study of rare earths in some Finnish eruptive rocks and minerals: Bulletin Commission Geol. Finlande 126, p. 50–83.
- Semenov, E.I., 1963, Mineralogy of the rare earths: Akademiia Nauk S.S.S.R., Moscow, p. 1–412. [In Russian.]
- Semenov, E.I., and Barinskii, R.L., 1958, Characteristics of the composition of rare earths in minerals: Geokhimiia 1958, p. 314–333. [In Russian; translation in Geochemistry 1958, p. 398–419.]
- Semenov, E.I., and Khomyakov, A.F., 1981, Magnetic susceptibility of rare-earth minerals: Diagnostika i Diagnosticheskie Svoistva Mineralov, p. 88–93. [In Russian; abstract in Chemical Abstracts, 1982, v. 97, no. 6, p. 41642.]
- Semenov, E.I., Kostyunina, L.P., and Kulakov, M.P., 1967, Rare-earth accessory mineralizations in quartz-fluorite pegmatites of Kazakhstan, *in* Mineralogy of pegmatites and hydrothermalites of alkalic massifs: Nauka, Moscow, p. 137–149. [In Russian.]
- Semenov, E.I., Upendran, R., and Subramanian, V., 1978, Rare-earth minerals of carbonatites of Tamil Nadu, India: Journal of the Geological Society of India, v. 19, p. 550–557.
- Serdyuchenko, D.P., and Kochetkov, C.S., 1974, Metasedimentary monazite in the Riphaean shales of Timan: Akademiia Nauk S.S.S.R. Doklady, v. 218, p. 1175–1177. [In Russian.]
- Serdyuchenko, D.P., Pap, A.N., Borkovskaya, V.N., and Bykova, A.N., 1967, A thorium-free monazite from Precambrian gneisses of Byelorussia and its genesis: Akademiia Nauk S.S.S.R. Doklady, v. 175, p. 917–919. [In Russian.]
- Shiryayeva, V.A., 1971, Distribution factors of rare-earth elements in accessory minerals of muscovite pegmatite, *in* Geochemistry of Siberian pegmatites: Nauka, Moscow, p. 102–111. [In Russian.].

- Shlyukova, Z.V., 1986, Mineralogy of contact formations of the Khibina massif, Kola Peninsula: Nauka, Moscow, p. 1–96. [In Russian.]
- Shmakin, B.M., and Shiryayeva, V.A., 1970, The composition of rare-earth minerals in muscovite pegmatites of eastern Siberia: Geokhimiia 1970, p. 163–168. [In Russian.]
- Shukolyukov, Yu.A., Kapusta, Ya.S., Verkhovskii, A.B., Matukov, D.I., and Timokhina, L.A., 1979, Xenon from spontaneous and neutron-induced fission of uranium in monazite: Geokhimiia 1979, p. 672–685. [In Russian.]
- Smirnov, G.I., 1969, Accessory monazite from Riphaean sediments of the Middle Pre-Dniester area: Mineralogicheskii Sbornik (L'vov University), v. 23, p. 85–91. [In Russian.]
- Somina, M.Ya., and Bulakh, A.G., 1966, Florencite from carbonatites of eastern Sayan and some problems of the chemical constitution of the Crandallite group: Vsesoiuznoe Mineralogicheskoe Obshchestvo Zapiski, v. 95, p. 537–550. [In Russian.]
- Soong, Kuo-Liang, 1978, The genesis of the black monazite from Taiwan: Acta Oceanographica Taiwanica, no. 8, p. 43–62.
- Styles, M.T., and Young, E.R., 1983, Fluocerite and its alteration products from the Afa Hills, Nigeria: Mineralogical Magazine, v. 47, p. 41–46.
- Trace, R.D., 1960, Significance of unusual mineral occurrence at Hicks Dome, Hardin County, Illinois: U.S. Geological Survey Professional Paper 400–B, p. 63–64.
- Vainshtein, E.E., Pozharitskaya, L.K., and Turanskaya, N.V., 1961, The behavior of rare earths in the process of formation of carbonatites: Geokhimiia 1961, p. 1031–1034. [In Russian; translation in Geochemistry 1961, p. 1151–1154.]
- Vainshtein, E.E., Tugarinov, A.I., and Turanskaya, N.V., 1955, The distribution of rare earths in monazites: Akademiia Nauk S.S.S.R. Doklady, v. 104, p. 268–271. [In Russian.]
- - ——1956b, Regularities in the distribution of rare earths in certain minerals: Geokhimiia 1956, p. 35–56. [In Russian; translation in Geochemistry 1956, p. 159–178.]
- Van Wambeke, L., 1977, The Karonge rare-earth deposits, Republic of Burundi—New mineralogical geochemical data, and origin of the mineralization: Mineralium Deposita, v. 12, p. 373–380.
- Vaquero, Nazabal, C., 1979, Discovery, for the first time in Spain, of an abnormal facies monazite containing europium: Boletín Geológico Minero, v. 90, p. 374–379. [In Spanish.]
- Vetoshkina, A.M., Gordienko, V.V., Elina, N.A., and Polezhaeva, L.I., 1980, Yttrofluorite and accompanying rare-earth minerals of amazonite pegmatites of Ploskaya Mountain, Kola Peninsula: Mineralogicheskii Zhurnal, Kiev, v. 2, no. 4, p. 51–58. [In Russian.]

Published in the Central Region, Denver, Colorado Manuscript approved for publication June 13, 1995 Edited by Judith Stoeser Graphics by Dennis L. Welp Photocomposition by Joan Nadeau Table composition by Judith Stoeser

- Vinogradov, A.N., and Elina, N.A., 1968, Distribution of rare earths in granitic rocks of the northwestern part of the Kola Peninsula: Materialy po Mineralogiia Kol'skogo Poluostrova, Leningrad, v. 6, p. 80–92. [In Russian.]
- Vladykin, N.V., Smirnova, E.V., and Kovalenko, V.I., 1982, Rare-earth elements in minerals of Mongolia, *in* Geochemistry of rare elements in endogenic processes: Nauka, Sibirskoe Otedelenie, Novosibirsk, p. 178–205. [In Russian.]
- Vlasov, K.A., ed., 1964, Geochemistry and mineralogy of rare elements and genetic types of their deposits [2 volumes]: English translation by Israel Program for Scientific Translations, Jerusalem, v. 1, 688 p., v. 2, 945 p.
- Wang, Kianjue, 1078, A new mineral—Liangaitukuang [brabantite]: Kexue Tonbao, v. 23, p. 743–745. [In Chinese.]
- Wells, R.G., 1977, Light lanthanoid partitioning in rocks and minerals containing rare earths, *in* McCarthy, G.J., and Rhyne, J.J., eds, The rare earths in modern science and technology: New York and London, Plenum Press, p. 253–258.
- White, J.S., and Nelen, J.E., 1987, Monazite and calcioancylite from the Foote Mine, North Carolina: Mineralogical Record, v. 16, p. 203–220.
- Wylie, A.M., 1950, Composition of some Australian monazites: Australian Journal of Applied Science, v. 1, p. 164–171.
- Yalovenko, I.P., and Yur'yeva, A.L., 1967, Accessory monazites in rocks of the Novo-Ukraine massif: Mineralogicheskii Sbornik (L'vov University), v. 21, p. 299–304. [In Russian.]
- Zayats, A.P., and Kuts, V.F., 1964, Rare-earth elements in accessory minerals of gneisses of the Ukrainian crystalline shield: Geokhimiia 1964, p. 1209–1211. [In Russian.]
- Zemel', V.K., 1936, Analyses of monazite from the gold placers of Aldan and southern Yenisei: Zhurnal Prikladnoi Khimii, v. 9, p. 1969–1971. [In Russian.]
- Zhabin, A.G., and Svyazhin, N.V., 1962, Concentrically zoned aggregates of rare-earth earth minerals from the alkalic complex of Vishnevye Mountain: Institut Mineralogiia, Geokhimii, i Kristallokhimii Redkikh Elementov Trudy, Moscow, v. 9, p. 55–56. [In Russian.]
- Zhang, Pei-Shan, and Tao, Kejie, 1986, Bayan-Obo mineralogy: Beijing, Ko Hsueh International Publishing, p. 1–208. [In Chinese with English summary.]
- Zhirov, K.K., Bandurkin, G.A., and Lavrent'ev, Yu.G., 1961, Geochemistry of rare-earth elements in pegmatites of northern Karelia: Geokhimiia 1961, p. 991–1004. [In Russian; translation in Geochemistry 1961, p. 1107–1118.]
- Znamenskii, E.S., Rekholainen, G.I., Popolitov, E.I., and Flerova, K.V., 1967, Geochemistry of rare earths in Proterozoic granitic rocks of Eastern Sayan: Geologiia i Geofizika, Novosibirsk, 1967, no. 2, p. 137–140. [In Russian.]
- Zuev, V.N., and Kosterin, A.V., 1961, Xenotime from a hydrothermal mineralization in central Asia: Akademiia Nauk S.S.S.R.
 Mineralogicheskii Muzei Trudy, Moscow, v. 12, p. 208–211.
 [In Russian.]

SELECTED SERIES OF U.S. GEOLOGICAL SURVEY PUBLICATIONS

Periodicals

Earthquakes & Volcanoes (issued bimonthly). Preliminary Determination of Epicenters (issued monthly).

Technical Books and Reports

Professional Papers are mainly comprehensive scientific reports of wide and lasting interest and importance to professional scientists and engineers. Included are reports on the results of resource studies and of topographic, hydrologic, and geologic investigations. They also include collections of related papers addressing different aspects of a single scientific topic.

Bulletins contain significant data and interpretations that are of lasting scientific interest but are generally more limited in scope or geographic coverage than Professional Papers. They include the results of resource studies and of geologic and topographic investigations; as well as collections of short papers related to a specific topic.

Water-Supply Papers are comprehensive reports that present significant interpretive results of hydrologic investigations of wide interest to professional geologists, hydrologists, and engineers. The series covers investigations in all phases of hydrology, including hydrology, availability of water, quality of water, and use of water.

Circulars present administrative information or important scientific information of wide popular interest in a format designed for distribution at no cost to the public. Information is usually of short-term interest.

Water-Resources Investigations Reports are papers of an interpretive nature made available to the public outside the formal USGS publications series. Copies are reproduced on request unlike formal USGS publications, and they are also available for public inspection at depositories indicated in USGS catalogs.

Open-File Reports include unpublished manuscript reports, maps, and other material that are made available for public consultation at depositories. They are a nonpermanent form of publication that may be cited in other publications as sources of information.

Maps

Geologic Quadrangle Maps are multicolor geologic maps on topographic bases in 7 1/2- or 15-minute quadrangle formats (scales mainly 1:24,000 or 1:62,500) showing bedrock, surficial, or engineering geology. Maps generally include brief texts; some maps include structure and columnar sections only.

Geophysical Investigations Maps are on topographic or planimetric bases at various scales, they show results of surveys using geophysical techniques, such as gravity, magnetic, seismic, or radioactivity, which reflect subsurface structures that are of economic or geologic significance. Many maps include correlations with the geology.

Miscellaneous Investigations Series Maps are on planimetric or topographic bases of regular and irregular areas at various scales; they present a wide variety of format and subject matter. The series also includes 7 1/2-minute quadrangle photogeologic maps on planimetric bases which show geology as interpreted from aerial photographs. The series also includes maps of Mars and the Moon. **Coal Investigations Maps** are geologic maps on topographic or planimetric bases at various scales showing bedrock or surficial geology, stratigraphy, and structural relations in certain coal-resource areas.

Oil and Gas Investigations Charts show stratigraphic information for certain oil and gas fields and other areas having petroleum potential.

Miscellaneous Field Studies Maps are multicolor or black-andwhite maps on topographic or planimetric bases on quadrangle or irregular areas at various scales. Pre-1971 maps show bedrock geology in relation to specific mining or mineral-deposit problems; post-1971 maps are primarily black-and-white maps on various subjects such as environmental studies or wilderness mineral investigations.

Hydrologic Investigations Atlases are multicolored or black-andwhite maps on topographic or planimetric bases presenting a wide range of geohydrologic data of both regular and irregular areas; the principal scale is 1:24,000, and regional studies are at 1:250,000 scale or smaller.

Catalogs

Permanent catalogs, as well as some others, giving comprehensive listings of U.S. Geological Survey publications are available under the conditions indicated below from USGS Map Distribution, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225. (See latest Price and Availability List.)

"Publications of the Geological Survey, 1879-1961" may be purchased by mail and over the counter in paperback book form and as a set microfiche.

"Publications of the Geological Survey, 1962-1970" may be purchased by mail and over the counter in paperback book form and as a set of microfiche.

"Publications of the U.S. Geological Survey, 1971-1981" may be purchased by mail and over the counter in paperback book form (two volumes, publications listing and index) and as a set of microfiche.

Supplements for 1982, 1983, 1984, 1985, 1986, and for subsequent years since the last permanent catalog may be purchased by mail and over the counter in paperback book form.

State catalogs, "List of U.S. Geological Survey Geologic and Water-Supply Reports and Maps For (State)," may be purchased by mail and over the counter in paperback booklet form only.

"Price and Availability List of U.S. Geological Survey Publications," issued annually, is available free of charge in paperback booklet form only.

Selected copies of a monthly catalog "New Publications of the U.S. Geological Survey" is available free of charge by mail or may be obtained over the counter in paperback booklet form only. Those wishing a free subscription to the monthly catalog "New Publications of the U.S. Geological Survey" should write to the U.S. Geological Survey, 582 National Center, Reston, VA 22092.

Note.–Prices of Government publications listed in older catalogs, announcements, and publications may be incorrect. Therefore, the prices charged may differ from the prices in catalogs, announcements, and publications.

