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Abstract

An approach is presented for the evalvation of the tw distinct
types of one-electron integrals arising from the ab initio {seudo-
potentials introduced by Kahn and Goddard. The integrals arc shown
to reduce to a sum over products of angular and radial integrals, the
latter being approximated by power and asymptotic series combined with
appropriate recursion relations. The method is valid for arbitiry
angular momenta of both the pseudopotential and the Cartesian Ga -sian

basis func*ions,
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I. Introduction

A number of approaches have been made to the problem of defining poten-
tials that mimic the effects of core electrons in a many-electron atom, One
such approach which has met with corsiderable success i5 the ab initio pseudo-
potential originally formulated by Kahn and Goddard]’z and modified by
others.3’4'5 In this approach the procedure for finding a pseudopotential for
the core of an atom is to define a transformation from the atomic Hartree-Fock
valence orbitals to nodeless, well-behaved pseudoorbitals., A numerical pseudo-
potential is then cbtained by requiring that the pseudoorbitals reproduce the
HF valence orbital energies. The numerical pseudopotential is then fit to a

n-2 exp (- € rz). The

linear combination of Gaussians of the general form r
only task in employing such a pseudopotential in a molecular calculation using
Cartesian Gaussian basis functions is the evaluation of the corresponding one-
electron integrals. Several computer programs have been written to evaluate
these integrals over s,p,d (and recently f) type pseudopotentials. In this

paper e present a method of evaluation which has no inherent limitations on

the angular momenta of either basis functions or pseudopotential.



1I. Reduction to Angular and Radial Inteyrals

The form of the ab initio pseudopotential is

L 2
Ur) = lr+ L 1 1> [”1(” - ”m(r)]‘ tn| ()

where L is the largest angular momentum orbital appearing in the core.
The Ul’s are expressed analytically by a fit of the numerical potential

to a linedar combination of Gaussians:

N n.
a [uu(r) - %] - gdjl[r T expl- sjrz)_] (2)

where Nc is the number of core electrons. Alternatively, the difference
potential [Ul(r) - UL+1(r)] may be fit with the same expansion, allowing
employment of different sets of nj and gj for different & . In all
implementations of this pseudopotential to date, "j has been restricted %o
the values [0,1,2], though this work assumes no such restriction. In the
development to fellow, we will consider a single term in the expansion, abbre-
viating n; and Ej asn' and E .

The general form of a Cartesian Gaussian function on center A is

2

W 2
¢A("A’1A’mA’“A) = N(nA,zA.mA,aA) X ¥y oz exp (-aArA ) (3)

where the normalization constant is

(nyteyimg)/2 1
UMW [(ZnA-])!!(ZEA-])!!(ZmA_])!!} 2 (1)

3
N(nys2pompsey ) = (20A/1T);(4uA)

The calculation of integrals between ¢A and ¢B and the operator u(rc)
results in two distinct types of integrals (which we also refer to as type 1

and type 2).



XAB = J dr ¢A rcn -2 exp ('grcz) ¢B (5)

and

f d2.0,Y ' 2 1y |
L dr. [ 9.9, e exel-grct) [ Y on(2c) 051 (6)

Yoo = 1

A —ry
where the Yzm are real, orthonormal spherical polynomials; Xap refers to the
UL+1 term in the potential and VAB to the U2 or UE 'UL+1 terms,

The reduction of Xag proéeeds by transforming the exponential parts of

¢A and ¢B to center € in the following manner:
2y _ 2 2
exp(- ayra®) = exp (- ayr.” - 20,CA-re -0y [CALT) (7)

where
A = C- A (8;

~n

If we now define

2 ?
DABC = 4ﬂN(nA,kA,mA,aA)N(nB,EB,mB,aB) exp (-aAIEQI -aB!E§| ), (9)
e 2oyt o) (10
and
@= o tat £, (1)

XAB is simplified to

L, ®, n, & m

D n
_ _ABC n'-2 , A
!dr e exp(-arc exp(k [c)xA Yo 2y %g Vg % {(12)

- 2y
Xag o
The next step is to expand exp(E-[c) in spherical coordinates:

@ )



where MA is a modified spherical Bessel function of the first kind:

A
o - (1) s o
= i g, (-ix) (15)

Transforming s Yoo Zps Xgo Yo % to point C and separating variables of
integration we obtain

;A ;A ';A gs ’;B ';s (nA)(ﬂ,A\
Xpg = 0
A "ABC 429 beo =0 d=0 e=o fro ‘2 b/

el

n-a 2,-b me-¢c np-d  Loee  Mp-f
A A A B B B
(A, EAy CA, CBX CBy c8,
® atd,bre,cHf atbtctdterf+n’
Y & (k,a) {16}
A=0
where
X © xC/rc etc. (17)
and where the angular integral is defined as
o 19K § Y, (@) stz I y9 2Ky (@) (18)
and the radial integral as
Glika) = [ er " expl-ar’yy (k) (19)
0

The product of powers of Koo ;c and Z in the angular intearal may be
expanded in a sum of spherical polynomials of orders up to I +J + K and
differing from I + J + K by a multiple of 2. By orthogonality, then, the

sum over A may be truncated at atbsc+dtetf, and (atbtctdtesf)-A must be even,



The reduction of the type 2 integral, yAB » proceeds in a manner
similar to that of Xag * When the exponential parts of ¢A and ¢B are
transformed to point C we obtain

D & Ny % M
. ABC Ayh, A .
wew L J ar Ud“c"A I 7y el fc)Yzm‘Rcﬂ

0
rc"' exp(-ar‘cz) Udflc xBB yBB Z exp(l'B rc)Ym(Q )] (20)
where DABC and o are defined as before, and
ky = ~2aCh (21)
kg = -2u(B (22)

Transforming X,, Ypo I tpr Vg B to center C, and reexpressing

(1

exp Q‘A'fc) and exp (EB-[C), Vg becomes
n, &

o 2A 2A rE"A ;B ;'B ';B (n;\)(z;\)(chJ (ndB)

a=0 b=0 c=0 d=0 e=0 f=0

y

ny-a )zA-b my=¢ na-d lg-e M=+

CAx CAy CAZ CBK ' CBy CBZ
S ¢ .atbrcrdterfen’ abe odef
d=0 A= m=-%
where the angular integral Qigrz is given by
o v (0) | 225 1, (@Y, (9)
M.m E Atk (24)
p=-A
and the radial integral Qgi is given by
"N 2 '
N (kA’ B,a) [ dr r exp(-or )MA(kAr)MX(kBr) (25)

0

SRS




As with the type 1 angular integral, n;’i; may be reexpressed by expanding

xaybzc as a sum of spherical polynomials of order up to atb+c and differing
from atbtc by a multiple of 2. Therefore, using the vector sum rule for

spherical polynomials, the only nonzere terms in the sum over A are

max (L-a-b-c, 0) €A <L+atbtc (26)

and 1ikewise for X. Also consistent with the first type of angular

integral, £+a+b+c -2 must be even.



f T1I. Evaluation of the Angular integrals

To evaluate the angular integrals we first expand the real orthonormal

spherical polynomials Y, —in terns of %, ¥ and 2:

Ztyﬁ‘gt At reset=a (27)
r,s

The complete angular integrals are then

A A A~ ~
IJK Al r ~ t
Q = 7 oyr ok k ]
A LE- [r,s,t rst "x zl
A
i Alt Al+p AJ+s AK+t
) yrstf dn x (28)
r,s,t
A A
abc Ay fr7s?
= k' k
9Alm uZ_A [;,g,t yrst Xy kz ]

A AaFrtu bsty ottty
! Z yrst uvw [ a2 X y z (29)
r,s,t u,v,w

The evaluation of the integral is straightforward:

0 i, Jork odd

a7 o k1§ 2% - 30
el JQX ’ (=1)EL -1 (1)1 G0

{i+j+k) 1!

i, j and k even

RN




V. Type 1 Radial integral, ﬂ?(k,u).

Gradshteyn and Ryzhik reexpress the type 1 radial integral as6

Q) (k) = /T B L T ¢((2+n+1)/2; 0+ 3/2; k2/4a) (31)

vhere R is the ratio of gamma functions,

/a (g 1)1) N+ even
2(20+1)11
R =T ({s+n#1)72)/T{0+ 3/2) = (32)

(#n-1)1) 2 odd

(2247)11

and ¢ is the degenerate hypergeometric function.

The confluent hypergeometric series for ¢ 1'57
a z , ala+l 22
¢(a,b,z) =14 Bﬁ"‘ = (33)
© oblb1) 2!

The resulting expression for 02 {k,a) is equivalently obtained by substitution
of a power series for the modified spherical Bessel function Mz(kr) in &g, 19.

An asymptotic series for ¢ is given by7

¢ @sbiz) = K 27 exp(z) [] + ip:gl%}iil 2!

R (b-a)(b-a;1l.)(1-a)(2-a) z‘?+..](34)

Although this series diverges, the magnitudes of the terms decrease unti] a
minimum is reached, at which point the parti-1 sum represents a best approxi-
mation to ¢ . Summing to this minimum gives 12 figure accuracy for the

following n and z:
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no0 1 2 3 4 5 § 7 37
72 31. 28. 25. 23. 22. 20. 19. 18. 15.

Note that the asymptotic form truncates for n+ g even and n>4+2

providing an exact analytical expression for ¢ . An exactly equivalent
7

¢ (a3bsz) = exp(z) ¢ (b-a;b;-z) (35)

Substitution of the confluent hypergeometric series yields

¢ (ashsz) = exp(z) [1 - £9:§%5-+ (-a)(b-at1) 2} (5
b 1! b(b+1)2!

In contrast to the asymptotic series, evaluation of this form for n+g even
and n 2 & + 2 presents no problems for small z. For other n and £, however,
when it doesn't terminate, Eq. 36 is not useful, owing to differencing.
Recursion relations were derived and implemented to allow most Qz's to
be calculated from just a few starting values. Referring back to Eq. 18 and

atbctdret+f+n’

discussion, we first note that only QA for which atbtctdte+f-2

s even are required, as all others are paired with vanishing angular integrals.

Secondly, we note a recursion relation on MZ(X):

My (x) = M, _o(x) - Lg%fll My_p (x) (37)‘

Using this relation and integration by parts, a number of recursion relations

on the 02 may be derived:



i

g -
0" - —[2 Q- 21 n’;j}] (388)
G- (n+z+1) [ ol QEI}] (380)
0" = [(nm-\) 0+ q‘gj} (380)
o= o {(m-a) Qs [k-(zz-]) ?}? }} (38£)
L ] [ s - [ (2243) 2,?] Q;ﬂ} (38F)

Upon examination of the asymptotic form of an, eqs. 38C and 38F are found
2

to give serious differencing errors for %E large. Likewise, the alterrating
z
series reveals that eqs. 388 and 38F have a differencing problem for %& small,

Figure 1 gives separate stable recurrence schemes for small and large k2/4u.

Switching from one to the other at k2/4a = 3.0 yields a relative accuracy

13

of 107°° in the an.
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V. Type 2 Radial Integral
A. Double Power Series
A double power series for the type 2 radial integral, Q?x(kA,kB,u),
is suggested by substitution of power series for both modified spherical
Bessel functions appearing in Fq. 25. From Abramowitz and StegunB

\ 2
P e (39)

a
M(z) -z (2n1423)10

j=o 3
Therefore

P ZJ ] ’ 2i
=0 JHRMTRZIIE i=0 5y oniagi)

N b
0 (kpokppa) = k'

] dr rN+A+A+ZJ+2’ exp(=nr2) (40)
o
The integral is evaluated as
M- il

ZE&)(E;T77E VR M even

[mdr rM exp(-urz) = {81}

(-1)i
0 —(—W , Hodd

After some rearrangement Osx becories
s 1
kAkA 2

o fk
N LR - ,
le (kA,kB,u) = E;;;IE?A+X?TT7? Izotjﬁi)(n+h+k+21 1) TI 142)

vihere i
1 (k27540
T - § _
I 20 (1-1)1i1 (2he1421-21 ) 11 (204142i) 11

(43)

T, is now simly related to the hypergeometric function F(a,b; c; z):

I

R A
T, - &21+1+21)!! It (2A+1)!i F(<,-M-1/2-1; b+ 3/2 kBZ/kAZ) (44)
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where we have used

LT a2
F(a,b;C,Z) = "Zo el .-]—l (45)
Recursion relations on the F's (ref 8, p., 598, Eqs. 15.2.10 and 15.2.11)
allow a recursion relation to be derived for Tl:
- 2
TI+1 = (B + Yz) TI + 6 (1-27) TI-I (96)
where -
P (M) # 2143) (47)
(141} (22+3+21 ) (2h+3+21 ) (A+R+2141 } (A+A+1+2)
8= oo - L2 eels (48)
¥E —— e (2we)e (49)
{1+1)(2x+3+21)
P -
2= ko /ky (50)

B. Single Power Series
A single power series for the radial integral is found by substituting
a power series for just one of the modified spherical Bessel functions:
A © 2,0 1]
kA (kA /2a) N

&IN+A+1)/2 j50 2241425 11 )

N . - A2 o

QAX (kyokg ) (kg// 1) (51)
Evaluation of the type 1 radial integral an for arbitrary n has already
been discussed; however, the scheme is only practical when these quantities
are obtained with a minimum of effort. An upwards recursion relation on n

is found in @ manner similar to the other recursion relations presented in

Section IV:



<
[T e

14
2
n 1K, -5 on-2 | (2-n#d)(84n-3) on-4
Thus, only Q;+A and 02+A+2 are required initially to compute an arbitrary

number of terms in the series.

Owing to the power series expansion in k§/2u ,» one would expect the
method to be inefficient when this quantity is large. Wnen it is small,
however, one might expect the method to be rapidly convergent, regardiess
of the size of ké/?a. Such is not the case for the following reasons.

He may extract exp(k§/4a) from the Q§+k+25, honefully leaving quantities
that cannot become too large. We compare this with exp[(kA+kB)2/4u] that

is extracted from the points and weights expression (egs. 57 and 60) derived

Qo ~

in the next section. It is apparent that the possibly large crossteru
exp(kAkBIZa) is still hidden in eq. 51. MNot only canm this result in over-
flows, the number of terms in the series may be prohibitive. For these
reasons, an effective upper limit to the utility of this method was found
to be (kA + kB)Z/Za = 100 when approximately 70 terms are required to give

Q:i (arbitrary N,A,}) to an accuracy of W

C. Gaussian Points and Weights lethod

We can write the modified spherical Bessel function Mﬁ(z) in exponen-

tial form as
M (2) = g; R (-z)exp(2) - (-l)lﬂl(Z)exp(-Z) (53)
where ‘
¢ ) :
o) = 1 ek et (54)

Rr]amez,ndz)bnmmssmpw tha first term in eq. 53. Thus, vhen
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kAIVE“and kB/AE are large, the type 2 radial integral is approximated

by {after a change of variables r » v//a
N N R A L
Q. (kykn,0) % dr(-—~ expl-r +—=r+-=r (55)
A ATB 4kAkB Jo /o P

This form inmediately suggests the use of a Gaussian points and weights

scheme. We proceed by differentiating the integrand to find a maximum at

1
P = kg * %[};(kA+kB)2/a+2(N-2)]2 (56)

For the range of % (kp+kB)/v’E for which the method ultimately proved
practical, the effect of the 2(N-2) term was very small. Therefore, in
the interest of keeping re independent of N , we approximate the

maximum as

%=%ﬁ+%na' (57)

A change of variebles t = r-r. should minimize the number of points in the

numerical integration:

N 2
QA,-\' = frdt f(t ’rC’kA,kB’a) EXP(" t ) (58)
C
where
ter \WW & k
f(tsr oKy sk ,(1) =(__C) M j.:(tﬂ‘)M..i_(tH‘)
AT ﬁ A |’0 A /(1 ¢

2
exp [‘Zrc t - rc] {59)

ky ks
exp /—_ (t+rc)] and exp /—_ (t+rc):|

a a

We now extract
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from MA and MX’ respectively, (to give MAI and M{-). Then f reduces to

t-+rc N , kA , kB 2
Fltrkykgsa) =(- e MA-'ZI(t’rrc) N /—a(tnc) exp(r”) (60)

This maneuver forces M; and Mi to be of reasonable magnitude and allows
exp(rcz) to be extracted and combinad directly with the exponential in
Dagc - Mi(z)is calculated using egs. 53 and 54 for z > 5.0. For z > 16.1,
only the first term is required. When z < 5.0, the power series in

eq. 39 eliminates differencing problems.

Equation 58 suggests calculating zeros of polynomials orthogonal with
weight function exp (-rz) over the integration range [-rc,m]. It is incon-
venient, however, to recalculate these zeros for each o For sufficiently
large res f(~rc) is negligible compared with f(o) and we may employ the
integration renge [-=,»]. Thus, within this approximation the orthoganal
polynomials are simply the Hermite polynomials. A table of the zeros and
weights for up to 20 degree polynomials is found in Abramowitz and Stegun.8

The number of integration points required for a given accuracy decreases
with increasing (kA + kB)z/Za, showing considerable dependence on A,X and
N, also. The following conservative scheme preduced ng for all A,% and N

to a relative accuracy of ]0']3.

Range of (kA+kB)z/20 Number of peints
(0%, 10 | 2
[10%, 10%] 10

> 10° 5

Equations 58 and 60 may be used to calculate a crude approximétion to

Q- . Using only the first term in Rg(z) to calculate MR(Z),
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2
a N-2
N . exP(?‘c) I dt (t"'rc) exp(_tZ) (6])
r

I RAT-S
Mot L

Approximating t + roas r, and the integration limits as [-», =], we

arrive at
o2
Nt elr (L) Tk ) (62)
QM-\ exp(rc)/a_ /T (dkgky

This expression may then be used to determine whether a particular term
in eq. 2 is negligible, before any effort is spent calculating the possibly

large number of radial integrais.



VI. The Computer Program

A computer program based on the method described herein was written
for the CDC CYBER 170/750 computer at the University of Washington and
tested on a COC 7600 at Lawrence Livermore Laboratory {LLL). This program
{which we have given the name MELDPS) has been implemented into the MELD
system of programs here and into SCREEPER and POLYATOM at LLL. Testing
was performed using a program from Los Alamos (LASLPS), that was developed
from Luis Kahn's original pseudopotential program. Tests on seveial mole-
cules yielded 10-place agreement between McLOPS and LASLPS integrals. [t
is noteworthy that MELDPS and LASLPS integrals both gave a GVB energy of
-11.385102 hartrees for the iodine atom, a figure that differs appreciably
from the number quoted by Kahn et al.,] -11.383535 hartrees. This inaccurary
and the need to compute integrals over f pseudopotentials were the motivation
behind the modifications that produced LASLPS.

Timings showed MELDPS to be factors between 1.5 and 3 slower than LASLPS;
however, for problems of reasonable size, the time spent computing pseudo-
potential integrals is small compared with that spent computing two-electron

’

integrals. Alternative methods based on equations in reference 9 were also

tried but proved to have numerical stability problems.

fpunt=> )
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a
Figure 1. Recurrence algorithm for the type 1 radial integral QR"

A. Large k2/4a, n even €. Small k2/4a, n even
% L
01234 01234

nos no C

1 B 1

2s B 2S ¢

3 A B 3 A C
4D A B &iD A S
5 D A 5 D A
60 D A 6D D A

B. large Kk /da, n odd D. Small k%74, n ode
X )
01234 01234

no ng

158 1F

2 s 2 F

30 E 3D F

4 D E 4 b S
50 b f 50 D S
6 D D 6 D D

3 5 indicates the appropriate series given in Section IV.

A,B8,C,B,E,F refer to recursion relations, eq, 38 A-F,
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