Mineralogy and Geochemistry of Some Belt Rocks, Montana and Idaho

By J. E. HARRISON and D. J. GRIMES

CONTRIBUTIONS TO ECONOMIC GEOLOGY

GEOLOGICAL SURVEY BULLETIN 1312-O

A comparison of rocks from two widely separated areas in Belt terrane

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970

UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary

GEOLOGICAL SURVEY

William T. Pecora, Director

Library of Congress catalog-card No. 75-607766

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price 35 cents

CONTENTS

Abstract	
Introduction	
General geology	
Methods of investigation	
Sampling procedure	
Analytical technique for mineralogy	
Analytical technique and calculations for geochemistry	
Mineralogy of rock types	
Geochemistry	
Discussion and interpretation	
Implications about sedimentation	
Metamorphic changes	
Comparison of Belt rocks with younger rocks	
Conclusions	
References cited	

ILLUSTRATIONS

Page
O 5
6
9
27
35
36
37
40

CONTENTS

TABLES

			Page	У.
Fable	1.	Sample distribution by area, formation, rock type,		
		and metamorphic grade	O 10	
	2.	Average modes of Belt rocks from the Mission		
		Mountains Primitive Area	13	/
	3.	Semiquantitative spectrographic analyses of Belt rocks		
		from the Pend Oreille area	14	
	4.	Replicate semiquantitative spectrographic analyses of		بر
		Belt rocks from the Pend Oreille area	24	
	5.	Replicate analyses of standard sample G-1	28	حا
	6.	Mean element content of low-grade Belt rocks from the		`
		Mission Mountains Primitive Area	31	'
	7.	Mean element content of Belt rocks from the		
		Pend Oreille area	32	
	8.	Numbers used to replace nonnumeric codes		1
		(N, L, and >) prior to geochemical calculations	34	
	9.	Relative concentration of elements in the heavy mineral		
		fraction of some Belt rocks from the Pend Oreille area	39	
	10.	Average granite and average composition of the		>
		Canadian Shield compared with average Belt rock		
		from the Pend Oreille area	43	
	11.	Average minor element content of pelitic rocks of		r
		different ages and geologic environments	47	

Á.

۲

CONTRIBUTIONS TO ECONOMIC GEOLOGY

MINERALOGY AND GEOCHEMISTRY OF SOME BELT ROCKS, MONTANA AND IDAHO

By J. E. HARRISON and D. J. GRIMES

ABSTRACT

The mineralogy and geochemistry of about 20,000 feet of Belt rocks in the Mission Mountains Primitive Area, northwestern Montana, are compared with those of about 40,000 feet of Belt rocks in the Pend Oreille area, northern Idaho and northwestern Montana. Semiquantitative spectrographic analyses of 254 samples from the Mission Mountains and 230 samples from the Pend Oreille area form the basis for chemical comparison; quantitative X-ray mineralogic analyses of most samples provide the mineralogic data. Both analytical techniques are rapid and inexpensive.

All rocks were classified on the basis of grain size, texture, and carbonate content into one of four rock types: argillitic rocks (shale or mudstone equivalents), silities (siltstone equivalents), quartzites (sandstone equivalents), and carbonate rocks. The semiquantitative spectrographic method has good precision for all rock types, but the accuracy is only fair for rocks of moderate to high carbonate content.

Comparison of clastic rocks from both areas shows the mineralogy to be very similar even to the ratio among quartz, potassium feldspar, and plagioclase in siltites. Most rocks are graywacke or like graywacke. Mineralogy is, not surprisingly, directly related to grain size; for example, we find that from argillitic rocks to siltites to quartzites the amount of quartz increases, the amount of feldspar remains about the same, and the illite-sericite-chlorite content decreases.

Several elements show distinct patterns of abundance related to the rock types. Elements directly related in abundance to amount of illite-sericite-chlorite in clastic rocks are B, Co, Cr, Ni, Sc, V, Fe, Mg, Ti, and possibly La and Y. Siltites and quartzites contain Cu in sulfide grains and flakes, and Cu is distinctly more abundant in those rocks or in fossil algal forms (usually calcareous or dolomitic siltite) in the Mission Mountains. Carbonate rocks or rocks containing moderately abundant carbonate minerals show increased amounts of Ca, Mg, Mn, Sr, and Pb. The higher B content of certain Pend Oreille area strata and the higher Co, Cu, and Ni contents of Mission Mountains strata seem most likely to reflect differences in source area of the original sediments. If so, the Cu abundance and distribution identified in this study may aid in the search for stratabound copper deposits in Belt rocks.

The excellent sorting of grain sizes in similar strata through tens of thousands of feet of rock in two widely separated areas, the remarkable uniformity of simple mineralogy, the apparently simple chemistry of depositional environments, and the bulk chemistry of the rocks suggest that the weathering and transportation processes of Belt time resulted in homogenization of clastic components drawn from large granitic source areas. This homogenization requires a chemical weathering of most mafic minerals, a low terrane and low stream gradient, a nearly uniform availability of many minor elements for absorption on or inclusion in clay minerals, and a slow isostatic adjustment between source areas and basins of deposition during the several hundred million years of Belt rock deposition. Sedimentation processes in Belt time were not complicated by living plants or animals on the land or by significant life in the sea. Organic compounds did not complicate chemical environments of deposition.

Regional metamorphism from the chlorite-sericite zone of the greenschist facies into the biotite zone in the Pend Oreille area appears to have resulted only in a loss of B among the elements studied. Contact metamorphism, also in the biotite zone, resulted in an increase in Ca and Sr, a decrease in Ni, and a possible decrease in Co and B.

INTRODUCTION

7

×.

Much attention has been given to Belt rocks during the past decade. Some of the interest has come from general recognition that the vast area of exposed Belt rocks represents one of the most poorly understood depositional basins in the United States; other interest is based on tectonic history yet to be deciphered; and more recent impetus for expanded study of Belt rocks comes from active exploration for stratabound copper deposits. So much new stratigraphic, structural, and chemical information has been gained recently that a compendium of data representing the state of knowledge only a few years ago (Ross, 1963) is rapidly becoming outdated.

This report discusses the mineralogy and minor element content of Belt rocks from two widely separated areas in the Idaho-Montana part of Belt terrane shown in figure 1. The data, accumulated from 1957 through 1968, represent samples collected for two purposes: a study of metamorphic effects in the Pend Oreille area and an evaluation of mineral potential in the Mission Mountains Primitive Area. The advent of reasonably precise and rapid semiquantitative spectrographic analyses, plus the availability of electronic computers to handle efficiently large masses of data, has permitted the geochemical study described here.

Several colleagues aided in collecting data included in this report. D. A. Jobin collected some samples from the Pend Oreille area and made some heavy mineral separations. M. W. Reynolds collected about half the samples from the Mission Mountains Primitive Area. Uteana Oda, now deceased, analyzed spectrographically the heavy and light mineral fractions. Paul W. Schmidt and George M. Fairer made X-ray spectrographic analyses of samples for the quantitative mineralogic studies. We are particularly grateful for the aid and counsel of Albert P. Marranzino on the spectrographic parts of the study. The manuscript benefited from reviews and discussions with M. R. Mudge and Jon Connor.

GENERAL GEOLOGY

Rocks of the Belt Supergroup crop out over much of western Montana and northern Idaho (fig. 1) and northward into Canada. Equivalent Belt rocks extend southward from Missoula, Mont., for at least 150 miles, and scattered outcrops are known in northeastern Washington near the Idaho-Washington State line. The limits of the basin, or basins, of deposition of Belt rocks are poorly known, although evidence indicates that the thrust zone on the eastern edge of Belt terrane (fig. 1) may mark the depositional edge of Belt rocks (Mudge, 1970). The western edge of the Belt terrane is so complicated by extensive intrusion and faulting that it has not yet been satisfactorily determined whether some high-grade metamorphic rocks in this area are Belt or pre-Belt. Between the thrust belt on the east and a Cretaceous batholith in the Idaho Panhandle (fig. 1), Belt rocks either are nearly unmetamorphosed or are not above the greenschist facies. The grade of regional metamorphism progressively increases from east to west and with depth in the stratigraphic section, as demonstrated by illite transformations to the 2M polymorph (Maxwell and Hower, 1967).

Belt rocks are generally monotonous in appearance because of fine grain size and drab color. The bulk of the supergroup has a grain size of silt or clay, and medium sand is the coarsest grain size observed in thousands of feet of rock over large areas. Quartzites and relatively pure to impure dolomites and minor amounts of limestones are scattered through the supergroup, although the carbonate rocks are uncommon in the lower part. Some carbonate rocks contain fossil algal forms, which are the only megascopic evidence of Precambrian life in the rocks. All rocks are dense and hard, reflecting the widespread low-grade metamorphism of most of the supergroup. Because of the metamorphism in most rocks of the Pend Oreille area and in some rocks of the Mission Mountains area, we use terms such as argillite, siltite, and quartzite rather than claystone, shale, siltstone, and sandstone to describe the rocks. Mudstone equivalents in the Belt Supergroup include argillite, silty argillite, and laminated argillite and siltite. Descriptions of rock types and formations for the Pend Oreille area are given by Harrison and Jobin (1963) and for the Mission Mountains Primitive Area by Harrison, Reynolds, Kleinkopf, and Pattee (1969). Most rocks contain shallow-water structures, although the abundance of such structures decreases noticeably in the lower parts of the section. Disconformities in the supergroup are difficult to identify, and angular unconformities are rare.

The stratigraphy of both areas is reasonably well known, and map units are traceable for many miles from each area. Correlation between the areas is still somewhat unreliable for a few members or formations (see queries in fig. 2), although for most it is adequate (fig. 2).

Obradovich and Peterman (1968) stated that the Belt rocks are from about 900 m. y. (million years) to more than 1,300 m.y. old. The bulk of the

ç

á.

Y

O4

BELT ROCKS, MONTANA AND IDAHO

O5

ł

•

٠,

١.

۶

;

Ŋ

.

L

۲

PEN (Harri:	ND OREILLE AREA son and Camp- bell, 1963)	MISSION MOUN- TAINS PRIMITIVE AREA (Harrison and others, 1969)	CAMP CREEK, SOUTHERN LEWIS AND CLARK RANGE (McGILL and Sommers, 1967)
Т	op eroded Libby Fm 1,900+ ft		Top eroded Garnet Range Fm 985+ ft
(Mc equiv	Namara Fm alent missing)		McNamara Fm 3,070 ft
ion	Member 4 700 ft		Bonner Qtz 1,265 ft
Peak Format	?	Top eroded Shields Fm 1,400+ ft	Shields Fm 2,730 ft
Striped	Members 3 and 2 700 ft	Shepard Fm 2,500 ft	Shepard Fm 1,980 ft
	Member 1 600 ft	Snowslip Fm 3,800 ft	Snowslip Fm 2,235 ft
v	/allace Fm 10,200 ft	Helena Fm 9,800 ft	Siyeh Fm 1,480+ ft Base not exposed
St	. Regis Fm 1,100 ft	Empire and Spokane Fms 2,300+ ft	
F	Revett Fm 2,000 ft	Base not exposed	
Burke Fm 3,200 ft			
Pr 2	richard Fm 22,000+ ft		
Base	e not exposed		

FIGURE 2.—Correlation chart for part of the Belt Supergroup, northern Idaho and western Montana.

Belt rocks exposed in the Mission Mountains Primitive Area (Helena Formation and strata above) result from a period of sedimentation about 1,100 m.y. old. Presumably, the lithostratigraphic equivalents of those rocks in the Pend Oreille area are approximately the same age. Rocks approximately 2,000 feet below the Helena and Wallace Formations are dated at about 1,300 m.y. at the eastern edge of the Belt terrane. Correlation of these dated rocks with those of the Pend Oreille area is not well established, but the general 1,800-m.y. age for the metamorphosed basement rocks in western Montana provides a maximum possible age of the Belt Supergroup.

Geologic differences and similarities between the two study areas are outlined in table 1, which lists samples collected according to area, formation, rock type, and metamorphic grade. The Mission Mountains Primitive Area contains strata probably laid down closer to shore than those of the Pend Oreille area, and subsequent diagenesis and metamorphism of the Mission Mountains strata were low grade. Many carbonate rocks in the Mission Mountains area are relatively pure, and carbonate cement is common. The Pend Oreille area contains strata whose relations to shore are less well defined. The stratigraphic units above the Wallace Formation are more similar in appearance to their equivalents in the Mission Mountains Primitive Area than are the Wallace and lower formations. Regional metamorphism is evident in the rocks in the Pend Oreille area; those rocks below the Revett Formation are clearly in the biotite zone of the greenschist facies. Effects of contact metamorphism, also of the biotite zone, are apparent near the granodiorite intrusions (fig. 3). Carbonate rocks are rarely pure, and carbonate cement or minerals are uncommon in most units.

METHODS OF INVESTIGATION SAMPLING PROCEDURE

The sample localities for the Pend Oreille area are shown in figure 3, whereas those for the Mission Mountains are in a report by Harrison, Reynolds, Kleinkopf, and Pattee (1969, pl. 1B). The locality number on the maps is the same as the sample number listed in the tables of analytical data. The number of samples in table 1 is crudely proportional to the thickness and abundance of the rock types in a given formation. For the Mission Mountain samples, an exception to this generality is an overemphasis on quartzite and siltite in the Empire and Spokane and on quartzite in the Helena; stratabound copper minerals have been found in those rock types. Exceptions for the Pend Oreille samples are (1) a smaller than proportional number of samples of minor rock types in some formations, such as argillite in the Revett Formation and in member 4 of the Striped Peak Formation and quartzite in the Striped Peak because of the different character of each of its members.

CONTRIBUTIONS TO ECONOMIC GEOLOGY

٨

đ,

¥

ير ر مر

O10

CONTRIBUTIONS TO ECONOMIC GEOLOGY

,

		ion ness	ness	on ness	on ness	on ness	on less			Strip	ed Peak								
		Formation and thicknes (ft)	$_{1,900+}^{Libby}$		Member 4 700	Members 3 and 2 700	Member 1 600	Wallace 10,200	St. Regis 1,100	Revett 2,000	Burke 3,200	Prichard 22,000+		also of current					
ade	агеа	Carbonate rocks	2			8	- - - - - - - - - - - - - - - - - - -	6				2	13	. hiotito in ro					
morphic gr	Pend Oreille	Quartzite		2	1		1	1		ວະວ		38	32	iont cocordor					
, and meta		Siltite		1		9	5	84	98	46	2 13	5 8 1	11	oninina aninina					
ı, rock typ€		Mudstone equivalent ¹	11 3			ŝ	4	$\frac{21}{3}$	6 1		3	$^{37}_{17}$	112	dad marks and					
rea, formation		Metamorphic grade ²	Bd	C	Bb	υ	Ö	C Bb	Bb	ည်းရ	с Вb	C Bb Bgn	Total samples	ce. Listito: Bh hod					
bution by a		Carbonate rocks				6	· · ·	53					62	llite and siltit					
mple distri	ve Area	Quartzite		en		œ	18	18	21				68	minated argi					
BLE 1.—Sa	ntains Primiti	Siltite				6	14	30	6				62	gillite, and la					
$\mathbf{T}_{\mathbf{A}}$	Mission Mou	Mudstone equivalent ¹		9		6	12	29	6				62	illite, silty ar					
		Formation and thickness (ft)		Shields of McGill and	Sommers (1967) 1,400+	Shepard 2,500	Snowslip 3,800	Helena 9,800	Empire and Spokane 2,300 +					¹ Includes arg					

² C, chlorite-sericite grade rocks that may contain minor secondary bio composition; Bgn, gneisses and schists of the biotite zone of metamorphism.

The field classification of the rocks into five rock types (argillite, laminated argillite and siltite, siltite, quartzite, and carbonate rocks) and into three metamorphic grades (simply defined as chlorite-sericite, biotite, and gneissic or schistose) was supported by study of thin sections of each sample from the Pend Oreille area and about half the samples from the Mission Mountains. The final classification for this study grouped most of the laminated rocks with the argillites into a rock group that is equivalent to mudstone.

ANALYTICAL TECHNIQUE FOR MINERALOGY

Mineralogical study of Belt rocks is complicated by (1) fine grain size, which makes microscopic modal analysis extremely difficult, and (2) low-grade metamorphic recrystallization, which effectively prevents simple separation into pure mineralogical components. Various staining techniques were tried in thin section, but they met with only partial success on the coarsest rocks; several standard mineral separation techniques were tried, again with only partial success in unmetamorphosed rocks. We resorted to X-ray diffraction as a method for mineralogical analysis that would give comparable results in all rocks regardless of grain size or degree of metamorphism.

Quantitative mineralogic data for most Belt rocks can be obtained by X-ray analysis. The simple mineral suite in most Belt rocks led Jobin and Harrison to experiment with quantitative X-ray spectrographic analyses in 1958. The first results of continuing studies were published a few years later (Harrison and Campbell, 1963). Studies by others—for example, Tatlock (1966), who made a thorough investigation of X-ray analysis of felsic rocks—verify that quantitative mineralogic data of even more complex rocks also can be obtained by X-ray analysis.

The analytical technique used for mineralogical determinations was specifically designed for Belt rocks and their low-grade metamorphic mineralogy. Replicate X-ray diffraction analyses on various rock types commonly fell within 5 percent of each other and always within 10 percent. Such precision is more than adequate for use in our studies because of the much greater differences observed among samples. In addition, the mineralogy was checked against partial or total chemical analyses for many samples with the result that the X-ray mineralogy appears to be not only reasonably precise but also reasonably accurate. All such chemical checks were within 10 percent of the X-ray values.

Each sample was crushed, ground for 15 minutes on a power mortar and pestle, spooned or dumped (to help avoid mica orientation) into an aluminum slotted powder holder, and run on the X-ray spectrometer from 2° to 62° at $2^{\circ} 2\theta$ per minute. Peak heights above background on the spectrometer trace were then measured: the 10 A peak for mica (and illite), the 7 A peak for chlorite, the 3.35 A peak for quartz, the 3.25 A peak for

potassium feldspar, the 3.2 A peak for plagioclase, the 3.05 A peak for calcite, and the 2.9 A peak for dolomite. The ratio of the 10 A mica peak and the 5 A mica peak was also determined.

4

L

۲

General formulas for relating peak heights to mineralogy were devised by comparing X-ray spectrometer data with some complete chemical analyses, with K and Na analyses on most rocks, and with Ca and Mg analyses on carbonate rocks. In addition, estimates of biotite content were made from thin sections of all rocks showing visible metamorphic effects. Standard chemical formulas for each mineral were used to compute chemical content from rock mineralogy; the dark-green chlorite characteristic of the rocks was assumed to be iron rich, and the plagioclase (albite-oligoclase) was assumed to contain essentially all the Na in the rocks. From these data and assumptions, the following basic formulas for translating peak heights into quantitative mineralogy of nonbiotitic rocks emerged:

Quartz =
$$\frac{3.35 \text{ A} - \frac{1}{2}(10 \text{ A})}{4}$$

(Subtraction required because of interference between main quartz peak and secondary mica peak);

Potassium feldspar = $\frac{3.25 \text{ A}}{3}$;

Sericite (plus muscovite plus illite) = $\frac{2(10 \text{ A})}{2}$;

Chlorite =
$$\frac{7 \text{ A}}{2}$$
;
Calcite = $\frac{3.05 \text{ A}}{2}$;
Dolomite = $\frac{2.9 \text{ A}}{3}$.

Estimates derived from these formulas were then recalculated to 100 percent. We consider that the simplified formulas given above are justified in this study because of the relatively simple mineralogy of the bulk of the Belt rocks and the limited intereference between principal and secondary peaks of the minerals. The ratio of the 10 A peak to the 5 A peak may be used to detect either preferred orientation of mica or presence of biotite in the sample. Biotite tends to give a higher 10 A and lower 5 A peak than an equal amount of sericite, whereas mica orientation gives an anomalously high 10 A peak. A microscopic scan of powdered rock or thin section usually distinguished which factor was affecting the normal peak ratio. Mica orientation necessitated a rerun of the sample; the detection of minor biotite required a decrease in the amount of the 10 A peak used in the calculation. Excessive biotite totally disrupts the mica formula, but the general formulas were found satisfactory for proportions of minerals other than mica. Mica content was determined from thin sections where biotite is a major constituent, where the metamorphic grade is relatively high, and where the grain size of the micas is sufficiently large.

O12

	Number of		Plagio-	Potassium	Illite-			
Rock type 1	samples	Quartz	clase	feldspar	sericite	Chlorite	Calcite	Dolomite
			Shields F	ormation				
Dolomitic laminated				0		0		
Delomitic siltite.	3	41	15	0	20	97	Ň	13
Quartzite	ร้	73	4	2	10	9	, ŏ.	2
			Shepard l	Formation				
Carbonatic argillite or	•							
laminated argillite	E	20	16	2	10	14	0	E
Carbonatic siltite	3	38	16	5	13	14	87	12
Carbonatic quartzite.	ž	44	22	. 4	7	5	9	19
Impure limestone	ē	18	īō	Trace	9	Š.	53	2
		£	Snowslip	Formation				
Argillite or laminated								· ·
argillite and siltite.	6	38	21	1	26	11	1	1
Siltite	5	42	22	3	24	6	3	<u> </u>
Quartzite	5	58	19		9	6	8	Trace
			Helena F	ormation				
Silty argillite	5	33	14	3	29	13	7	1
argillite	2	34	13	0	16	6	30	1
Carbonatic siltite	13	33	14	3	17	6	15	12
Calcareous quartzite.	6 17	46	19	4	7	6	16	2
Dolomitic infestorie .	·			1 race	<u> </u>		51	
		Empire	and Spo	kane Forma	tions			
Carbonatic argillite or		~~		•				
argillite and siltite.	3	27	14	0	30	15	3	11
Calcareous siltite	27	3D 62	18	0	20	11	12	4
Quartzite		02			. 12			
		All f	ormation	s named ab	ove			
Carbonatic argillite or	. 04	25	10	0	94	10	0	-
Carbonatic siltito	24	30 36	10	4	24	12	10	9 Q
Carbonatic quartzite.	23	57	16	2	10	6	8	2
Carbonate rocks	23	18	7	Trace	8	5	51	11

 TABLE 2.—Average modes, in volume percent, of Belt rocks from the Mission Mountains Primitive Area

 $^1\,{\rm Rock}$ types within stratigraphic units are not necessarily in order of stratigraphic sequence or abundance.

Average modes of rocks from the Mission Mountains are given in table 2, and average modes for some rocks from the Pend Oreille area have previously been published (Harrison and Campbell, 1963, table 1).

ANALYTICAL TECHNIQUE AND CALCULATIONS FOR GEOCHEMISTRY

Semiquantitative spectrographic analyses presented in this report (table 3) and similar analyses on rocks from the Mission Mountains (Harrison and others, 1969) were done using methods outlined by Grimes and Marranzino (1968). Analytical results were reported as approximate geometric midpoints of ranges whose boundaries are 1.2, 0.83, 0.56, 0.38, and 0.18 (or multiples of those numbers); results are reported as 1, 0.7, 0.5, 0.3, 0.2, and 0.15 (or appropriate multiples).

TABLE 3.—Semiquantitative spectrographic analyses

*

7

×

[Number in parentheses indicates sensitivity limit for method used. Metamorphic grade: C, bedding; Bgn, biotite zone in gneiss or schist. >, undetermined amount of element is limit; N, element was looked for but not found. Also looked for but not found in any all samples were reported as N(5) for Mo, N(200) for Zn, N(0.5) for Ag, and N(10) for

			percent)					(ppm	ı)			
Sample	Fe (.05)	Mg (.01)	Ca (.05)	Ti (.001)	Mn (10)	B (10)	Ba (10)	Be (1)	Co (5)	Cr (5)	Cu (2)	La (20)
					Libby f	Formation						
071 072 073 074 075	1.5 3 3 3 2	0.7 1 1 1	0.05 .1 .07 .05 .05	0.2 .2 .3 .3 .5	70 300 200. 200 300	70 50 100 100 500	300 150 500 500	L L 1 2	L 5 7 7	30 20 50 50 70	7 70 7 5 30	50 20 L 20 50
083 108 ² / 120 121 128	3 2 3 3	3 2 1.5 1.5 .1.5	.2 .7 .05 .07 1.5	.2 .2 .5 .3	300 300 200 200 500	100 30 100 100 50	200 500 700 700 300	1 2 1.5 2	5 5 N 5 N	20 20 30 30 30	L 50 L 7 50	50 50 30 30
129 116 118 119 082	3 1 3 5 1,5	1 •7 1 1•5 2	.05 L .1 .07 .15	.5 .3 .5 .2	200 15 150 300 150	700 30 50 70 200	500 500 500 500 500	1.5 1.5 1.5 2 1.5	L N 10 N L	50 30 30 50 15	30 5 10 30 L	50 70 L N 50
117 080 081	۱ 7 7	•5 •5 •2	N >20 10	.5 .1 .02	20 >5,000 1,500	30 20 30	500 150 200	1.5 L L	N 10 10	30 15 5	15 5 15	100 70 1
				<u>s</u>	triped Pea	ak Formati	on					
067 069 097 102 103	3 3 3 5	1.5 1 1.5 1.5 1.5	.07 .07 .07 .07 .05	.3 .5 .5 .2	15 30 150 15 15	150 500 500 300 100	700 300 300 700 700	1.5 1.5 2 2. 1.5	L 5 7 5 5	50 70 70 50 7	L 20 30 L N	50 50 50 50 70
110 113 064 055 068	3 1.5 3 1	1.5 1.5 .7 1.5 5	.05 .05 .05 .07 10	.5 .3 .7 .2	30 15 15 15 300	2,000 100 1,500 300 150	300 500 200 300 300	2 1.5 1 L	L 5 N 7 L	70 70 30 70 30	10 7 5 5 15	50 50 70 50
078 095 098 105 106	1.5 2 1 1 .7	3 1.5 5 .3 .7	.1 .07 7 .07 .05	.2 .2 .2 .7 .7	50 50 200 15 20	70 50 100 1,500 2,000	300 200 700 150 300	1.5 L 2 1.5	7 7 5 L	30 50 50 30 30	L 7 20 7 7	30 30 30 -30 50
107 <u>3</u> / 109 122 125 062	1 3 3 1	.7 1.5 3 2 .3	.05 L .1 .15 .05	.3 .7 .5 .3	15 30 50 70 30	2,000 200 200 2,000 50	500 300 500 500 150	1.5 1.5 1.5 1.5 1.5	N 10 7 N 5	50 50 70 50 20	10 5 15 L	70 70 50 50
063 070 076 100 114	2 1.5 .7 .7	1 2 .15 .1 .5	.05 1.5 .07 L L	.5 .3 .2 .2 .05	100 300- 30 300 70	300 150 30 150 15	200 150 100 200 300	1.5 1 L L	10 7. N L	30 30 15 20	L L 30 5	50 30 20 30 N
126 127 211 111 124 4/	2 3 1.5 1 2	.7 .5 7	.07 .1 15 20	.15 .5 .15 .1	100 150 50 500 5,000	300 150 30 . 150 500	150 200 500 70 500	1.5 L 300 L	L 15 5 L	20 50 20 20 30	15 7 15 10 3,000	30 50 50 N 30
					Wallace	Formation	<u>1</u>	<i>:</i> .	• •			
004 005 008 012 013	•7 2 1.5 3 1.5	.5 3 1.5 1.5 2	L 15 L L L	.2 .2 .3 .2 .3	10 30 20 70 50	30 70 50 50 30	300 500 300 300 500	L 1.5 L 1	5 7 7 10 10	20 30 50 50 30	L 7 30 5	30 70 70 50 30

See footnotes at end of table.

of Belt rocks from the Pend Oreille area

•

۲

Ł

5

>

chlorite-sericite zone including minor secondary biotite; Bb, biotite Zone in rock with prominent present above number shown: L, undetermined amount of element is present below sensitivity sample were As(200), Au(10), Cd(20), Sb(100), and W(50). Except as indicated by footnotes, Bi and Sn. D. J. Grimes, analyst]

Sample	NЬ (10)	Ni (2)	РЬ (10)	sc (5)	Sr (50)	v (10)	(5)	Zr (10)	Metamorphic Grade	Sample description
						Lib	by Form	nation		
071	L	10	N	5	N	70	15	100	С	Black silty argillite.
072	· L	15	15	5	N	70	20	100	С	Calcareous silty argillite.
073	L	15	L	5	N	70	15	150	С	Black silty argillite.
074	L	20	L	7	N	70	30	100	С	Green silty argillite.
075	10	20	L	10	N	100	30	150	c	Black silty argillite.
083	L	30	N	7	N	50	30	150	c	Green silty argillite.
108	L	15	N	5	N	50	30	150	L C	Laicareous green argillite.
120	10	- L	N	10	N	/0	30	150	L L	Black Silty argillite.
121	10	20	L	10	N	70	30	200	c	Green calcareous argillite.
129	15	20	N	15	N	100	30	200	r	Black silty annillite
116	15	ĩ	ï	15	N	100	50	200	ВЬ	Do.
118	i i	20	Ň	5	Ň	70	20	150	Bb	Do.
119	10	30	N	10	N	70	30	150	Bb	Do.
082	Ĺ	5	N	7	N	30	30	150	C	Green argillitic siltite.
117	10	ι	30	10	N	70	30	150	Bb	Argillitic siltite.
080	N	L	30	5	200	30	50	150	С	Stromatolite.
081	Ν	5	30	L	N	15	30	15	C	Cherty colite.
						Stripe	d Peak	Formati	on	
067	٤	10	L	10	N	70	30	200	С	Green silty argillite.
069	10	30	L	15	N	70	30	150	С	Black silty argillite.
097	10	30	L	10	N	70	30	150	c	Do.
102	L L	7	N N	15 7	N N	70 50	50 50	200 150	C C	Green silty argillite. Maroon argillite.
110	10	50	N	10	N	70	30	200	Ċ	Black silty argillite.
113	10	15	L	7	N	70	30	200	С	Red silty argillite.
064	L	L	L	7	N	30	30	700	С	Olive siltite.
065 068	10	10	L 15	10	N	70 30	50	1,000	C	Red siltite with salt casts
						50		100		
0/8	10	20	N		N	20	30	150	L C	Dolomitic argiilitic siltit
095		15	10	5	N	50	20	160	Ċ	Dolomitic siltite
105	,	5	N	7	N	70	30	200	Ċ	Green siltite
106	10	Ĺ	50	7	N	70	30	200	č	Black argillitic siltite.
107	10	N	30	10	N	70	50	300	c	Do.
109	L	30	N	7	N	70	30	150	с	Red feldspathic siltite.
122	10	20	N	7	N	70	30	700	С	Green argillitic siltite.
125	10	7	10	15	N	70	30	300	С	Black argillitic siltite.
062	L	5	N	5	N	30	20	700	C	Red feldspathic quartzite.
063	L	15	N	7	N	50	20	700	C	Green quartzite.
070	L	15	N	5	N	/0	30	300	C	Calcareous red quartzite.
0/6	L.	L	N	Ľ	N	15	15	/00	. L	Red feldspathic quartzite.
114	L	L	N L	5 N	N	20	10	100	c	Do.
126	ι	20	N	5	N	70	20	300	С	Green quartzite.
127	10	20	N	10	N	70	30	1,000	C	Red feldspathic quartzite.
211	10	10	N	5	N	50	20	200	Bb	Green quartzite.
111	N	10	20	Ĺ	N	20	10	20	С	Silty dolomite.
124	L	15	N	5	N	50	30	150	C	Argillitic dolomite.
						Wal	lace F	ormatior	<u>r</u>	
004	N	5	N	7	N	50	20	150	C	Black silty argillite.
005	L	20	N	10	N	50	30	100	C	Waxy green argillite.
800	N	15	N	10	N	70	20	100	c	Green silty argillite.
012	10	20	N	10	N	50	20	100	c	Black silty argillite.
013	L	15	N	7	N	50	15	100	C	waxy green argillite.

O15

		(percent)					(pp)	n)			
Sample	Fe (.05)	Mg (.01)	Ca (.05)	Ti (.001)	Mn (10)	B (10)	Ba (10)	Be (1)	Co (5)	Cr (5)	Cu (2)	La (20)
				Wall	ace Format	ionCon	tinued			- <u></u> .		
039 051 057 058 059	3.0 2 2 2 3	5.0 2 1.5 1	7.0 .15 L .05	0.15 .2 .5 .5 .5	500 70 15 100 70	30 150 100 100 70	500 300 500 500 300	1.0 L 1.5 1.5 1	10 10 10 5 7	30 50 70 50 50	15 5 10 20 5	50 20 50 50 50
061 094 096 151 168	2 3 3 3 3	1.5 5 3 5	.07 L 7 .07 .1	.2 .3 .3 .2 .3	20 30 700 50 50	50 500 150 100 70	500 200 700 500 500	L L 1.5 3 2	7 5 10 7 10	50 70 50 20 30	7 7 20 20 L	50 30 50 50 50
180 186 187 188 197	3 2 2 2 2	 .5 .5	.07 .05 .07 .05 .15	.3 .2 .2 .3	70 150 100 50 70	50 50 30 20 70	500 300 300 150 700	1.5 1.5 L 3	7 7 5 5	20 70 30 30 30	20 7 30 30 30	100 50 50 20 70
207 115 175 206 001	3 1.5 3 1.5	1.5 3 .7 .7	.07 .05 5 .05 .05	.2 .5 .2 .3 .15	30 70 300 150 50	50 200 50 50 30	700 500 700 500 300	2 1.5 3 2 1	L N 7 10	50 70 7 50 30	20 20 1 30 5	50 50 50 150 50
052 054 056 143 166	2 3 2 1 1.5	۱ 5 ۱۰5 3 3	.05 .1 .1 7 7	.2 .3 .2 .2	20 100 30 150 70	20 30 30 50 30	300 200 300 700 700	N L 1 1.5	15 7 L N 5	15 30 30 15 15	20 15 7 15 300	30 30 20 30 70
190 192 162 201 204	2 5 1.5 2	5 1 3 .2 1.5	7 .07 1.5 .07 .05	.2 .2 .3 .2	300 300 150 50 20	70 30 50 30 30	700 150 500 150 500	1 L 1.5 1	5 10 5 L N	50 20 20 30 15	L 30 15 10 10	50 30 50 70 50
205 146 003 002 038	5 .5 1 2	1 •5 •3 3 5	.07 10 1.5 20 >20	.5 .15 .15 .1	200 300 70 500 1,000	50 15 20 30	300 500 500 300 500	2 L L 5	10 L 5 7	50 15 20 30 30	30 7 7 7 20	100 30 50 50 30
053 060 079 104 144	5 1.5 1 .7 1.5	5 5 >10 >10 3	10 10 >20 20 10	.3 .2 .07 .05 .2	3,000 500 1,000 1,500 500	50 30 50 50 70	200 700 50 200 300	L L N L 1.5	7 5 N 5	50 30 ≀0 7 30	30 L L 7	30 30 N L 30
147 165	3 1.5	10 5	10 20	.1 .15	1,000 300	70 50	200 700	l l	L 5	15 15	N 7	50 30
					St. Regis	Formatio	on					
006 046 152 169 193	3 3 3 3 2	2 1.5 2 2 .5	.07 2 .1 .07 .05	.2 .2 .5 .5	70 1,000 50 30 30	30 30 70 100 30	700 700 500 500 300	L 1.5 1.5 2 1	10 7 7 5 7	50 50 20 50 50	L L 10 10	70 50 50 70 50
195 176 007 084 2/ 153	3 3 .7 3 3	1.5 1.5 .5 3	.5 .1 .15 .1 .2	.3 .5 .15 .3 .3	200 300 100 300 300	70 70 15 70 30	700 700 300 700 500	2 3 N 1.5 1	7 10 10 10 L	50 30 15 50 20	L L 30 20	70 70 20 50 L

TABLE 3.—Semiquantitative spectrographic analyses

See footnotes at end of table.

۶

74

٢

×

ς.

~

-

.

×

ĸ

Ĺ

BELT ROCKS, MONTANA AND IDAHO

of Belt rocks from the Pend Oreille area—Continued

Samale	111			لالمي	opm)				tamorphic	
sampre	ND (10)	(2)	РБ (10)	5c (5)	Sr (50)	(10)	Y	(10)	Grade	Sample description
					Wal	lace F	ormation	Contin	ued	
039	L	20	10	7	N	50	20	150	c	Dolomitic silty argillite
051	Ň	30	20	10	N	50	15	150	č	Black silty argillite.
057	i i	30	15	10	N	70	30	200	ř	Do
057	10	30	16	10	N	70	30	200	Ċ.	00.
050	L	30	N	7	N	70	50	300	c	DO.
	-			'		,.	20	,	Ū	
061	L	30	N	7	N	50	30	150	C	Do.
094	L	20	2	10	N	/0	30	150	Ĺ	UO.
090	L	20	N		N	/0	30	150	L L	Dolomitic silty arguilite
151	10	20	N	10	N	70	30	150	c	Waxy green argillite.
100	L	20	N	10	N	70	30	150	C	Do.
180	10	30	L	10	N	70	30	150	С	Black silty argillite.
186	10	30	N	10	N	70	30	150	С	Do.
187	L	20	20	10	N	70	30	150	С	Do.
188	L	20	N	7	N	70	20	150	С	Do.
197	10	20	10	15	N	70	30	150	č	Waxy green argillite.
207	10	20	10	10		70	20	150	~	
207	10	30	10	10	N N	70	20	150		Black silly argillite.
115	10	10	L	10	N	/0	30	200	BD	00.
1/5	15	5	N	7	N	50	50	150	Bb	Dolomitic silty argillite
206	10	20	N	10	N	70	30	150	вь	Black silty argillite.
001	N	30	L	7	N	50	30	150	C	Argillitic siltite.
052	N	30	15	L	N	20	15	100	с	White siltite.
054	L	30	N	10	N	70	30	200	с	Argillitic siltite.
056	L	30	N	7	N	50	20	150	Ċ	Do.
143	Ĺ	15	10	7	N	50	20	150	c	Calcareous siltite.
166	ĩ	20	N	7	N	50	30	150	c	Dolomitic argillitic silt
100		20	м	10	м	70	30	100	c	Po.
102	10	20		2		50	20	100	c c	
152	10	20		4	N N	50	20	150	L	Arginitic situte.
102	L.	30	L	.,	N	70	30	150	BD	talcareous siltite.
201	10	20	20	7	N	50	30 20	300	BD	Green siltite.
		20		'		50	20		00	501
205	10	30	L	15	N	70	30	150	BЬ	Do.
146	L	L	10	L	100	20	30	100	С	Calcareous silty quartzite
003	N	L	L	5	N	20	10	150	Bb	Calcareous quartzite.
002	Ν	15	N	7	150	30	30	50	С	Molar tooth limestone.
038	L	15	N	5	300	30	20	30	С	Do.
053	N	20	ī	7	N	50	30	200	с	Stromatolite.
060	ï	20	N	ś	100	30	20	100	č	Silty dolomite.
079	Ň	1	15	í	Ň	30	ĩš	30	ř	Do.
104	N	ĩ	Ň	Ň	N	10	in	50	č	Stromato)ite.
44	Ľ	15	70	7	Ľ	70	20	150	č	Molar tooth limestone.
1.7				-	100	50	20	5 0		
165	L N	15	N 50	5	100	50	30 20	50 50	C	Argillitic dolomite. Molar tooth limestone
			<u>,</u>	2	00	50	20	0	U	Horar tooth rinestone.
						<u>St.</u>	Regis Fo	ormation		
006	L	15	N	7	N	50	30	100	с	Purple argillite.
046	10	20	L	7	N	70	30	150	С	Do.
152	L	20	N	10	N	70	30	150	С	Do.
169	L	20	N	10	N	70	30	150	с	Do.
193	ι	20	N	7	N	70	30	150	С	Ço.
195	10	30	N	10	N	70	30	150	c	Purple silty annillite
176	15	30	ï	10	N	70	50	200	вь.	
107	Ň	ĩň	N	ĩ	M	20	10	70	с С	Purole andilitic siltito
/						20	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	č	
184		- 20		17.			411	71,000		

		(P	ercent)					(ppr	n)			
Sample	Fe (.05)	Mg (,01)	Ca (.05)	Ti (.001)	Mn (10)	B (10)	Ba (10)	Be (1)	Co (5)	Cr (5)	Cu (2)	La (20)
				St. R	egis Format	ionCo	ntinued					
170 194 196 047 163	1.5 1.5 2 1.5 5	1.5 1.5 1.5 2 1.5	1.5 2 .07 1 .15	0.2 .2 .2 .2 .3	200 1,000 50 300 50	30 30 30 30 50	300 300 300 300 500	1.0 1 1.5 1 2	L 5 7 7 7	15 20 15 30 50	7 10 20 15 5	50 50 50 50
184	۱.5	3	.1	.3	100	200	150	۱.5	5	15	L	50
					Revett Fo	rmation						
009 043 048 171 091	1.5 1 1 3 1	1 .15 .3 .3 .3	.07 L .07 .05	.2 .5 .3 .3 .2	70 50 20 20 200	20 100 30 20 15	300 300 300 500 300	 .5 2 .5	10 L L L	30 30 30 20 15	L 5 L 7	20 50 30 30
174 181 010 042 050	2 .7 .7 .7 .7	.7 .3 .07 .05 .07	.05 L L N I	.5 .3 .2 .3 .1	15 20 50 100 700	30 L 15 30 15	700 150 300 150 150	3 1 1.5 L	N N N L	30 7 15 20 7	L N 5 L 30	50 50 50 20 30
090 203 087 158 173	.3 .3 .5 .5	.07 .1 .3 .07 .1	L L .05 L .05	.15 .05 .15 .15 .15	30 15 70 20 50	10 L 10 L	300 200 300 150 200	L L L]	N 7 N	5 7 7 5 5	L 5 5 5	30 L 30 50 20
182 . 200	.3 .2	.15 .05	L. N	.2 .15	30 20	10 10	150 300	L L	N N	5 5	5 15	50 50
					<u>Burke</u> Fo	rmation						
086 149 210 150 177	3 3 2 2 2	.7 1.5 .7 .2 .2	.15 .05 .05 .05 .07	.5 .7 .3 .3 .5	300 100 150 70 200	50 30 30 15 20	700 700 700 200 700	2 2 3 7 1.5	10 15 7 5	50 50 15 15	L 5 15 5	70 70 70 30 50
041 045 049 089 092	2 .5 3 	.7 .1 .3 .7 .15	.1 .07 .05 .07 .15	.2 .15 .2 .15	. 300 70 70 500 300	20 15 15 20 15	500 200 300 300 300	1 L 1 1.5	10 5 5 10 5	30 20 20 30	7 5 10 5	50 30 30 30 50
093 2/ 133 148 155 161	3 2 2 2 1.5	1 .5 .3	.05 1 1.5 1.5 .15	.3 .2 .5 .3 .2	500 700 200 500 500	30 15 20 15 15	700 150 500 500 700	7 L 1.5 2 1	10 5 10 7 5	30 15 20 20 10	30 7 L 15	50 50 50 70 20
198 199 209	2 1.5 2	.5 .2 .7	L .07 .05	.5 .2 .3	70 100 150	30 20 20	500 300 500	2 1 1.5	7 5 7	50 10 30	5 7 10	50 50 50
					Prichard F	ormation	1					
040 131 183 017 5/ 020	3 1.5 3 3	.7 .3 .7	.05 L .05 .15 .05	.2 .5 .2 .3 .5	300 300 15 300 300	30 50 20 15 30	500 700 500 300 700	1.5 10 3 L 1.5	L N 5 20 15	30 70 7 50 70	5 10 20 50 7	30 50 70 30
021 023 026 031 034	2 1.5 2 3	.7 1 1	.05 .2 .07 .07 .7	.3 .2 .3 .3	300 200 200 300 500	20 10 30 15	500 500 700 700	I L I.5 I	7 7 7 7	30 30 30 50 70	20 10 5 L 7	70 30 70 70

TABLE 3.—Semiquantitative spectrographic analyses

See footnotes at end of table.

. بر

-**é**.

×

L

~

of Belt rocks from the Pend Oreille area—Continued

Sample	Nb	N i (2)	Pb	Sc (5)	۲Р ⁽¹⁾ (50)	V (10)	Y	Zr	Metamorphic	Sample description
					<u></u> <u>\$t.</u>	Regis	Forma	tionCon	tinued	Sample description
170	L	10	N	5	Ň	50	30	150	C	Dolomitic purple siltite.
194	Ĺ	20	N	7	N	50	30	150	С	Do.
196	10	20	N	7	N	50	20	150	с	Purple argillitic siltite.
047	L	15	N	7	N	30	30	150	ВЬ	Dolomitic purple siltite.
163	10	30	N	15	N	100	50	200	85	Purple argillitic siltite,
184	L	20	N	7	N	70	30	150	ВЬ	Waxy green argillitic siltite
						Rev	ett Fo	ormation		
009	L	15	N	7	N	50	15	100	c	Green argillitic siltite.
043	10	/	N	10	N	20	50	200	c c	00.
171	10	20	N	7	N	20	20	300	c c	Croop diltito
091	L	5	N	5	N	20	20	150	ВЪ	Do.
174	10		N	15	N	70	30	700	Bb	Do .
181	10	ĩ	N	7	N	30	20	1,000	Bb	00.
010	N	N	N	Ĺ	N	10	15	300	C	Purple streaked quartzite.
042	L	L	N	7	N	20	20	>1,000	С	White quartzite.
050	N	L	N	L	N	10	20	300	C	Calcareous quartzite.
090	L	L	N	L	N	10	10	150	С	White quartzite.
203	N	L	N	L	N	L	15	100	С	Do.
087	N	15	L	L	N	30	15	150	вь	Do.
158	E .	N	N	L	N	30	30	500	ВЬ	Do.
1/3	L	L	N	N	N	30	20	/00	86	Purple streaked quartzite.
182	Ĺ	Ļ	N	Ļ	N	20	20	200	Bb	White quartzite.
200	Ļ	L	N	L	N	·5	20	1,000	BD	vo.
						Bu	rke Fo	ormation		
086	10	30	10	10	N	70	30	150	Bb	Gray silty argillite
149	15	30	N	10	N	70	50	300	Bb	00.
210	10	20	N	10	N	70	30	150	ВЬ	Do.
177	L	10	N	7	N	50 70	30	150	C	Purple streaked siltite. Grav angillitic siltite.
						,.			•	
041	Ļ	10	L		N	30	30	150	ВБ	Do.
045 nha	L	5	N	2	N	30	20	150	BD	Purple streaked siltite.
049	N	20	10	2	N	20	20	200	BD	Gray argillitic siltite.
092	Ľ	Ĺ	Ľ	5	Ľ	30	15	150	Bb	Purple streaked siltite.
093	L	30	30	10	N	70	30	150	ßb	Grav-green argillitic siltit
133	L	L	L	5	L	.50	30	200	Bb	Gray argillitic siltite.
148	15	20	N	7	N	70	30	300	Bb	Do.
155	10 10	7	N 10	10	L	50 50	30 30	200	Bb Bb	Do. Purple and green siltite.
108	10	20		10		50	20	150	00	
190	10	20	Ň	5	N	50	20	150	BD BD	Purple argilitic siltite.
209	10	20	N	7	N	50	30	150	Bb	Gray-green argillitic siltite
						Pric	hard f	ormation		
ი µი	10		10	7	N	50	20	150	r	Plack and white evelility
131	10	1	30	15	N	100	30	150	č	Do.
183	Ľ	15	Ň	5	N	30	30	150	č	Do.
017	ī	30	20	7	N	50	15	100	вь	Gray pyrrhotitic arcillite.
020	15	20	L	15	N	100	30	150	Bb	Do.
021	L	10	15	7	N	70	30	100	ВЬ	Black and white argillite.
023	L	20	15	7	N	50	15	70	вь	Pyrrhotitic silty argillite.
026	15	15	15	10	N	50	30	150	Bb	Gray silty argillite.
031	L	15	10	15	N	70	30	100	вь	Spotted silty argillite.
154	L	7	15	10	200	70	30	150	Bb	Do

4 4

يد ا

.

3

2

4

Þ

>

Ļ

يغر

			percent)					(ppr	n)			
Sample	Fe (.05)	Mg (.01)	Ca (.05)	Ti (.001)	Mn (10)	B (10)	Ba (10)	Be (1)	Co (5)	Cr (5)	Cu (2)	La (20)
				Pricha	rd Formati	<u>on</u> Con1	tinued					
035 037 085 132 135	3.0 3 3 3 3 3	1.0 .7 .7 1 .7	0.2 L .05 .15 .3	0.5 .2 .3 .5 .5	300 200 300 500 500	15 15 20 50 30	700 700 500 700 700	L 1 2 3	10 7 10 15 10	70 30 30 70 50	L 7 20 10 10	70 30 50 70 50
136 137 138 139 140	5 3 2 3 3	.7 .7 .5 .7	.07 .15 .07 .07 .07	.5 .5 .3 .5	300 500 300 300 300	30 30 30 100	700 700 500 500 700	2 2 3 3	5 10 L 10 10	50 30 20 50 70	20 5 7 30 20	30 50 30 50 70
141 154 157 159 160	3 3 3 1.5	1 .7 .7 .7 .7	.05 .07 .1 .07 .05	.5 .3 .3 .7 .2	300 300 300 300 150	70 30 30 50 15	500 700 700 700 700	2 2 3 2 2	L 7 10 10 5	50 50 50 50 15	15 20 15 20 L	50 50 70 70 20
164 172 179 185 208	3 3 1.5 3	1 1.5 .7 1 .7	.07 .05 .07 .07 .05	.5 .7 .3 .5	300 300 300 200 200	30 20 50 20 30	700 700 700 300 700	1.5 3 1.5 2	7 L 7 5	50 70 50 30 70	20 15 15 15	70 70 30 30 70
216 218 220 222 228	2 2 3 3 3	.2 .7 .7 .5 .5	.5 .3 .1 .3 L	.2 .3 .3 .3 .3	200 500 300 300 150	L 15 70 30 10	500 500 500 700 500	1.5 1.5 1 2 1	5 L 7 10 L	15 50 50 50 50	20 20 20 30 15	50 70 70 70 50
229 230 233 234 236	2 3 3 3 2	•5 •7 •7 •3 •7	L .05 .05 .1	.2 .3 .5 .3 .5	20 300 300 50 300	30 50 15 10 15	700 700 500 500 700	1 1.5 3 2 2	N 7 N L	50 50 70 50 70	30 30 20 15 20	50 70 30 50 20
215 217 219 <u>6</u> / 226 227	3 1.5 3 1.5 1	•7 •3 •7 •2 •2	.15 .2 .3 .2	.3 .2 .3 .2 .15	300 200 300 100 150	15 15 10 10	700 300 500 200 300	1 1.5 1.5 1.5 1.5	L 5 7 L N	50 15 50 10	30 30 10 15 7	50 50 70 50 30
232 248 249 251 252	3 3 5 3 1	ا 5 1 .7 .3	.07 .2 .15 .15 .3	.3 .5 .7 .3 .2	300 300 500 300 200	30 20 20 20 10	500 500 700 700 700	3 1.5 1.5 1.5 L	L 5 7 N 10	50 50 70 50 30	20 7 30 20 20	N 70 70 70 30
255 256 257 258 259	3 2 2 1.5 3	1.5 .5 .7	2 .15 .3 I .7	.7 .5 .2 .3 .3	700 300 200 200 300	L 10 20 L 10	300 700 700 500 500	1 1.5 1.5 1.5	15 L L L	100 70 78 30 50	20 15 10 10	70 50 50 50 30
260 261 130 014 015	2 3 3 3 3	.5 .7 .7 .7 .5	.7 .05 .3 .05 .07	.3 .5 .2 .3 .3	200 300 300 200 150	30 30 20 30 L	500 500 500 500 500	1.5 1.5 1.5 L 1	N 5 10 15 10	30 70 20 30 50	10 30 15 30 L	50 50 50 50
019 025 028 029 036	1.5 3 2 1 1.5	.3 1.5 .7 .3 .5	.07 .5 .05 .07	.2 .2 .15 .15	200 300 150 100 200	15 30 L L L	300 500 300 300 300	1.5 2 L L L	7 10 N L	30 30 30 15 20	10 50 5 7 10	50 50 30 L 30
142 214 225 250 262	2 .7 .5 .7 .7	.7 .5 .2 .15 .2	.1 1.5 .15 .2 .1	.2 .2 .1 .2 .2	200 100 200 100	30 15 20 15	200 70 500 300 500	1 2 N 1 1.5	7 N L N	15 20 5 20 20	20 10 7 5	30 30 20 50 30

TABLE 3.—Semiquantitative spectrographic analyses

See footnotes at end of table.

ـلا .

<u>م</u>

×

Y

-1.

م حل

بلر

16

بر

ς,

~

4

يكر * ليما بر

of Belt rocks from the Pend Oreille area-Continued

Samela	Nb	N	Dh.	(ppm)	V		7	letamoroh i c	
Sampre	(10)	(2)	(10)	(5)	(50)	(10)	(5)	(10)	Grade	Sample description
					Pr	ichard	Formati	<u>on</u> Conti	nued	
26		15	10	15		70	30	150	Bb	Argillite with andalusite
137	10	7	Ň	7	N	50	20	150	Bb	Grav pyrrhotitic argillite
085	L.	20	10	· 7	N	70	30	150	вь	Black and white argillite
132	15	30	30	15	N	70	30	150	Bb	Do.
35	Ĩ.	20	10	10	ï	100	30	150	Bb	Slaty black argillite.
36		15		15	N	100	20	150	Bb	Grav annillite.
37	10	20	10	10	N	70	30	200	Bb	Do.
138	10	Ľ	N	7	L	70	20	150	Bb	Slaty black argillite.
139	L	30	L	15	N	70	30	150	8b	Black and white argillite
40	L	30	L	15	N	70	30	150	ВЬ	Do.
41	10	L	L	10	N	70	30	200	Bb	Slaty black argillite.
54	10	20	10	10	N	70	30	150	Bb	Black and white argillite
57	10	30	L	15	N	70	50	150	Bb	Do.
59	10	30	20	15	N	100	50	150	8b	Do.
60	L	15	L	7	N	70	20	150	ВЬ	Spotted black argillite.
64	Ł	30	L	15	N	70	30	150	вь	Black and white argillite.
72	10	. 5	L	15	N	100	30	100	Bb	Spotted black argillite.
79	15	20	L	10	N	70	30	150	ВЬ	Black and white argillite
85	10	20	50	10	N	70	30	150	вь	Spotted black argillite.
08	15	20	N	15	N	70	30	150	ВЬ	Black and white argillite.
16	10	10	L	7	L	50	30	150	вь	Do.
18	10	L	10	10	L	70	30	150	Bb	Do.
20	10	15	L	15	N	70	30	150	вь	Do.
22	10	30	10	15	N	70	30	150	Bb	Do.
28	L	7	L	10	N	70	30	100	вь	Do.
29	L	L	10	7	N	70	30	150	ВЬ	Do.
30	10	15	N	10	N	50	30	150	ВЬ	Gray argillite.
33	15	L	L	10	N	70	30	150	Bb	Black and white argillite
34	10	5	N	10	N	70	30	150	вь	Do.
36	10	L	15	15	N	70	30	150	вь	Do.
15	10	7	L	15	N	70	30	150	Bgn	Schistose argillite.
.17	10	.7	L	7	N	50	30	150	Bgn	Gneissic argillite.
19	10	15	L	10	N	70	30	150	Bgn	Schistose argillite.
26	L	L	N	5	N	30	30	150	Bgn	Gneissic argillite.
27	L	5	N	7	100	30	20	150	Bgn	Do.
32	15	5	15	10	N	70	30	150	Bgn	Do.
48	L	L	L	10	L	70	30	150	Bgn	Black and white gneiss.
49	10	15	30	15	L	70	50	150	Bgn	Black and white schist.
51	L	L	L	10	L	70	30	150	Bgn	Loarse mica schist.
2	L	20	L	'	L	50	20	150	вgn	coarse mica gneiss.
55	10	50	15	15	500	70	50	200	Bgn	Biotite gneiss.
50	10	L .	15	ŝ	100	70	30	150	Bgn Bgr	Choice is and white schist.
58	10	5	10	4	300	70	30	150	Ban	Goniesic silty argillite
59	Ľ	5	N	10	150	70	30	150	Bgn	Schistose argillite.
60	10			10	100	70	20	150	Pen	- Coniscia preillito
61	10	10	L N	15	100	70	30	150	Ban	Schietore argillite
30	10	20	10	7	1	70	50	150	C San	Grav annillitic siltite
14	ĩ	30	ĩ	7	N	50	20	150	Bh	Grav siltite.
15	ĩ	15	N	7	N	50	30	150	вь	Dark gray siltite.
19	L	10	L	5	N	30	20	150	Вb	Grav argillitic siltite.
25	ĩ	30	20	7	N	50	30	150	Bb	Gray pyrrhotitic siltite.
28	ī	Ĺ	10	, 7	N	50	20	150	Bb	Spotted siltite.
29	Ē	ī	Ĺ	5	N	30	15	150	ВЬ	Do.
36	L	ĩ	Ĺ	5	N	30	20	150	ВЬ	Salt and pepper siltite.
42	L	20	15	5	Ń	50	20	100	вь	Black and white siltite.
14	10	Ĺ	Ĺ	5	200	50	30	150	Bgn	Gneissic siltite.
25	L	L	20	Ĺ	N	15	15	150	Bgn	Do.
				~					-	
50	L	L	L	5	200	30	30	700	Bgn	Do.

~

١

3

4

5.

		(p	ercent)					(ppn	n)			
Sample	Fe (.05)	Mg (.01)	Ca (.05)	Ti (.001)	Mn (10)	B (10)	Ba (10)	Be (1)	Co (5)	Cr (5)_	Cu (2)	La (20)
				Pric	hard Format	ionCor	tinued					
263 016 018 024 027	1.0 .7 .7 !	0.2 .2 .1 .2 .2	0.15 .15 .3 L	0.2 .15 .2 .2 .15	100 100 300 300 70	10 10 1 10 L	300 200 200 200 200	1.5 L 10 I N	L 5 L N 5	15 20 20 20 20	7 L 10 7 7	30 30 70 30 30
030 032 221 237 212	.7 .7 1 1 .7	.2 .1 .2 .3 .3	.5 1.5 .15 .2 1.5	.2 .15 .2 .2 .15	200 300 200 200 150	L L 10 10 L	200 70 300 500 100	 - 	N N 5 N	20 10 10 30 15	5 L 15 20 7	50 30 50 50 50
231 254 223 7/ 253 8/	.5 .7 15 5	.1 .5 .1 .5	.3 1.5 20 >20	.15 .1 .03 .1	150 200 ≻5,000 ≻5,000	L L N L	70 70 20 L	1 3 N 3	N L 15 10	20 20 5 20	30 L 15 20	30 50 N 30

TABLE 3.—Semiquantitative spectrographic analyses

-Ç

7

),

ly Reported as L(5) for Mo.

2/ Reported as L(200) for Zn.

3/ Contains 0.7 ppm Ag.

4/ Contains 20 ppm Mo, 0.7 ppm Ag, and 10 ppm Bi.

				(ppm)					
Sample	Nb	Ni	Pb	Sc	Sr	V	Y	Zr	Metamorphic	
· · · · · · · · · · · · · · · · · · ·	(10)	(2)	(10)	(5)	(50)	(10)	(5)	(10)	Grade	Sample description
					Pr	ichard	Formati	onCont	inued	
263	L	15	N	5	N	30	20	150	Bgn	Gneissic siltite.
016	N	L	L	Ĺ	L	20	15	150	Bb	White silty quartzite.
518	L	L	10	5	200	30	30	150	ВЪ	Gray green quartzite.
24	L	5	15	5	L	20	15	150	Bb	Do.
027	N	10	N	L	N	20	15	100	ВЬ	Salt and pepper quartzite.
030	10	L	10	5	L	20	30	150	ВÞ	Grav green guartzite.
32	Ĺ	Ē	Ň	Ĺ	Ň	15	15	200	вь	Do.
221	Ĺ	Ē	L	5	N	30	20	150	вь	Do.
237	10	10	Ē	7	L	50	30	150	Bb	Do.
212	L	L	N	Ĺ	N	20	20	150	Bgn	Gneissic quartzite.
231	L	L	L	5	L	30	20	500	Bgn	Biotitic quartzite.
254	Ē	7	Ē	Ĺ	Ē	30	20	200	Bgn	Quartz gneiss.
223	Ē	20	N	Ē	N	700	30	N	Ban	Skarn.
253	10	7	N	7	N	70	30	150	Ban	Do .

of Belt rocks from the Pend Oreille area-Continued

5/ Contains 5 ppm Mo.

6/ Contains 7 ppm Mo.

<u>7</u> Contains 15 ppm Sn.

8/ Contains 200 ppm Zn and 15 ppm Sn.

₩

٦

۹,

١.

5

يل

					(percent)				
Sample	Fe	Mg	Ca	Ti	Mn	в	Ba	8e	Cc
	(.05)	(.01)	(.05)	(.001)	(10)	(10)	(10)	(1)	(5)
001	1.5	0.7	0.05	0.15	50	30	300	1.0	10
011	2	1.5	.05		70	70	500	1.5	15
012	3	1.5	L	.2	70	50	300	1	10
022	3	1.5	.05	.3	100	50	500	1.5	10
023	1.5	1.5	.2	.2	200	10	500	L	7
033	3		.5	.15	300	15	500	L	10
034	3	1.5	.7	.3	500	15	500	1.5	5
044	3		.5	.3	300	15	300	1	5
045	1.5	.1	.07	.2	70	15	200	1	5
055	1.5	.1	.05	.2	50	15	200	L	5
056	2	1.5	.1	.2	30	30	300	L	L
066	2		.1	.3	20	20	300	L	N
067	3	1.5	.07	.3	15	150	700	1.5	L
077	3	2	.07	.3	20	300	700	2	5
078	1.5	3	.1	.2	50	70	300	1.5	7
088	2	2	.1	.2	50	70	500		7
089	3	.7	.07	.2	500	20	300	1	10
099	2	.7	.07	.2	300	20	500		10
091	۱	.3	.05	.2	200	15	300	1.5	L
101	۰7	.2	L	.15	150	10	200	1	
102	3	1.5	.07	1	15	300	700	2	5
112	5		.07	1	15	500	700	3	5
113	3	1.5	.05	.3	15	100	500	1.5	5
123	5	3	.15	.7	50	200	700	2	7
124 <u>1</u> /	2	10	20	.15	5,000	500	500	L	L
134 <u>2</u> /	∣.5	7	20	.15	3,000	700	300	L	N
135	3	.7	.3	.5	500	30	700	3	10
145	3	1.5	.5	.5	500	50	700	2	10
146 156	.5 .5	.5 .3	10 15	.15 .15	300 300	15 10	500 500	L	L
157 167	3 3	.7	.1	.3 .3	300 300	30 30	700 700	3 2	10 10
168	· 3	5	.1	.3	50	70	500	2	10
178	3	3	.07	.5	50	50	500	2	7
179	3	.7	.07	.7	300	50	700	2	7
189	3	.7	.07	.3	300	30	700	1.5	5
181	.7	.3	L	.3	20	L	150	1	N
191	.7	.3	.05	.2	15	L	150	L	L
192	5	1	.07	.2	300	30	150	L	10
202	5		.07	.2	300	30	150	I	10
203	.3	.1	L	.05	15	L	200	L	N
213	.3	.07	L	.05	70	10	150	L	N
214	.7	.5	i.5	.2	100	15	70	2	N
224	.5	.3	.7	.15	100	L	50	1.5	N
225	•5	.2	.15	.1	100	L	500	N	N
235	•7	.3		.2	200	L	500	L	N

TABLE 4.—Replicate semiquantitative spectrographic [Number in parentheses indicates sensitivity limit of method used. L, undetermined amount of for but not found in any sample were As(200), Au(10), Cd(20), Sb(100), Sn(10), W(50), N(10) for Bi, and N(5) for Mo. D. J. Grimes, analyst]

ير بر

L

¥

Ľ,

* **

> . مد

> > ×

~

بلا

بد بر

1/ Reported as 0.7 ppm Ag, 10 ppm Bi, and 20 ppm Mo.

. .

O24

BELT ROCKS, MONTANA AND IDAHO

analyses of Belt rocks from the Pend Oreille area

1

element present below sensitivity limit; N, element was looked for but not found. Also looked and Zn(200). Except as indicated by footnotes, all samples were reported as N(0.5) for Ag, $\,$

C						(ppm)	<u> </u>		~~~~	<u>-</u>
Sample	Cr (5)	Cu (2)	La (20)	NB (10)	N i (2)	РЬ (10)	Sc (5)	5r (50)	v (10)	(5)	Zr (10)
001	30 30	5 7	50 70	N N	30 30	L	7 10	N N	50 70	30 30	150 150
012 .	50	30	50	10	20	N	10	N	50	20	100
022	70	50	70	15	30	L	10	N	70	30	150
023	30	10	50	L	20	15	7	N	50	15	70
033	30	15	30	L	30	15	7	N	50	20	150
034	70	7	70	L	7	15	10	- 200	70	30	150
044	50	5	70	10	10	15	10	150	70	30	100
045	20	5	30	L	5	N	5	N	30	20	150
055	15	5	30		5	N	5	N	30	20	150
056	30	7	20	L	30	N	7	N	50	20	150
066	20	5	20		20	N	7	N	50	20	150
067	50	L	50	L	10	L	10	N	70	30	200
077	70	L	50	10	15	N	15	N	70	30	200
078	30	L	30	10	20	N	7	N	50	30	150
088	30		50	L	20	N	5	N	50	30	150
089	30	10	30	N	20	10	5	N	30	15	150
099	30	15	30	L	30	15	5	N	50	20	150
091	15	7	30	L	5	N	5	N	20	20	150
101	15	L	20	L	5	N	5	N	30	15	100
102	50	L	50	L	7	N	15	N	70	50	200
112	50	L	70	10	30	L	15	N	70	50	200
113	70	7	50	10	15	L	7	N	70	30	200
123	100	7	70	10	20	N	15	N	100	70	300
124	30	3,000	30	L	15	N	5	N	50	30	150
134	20	3,000	30	L	15	L	L	N	50	30	100
135	50	10	50	L	20	10	10	L	100	30	150
145	50	10	70	10	30	10	10	L	70	30	150
146	15	7	30	L	L	10	L	100	20	30	100
156	15	5	50	L	L	L	5	L	20	30	100
157	50	15	70	10	30	L	15	N	70	50	150
167	· 50	20	70	10	30	10	10	N	100	50	150
168	30	L	50	L	20	N	10	N	70	30	150
178	50	N	70	10	20	N	10	N	70	30	150
179	50	15	30	15	20	L	10	N	70	30	150
189	30	10	20	10	20	L	10	N	70	30	150
181	7	N	50	10	L	N	7	N	30	20	1,000
191	7	15	50	L	L	N	5	N	20	20	700
192	20	30	30	10	30	L	7	N	50	30	150
202	30	30	50	10	30	L	10	N	70	30	200
203	7	L	L	N	L	N	L	N	L	15	100
213	5	7	30	L	L	N	N	N	15	15	100
214	20	10	30	10	L	L	5	200	50	30	150
224	7	7	30	L	L		5	100	20	. 20	150
225 235	5 20	7	20 20	L	L	20 15	L	N N	15 50	15 20	150 150

2/ Reported as 0.7 ppm Ag, 10 ppm Bi, and 15 ppm Mo.

O25

Precision of the sampling and analytical technique was measured by analysis of blind replicates of every eleventh sample from the Pend Oreille area. The replicate samples, which include a range of element concentrations, were taken from a 1-pint crushed control sample representing a split of the 2-pound or larger sample collected of a given rock type. The precision thus includes errors in sampling as well as errors inherent in the preparation and analysis of each sample. Analytical results on the 23 pairs of replications are given in table 4.

d.

۶

≻

-)

Analytical precision is shown graphically in figure 4. The solid bars show the number of replicate samples having identical analyses for a given element; the open bars show the number of replicate samples differing by one or more steps in the reported results. Step differences were determined by comparing values from the first split with those from the second. Values reported as N (no line seen for the elements) and L (element present in an amount less than the sensitivity limit) were arbitrarily counted as two and one steps below the limit of sensitivity, respectively, for purposes of comparison. However, a pair of N's was excluded as a valid measure of similarity. For elements having a relatively high limit of sensitivity (many reported N's or L's), these arbitrary comparisons will tend to result in an artificially high precision. Such elements as Pb and Sr are particularly suspect in this regard. The precision of Nb and Co and perhaps of Be, Ni, and Cu should also be viewed with caution.

The remaining elements exhibit quite satisfactory precisions in that more than 80 percent of the comparisons fall within plus or minus one step. Of particular interest, however, is the occasional large difference reported for replicates of Mn, Cr, Cu, and Ni. To the extent that such disparity is not due strictly to analytical inprecision, it may be due to the particulate character of small amounts of minerals containing those elements in the sample. Such errors then, may reflect sample inhomogeneity which, in turn, may provide clues for interpretation of element distributions in these rocks.

One factor aids in maintaining high precision for the spectrographic method. A split of sample G-1 was shot on each plate as a reference standard. If the G-1 values were not sufficiently close to the known values, then that plate was discarded and another made. Values of G-1 for 12 plates used for the Pend Oreille samples are given in table 5. If we assume that the bottle of G-1 used as the reference standard in this study was an exact duplicate of the original G-1, then table 5 can be used by other workers to estimate accuracy of the reported values. The table also shows that our selected use of N and L in the calculations for table 4 is reasonable, considering the "best value" content of elements in G-1 that are below the sensitivity limit of the method we used. In other words, L on table 5 is reported for elements whose true value is about one reporting step below the sensitivity limit, and N is reported for elements more than one step

FIGURE 4.—Precision of semiquantitative spectrographic analyses of some Belt rocks based on splits of the outcrop sample. Solid bar, number of replicate samples having identical analyses; N, no line seen for element; L, element present in an amount less than the sensitivity limit.

BELT ROCKS, MONTANA AND IDAHO

r
ĽĽ.
G
sample
g
$_{dar}$
G
st
4
0
analyses
Replicate
Ľ
ر .
TABLE

[Number in parentheses indicates sensitivity limit of method used. L, an undetermined amount of the element is present below the sensitivity limit : N, the element was looked for but not found]

	Zr (10)		150 150 150 150 150 150 150 150 150 150	210
	Y (5)		15 15 15 15 15 15 15 15 15 15 15 15 15 1	13
	V (10)		$\begin{array}{c} 115\\115\\115\\115\\115\\115\\115\\115\\115\\115$	16
	Sr (50)		00000000000000000000000000000000000000	250
	Sc (5)		Нарарарарара	с
	Pb (10)		ର ର ର ର ର ର ର ର ର ର ର ର ର	49
	Ni (2)	5	нанананана	1-2
million	Nb (10)	ial split	10 11 15 11 15 11 10 10 10 10 10 10 10 10 10 10 10 10	20
rts per	$_{(20)}^{La}$	of origin	100 100 100 100 100 100 100 100 100 100	120
Pai	C_{u}^{Cu}	1965) c	20 20 20 20 20 20 20 20 20 20 20 20 20 2	13
	$_{(5)}^{\mathrm{Cr}}$	eischer,	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22
	Co (5)	ue" (Fl	"e" (FI	2.4
	Be (1)	3est val	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	г
	B8 (10)	G-1, ''	700 700 700 700 700 700 700 700 700 700	1,220
	B (10)		ZZZZZZZZZZZ	1.5?
	Mn (10)		150 150 150 150 150 150 150 150 150 150	230
	Ti 0.001)		ភិតតូចតូចតូចតូចតូ	.16
ent	Ca 0.05) ((0 	0.99 0
Perc	Mg (0.01) (બુંબંબંબંબંબંબંબંબંબં	0.25
	Fe (0.05)		111111111111 155555555555 1	1.37

O28

CONTRIBUTIONS TO ECONOMIC GEOLOGY

2

ہر بر

j

٤.

÷

÷,

4,

e.

below. Thus L's and N's for the same sample are probably only about one reporting step apart, but two N's could reflect any value from about two steps below the sensitivity limit down to zero.

Finally, high-calcium samples alter the excitation conditions of the arc in the spectrographic method used here. Comparison with mineralogic and wet chemical data indicates that values reported as 10 percent and more calcium are consistently low. This suggests that in high-calcium samples trace elements may also be affected by the altered arcing conditions, which could result in a slight positive or negative bias for a given element. This then limits the usefulness of the analytical method on carbonate rocks; the precision of the method is sufficiently good to permit comparison of elements among groups of carbonate rocks, but the potentially poor accuracy may not permit comparison with low-calcium rocks. As a consequence, our geologic analysis is restricted to the pelitic and psammitic rocks of low carbonate content.

4

Calculations of average contents and dispersions are based on logarithms because the analytical data are reported as midpoints of geometric classes (Miesch, 1967, p. B4). In this study, the average content is estimated by the geometric mean (the antilog of the mean logarithm), and the dispersion or scatter is estimated by the geometric deviation (the antilog of the standard deviation of the log values). Geometric means and geometric deviations for elements in various groups of Belt rocks are given for the Mission Mountains Primitive Area in table 6 and for the Pend Oreille area in table 7. For purposes of these computations, real, but arbitrary, numbers were substituted for the nonnumeric codes N, L, and > (greater than) used in reporting the raw data. (See table 3.) Table 8 lists the numbers substituted and the percentage of the substitution needed for each element. The particular numbers used for L and > were determined largely on the basis of wet chemical or quantitative spectrographic analyses of some samples. Numbers substituted for N are simply small positive numbers between the limit of sensitivity and zero. Use of logarithms precludes the use of zero. Following common practice, results of calculations are given to two significant figures.

MINERALOGY OF ROCK TYPES

Mineral data on most of the clastic rocks of the Mission Mountains (table 2) and Pend Oreille (Harrison and Campbell, 1963, table 1) areas are summarized in figure 5. Rock groups containing less than 3 samples are not shown. The ratios among quartz, potassium feldspar, and plagioclase for the siltites shown in figure 5, as well as for the carbonatic siltites from the Pend Oreille area, are summarized in figure 6.

The general uniformity of the Belt rocks is apparent in figure 5; most rocks are graywacke. The grain size and mineralogy are directly related.

TABLE 6.—Mean element content of low-grade Belt rocks from the Mission Mountains Primitive Area

[Geometric means (GM) and geometric deviations (GD) calculated from data given by Harrison, Reynolds, Kleinkopf, and Pattee (1969, table 1)., all or most samples reported as N (element was looked for but not found)]

	Cu	AM GD	8.8 2.1 1 4.3	6 6 4 8 6 7 9 9 7 9 9 9 7 9 7 9 7 9 7 9 7 9 7 9 7	5 7.4 6 1.9 2 3.0	8.0 2.2 3 2.7 5 3.0 1 2.5	5 5.0 4 2.0 7 3.5	443328 3.528 3.528 3.528 3.528		Zr	GD ME
	-	l g	1.5	1.4 1.7 1.6 7 2 2.0 2 1.6 7 2 2 2 1.6	1.6 1 2 1.9 2	1.6 2.4 1.9 1.9	1.4 1 1.4 1 1.6 1	1.6 1 1.6 1 1.9 2 2.0 1 1.6 1 1.6 1			19
	ပ်	GM	43 16	47 31 44	55 34 17	37 25 12 18	45 29 13	43 28 21 35		Y	GM G
ų		GD	$1.5 \\ 1.2$	1.6 3.8 3.8	1.4 2.1 3.4	$2.2 \\ 2.3 $	1.1 1.4 1.9	$ \begin{array}{c} 1.9 \\ 2.5 \\ 2.5 \\ 2.5 \\ \end{array} $			g
r millic	Ŭ	GM	15 7.9	14 11 14.1 12.1	25 12 6.5	$13 \\ 5.3 \\ 7.9$	16 16 7.4	$16 \\ 12 \\ 6.1 \\ 8.4 \\ 14$			GM
tts pe	e	GD	1.4 1.5	1.4 0 1.4	$1.3 \\ 2.2 \\ 2.2$	1.5 1.5 1.5 1.8	$1.8 \\ 1.5 \\ 1.5$	1.6 2.0 1.8 1.8 1.6		L.	GD
Pa		GM	1.3 1.79	$\frac{1.4}{1.0}$	1.1 1.1 1.66	1.5 1.1 1.69 1.70	1.6 1.94 1.79	$\begin{array}{c} 1.4 \\ 1.0 \\ 1.69 \\ 1.71 \\ 1.2 \\ 1.2 \end{array}$			GM
	38	GD	1.6 3.8	1.6 7.8 3.3	1.4 1.6 2.2	$1.9 \\ 3.1 \\ 2.5 \\ 2.5 \\ 1.7 \\ 2.5 \\ 1.9 \\ 1.7 $	2.7 2.2 2.0	$2.1 \\ 3.0 \\ 2.6 \\ 2.0 $	ion	20	GD
		GM	340 150	210 270 270	250 280 470	560 370 220	750 490 260	410 340 340 370 370	er mill	[<u> </u>	GM
	B	GD	1.4 1.4	$\begin{array}{c} 1.7\\ 2.0\\ 2.3.7\\ 2.3\end{array}$	$1.7 \\ 2.0 \\ 2.8 $	$\begin{array}{c} 1.9\\ 2.3.2\\ 2.4\\ 2.4\end{array}$	$\begin{smallmatrix}&1.2\\1.5\\3&2.4\end{smallmatrix}$	$\begin{array}{c} 1.9\\ 2 & 2.0\\ 2.4\\ 2.1\\ 2.1\end{array}$	arts pe	ą	G
		GM	100 21	73 31 35	533 523 52	22.73 22.7		64 32 19. 24. 46	Å		GM
	Ľi	GD	0 1.2	$1.2 \\ 3.1 \\ 1.6 \\ 1.6$	1.3	2.5 2.5 2.5	$1.4 \\ 2.1 \\ 2.1$	1.4 1.4 1.9 1.9		i,	GD
		ВM	0.30	¥82255	.195	12:258	126.33	.31 .28 .14 .30			GM
	Ca	GD	$\begin{array}{c} 1.5 \\ 2 & 3.8 \end{array}$	0 4.3 0 4.3 1.4	2 2.6 4 3.7 4.0	3.8 3.2 1.4	8 4.6 7 2.3	4.2 3.7 4.4 4.4		4p	GD
rcent		ВM	2.0	1.7 3.4 12 12	4.0.1	13.00 13.00 13.00		1.0 1.0 13 13			GM
Pe	Mg	I GD	1.4 1.4	1.6 1.8 1.8	2.9 2.9	1.5 1.9 1.8	1.5 1.7 2.0	1.6 2.4 1.8 1.8		Mn	GD
		GM	2.5	2.5 1.2 2.5	1.000	2.7 2.3 3.2	.0.0 .0 .0 .0	2.3 1.8 3.1 2.0			D N N
	Fe	GD 1	1.5 1.4	1.4 2.4 1.3	$1.5 \\ 1.8 \\ 2.2 \\ 2.2 \\ 1.8 \\ 1.6 \\ 1.5 $	1.4 1.6 1.7	1.6 1.9	1.5 1.7 2.4 1.7 1.6		La	G
		GM	2.9 1.4	3.0 3.0 3.0	3.5 2.8 1.8	2.6 2.1 1.9	3.8 2.6 1.0	3.1 2.4 2.0 2.7			В
		t of les Formation and rock type	Shields Formation; Argillite and argillitic rocks Quartizite	Arguitte and arguittic rocks Arguitte and arguittic rocks Quartaite Carbonate rocks	Snowing Formation; Argilite and argilitic rocks Slittle	Later Arguitte and arguittic rocks	Supre and Sposaue rormanous, Subtle.	All formations instead and arguittic rocks. Arguitte and arguittic rocks. Quartraite. Carbonate rocks. Pelitic rocks.			es Formation and rock type
	Muncher	sample	3	0080	12 14 18	20 23 23 23 23 23 23 23 23 23 23 23 23 23	6 21 21	62 62 62 124		M	sample

O30

CONTRIBUTIONS TO ECONOMIC GEOLOGY

1.22.2

250 110 170

2.5

373328

1.3

61 82 82 61

 $1.7 \\ 3.5 \\ 2.1$

 $^{146}_{68}$

15 1.2 10 1.6 5.8 1.4 9.3 1.4

18.6 2.7 16.1 2.3 15.3 2.8 33 5.6

2.22

 $^{41}_{22}$

1111

1111

570 3.5 650 2.6 1200 2.6 1800 2.4

2.821.64

£2283

0000

ł

A

)

۲

ţ

٨

. الأنز

۶

j,

×.

¢

اجز

 $1.2 \\ 1.3$

888

 $1.4 \\ 1.3$

13

 $1.3 \\ 1.3$

59 23

2.4

1 3

0.5

11 5.0

1.0

1.5 — 1.7 16.7

 $\frac{36}{18}$

11

11

 $1.5 \\ 2.6$

500 75

1.4

10 33

Shields Formation; Argellite and argillitic rocks.... Quartite... Shepard Formation; Argillite and argillitic rocks.... Siltite...

ယက

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3	2.0	1.5	1.9	2.3	1.3	1.4	1.6	1.4	1.5	2.0	2.3	1.5	t of	that	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	320	400 260	230	160	80	270	260	190	250	270	190	60	260	unoun	s only	
12Snowslip Formation: Internation:341538019 $$ $+4$ 15 18 2.6 740 2.4 $$ 14 2.9 1.4 2.9 1	2.3	2.0	1.5	1.6	1.6	1.2	1.3	1.5	1.7	1.6	1.8	1.7	1.6	ined	dicate	
Snowslip Formation:12Snowslip Formation:341.53801.9141.51.61.41.291.41.31.41.51.41.31.41.51.41.31.41.51.41.31.41.51.41.31.41.51.41.31.41.51.41.31.41.51.41.51.41.31.41.51.21.51.41.51.41.31.41.51.21.51.41.51.41.31.41.71.51.41.31.41.51.51.41.51.51.51.41.51.51.51.51.51.51.51.51.51.51.51.51.41.51.41.71.51.41.71.51.41.51.41.51.51.51.51.51.51.51.51.51.51.51.51.51.5 <t< td=""><td>58</td><td>222</td><td>24</td><td>92</td><td>21</td><td>23</td><td>29</td><td>21</td><td>25</td><td>21</td><td>19</td><td>33</td><td>33</td><td>leterm</td><td>· it in</td><td></td></t<>	58	222	24	92	21	23	29	21	25	21	19	33	33	leterm	· it in	
12Snowslip Formation: Argilite and argilitic rocks341538019 $$ 14 15180 47 161.4 72 14 72 18Quartaite2118267402.4 $$ 1415180 47 161.4 72 145529Argilite and argilitic rocks371.52102.1 $$ 1412 14 12 14 23 14 54 55 13 12 14 56 23 14 56 23 12	1.1	1.7	1.4	2.1	1.8	1.2	1.7	1.7	1.3	1.5	2.1	1.8	1.4	oun)	N ent	
12Snowslip Formation: Argilite and arguittic rocks341538019 $$ 211718261614291418Silitate2715242623211729242323232329Argilite and arguitic rocks2715210212216193112131723231329Silite27162323182102122161931232430Silite221.67402.02.1221.6193617231730Silite221.67401.618244.25.51.41301731Argilite21212121241.123231413017232331Silite301.72902.74.12.3231.41301729232331Argilite301.72902.14.32324211.91301729231412763132Silite302.12902.14.12.3231412763124252324212523 <t< td=""><td>72</td><td>36</td><td>29</td><td>32</td><td>29</td><td>66</td><td>48</td><td>53</td><td>63</td><td>47</td><td>29</td><td>32</td><td>54</td><td>of I</td><td>l. ted va</td><td></td></t<>	72	36	29	32	29	66	48	53	63	47	29	32	54	of I	l. ted va	
12Snowslip Formation: Argilite and arguittic rocks341538019 $$ 44 15180.4.7161422918Quartaite2415242.429242.65.62.3535329Argilite and arguittic rocks271.52.02.2 $$ 1211.75162.353535329Argilite271.52.02.2 $$ 191.6103.68.21.413930Silite271.52302.0 $$ 131.82.44.25.51.41395Formation:221.97402.6 $$ 131.82.44.25.62.35.52.35Silite251.07402.6 $$ 131.82.44.25.51.41396Argilite232.02.0 $$ 1.31.82.44.25.51.41396Silite232.92.1 $$ 2.31.61.41.31301407301.72.902.1 $$ 2.31.61.41.71306Argilite2.42.51.67402.72.41.72.91411207311.72.902.1 $$ 2.91.61.4 <td>1.4</td> <td>2.4</td> <td>1.7</td> <td>2.7</td> <td>1.8</td> <td>3.1</td> <td>3.1</td> <td>2.3</td> <td>2.0</td> <td>2.0</td> <td>2.7</td> <td>1.9</td> <td>2.0</td> <td>alues</td> <td>eshold</td> <td></td>	1.4	2.4	1.7	2.7	1.8	3.1	3.1	2.3	2.0	2.0	2.7	1.9	2.0	alues	eshold	
12Snowslip Formation: Argilite and argilitic rocks.341538019241518442518Quartate.24152715210224211429161429Margilite and argilitic rocks.27152102211429161931221430Silitie.221674022418242916103682142530Silitie.22167402211318244425551430Silitie.2502216740161318244425551431Carbonate rocks2516740161312142425142533Empire and Spokane Formations;35154502714.123231423142415142521Algilite35154502714.1232314151425142513142533Empire and Spokane Formations;35154502724232314151425141521Allite202174.1232314232	229	52	139	24 74	140	75	99	228	141	143	141	150	142	ted v	r the	
12Snowslip Formation; Argilite and argilitic rocks.34153801944151804.71618Reine Formation; Slifte.18Silitie.2429151624291629Rigilite and argilitic rocks.2715210212216194311229Slifte.271521021221610368229Slifte.221925022182424255530Slifte.2219740162216144<	1.4	2.3	1.4	2.5	1.8	1.4	1.5	1.7	1.4	1.5	2.0	1.8	1.5	repoi	her fo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12Snowslip Formation; Argilite and argilitic rocks34153801924153804718Quartzite27152674023141518,04729Mrgilite and argilitic rocks371521021141514,62629Silitie-281674023131419163629Silitie-201620211313144430Silitie-2016740161313144453Carbonate rocks2516740161313144453Empire and Spokane Formations;39154502724101636376Argilite216162402428141533375Empire and Spokane Formations;391545027241214316Argilite2162462428141333376Silitie3017290212423231333376Silitie281335024291694316Silitie202122222324 <t< td=""><td>16</td><td>5.6</td><td>12</td><td>14. 14. 14.</td><td>5.5</td><td>12</td><td>П</td><td>14.8</td><td>13</td><td>9.4</td><td>5.0</td><td>5.9</td><td>11</td><td>s for</td><td>elemer</td><td></td></t<>	16	5.6	12	14. 14. 14.	5.5	12	П	14.8	13	9.4	5.0	5.9	11	s for	elemer	
12 Snowslip Formation; Italitie 34 1.5 380 1.9 24 1.5 18.0 18 Slifte Slifte 27 1.5 26 24.0 24.6 19.4 14 1.5 18.0 29 Arglilite and arguilitic rocks 37 1.5 210 2.1 14 29 24.4 30 Silitie 22 1.6 740 2.4 14 29 24.4 30 Silitie 27 1.5 210 2.1 14 29 24.4 30 Silitie 22 1.6 74.0 2.6 19.4 14 18 24.4 19 26 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 24.0 25.6 22.7 14.4 12.6 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 19.4 24.6 24.7 24.7 24.7 24.7 </td <td>4.7</td> <td>2.9</td> <td>3.1</td> <td>4.4</td> <td>4.2</td> <td>1.5</td> <td>1.5</td> <td>3.7</td> <td>3.2</td> <td>3.0</td> <td>3.7</td> <td>с. С.</td> <td>4.1</td> <td>mber</td> <td>the t</td> <td>:</td>	4.7	2.9	3.1	4.4	4.2	1.5	1.5	3.7	3.2	3.0	3.7	с. С.	4.1	mber	the t	:
12 Snowslip Formation: It with the sum arguintic rocks. 34 1.5 380 1.9 44 1.5 18 Slittle Slittle 21 1.5 300 1.9 21 1.7 29 Margilite and arguintic rocks. 37 1.5 210 2.1 21 1.7 22 1.6 23 1.6 24 1.9 24 1.6 24 1.6 24 1.6 24 1.6 26 1.6 26 1.6 <td< td=""><td>18.0</td><td>24.0 24.4</td><td>19.4</td><td>14</td><td>24</td><td>18</td><td>14</td><td>18.3</td><td>18.8</td><td>18.1</td><td>17.6</td><td>55</td><td>18.4</td><td>of n</td><td>ent of</td><td></td></td<>	18.0	24.0 24.4	19.4	14	24	18	14	18.3	18.8	18.1	17.6	55	18.4	of n	ent of	
12 Snowslip Formation; It Suffice 34 1.5 380 1.9 44 18 Quartitie 27 1.5 380 1.9 1.4 29 Silitie 27 1.5 2.6 740 2.4 1.4 29 Argilitie and argilitic rocks. 37 1.5 2.10 2.1 1.9 30 Silitie. 27 1.8 2.6 2.2 1.9 30 Silitie. 27 1.8 2.6 2.0 2.2 1.9 1.4 28 Silitie. 27 1.8 2.0 2.1 3.2 2.3 3.4	1.5	2.9	1.6	2.4	1.8	1.4	1.6	1.9	1.6	1.6	2.4	1.9	1.7	ution	a cont	
12Snowslip Formation: Argilite and argilitic rocks.34153801918Relevant Formation: Outarizate271.52402.229Silitie and argilitic rocks.371.52102.129Silitie and argilitic rocks.371.52102.120Silitie and argilitic rocks.221.82202.230Quartite.251.67402.15Empire and Spokane Formations:251.67402.16Silitie.251.67402.19Silitie.351.54802.113Quartite.351.72902.114Quartite.351.72902.113Quartite.351.72902.113All formations isteed ablove:351.72302.415Pation351.72902.115All formations isteed ablove:351.72302.415Pation201.72902.12.62.12.32.312Pation2020202.72.7 <td>44</td> <td>14</td> <td>22</td> <td>8.4</td> <td>13</td> <td>28</td> <td>33</td> <td>12</td> <td>29</td> <td>21</td> <td>Ξ</td> <td>14</td> <td>25</td> <td>ubstit</td> <td>have ; v suhs</td> <td></td>	44	14	22	8.4	13	28	33	12	29	21	Ξ	14	25	ubstit	have ; v suhs	
12Snowslip Formation: Argilite34153801913Helena Formation: Uartzite271.54002.214Quartzite371.54002.429Argilite371.52102.129Silitie271.64002.220Silitie221.82.02.121230Silitie221.674030Quartzite221.67402.45Functoria201.72902.16Argilite351.54.802.171.121352.61.79Silitie351.54.802.121Argilite351.72902.122231.53502.42.623351.73502.42.624.13502.73502.42.6251.73502.73502.426Quartzie2727272721Argilite2727272727221.73502.4262126232427272727272426272727272725262727272727262127272727	I					I	2.3		ł	I	l	I	I	rom s	nples man	
12 Snowslip Formation; Argilite and argilitic rocks. 34 1.5 380 1.9 18 Quartizite. 27 1.5 400 2.2 18 Reina Formation; 18 2.6 740 2.4 29 Stiftute. 27 1.5 210 2.1 29 Stiftute. 22 1.5 210 2.1 30 Stiftute. 22 1.6 740 2.6 30 Stiftute. 22 1.8 250 2.0 2.0 31 Carbonate rocks 25 1.6 740 1.6 250 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1	1						24.1	1	1	I	ł	1		ults fi	IV SAD	
12 Snowslip Formation; Argilite and argilitic rocks. 34 1.5 380 18 Quartaite. 26 740 29 Margilite and argilitic rocks. 37 1.5 210 29 Silitie. 22 1.8 256 740 30 Silitie. 22 1.8 256 740 30 Silitie. 22 1.8 256 740 30 Silitie. 22 1.8 256 740 31 Empire and Spokane Formations; 22 1.8 256 740 31 Empire and Spokane Formations; 39 1.5 480 51 All formations listed above; 39 1.7 290 51 All formations listed above; 30 1.7 290 52 I.5 All formations listed above; 30 1.7 290 53 I.4 320 1.7 290 265 21.7 300 1.7 290 62 Autatie. Silitie. S10 1.7 320 1.7	1.9	2.4	2.1	10,0	1.6	2.1	2.7	2.1	2.4	2.4	2.7	1.9	2.4	id res	t mar	
12 Snowslip Formation; Argilite and argilitic rocks 34 1.5 18 Silitie 27 1.6 18 Release Pormation; 37 1.5 29 Argilite and argilitic rocks 37 1.5 29 Silitie 37 1.5 30 Silitie 37 1.5 30 Silitie 37 1.5 31 Datatation; 37 1.5 32 Silitie 37 1.5 33 Garbonate rocks 22 1.8 53 Garbonate rocks 30 1.7 54 Margilite and argilitic rocks 36 1.7 51 Argilite 30 1.7 52 Iduatatie 30 1.7 53 Quartatie 30 1.7 64 Argilite and argilitic rocks 30 1.7 53 Quartatie 30 1.7 54 Quartatie 30 1.7 55 Quartatie 30 1.7 54 Quartat	380	740	210	328	740	480	450	290	320	350	420	840	330	lod an	es tha	nt.
12 Snowslip Formation. 13 Sinte sud argilitie rocks 14 Sinte sud argilitie rocks 13 Helena Formation. 14 Sinte sud argilitie rocks 15 Sinte sud argilitie rocks 29 Argilitie and argilitie rocks 29 Sintifie and argilitie rocks 27 Sinte sud Spokane Formations; 28 Carbonate rocks 21 Argilitie and argilitie rocks 22 Sinte sud Spokane Formations; 23 Sinte sud Spokane Formations; 24 Argilitie and argilitic rocks 25 Empire and Spokane Formations; 26 Argilitie and argilitic rocks 21 Quartaite 22 Sinte sud Spokane Formations; 23 Sinte sud Spokane Formations; 26 Guartaite 27 Palue arginitic rocks 28 Sinte sud spoke 29 Carbonate rocks 20 Sinte sud spoke 21 Augustion and sugilitie rocks 22 Sinte sud spoke 23 Sinte sud spoke	1.5	2.6	1.5	1.9	1.6	1.5	1.5	1.7	1.4	1.7	2.2	1.7	1.6	meth	ndicat	eleme
12 Snowslip Formation; 12 Argillite and argillitic rocks. 18 Helena Formation; 18 Quartatie 18 Helena Formation; 29 Argillite and argillitic rocks. 30 Silitie 31 Quartatie 53 Empire and Spokane Formations; 6 Argillite and argillitic rocks. 9 Silitie. 21 Alguartatie 9 Subartatie 9 Subartatie 10 Argillite and argillitic rocks. 11 All formations listed above; 6 Silitie. 11 All formations listed above; 12 Argillite and argillitic rocks. 12 All formations listed above; 12 Argillite and argillitic rocks. 12 Carbonate rocks. 124 Fellitic rocks. 124 I value is less than the sensitivity limit of rocks. 124 State is less than the sensitivity limit of rocks. 124 State is less than the sensitivity limit of rocks.	34	18	37	38	25	39	35	80	35	26	53	27	30	of the	the n	of the
	Snowslip Formation; 22 Argillite and argillitic rocks	14 Sutue	29 Argilite and argilitic rocks	18 Quartzite	53 Carbonate rocks	Empire and Spokane Formations; 6 Argillite	9 Siltite	21 Quartzite	All formations listed above; 62 Argillite and argillitic rocks	62 Silfite	68 Quartzite	62 Carbonate rocks	124 Pelitic rocks	¹ Value is less than the sensitivity limit	ment is below sensitivity limit) and (or) N ² Value is less than the sensitivity limit of	ny samples contained no detectable amount o

×

Ł

4

4.5 2.5 4.5 1.7 7.7 2.2 4.0 GD Сu GM 3.3 3.4 3.4 3.23.92 4.1 18 11 1.5 $2.3 \\ 1.4 \\ 1.9$ 1.5 1.3 2.91.5 GD 5 GM 46 43 20 25 33 39 33 $1.3 \\ 1.5$ GD 2.13.8 $1.4 \\ 2.5 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.4 \\ 2.5$ 2.5 1.5 Parts per million ပိ ²3.8 24.5 23.2 24.4 24.6 ²4.4 5.9 GM 24.7 GD 1.8 $1.2 \\ 1.6$ 1.5 $1.2 \\ 1.6$ 1.2 Be 1.7 1.1 1.1 1.8 $1.2 \\ 1.2$ GM 0.1.6 1.5 1.6 1.3 0.1.6 GD $1.2 \\ 1.6$ Ba GM 500 500 320 170 160 380 640 270 GD 3.33.0 2.4 2.2 $1.7 \\ 3.8$ m GM 146 86 43 124 794 $1.7 \\ 1.9 \\ 2.1 \\ 2.1$ 1.6 GD $1.5 \\ 1.8$ 2.0 2.0 F 0.31 GM 40 540 23 28 .37 364 .076 1.2 .33 13 $\begin{array}{c}
 1.2 \\
 6.8 \\
 3.5 \\
 \end{array}$.060 1.2 .081 1.2 3.33.6g св СС 0.11 0.080 092 .15 GM Percent 1.51.52.7 2.4 8.4 8 3.0 $1.3 \\ 2.6$ 0 2.6 GD Mg $1.4 \\ 1.5 \\ .49$ GM .48 1.3 $1.3 \\ 2.0$ 1.5 1.8 g $1.3 \\ 2.3$ $1.2 \\ 1.9 \\ 1.9$ 1.7 $1.3 \\ 1.6$ e H GM 2.52.5 $3.2 \\ 1.6 \\ 1.2$ 1.4 3.01.2 3.4 Argillite and argillitic rocks.. Siltite..... Argillite and argillitic rocks.. Striped Peak Formation; Argillite and argillitic rocks. Argillite and argillitic rocks. Siltite Formation and rock type æ Striped Peak member 1 Libby Formation; Siltite morphic grade¹ Number Meta-ပီရီ 000 00 00 Ċ samples °3 <u>~⊴</u>∞ ~ сo 40 5

BELT ROCKS, MONTANA AND IDAHO

[Geometric means (GM) and geometric deviations (GD) calculated from data in table 3, this report. ------, all or most samples reported as N (element was looked for but not found)]

TABLE 7.—Mean element content of Belt rocks from the Pend Oreille area

O31

Dreille area—Continued
2
Penc
ø
th
ш
Ś
4
rocks
lt
Se
1
0
content
tt
ş
m
ele
a
ba
M
ſ
2
G
TABLI
-

န္က်ခ်န္နီ ဝန္မဝန္မဝ ဝဝန္မ ဝန္မဝန္မွ နွန္မ ဝန္မန္က်န္ကန္က်န္ကန္ ဖြစ္စန္နီ	Formation and rock type Wallace Formation; Argilite and argilitio rocks. St. Regis Formation; St. Regis Formation; Stiltite and argilitic rocks. Siltite and argilitie rocks. Siltite and argilitie rocks. Siltite and argilitie rocks. Prichard Formation; Prichard Formation; Argilite and argilitie rocks. Siltite rocks . Prichard Formation; Prichard Formation; Prichard Formation; Prichard Formation; Prichard Formation; Prichard Formation; Siltite and argilitie rocks. Siltite rocks . Prichard Formation;	Fe GM GI 6 6 6 6 6 6 6 6 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg M	Peres 120 120 120 120 120 120 120 120 120 120	ant Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	Ti GM GD GM GD GM GD CM GD	B B GM GD GM <td< th=""><th>Ba Ba GM GD CM GD CM GD 2800 118 2800 11800 118000 11800 1180000000000000</th><th>Parts per Be GM GD GM GD GM GD GM GD 11.4 Be 21.1 1.4 2.1 1.4 2.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1</th><th>million Co Co</th><th>288553333333 295 207 207 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu</th></td<>	Ba Ba GM GD CM GD CM GD 2800 118 2800 11800 118000 11800 1180000000000000	Parts per Be GM GD GM GD GM GD GM GD 11.4 Be 21.1 1.4 2.1 1.4 2.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	million Co Co	288553333333 295 207 207 0 0 0 0 0 0 0 0 0 0 0 0 0		Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu
	c	La	W		Nb	Ni	Pb	8	5	Δ	×		Zr
1 43	c Formation and rock type	GM GI	GM G	B	GM GD	GM GD	GM GD	GM GD	GM GD	GM GD	GM C	l g	3M GD
1	Libby Formation; Argillite and argilitic rocks	33 1. 33 1.	7 230 9 88 88	1.6	27.1 1.5 29.1 1.7	14 2.5 8.4 6.4		7.6 1.5		73 1.3 79 1.2	26 31	1.6.1	40 1.3 60 1.2

O32

CONTRIBUTIONS TO ECONOMIC GEOLOGY

ł

م,(

j,

2

~`

÷

					-					
$2.2 \\ 2.2 $	1.8	$1.2 \\ 1.7$	$1.2 \\ 2.4$	$2.0 \\ 2.0 $	$1.2 \\ 1.5 \\ 1.2$	2.8 2.8 2.3	1.5 1.2	$1.2 \\ 1.2 $	1.322.4	oriate ment that
$^{180}_{280}$	480	160 270	$^{190}_{340}$	150 1150 1140 180 64	140 140 160	280 470 290 400	190 170	$\begin{array}{c} 150 \\ 140 \\ 150 \\ 200 \\ 250 \\$	150 200 320 59 170	approf of ele s only
1.3 1.4 1.4	1.3	0 1.5	1.3	1.33	$\begin{array}{c} 0 \\ 1.6 \\ 1.3 \end{array}$	$1.6 \\ 1.3 $	$1.3 \\ 1.3$	1.3 1.3 1.3 1.3 1.4 1.4	1.3 1.4 1.6 1.6	ks of <i>i</i> nount idicate
30 33 20	22	30 27	33	20 22 20 22 20 20 20 20 20 20 20 20 20 2	30 30 30 30	20 50 50 50 50 50 50 50 50 50 50 50 50 50	36 24	22223282	28 27 27 27 27	in rocl ned ar ; it in
$1.1 \\ 1.4 \\ 1.8 \\ 1.8$	1.8	$0 \\ 1.5$	1.2	1.2 1.2 1.8 1.8	$1.2 \\ 1.5 \\ 1.9 $	1.4 1.6 1.6	0 1.5	1.56	1.2 2.4 1.7 1.7	iotite termi lue N
67 54 41	45	70 50	64 55	63 59 85 85 85 85 85 85 85 85 85 85 85 85 85	66 45 59	48 35 24	70 42	2642253 264250 264252 26452 26455	65 24 58 28 28 28 28	ary bi (unde ted va
	I	1		3.9				3.6	 	second of L repor
	١			%			11	²³⁷ 137 1	%	dant s values or the
$1.4 \\ 1.5 \\ 2.0 \\ 2.0 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.4 $	1.4	$1.3 \\ 1.5$	$1.4 \\ 1.6$	$1.2 \\ 1.4 \\ 1.8 $	$1.2 \\ 1.5 \\ 1.6$	$1.2 \\ 1.6 \\ 1.5 \\ 1.6$	$^{0}_{1.3}$	1.1.1.1.1.1.8 4.4.1.1.1.1.8 1.3.4.4.6	4.11. 4.11. 8.11. 4.4.1	boun ted hold.
10 7.0 24.4	5.4	11 7.5	9.3 6.4	9.0 8.9 9.3 9.3 4.4	$\begin{array}{c} 8.4\\ 6.1\\ 9.0 \end{array}$	7.6 8.1 33.6 \$2.4	$10 \\ 6.3$	8.1 9.7 5.9 24.8 24.3 24.3	8.9 6.9 7.9 7.9	ning a repor thresh numb
3.2	1	2.3		2.6 1.9 4.4			2.4	1.1.2.2.2.2.3.9	2.4	ontain rs for near a low
^{25.9}	I	15		³ 4.4 			34.2	82.73 7.37 7.35 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3		ocks c numbe ement ns of
2.3 5.4 4.1	3.9	1.3 6.4	1.6	2.0 2.0 3.4 3.4	$1.2 \\ 1.5 \\ 1.4$	2.5 2.8 5.9	$1.3 \\ 3.0$	4.0.0. 3.0.4.8.0. 1.0.4.8.4.0.1.	23.25.45.25 25.25.25 26.25.25 26.25 27.25	n of 1
$\begin{smallmatrix}16\\5.6\\5.1\end{smallmatrix}$	6.4	$^{36}_{2.0}$	$^{8.5}_{13}$	21 10 25 8.8 8.8	20 21	10 1.7 3.63 *1.1	26 9.5	2.5 4.3 31.7 2.2 2.2 2.2	$^{16}_{2.2}$	3b, bee titutio int of ' subs
1.4 1.4 1.3	1.3	0 1.5	1.4	2.1	1.4 	1.5	$1.3 \\ 2.3$	$\begin{array}{c} 1.5\\ 1.5\\ 0\\ -1.4\\ 0\\ -1.4\\ 0\end{array}$	1.8 1.9 1.8 1.8	ite; E subs conte many
27.4 27.1 25.4	35.5	10 77.1	26.0 27.6	^{25.0} 11 	² 6.3	27.1 27.9	11 25.3	²⁷ .9 ^{28.1} ^{25.0} ^{25.7} ^{25.0}	^{26.1} 25.5 	y biot iism. i from from
57.8 57.8 57.8	2.6	3.8 3.8	0 1.9	50.047 50.047 50.047 50.04 50 50 50 50 50 50 50 50 50 50 50 50 50	3.9 2.5 2.5	1.9 4.1 1.8	$1.7 \\ 2.4$	5.6 1.1.6 8.1 1.7 4.1 1.6	3.3 3.1 3.2 3.2 3.2	ondar morph results uples esults esults
25 98	100	51. 52	$\begin{array}{c} 15\\31\end{array}$	58 150 85 74 820	$^{93}_{210}$	$39 \\ 69 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 3$	$160 \\ 230 \\ 200 $	$110 \\ 260 \\ 260 \\ 180 \\ 190 \\ 160 \\ 100 $	77 69 94 74	f meta and ny san and r
$1.2 \\ 1.4 \\ 2.5$	1.4	$1.2 \\ 1.3$	1.2	1.5 1.5 1.5 2.4 2.4	$1.2 \\ 2.0 \\ 1.5$	1.6 1.3 1.8 1.5	0 1.4	1.5 1.4 1.4 1.4 1.3	1.5 2.1 2.1 1.6 1.6 1.6	n min one of tethod t mar ethod
55 46 26	35	56 49	54 39	$^{46}_{23}$	59 33 63	$^{35}_{25}$	70 42	47 34 40 34 40 40 40 40 40 40 40 40 40 40 40 40 40	45 20 20 20 20 20 20 20 20 20 20 20 20 20	the m the m the m the m the m
Striped Peak Formation; Arguitte and argilitite rocks Silties	Striped Feak member 4; Quartzite	Argillite and argillitic rocks.	Argillite and argillitic rocks.	waltace formation, Argilite and argilitic rocks. Silitie do Silitie do Carbonate rocks.	St. regist rormation; Argilite and argilitic rocks Siltite D. Argilitic siltite	Siltite do Quartzite	Argillite and argillitic rocks.	Arellite and argilitic rocks. Argilite and argilitic rocks. Biltite do Siltite do Quartzite	All formations large above. Argilitie and argilitie rocks. Sittitie Quarter rocks. Cararbonate rocks.	ite-sericite grade rocks that may Bgn, greisses and schists of the bit less than the sensitivity limit of tivity limit) and (or) N: it indicat is less than the sensitivity limit of contained no detectable amount or
000	υ	00	00	ပၕိုပၕိုပ	ပပရို	ပန္မာဂရီ	Bb Bb	Cagaagaa Bagaagaa Bagaagaa	00000	, chlor ition; alue is v sensit alue is amples
12 8	7	ကမ္	4.0	21 33 9488 948	မာမာ	4000	3 13	37333 88588 3858	48 31 14 79	1 C compos 2 V is belov 3 V many s

BELT ROCKS, MONTANA AND IDAHO

O33

	:	N		L	>	
Element	Replacement number	Percentage of samples reported as code	Replacement number	Percentage of samples reported as code	Replacement number	Percentage of samples reported as code
Mg					15	0.4
Ca	0.01	0.6	0.03	5.4	30	1.2
Mn					7,000	1.0
в	1	2.1	5	8.5	·	
Ba			5	.2	10,000	.4
Be	.1	2.9	.5	20.7	· —	
Co	1	12.0	3	12.0	_	_
\mathbf{Cr}	1	.2	3	.2	<u> </u>	_
Cu	.1	.4	1	10.2	<u> </u>	
La	3	2.7	10	4.8		
$\mathbf{N}\mathbf{b}$	1	44.4	5	30.3		_
Ni	.1	.6	1	10.8		<u> </u>
Pb	2	30.9	5	26.8		
\mathbf{Sc}	1	2.9	3	.6		
\mathbf{Sr}	10	45.6	30	17.2		
V	_	—	5	1.0	_	_
Y	_				300	.2
\mathbf{Zr}	1	.2			1,500	.2

TABLE 8.—Numbers used to replace nonnumeric codes (N, L, and >) prior to geochemical calculations

[N, element looked for but not found: L, undetermined amount of element present below sensitivity limit; and >, undetermined amount of element present above the number shown. Mg and Ca, in percent; other elements, in parts per million]

The mudstones from the Mission Mountains, except for those from the Empire and Spokane Formations, probably were deposited nearer an old shoreline and are somewhat siltier than those of the Pend Oreille area. Siltites and quartzites of the Pend Oreille area tend to be slightly more feldspathic than their stratigraphic equivalents in the Mission Mountains. The striking contrast between the Belt mudstones and the Pierre Shale, which many Belt rocks resemble in outcrop and hand specimen, is brought out by figure 5. The position of the Pierre Shale in figure 5 was calculated from information given in table 5 of a report on this shale by Tourtelot (1962). The Pierre also differs from the Belt in that montmorillonite is a principal clay mineral (montmorillonite was included with illite for the calculations used to arrive at the Pierre Shale position in figure 5). Ratios among quartz, potassium feldspar, and plagioclase for Belt siltites are remarkably uniform (fig. 6), even for rocks containing several percent of carbonate minerals, which form the cement.

Mineralogic comparisons that include carbonate minerals in clastic Belt rocks from the two study areas are shown in figure 7. The data used here are from table 2 of this report for the Mission Mountains rocks, from table 1 of Harrison and Campbell (1963) for some Pend Oreille rocks—plus additional data on low-grade metamorphic rocks in the Pend Oreille area accumulated since 1963—and from table 5 of Tourtelot (1962). Here again,

÷

Formation		Number of samp	les
0	Argillite r shale (●)	Siltite (\times)	Quartzite (+)
Pe	nd Oreille area		
Libby (I)	. 4	4	
Striped Peak (sp)	. 3	· 11	9.
Wallace (w)	. 12	16	
St. Regis (sr)	. 6	4	
Revett (r)		5	10
Burke (b)	. 3	14	
Prichard (p)	. 11	7	6
Mission Mo	untains Primitiv	ve Area	
Shields (ms)	. 3		3
Shepard (sh)	. 5	3	
Snowslip (sn)	. 6	5	5
Helena (h)	. 5	13	6
Empire and Spokane (es)	. 3		7

FIGURE 5.—Average modes, in volume percent, of rocks of the Belt Supergroup, Pend Oreille area (symbol not circled), and Mission Mountains Primitive Area (symbol circled).

percent) in siltite of the Belt Supergroup, Pend Oreille area (symbol not circled) and Mission Mountains Primitive Area (symbol circled). c, siltite contains 10 percent or more of carbonate minerals.

FIGURE 7.—Average mineralogy of clastic Belt rocks. Number of samples from Mission Mountains: argillite, 24; siltite, 25; quartzite, 23. Number of samples from Pend Oreille area: argillite, 120; siltite, 51; quartzite, 20. Also shown for comparison: Pierre Shale, 20 samples.

only slight differences of the Belt rocks from the two widely separated areas are evident. A greater carbonate minerals content (also noticeable in the field) in the Mission Mountains strata is the most striking difference, although the feldspar content of the Pend Oreille rocks is slightly greater than that of the Mission Mountain rocks. Sharp contrast between Belt "shales" and the Pierre Shale is again apparent. The pronounced decrease in the clay mineral-mica-chlorite component with increasing rock grain size is a significant factor in the distribution of many minor elements.

GEOCHEMISTRY

The geometric deviations for most elements in a rock type represented

by five or more samples with real (not coded) values is about the same. In contrast, the geometric deviation of most elements tends to increase with increasing rock grain size. Thus the quartzites tend to be less homogeneous chemically than the siltites, which in turn tend to be less homogeneous than the argillites. The increased chemical variability of the coarser grained rocks could reflect small-scale variation (differences between closely spaced samples) or large-scale variation (differences from place to place) or both. Field evidence supports the conclusion that the coarser rocks are actually more variable in composition from place to place.

A comparison of the average element content of the four Belt rock types and the metamorphically equivalent (lowest grade) Belt rocks from the two study areas is shown in figure 8. The averages (geometric means) are taken from tables 6 and 7. The clastic rocks from each area are plotted in order of increasing grain size from left to right, and the geometric means for the various clastic rock types are connected with a line. Perhaps the most obvious feature of the element patterns in figure 8 is a striking similarity of the minor element patterns to that of the illite-sericite-chlorite component of these same rocks (fig. 7). These patterns are like that discussed by Krauskopf (1955) but are based on a three-unit system (mudstone, siltstone, sandstone) instead of a two-unit system (shale, sandstone).

7

Elements that are enriched in the illite-sericite-chlorite-bearing clastic rocks from both areas apparently include B, Co, Cr, Ni, Sc, V, Fe, Mg, and Ti, and possibly La and Y. As these rocks contain no organic compounds, which might form organo-metallic complexes, the elements are probably contained in or adsorbed on the lattice of the micaceous minerals. Copper is more abundant in silty layers of laminated rocks or in siltites and quartzites of the Mission Mountains, and zircon appears concentrated in the coarser rocks in the Striped Peak Formation of the Pend Oreille area. This suggests that Cu and Zr are primarily in grains rather than held in clay minerals in those rocks. Mn, Pb, and Sr are more abundant in the rocks of the Mission Mountains where the Ca content is higher; such associations are common (Mason, 1956, p. 155; Tourtelot, 1962, p. 60) and suggest that some aragonite was originally deposited as part of the carbonate minerals. The higher Mg of the Mission Mountains reflects, in part, the more dolomitic character of these rocks. Similar rock types of the Mission Mountains contain about twice as much Co, Cu, and Ni as their counterparts in the Pend Oreille area. The siltites and quartzites of the Pend Oreille area have a B content distinctly higher than similar rocks of the Mission Mountains.

Tables 6 and 7 show that the metamorphically low-grade rock types within each formation of each area contain similar concentrations of minor elements. The unusually high B content of the Striped Peak Formation, particularly of members 2 and 3 (table 7), is clearly limited to that formation and has displaced upward the graph for B in Pend Oreille rocks in

O38

figure 8. Low-grade rocks of other formations in the Pend Oreille area have the approximate B content of similar rocks in the Mission Mountains.

Comparison of the minor element content of Belt argillitic rocks with that of the Pierre Shale is also shown in figure 8; geometric means for the Pierre were calculated from data given by Tourtelot (1962, fig. 13). Most minor element contents of the Belt mudstones are similar to those of the Pierre Shale. The Pierre is relatively high in Cr, Cu, Sr, and V; Sr is correlated with Ca in the Pierre (Tourtelot, 1962, p. 60); and Cr, Cu, and V are commonly enriched in black shales (Krauskopf, 1955, table 2; Vine, 1966, p. E29). Even though much of the Belt argillitic rock is black, the organic carbon of the usual black shale is missing, as is normal enrichment in black shale suites of trace elements.

Distribution of the elements among constituent minerals was further examined by heavy mineral studies of 45 samples of low-grade rocks from the Pend Oreille area. Heavy mineral fractions were obtained by a simple bromoform separation from ground samples. Splits of the original sample and the heavy and light fractions were analyzed spectrographically. Heavy mineral fractions ranged from 0.1 to 3 percent of the rocks; most contained about 1 percent. The heavy fractions commonly contain compound grains that are mostly silicate minerals enclosing tiny black specks (magnetite). One exceptional sample, a silty carbonate rock of fossil algal forms, contains 11 percent heavy minerals. The minor element content of each split of the original sample was compared with its content as calculated from its fractions and was found to be precise within the limits of the analytical method. Average relative concentrations of elements in the heavy mineral

 TABLE 9.—Relative concentration of elements in the heavy mineral fraction of some Belt rocks from the Pend Oreille area

[Number in column is the ratio:	average amount in heavy	fraction divided by	v average amount
in light fraction; 1 indicates	equal amounts in the lig	ght and heavy fract	tions. Number in
parentheses is number of samp	les of rock type, the	amount of the elem	nent in the heavy
fraction was below the sensitive	ty limit of the spectrograp	տի]	

Element	Argillite (17)	Siltite (20)	Quartzite (5)	Carbonate rocks (8)
B	1	1	10	1/2
Ba	1	1	1/2	1
Be	1	1	1	1
Co	5	5	5	
Cr	1	4	10	1
Cu	10	20	30	
Fe	2	3	5	3
La	3	2	5	1
Mg	1	1	1	1
Mn	5	5	20	1
Ni	5	5	20	
Pb	3	5	5	5
Sc	⅓			
\mathbf{Sr}	1	1	1	⅓
Ti	3	2	7	1/2
v	1	1	5	· 1
Y	5	5	7	1
Zr	5	3	10	2

fraction of various rock types are shown in table 9. The ratios range from about $\frac{1}{2}$ to 2 times the average shown in the table, except for Mn which is about $\frac{1}{5}$ to 5 times the average. The relative concentration of B in heavy mineral fractions of Wallace argillites and siltites and of Striped Peak siltites is about 3 (not shown in table 9).

FIGURE 8.—Geometric means of semiquantitative spectrographic analyses of different Belt rock types. Number of samples from Mission Mountains: argillite, 62; siltite, 62; quartzite, 68; carbonate rocks, 62. Number of samples from Pend Oreille area:

The principal heavy minerals are magnetite, ilmenite, chalcopyrite, zircon, tourmaline, and iron hydroxides; some bornite, chalcocite, altered biotite, and manganese nodules occur in the coarser grained rocks. The copper minerals are largely in irregular or cup-shaped flakes, but some are in subhedral or broken grains; zircon, tourmaline, magnetite, and ilmenite are generally in broken or abraded crystals; some magnetite, ilmenite, and most pyrite are in discrete euhedral crystals. No significant differences in kinds of minerals in heavy mineral suites were observed for rocks of this study.

.

Y

The concentration ratios (table 9) show clearly that many elements are about as abundant in the light fraction as in the heavy fraction. Because the light fraction forms about 99 percent of the rock, the bulk of most elements is associated with the principal rock-forming minerals. This then supports the interpretation that those elements shown in figure 8 that have a strong correlation in pattern with the pattern for illite-sericite-chlorite in figure 7 are adsorbed on or held within the lattice of those minerals.

Heavy mineral fractions of quartzites show relatively large concentrations of B, Cr, Cu, Mn, Ni, and Zr. B is in tourmaline; Zr is in zircon; Cu is in chalacopyrite, bornite, or chalcocite; Mn is in small blobs of probable manganese oxides; and Cr and Ni are probably associated with iron or manganese oxides (Krauskopf, 1955, p. 425).

Only copper shows a relatively large concentration in the heavy mineral fraction of all clastic rock types. The somewhat more abundant copper in rocks of the Mission Mountains (fig. 8) is in minerals that form enough of the rock to allow thin section study. Here the copper occurs as chalcopyrite grains and chalcocite flakes and blobs in unfractured rocks that suggest a detrital sedimentary origin; interstitial bornite blobs, however, suggest that diagenetic or other subsequent modification of any original copper is probable. The concentration and occurrence of copper in the heavy mineral fraction of Pend Oreille rocks support this conclusion.

DISCUSSION AND INTERPRETATION IMPLICATIONS ABOUT SEDIMENTATION

The average chemical composition of Belt rocks in the Pend Oreille area is between that of an average granite and that of the Canadian Shield (table 10). The weighted average for Belt rocks was computed from 23 chemical analyses of rocks from all formations in the Pend Oreille area where the stratigraphic section consists of about 80 percent pelitic rock, 15 percent quartzite, and 5 percent impure carbonate rock. Other parts of Belt terrane have a higher percentage of carbonate rock and perhaps slightly more quartzite. Thus the Belt rocks as a whole may be nearer the average composition of the Canadian Shield than is indicated in table 10. The Canadian Shield is, of course, one likely source terrane for Belt sediments.

Two lines of evidence point to a remarkable uniformity of depositional process lasting several hundred million years for Belt rocks. The direct

	Average granite (Daly, 1914, p. 169)	Weighted average of 23 Belt rocks	Canadian Shield (Shaw and others, 1967, p. 829)
SiO ₂	70.47	69.32	64.93
Al2O3		13.65	14.63
Fe ₂ O ₃ +FeO	3.31	3.54	4.11
MgO		1.93	2.24
CaO	2.09	1.37	4.12
Na ₂ O	3.31	1.42	3.46
K ₂ Õ	4.10	3.74	8.10
$H_2O +$		1.90	.79
CO ₂		1.58	1.28
Other 1	84	1.16	1 01
Total	100.00	99.56	99.67

TABLE 10.—Average granite and average composition of the Canadian Shield compared with average Belt rock from the Pend Oreille area

¹ Includes H₂O--, TiO₂, P₂O₅, MnO, Cl, F--, BaO, SrO, C, and acid soluble S as SO₃.

relation between mineralogy and rock grain size (fig. 6) implies a consistent weathering and transportation system. First, the almost total absence of life during deposition of Belt rocks certainly resulted in a simpler sedimentational history than in later geologic time. No plants covered the surface of the earth to impede erosion, and no humic acids were formed to accelerate leaching or to increase the variety of local weathering products. Little life existed in the oceans to produce clastic shell detritus or organic compounds which might combine with or alter mineral or chemical products brought in from the land. Second, the nearly uniform ratio among quartz, potassium feldspar, and plagioclase in widely separated sediments deposited over hundreds of millions of years requires either a nearly uniform source terrane or a high degree of integration of clastic components during transportation.

The chemical composition of the Belt seas and atmosphere was probably not much different from the composition of today's seas and atmosphere (Rubey, 1951, p. 1111). If the atmosphere of the time had been excessively high in CO_2 , "the rain water would have been so highly carbonated that it would leach much Fe and Si from exposed rocks, and the streams would transport significant amounts of those elements in solution * * *" (Rubey, 1951, p. 1124). Because no iron-formations and only insignificant amounts of chert occur in the Belt rocks, it seems reasonable to assume that no great excess of Fe or Si was transported in solution to or accumulated in Belt areas.

The mineralogy and geochemistry of the Belt rocks suggest either that rocks of the source area were uniform in composition (near that of granite) or that the weathering and transportation processes homogenized the clastic assemblage prior to deposition. Homogenization during transportation is indicated by the remarkable uniformity of Belt rock mineralogy in a given rock type and of the ratio among quartz, potassium feldspar, and plagioclase in siltites. In the few places where the base of the Belt sequence is exposed, the rocks lie unconformably on older, crystalline rocks. Conceivably, part of the Belt strata may have been derived by reworking this basement or older adjacent strata of the thick Belt stratigraphic sequence. However, there are no known older sedimentary rocks that could have provided the tremendous volume of sediment of which the Belt is composed. Moreover, the increase in amount and grain size of feldspar in the upper parts of the supergroup, particularly in the feldspathic red quartzites of the Striped Peak and equivalent formations, suggests a marked change in provenance. The exposed crystalline basement of Montana and the Canadian Shield are not uniformly granitic and do contain mafic rocks. We are led to the conclusion that the weathering and transportation processes of Belt time resulted in homogenization of clastic components. This homogenization requires a chemical weathering of most mafic minerals, a low terrane and low-gradient streams carrying only fine-grained material, and a slow isostatic adjustment between source areas and basins to provide a reasonably stable cycle of erosion and deposition without major tectonic surges to cause folding or faulting within the basins. It is of some interest that the slow isostatic adjustment of a granitic crust over a long period of time resulting in widespread epicontinental seas is a corollary of Rubey's (1951, p. 1140-1142) thoughtful analysis of the geologic history of sea water.

The differences in minor element composition between similar rock types in various formations and in the two areas may be caused by a variation in depositional environment or by a variation in the source areas that supplied the Belt detritus. Carbonate is largely a chemical precipitate in these rocks; therefore, Ca and elements such as Mg, Mn, Pb, and Sr that form carbonate compounds or substitute in mineral lattices of those compounds increase, as expected, in the environment of carbonate deposition.

Other minor elements showing large differences between the two areas are B, Co, and Ni, and they are also related to the illite-sericite-chlorite fraction of the rocks. The high B content of the Striped Peak Formation, particularly members 2 and 3, is in part a reflection of more abundant detrital tourmaline in these rocks than in others. The bulk of the B, however, in in the fine-grained light fraction and probably represents original B-rich clay minerals (Hirst, 1962, p. 1172–1176). Here, then, is an indication of a different source area for part of the Belt strata. The siltites of the formation below the Striped Peak are also somewhat enriched in tourmaline, which may indicate that the source area for these rocks was similar to that of the Striped Peak. If so, the homogenization of clastic components was more thorough in the lower (Wallace) strata.

Co and Ni are more abundant in the Mission Mountains rocks than in the Pend Oreille rocks. If these elements reflect a difference in crystalline source terrane, then we might also expect correspondingly large amounts of V, Cr, and Cu from rocks relatively high in Co and Ni (Parker, 1967, table 19). Cu is present in larger amounts in Mission Mountains rocks. It also is primarily in the form of sulfides in the rocks and thus differs from V and Cr, which are largely with clay minerals. If we can accept the thesis of the existence of Co, Ni, V, and Cr in a simple chemical environment, then the difference in their behavior may be based on ionic potential because $Cr^{+3} > V^{+3}$ $> Ni^{+2} > Co^{+2}$, as measured for behavior of their hydroxides (Goldschmidt, 1937; Krauskopf, 1955, table 9). Thus Cr and V are in about equal amounts in similar rock types of the two areas because of their superior ability to substitute in lattices of the clay minerals which are in equal amounts in the comparable rock types. Excess Ni and Co are left to be absorbed or precipitated primarily in sulfides. Many simplifying assumptions on the chemistry of the environments are required to allow such statements to be made. But the hypothesis is reasonable in terms of the geologic data and permits one further suggestion. The source area for the Mission Mountains strata contained more basic rocks than that for equivalent strata of the Pend Oreille area. This has bearing on the origin of stratabound copper deposits or occurrences.

Copper in all these rocks is primarily in discrete sulfides that occur in greatest abundance in siltites and quartzites of the Mission Mountains. The original copper minerals occur primarily as heavy mineral grains and interstitial flakes, and some diagenetic recrystallization is probable (Harrison and others, 1969, p. D17). In these rocks, sedimentary copper was apparently deposited as heavy mineral grains in the coarser grained rocks or with stromatolites (fossil algal forms) or was subsequently concentrated in more permeable strata. The living algae formed sticky mats that were effective traps for heavy minerals. This is shown by the 11-percent heavy mineral fraction of a Pend Oreille algal sample and by the high clastic copper mineral content of a persistent zone of stromatolitic rocks in the Mission Mountains (Harrison and others, 1969, p. D18). Several Pend Oreille stromatolites examined in thin section tend to have high heavy mineral content, which is mostly clastic grains of magnetite-ilmenite. Apparently, clastic grains of copper minerals were not available in the Pend Oreille area environment at the time of deposition of the stromatolitic rocks. Bornite flakes do occur as interstitial fillings in some quartzites and siltites, but in markedly less amounts than in the Mission Mountains strata.

We did not see a syngenetic copper ore deposit in either study area, although copper may occur in concentrations up to 3 percent in some 1-inch-thick beds. Although part or all of the chalcopyrite and perhaps some chalcocite may be syngenetic, the bornite is not; it is either diagenetic or epigenetic. Because the Helena and younger Belt rocks probably contain more syngenetic copper in the eastern part of the Belt terrane, prospecting for copper in these rocks may be more fruitful in the eastern part of the old Belt basin. We have no data on distribution or occurrences of copper among various areas or formations in the lower (pre-Helena) part of the Belt rocks.

METAMORPHIC CHANGES

Samples from the Pend Oreille area fall into three subfacies of metamorphism within the greenschist facies. They represent the chlorite-sericite zone and the biotite zone of regional metamorphism (C and Bb in tables 1 and 7), and the biotite zone of contact metamorphism (Bgn in tables 1 and 7).

Chemical changes between the chlorite-sericite and biotite zones of regional metamorphism are shown in table 7. Here we can look only for similar patterns or trends within different formations because of the limited numbers of samples in some groups, large values for geometric deviation, and limits of the analytical method. We conclude that the trends support Shaw's (1956, p. 934) general conclusion that regional metamorphism of shales results in little change in minor element content. One trend is suggested in our data—a loss of boron with increasing metamorphic grade. Boron was not included in Shaw's studies, and so a comparison is not possible.

Effects of contact metamorphism can be examined only in the Prichard Formation. Within this formation, the argillitic rocks give the best measure of metamorphic change because (1) a larger number of samples were collected of this rock type, (2) metamorphic equivalents are more easily recognized, and (3) among the lower-grade rocks, the Prichard argillitic rocks are more nearly uniform in mineralogy from place to place than are the siltites and quartzites. The higher grade argillitic rocks show an increase in Ca and Sr and a decrease in Ni, B, and possibly Co. Co and Ni are commonly associated, as are Ca and Sr. The B loss with increasing metamorphism supports the trend identified in the regional metamorphism. Other elements show no detectable change. Further studies of these metamorphic effects are underway.

COMPARISON OF BELT ROCKS WITH YOUNGER ROCKS

Table 11 compares the element content of the Mission Mountains and Pend Oreille pelitic rocks with that of similar rocks of different ages and geologic environments. The Ordovician rocks are highly siliceous eugeosynclinal sedimentary rocks; their geometric means have been calculated from analyses given by Ketner (1969, tables 3, 4). The Devonian rocks are largely metamorphosed, and the geometric means were calculated from analyses given by Shaw (1954, tables 7, 10, 13) by assigning his quantitative spectrographic data to the appropriate semiquantitative spectrographic classes used to calculate geometric means for the other groups of rock shown in table 11. The Cretaceous rocks are the marine Pierre Shale, and the geometric means were calculated from analyses given by Tourtelot (1962,

نخر

TABLE 11.—Average (geometric means) minor element content of pelitic rocks of different ages and geologic environments

· ·	Precam	brian	Ordovician	Devonian	Cretaceous
Element	Mission Mountains Primitive Area: 124 pelitic rocks (this report)	Pend Oreille area: 79 pelitic rocks (this report)	Cordilleran geosyncline: 40 fine-grained nonfissile rocks and shale (Ketner, 1969)	Littleton Formation: 59 pelitic rocks (Shaw, 1954)	Pierre Shale: 67 shales (Tourtelot, 1962)
B Ba Co Cr Cu La	46 370 14 35 14 30		72 770 52 47		73 520 12 70 46 32
Mn Ni Pb Sc Sr V	330 25 8.4 11 42 54	74 14 4.0 7.9 25 58	$\begin{array}{c} 220\\ 15\\\\ 61\\ 200 \end{array}$	57 18 12 630 110	220 33 13 15 150 160
Y Zr	23 260	27 170	74	41 190	21 130

[Results in parts per million., insufficient or no data]

table 14). Data on the Mission Mountains and Pend Oreille rocks are given in tables 6 and 7 of this report.

Both the Ordovician and Cretaceous rocks contain abundant black shales, and, to choose Krauskopf's (1955, p. 418), careful phrasing, "some elements show a tendency to concentrate***" in this particular rock type. The elements listed in table 11 that may show this tendency are Cr, Cu, Ni, Pb, and V (Krauskopf, 1955, table 2). Most of them are more abundant in the Ordovician and Cretaceous rocks than in the Belt rocks. One can cautiously infer that the metamorphosed pelitic rocks of the Devonian Littleton Formation of the Eastern United States originally included black shales, because they are enriched in all but Cu relative to the non-organic Precambrian pelitic rocks. Tourtelot (1962, p. 50–51) noted the close similarity in minor element content between the Pierre Shale and the Littleton Formation, but he chose not to infer that the close relation might be due to similarities among black shales. Perhaps the minor element content of Belt rocks more nearly represents that to be expected in pelitic rocks containing little or no organic material.

CONCLUSIONS

Relatively inexpensive techniques of quantitative X-ray mineralogic determinations and semiquantitative spectrographic chemical analyses have provided data adequate for meaningful geologic interpretation of Belt rock sedimentation processes. The principal difference in mineralogy of three types of Belt clastic rocks involves presence or absence of carbonate cement, and this is reflected in the chemistry of those rocks containing

.

4

*

carbonate minerals by an increase in Ca, Mn, Sr, and Pb. The abundance of many elements is directly related to the abundance of the illite-sericitechlorite fraction in the rock. Relative abundances of many elements in this fraction reflect ionic potential of the elements. Other differences in minor element chemistry are inferred to reflect source terrane. The occurrence and distribution of copper are the most significant in terms of economic geology. The more abundant copper appears related to source area of the sediments. Within a broad geographic area, certain strata may either contain stratiform deposits or represent source beds for secondary deposits.

The data obtained by using these techniques do not identify any metamorphic changes from the chlorite-sericite zone to the biotite zone of regional metamorphism except for a probable loss of boron. Contact metamorphism also in the biotite zone but resulting in formation of schists and gneisses was accompanied by an increase in Ca and Sr and a decrease in Ni, B, and possibly Co. The minor element content of pelitic Belt rocks is probably representative in general of nonorganic pelitic rocks as contrasted with black shales or pelitic rocks containing black shales as studied by others (Shaw, 1954; Tourtelot, 1962; Vine, 1966; Ketner, 1969).

REFERENCES CITED

- Anderson, A. L., 1930, Geology and ore deposits of the Clark Fork district, Idaho: Idaho Bur. Mines and Geology Bull. 12, 132 p.
- Bayley, R. W., and Muehlberger, W. R., compilers, 1968, Basement rock map of the United States (exclusive of Alaska and Hawaii): U.S. Geol. Survey map.
- Daly, R. A., 1914, Igneous rocks and their origin: New York, McGraw-Hill Book Co., 563 p.
- Fleischer, Michael, 1965, Summary of new data on rock samples G-1 and W-1, 1962-65: Geochim. et Cosmochim. Acta, v. 29, no. 12, p. 1263-1283.
- Goldschmidt, V. M., 1937, Principles of distribution of chemical elements in minerals and rocks: Chem. Soc. London Jour., p. 655-673.
- Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternatingcurrent spark emission spectrographic field methods for semiquantitative analysis of geologic materials: U.S. Geol. Survey Circ. 591, 6 p.
- Harrison, J. E., and Campbell, A. B., 1963, Correlations and problems in Belt Series stratigraphy, northern Idaho and western Montana: Geol. Soc. America Bull., v. 74, no. 12, p. 1413-1427.
- Harrison, J. E., and Jobin, D. A., 1963, Geology of the Clark Fork quadrangle, Idaho-Montana: U.S. Geol. Survey Bull. 1141-K, 38 p.
- Harrison, J. E., Reynolds, M. W., Kleinkopf, M. D., and Pattee, E. C., 1969, Mineral resources of the Mission Mountains Primitive Area, Missoula and Lake Counties, Montana: U.S. Geol. Survey Bull. 1261-D, 48 p.
- Hirst, D. M., 1962, The geochemistry of modern sediments from the Gulf of Paria-[Pt.] 2, The location and distribution of trace elements: Geochim. et Cosmochim. Acta, v. 26, p. 1147-1187.

- Ketner, K. B., 1969, Ordovician bedded chert, argillite, and shale of the Cordilleran eugeosyncline in Nevada and Idaho, *in* Geological Survey research 1969: U.S. Geol. Survey Prof. Paper 650-B, p. B23-B34.
- Krauskopf, K. B., 1955, Sedimentary deposits of rare metals, pt. 1 of Bateman, A. M., ed., Economic geology—50th anniversary volume, 1905-55: Urbana, Ill., Econ. Geology Pub. Co., p. 411-463.
- McGill, G. E., and Sommers, D. A., 1967, Stratigraphy and correlation of the Precambrian Belt Supergroup of the southern Lewis and Clark Range, Montana: Geol. Soc. America Bull., v. 78, no. 3, p. 343-351.
- Mason, B. H., 1956, Principles of geochemistry [1st ed.]: New York, John Wiley & Sons, Inc., 276 p.
- Maxwell, D. T., and Hower, John, 1967, High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series: Am. Mineralogist, v. 52, nos. 5-6, p. 843-857.
- Miesch, A. T., 1967, Methods of computation for estimating geochemical abundance: U.S. Geol. Survey Prof. Paper 574-B, 15 p.
- Mudge, M. R., 1970, Origin of the disturbed belt in northwestern Montana: Geol. Soc. America Bull., v. 81, no. 2, p. 377-392.
- Obradovich, J. D., and Peterman, Z. E., 1968, Geochronology of the Belt Series, Montana: Canadian Jour. Earth Sci., v. 5, no. 3, pt. 2, p. 737-747.
- Parker, R. L., 1967, Composition of the earth's crust, in Fleischer, Michael, ed., Data of geochemistry [6th ed.]: U.S. Geol. Survey Prof. Paper 440-D, 19 p.
- Ross, C. P., 1963, The Belt series in Montana, with a geologic map compiled by
 B. A. L. Skipp, and a section on Paleontologic criteria, by Richard Rezak: U.S. Geol. Survey Prof. Paper 346, 122 p. [1964].
- Rubey, W. W., 1951, Geologic history of sea water: Geol. Soc. America Bull., v. 62, no. 9, 1111-1147.

1956, Major elements and general geochemistry, pt. 3 of Geochemistry of pelitic rocks [N.H.]: Geol. Soc. America Bull., v. 65, no. 12, p. 1151-1166.

- Shaw, D. M., Reilly, G. A., Muysson, J. R., Pattenden, G. E., and Campbell, F. E., 1967, An estimate of the chemical composition of the Canadian Precambrian Shield: Canadian Jour. Earth Sci., v. 4, no. 5, p. 829–853.
- Tatlock, D. B., 1966, Rapid modal analysis of some felsic rocks from calibrated X-ray diffraction patterns: U.S. Geol. Survey Bull. 1209, 41 p.
- Tourtelot, H. A., 1962, Preliminary investigation of the geologic setting and chemical composition of the Pierre shale, Great Plains region: U.S. Geol. Survey Prof. Paper 390, 74 p.
- Vine, J. D., 1966, Element distribution in some shelf and eugeosynclinal black shales: U.S. Geol. Survey Bull. 1214–E, p. E1–E31.

O49

¹⁹⁵⁶ Major elements and general geochemistry, pt. 3 of Geochemistry of pelitic rocks: Geol. Soc. America Bull., v. 67, no. 7, p. 919–934.