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ABSTRACT

We introduce a new spatial discretization scheme for transport on arbitrary spatial grids in XY
geometry. Our "arbitrary" spatial grid is composecl of arbitrarily-connected polygons, each of
which may have an arbitrary number of sides. We begin) our derivation by imposing particle
balance on every "comer" of each cell. (Consequently, we call our scheme the corner-balance
(CB) method.) We complete the derivation by introducing simple closure formulas that relate
volume-averaged unl_nowns to surface-averaged unknowns in each comer. We discuss the
relationship of the new scheme to discontinuous finite-element methods and to multiple-balance
methods. We demonstrate that on simple grids, the method reduces to very robust schemes that
have been studied previously. We discuss the theoretical performance of the method in the thick
diffusion limit, and provide numerical results for that limit. We present additional numerical
results from simple problems that test the new scheme in other limits. Finally, we offer some
concluding remarks about the method.

INTRODUCTION

We introduce a new spatial discretization scheme for the XY-geometry transport equation. The
method is designed to be applicable to arbitrily-connected grids with arbitrary polygonal cells, lt
resembles discontinuous finite-element methods 1-4in some ways, and multiple-balance methods 5
in others. Its derivation is simple and intuitively appealing, even on arbitrarypolygonal cells. We
find that the method is more robust than standard discontinuous finite-element methods, especially
for problems with optically thick cells.

The basis of the new scheme is particle conservation over sub-cell volumes that we call corners.
We therefore call the scheme the comer-balance (CB) method. There is one conservation equation
in each comer;, it contains volume-averaged as well as surface-averaged unknowns. We close our
system of equations with simple approximations that relate these different kinds of unknowns. We
note that this concept of cell corners as the fundamental volume of diseretization is not our creation;
Burton 6 has used it extensively in computational hydrodynamics on arbitrary grids.

In this paper we derive the CB scheme in full generality, assuming arbitrary polygonal cells. We
, then examine the scheme in some simple limits. We find that in slab geometry the method reduces

to a very robust modified linear discontinuous (MLD) finite-element scheme that has been studied
previously. 7 We find that on rec_ngles in X'Y geometry, the method reduces to a modified bilinear

, discontinuous (MBLD) finite-element scheme that has been introduced and studied very
recently. 4,s This MBLD scheme performs very well in the thick diffusion limit, even in the
presence of unresolved boundary layers, but it exists only for rectangular grids. 4 We note that the
CB derivation of these methods is much simpler than their original derivations and modifications,
and that furthermore it applies to arbitrary polygonal cells. We find, however, that given non-



rectangular cells the CB method does not perform as robustly in the thick diffusion limit as it does
on rectangular cells. We present numerical results from several test problems, comparing the CB
scheme against a discontinuous fini:_-element method. We close with some concluding remarks.

,0

DERIVATION OF THE CB SCHEME

We begin with the definition of a corner, which is the volumeof a polygonal cell that we associate
with a given vertex of the cell. This concept, taken from Burton 6, is defined graphically in Fig. 1
below. The comers in a cell are defined by line segments that connect the midpoint of every edge
to a common point in the interior. (The c.)ordinates of the interior point are averages of the cell's
vertex coordinates.) Each comer is a quadrilateral; two of its sides are formed by halves of cell
edges, and two are formed by the aforementioned line segments, Within each cell, we number
comers in a counter-clockwise direction. That is, comer c+ 1 is counter-clockwise of comer c. We
assign the index c+ 1/2 to the edge that connects comers c and c+ 1.

Figure 1. A corner, whose index is c, of a polygonal cell.

We note that each comer has four bounding surfaces. For each of these bounding surfaces, we
shall need the product of the surface area and the unit normal. For comer c, these are Ac-a:and
B_I/_, as depicted in Fig. 1. We note that the A_ vectors are outward, Bc-1/2 is inward for
comer c (but outward for c-l), and Bc+1/2is outward for comer c (but inward for c+ 1).

We write the transport equation for a given energy group as follows:

_oV V + at V(r, _) = Q(r,f_) , r _ D, (la)

V(r, fl) = F(r, fl) , r _ tgD, nofl<O, (lb)

where V is the angular flux, F is the incident angular flux, o't is the total cross section, and Q is
total source (including fission, within-group scattering, scattering in from other groups, etc.). We D

integrate the transport equation over comer c, obtaining a balance equation for the comer. After we
use the divergence theorem to convert the first term to a surface integral, we obtain:

b



f2*[Ac+vc+ + Ac_vc_ + Bc+1/2_c+1/2- Bc-1/21[_-1/2 ] + GtcVc_c = VcQc " (2)

Here V_ and V_I_ are surface-averaged angular fluxes, while Vc and Qc are volume-averaged.
These quantities are located as shown in Fig. 2 below.

Figure 2. Location of unknowns in a comer.
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At this point, we have one Eq. (2) per comer but more than one unknown per comer. We now
introduce simple approximations to close our system of equations. These relations define each
surface-averaged unknown in terms of the volume-averaged unknowns on either side of the
surface. On surfaces between cells, we define each surface-averaged quantity to be the upstream
volume-averaged quantity. On surfaces between comers in the same cell, we define the surface-
averaged quantity to be the half the sum of the two comer-averaged quantities. Introducing these
approximations into Eq. (2), we obtain our CB scheme:

[ ]f2. Ac+Vc+ + Ac_Vc_+ Bc+I/2V/c +l//c*t2 - Bowl/2lilt+lVr-s2 + (rtcVcVc= VcQc' (3)

- IVc , Ac+'[_>O,
Vinc, Ac+'£1< O, (4a)

Vc-- IVc , Ac-'_>O'
1I_¢inc' Ac-'f2 < 0. (4b)

, We notethatinEqs.(4),V/ncreferstotheangularfluximpingingon thecelledgc.Forintcrior
cells,thisistheangularfluxfromtheneighboringccll.Forcelledgesontheproblemboundary
c)D,itistheincidentangularflux,F,oftheboundarycondition(lb).

¢

Equations(3)and (4)defineour CB schemefortransporton arbitraryspatialgridsinXY
geometry.Wc remarkthattheequationsarcvcrysimple,bothconceptuallyandalgcbraically.
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where c= 1 refers to the lower left comer of the rectangle, and the other comers are numbered in the
counter-clockwise direction (c--4 is the top left comer). This scheme is algebraically equivalent to
the "heavily modified" BLD scheme that is analyzed in refere_lce [4]. This scheme has excellent
properties in the thick diffusion limit, lt appears to be a robust method; once again, we are ,
encouraged that our CB scheme is equivalent to it in the rectangle limit.

The "heavily modified" BLD scheme was obtain via several approximations to the standard BLD
scheme: One of these is mass-matrix lumping, the physical content of which is to make certain
terms local. It is interesting that the other modifications are also localizing in some sense. We
remark that the CB scheme is automatically localizing, in that balance is imposed over sub-cell
volumes.

CB in the Thick Diffusion Limit

We have seen that the CB scheme performs exceptionally well in the thick diffusion limit, provided
spatial cells are slabs or rectangles. Here we briefly discuss its performance in the more general
case. We have performed an asymptotic analysis 4 of the CB scheme in the thick diffusion limit,
allowing the spatial grid to be arbitrary. We find that for ali grids, the leading-order CB solution
inside coarsely-zoned diffusive regions is isotropic and continuous. We find further that this
leading-order interior solution satisfies a discretization of the diffusion equation, again regardless
of the grid. These are highly desirable properties, for the correct leading-order solution in the
interior of such regions is isotropic and satisfies a diffusion equation. However, we find that as
cells become distorted, the performance of the scheme degrades. This occurs in two ways. First,
the diffusion discretization satisfied by the leading-order solution becomes less robust, in the sense
that it may permit oscillations and/or negative solutions. Second, the boundary condition satisfied
by the leading-order solution inside diffusive regions can become inaccurate. These are the
predictions of our asymptotic analysis; at present we have numerically tested only the rectangle
limit.

We are not completely satisfied with this behavior, and we are attempting to improve it. However,
we reiterate that the diffusion-limit performance of CB on rectangular cells is exceptionally good.
Thus, given arbitrary cells that are not too distorted, we expect the CB scheme to perform
reasonably well in this limit.

III. NUMERICAL RESULTS

Our first test problem is a transparent square, the left side of which is subjected to a mono-
directional beam of particles. The particles are directed downward and rightward (Jt = 1/{3, 7/= -
1/_/3). Physically, the particles simply stream through the lower left half of the square; the solution
in the upper right half is zero. We use the $2 level-symmetric discrete-ordinates quadrature set for
this problem; it has an ordinate in exactly the beam direction. When we piace a grid of square
spatial cells on the problem, we find that the discontinuity in the exact solution occurs along the
diagonals of certain spatial cells. This will cause trouble with most spatial discretization schemes,
and CB is no exception. We piace a 20 by 20 grid of cells on the problem, and solve it with CB
and with the mass-matrix-lumped bilinear discontinuous finite-element method (LBLD). In Figure
3, we display the exact, the LBLD, and CB solutions. Both the LBLD and CB solutions suffer
from numerical diffusion (spreading of the discontinuity) as well as undershoot and overshoot.
The two methods over- and under-shoot by approximately the same amount. We see that the CB
method introduces somewhat more numerical diffusion than does LBLD, but not a great deal more.



We display our second test problem in Fig. 4. lt problem contains 5 regions: a source region, two
thick absorbing region_, a very thin absorbing region, and a very thick diffusive region.
Physically, most particles are born in the source region either mostly leak out or are absorbed in

" one of the thick absorbing regions. The more interesting particles are born in the lower part of the
source region, stream through the thin region, and impinge on the diffusive region. We have
solved this problem numerically using the standard bilinear discontinuous finite-element method
(BLD), the mas-matrix-lumped lumped BLD method, and our CB method. The spatial grid is
indicated by dotted lines in Fig. 4. We display a crude shaded-contour depiction of the results in
Fig. 5. The BLD scheme generates negative scalar fluxes in several regions; we depict negative
values as solid white in the figure. The LBLD scheme is better, but it too generates negative scalar
fluxes, mainly near the edges of the diffusive region. The CB scheme generates no negative scalar
fluxes in this problem. To demonstrate the diffusion-limit performance of the method, we have
extracted the LBLD and CB solutions in the diffusive region. We present an enlarged contour plot
of both solutions in Fig. 6. In crude features, the two are similar. In detail, however, the CB
solution is a better representation of the correct diffusion solution, in several ways. For example,
it is positive, whereas the LBLD solution is not. Further, the LBLD solution shows evidence of
"remembering" that incident particles were directed to the right; the CB solution does not. We
know from asymptotic analyses 9 that the exact solution, to leading order, does not "remember"
such information.

CONCLUSIONS

We have introduced a new spatial discretization scheme for the transport equation in XY geometry.
The scheme, which is based on sub-cell balance equations, is applicable to arbitrarily-connected
spatial grids composed of arbitrary polygons. We have shown that our scheme, which we call the
corner-balance (CB) method, shares some features of multiple-balance methods 5 and
discontinuous finite-element methods. We have shown that given slab or rectangular cells, the
method reduces to recently-proposed schemes that are based on discontinuous finite elements.
These schemes are quite robust and perfoma very well in thick, diffusive regions.

We have mentioned that a heavily-modified discontinuous finite-element method (DFEM) for
spatial discretization performs very well given rectangular spatial cells in XY geometry. The
present work began as an attempt to create a (heavily-modified, if necessary) DFEM that would
perform well on arbitrary spatial grids. We have not been successful in this attempt. Instead, we
have been led by our analyses to something new, namely the comer-balance approach. Our new
method is quite simple, both conceptually and algebraically. We remark that the aforementioned
modified DFEMs require quite a bit of algebraic effort to derive, and then quite a bit of analysis and
modification before they actually perform weil. We reiterate, moreover, that the modified DFEM
approach does not appear to generalize to arbitrary grids haa straight/brward manner.

We have presented numerical results from two test problems, comparing our CB scheme against
the standard bilinear DFEM and a mass-matrix-lumped version of the bilinear DFEM. Our scheme
appears produce slightly more numerical diffusion than the DFEMs do. However, given a difficult
problem with coarse spatial zoning, CB clearly outperforms the DFEMs. Ali of our tests to date
have employed rectangular grids.

We have analyzed the thick-diffusion-limit behavior of the CB scheme under the assumption of an
arbitrary spatial grid. (We have yet to test the method on such a grid.) Our analysis predicts that
the performance of the scheme will degrade, in thick diffusive regions, as the spatial grid distorts.
We are not satisfied with this behavior, and we are investigating ways to improve the scheme. We
intend to retain the balance equation for each comer; our efforts are focused on obtaining "closure
relations" that are more accurate for distorted ceils.
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Figure 3. Streaming problem (inset) and solutions• LB = lumped bilinear, CB comer balance.
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Figure 4• Test Problem 2• Dotted lines indicate cell boundaries. Boundaries are vacuum•
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Figure 5. Shade-contour representation of logarithm of solutions to Test Problem 2.
Solid white regions indicate negative scalar fluxes.

BLD (top left), mass-lumped BLD (top fight), and CB (bottom)i
I

Figure 6. Solution contours from diffusive region of Test Problem 2 (enlarged by factor of 2).
Mass-lumped BLD is left; CB is fight.






