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DATA AMALYSIS FOR NUCLEAR
MATERW ACCOUNTING*

Jamer Pi Shipley
St fegumrds Systems Studien, Group +4

Los Alamoc Scientific Laboratory
Lot Alamos, Nev Mexico, USA

Abstract

Haterials accounci~ for ❑pecisl nuclear
material in future fuel cycle facilities will
draw heavily on Sophistic-ced datt-analysis tech-
niques. Decision amalysis, uhich combines ●le-
mancs of ●ctimacion theory, decision theory, and
systems amalysis, can be ueed to reduce ●rrors

caused by subjective data ●valuation snd to con-
dense large collections of dtta to # rnmaller set
of more descriptive statistics. The msthods and
requirement of decision analysi6 are discuesed
●nd illustrated by a conceptual design example
of an ●dvanced materials ●ccount.i~ cystem for ●

plucon~tm nitrate-to-oxide conversion facility.

1. Introduction

Tbe Safeguards Symtema Studies Group ●t the
1# Alzs Scientific Laboratory, ussd●r the
●uapices of the U.S. Dapartm?nt of Energy/Office
of Safeguards ●nd Security, ic developing con-
ceptual designs of ●dvanced ❑aterials ●ccounting
●ystmms for the nuclear fuel c cle.]-b The
technique of decision analysis~~8 incorpo-
rating ●stimation/detection thaory with modern
utbodc of analyzing complex eystems, have been
f~nd to be effective in the design ●nd evalua-
tion pr. .eas. In ●ddition, the techniques facil-
itate rakl-time ●nalyais of materia16 ●ccounting

data from oporacing fuel cycle facilities. The
purpose of this paper is to provide ●n overview
of decision analysic ●s ●pplied to problam6 of
muclaar meterialo ●ccounting.

~his mrk was performed as part @f the US
Dapartmant of Eoargy+ffice of Safeguards and
Security Ramearch and Development Pronram,

2. Decisior Analvsi6

The details of decision analy6is i.: .aie-
gumrds ●pplications have been deacribec ir,sev-
●ral references5-13 and uill be ~l:Led here
The structure of the method is ●hewn in Fig. 1.
in its most general form, decisien ●nalV61S com-

prises twn main functicns: (1) cnmput~:ion of
sufficient ncacistics that include all nia:eri61s-~
●ccounting lnformatlon, and (2) determination of
decisio~ thresholds to whick tne aufflcient
scat~stlcs ●re compared to discrtiinate betwee~
two hypotheses: Ho, that rm material is sciss-
i~, and Hj, chat some material is missing.
The first funccion relies on derectio~ ●nd esti-
mation thaory, bamed on a modern sLaCe-variaLlt
formula~ion, to calculate sufficient StaL16LlCs
●fficiently. The seconfl function uae6 risk
●sseeament techniques, such ●s utility theory,
to ●et thresholds in ● rational manner. This
paper will concentrate on the computbtior, and
use of ●ppropriate sufficient statistics.

Sufficient Statistics..—

Each different kind of sufficient statistic
depends on cht mathematical statements of the two
hypotheses. In turn, the hypoth_6ie statements
incorporate vhatever chrnracteristicc of the
diversion scenarin us ●re willing to ●s6ume,
Liowever, the true diversion strategy genera~ly
is unknown beforehand. Therefore, ●n array of
8ufficient statistics, ●ach tailored to ● spe-
cific diversion scenario: is required to cover
the poatiibilities ●dequately and ●ffectively.
Table I gives oome sufficient statistics that WE
have found ❑ost ueeful. The first four atat39-
tics are parametric; that is, they require
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TABLE x

cHAMCTSRISTICS OF SOME SUFFZCIEhT STATISTICS

Statistic Diver6ion sCenariO Commence.— ——

~s~)4,15 Arty Inciudes standard MUF-IXMIJF
calculation as special case

Uniform diversion Constant amount or Based on Kalmar filter;~6-19
fractior,per baiance estimates amoun: per balance

Sequential-variance Randou amount or Based on two Kalman filters;
frac:ion per balance similar cc sequential F test

Smoothed materials Single or block loss Based on forward and backward
baianc, Kalman filters; delayed re6ults

Nilcoxon rank Constant amount or
Sun?o

Nonparametric; cannot treat
fraction per balance correlations

Kolmogorov- #uly
Smirrsov20

(conservative) estimates of the measurement error
variances, and they car treat correlated mess .re-
ments properly. The last two stacistic6 are
nonparametric anc do rsotneed, nox’ can they use,
measurement statistics. For this reason, cor-
related measureme”:s cause uncertainties in the
detection and fait.e-alarmprobabilities realized
by the nonparametric tests. However, nonpara-
metric statistics are ctill useful for quick
checks and for ttuse caaes in which the ❑eaaure-

ment error atatiatics are not well known.

Test Procedur~.

Two facts contribute to the ~election of
testing procedures: (1) the materials accounting
data naturally ●ppear aequencially in time, and
(2) the true diversion strategy is unknon ini-
tially. Although ,.=stsbased on she statistics
of Table I cover the possible distributions of
diversion, tbe times at which a diveraion strat-
egy starts and stops must also be determined
The sequential character of the data and the
indefinite end-of-diversion point argue for
sequential (variable-length) testing. The added
bene~jts of more efficient tefcts,on the aver-
age, and less computational burden22 than
for fixed-length tests make aequentia”. testing
Lhe logical choice.

The unknown ●tartimg puxrrt of ● diveroion
scenario requires that all possible starting
pcints be cmsmidered. ThUo , if ●t some time we
have N materials balancea, then there are N pos-
sible ●tartimg points for N pocsible cequences,
all wsdiq: at the Nth, or current,
balance,

materiala
and the ●equeucv lengths range from N

to 1. Th-refore, each test is parfomed N(N+l)/2
timem for ~kse N ustcri.wls balances to ●ccount
for ●ll possible ●uboeqnances that.might contain
diversion.

Sequentisrl or vrni-iable-length,teats have
two threcholds~1~22 r~~her than one ma for
fixed-length teats. Thus ●t any time the teat
result may be that no diversion (In the corrc-
apondiug ●cenario) has occurred (H. true),
that diveraioctbas occurred (HI true), or that
no decision can bt made until more d~ta ●re

Nonparunetric; can treat
correlations with difficulty

available. The two tb}.esholds depend on the
desired false-alarm and miss
were fir6t derived by tdald;$:ob:;;’i~:esth~:~

thresholds ensures that the specifi?d probabili-
ties are not exceeded.

In practice, although the upper threshold
depends on a fixed value of the false-alarm prob-
ability, the sufficient statistic never falls
exactly on that threshold. Consequently, the
true false-alcnn probability, or si.gniflcance,
of the data is obscured. This pr.blem car. be
treated by performing the tests at several sig-
nificance leve16. We represent the results of
the multiple-significance-level testing by the
alphanumeric orreapondences in Table 11. The
letter T indicate6 that the sequence teaced has
such low significance that extensions of that
sequence need not be considered.

Required Input Data

Calculation of the parametric statistics
listed in Table 1 requires the following infor-
mrntion: (1) measured va!’<s of initial and final
total invento~ies and net transfers for each
materials balance; (2) error covariance uatrices
for the measured values of (1), including a
variance for each error tem (errors uncorrelated

TAME 11

ALARt4CLASSIFICATION

Classification— —.

A

B

c

D

E

F

T

False-Alarm
Probability

10-2
-3

to 5 x 10

5 x 10-3to 10-3

10-3to 5 x 10-.4

5 x 104 to
,.-4

10+ to 10-5

-5
<lo

>0,5



in time can be l-d together; Cke-cor:elaced
●rrors generally CWWIOC)●nd covariances between
all ●rror tame; and (3) time covsrimce ma:rices
for the inventory ●nd net-transfer correlated
measurement-error tesnc. The ●ctual mount of
input data required can be reduced significantly
by proper!;{ ordericg the data ●nd taking ●dvan-

cage of tfm sparsenem of the covcrimce ma-
trices. The third item ●bove can be obtained

frm item (2) if the in6trumencation operating
procedures (e.g., the recalibration schedule)
are known.

Although it may ●eem that en inordinacc

amount of da:6 is required for the te6t~, ch~
probl~ muet be kept in perspective by compari; ]n
with the ccandard HUF-LEHUF approach. The result
is that the techniques described above require
●xactly the SaM data ● doe6 che calculation of
● single -cerialo bmlmce and its variance,
except for thp ●dditional need for item (3),
which can be found if the inscr~ntation oper-

●ting procedure6 ●re known. Thar is, the deci-
sion analysis =thods make bc::ter use of the
●ailable dsta.

Usefu] Output Displays

The results of decision tnalyris ●re umeful
in tw ways: first, far ueer-raal-time ●nalysis
of materiels 4ccounti~ data from ●n operating
or simuiated facility, ●nd ●econd, to generate
performance ~oures for the erpected behavior
of ● ●aterials accounti.ug syctem. The firct use
i~ beet served by (1) graphs of the ●fficient
●tatictics of Table I, plotted with one-standard-
deviation ●rror bara, for the time inrerval of
intereet, and (2) graphs of the ?i(N*l)/2results
of ●ach kind of temt on alerm-sequence chartel-3
uhwing the initial and firm] points of Lhoee
sequences thet gave ● alarm (using the letters
of Table II ●s plotting ●pbols to indicete the
level of significance of the ●larm). Emamplec
of these displayn ●ra given in the next section.

The wet important performance r6eaaure8 for
materials accounting ●re the probability of
detection, the totsl munt of material lees,
●nd the tiss required to ●chiave the detection
probability for that lo-h. Tbe falee-ala~ prob-

ability irn another mearnure, but in keepiu.g with
--on ●tatietical. procedure~, it is fi~ed for
the purpoees of ●valuation. Cmonly, value6
for the perfomence mmeuree ●re obtained end
reported at isohtd pointe, perbeps for ● few
vllues of detection time. In ●ctuality, the
thma perfo~nca maaeure~ describe ● three-
diaencionel ●urface thet better represent the
behavior of ● materials ●ccounting ey.item. Such
●urfaces for ● eimgle tcet ●re called detection-

F F’
ad tbe c~omite ●~rface for

● c- ●te ●yst-, imcludi~ all the teete, in
celled a

W%%:::::::O:; :Uo%:?:●urfece de Lsse~
relates the tbroe perlo~cc ~asurec. h ●xam-
ple of a detectim-pwer ourface for tb~ uniform
divereion test rnppeerm in the next eection

3 . .& Example

To illuetrete the ●xplication of decieion
●alyeio, me prement reeulca frm ● ●tudy of

materiala ●ccounting ~n ● plutonium nitrate-to-
oxide conversion facility.3 The refe:ence
procees is bseied 00 pluto~ium(IIl)-oxalare pre-
cipitation; ● simplified block.aitgram is shown
in Fig. 2. Kosuina:Mpacity is 116 k& of pluto-
ni~ per day proceeset in 2-kS baLches Ch:ougn
four parai?.el lines, three operating ●ni one OF
standby.

Nany difierent ways of drwiq materi~ls
balance~ for :he conversion proceac can b-e de-
fined. Baaed cn the conversion. s:udy,J one
●trscegy tha!. l,l:!:b:6 well is co consider eact,
process scream frdz the receipt tank tc che prod-
uct dump and ●asay ocation 8s one unit process.

Thu6 , che cranrfers conaisc of feed from the
receipt Emit, product out of the dump and ●ssay
station, ●nd recycle 6olids ant liquid6, Al 1
these transfers mu6t be meseuret, and WE ❑ue.:
obtain ●n ●6timate of the in-procesc irventory.

More detail is given in Ref. 3.

Using the technique~ of decision ●nal:;sis
described ●bove, we can obtain graphE of suffi-
cient ●taciatic$ and slam-sequence charts for
any of the te~ts, at ●ny poin in time, ●nti for
any time interval. Examples of trios? graphs for
the uniform diversion test are ahoun in Figs. 2
●nd d for no diversion ●nd diversion nf 30 & per
balance, re6pec:ively, over one day of operation.
Figure 4 clearly ahous diversion ●t cbout cha:
level.

The final results c}f the analysis ●re given
in Table 111 ●nd were deteminad using ● detec-
tion probability of 0.5 and ● fa16e-alzrm prob-
●bility of 0.001. The quoted sensitivicie6 are
baned on consideration of eeveral diversion
strategies. However, unifom diversim wa6 the
woret-caae strategy, and the sensitivities in
Table III are ee6entially those of the uniform
diversion test.

As di6cutoed ●bove, the performance of the

●yetmm is better represented hv ● three-dimen-

●ional ●urface. Figure” 5 chows cbe detection-

pouer ●urface for the unifom diver6ion test
●pplied to the exemple process fo= 100 balances,
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Fig. 3. Graphs of uniform diversion test results
for one day of operation: no diversion.

or five days. The results in Table III for one-
batch and one-day periods can be essily ve:ified
in FLg. 5.

4< Conclusion

Decision analysic provides a logical frame-
work wichln ti]lch powerful statistical methods
cm be ●pplied to ●nalyzing materiale ●ccounting

TABLE 111

DIVSRSIOK SENSITIVITY FOR THE CONVERSION PROCESS

Average Diversion Total ●t Time
Detec~ion Per Batch of Detection

Time (kg F’u) (kfi pu) _

1 batch 0.4 0,4
(1.35h)

1 day 0.02 0.5

1 week 0.012 1.7

1 month 0.007 3.9
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Fig. 4. Graphs of uniform diversion test results
for one day of operation: 30 g/balance
diversion.

data effectively. The techniques ●vailable are
comprehen.-;ve●nd flexitle, ●nd they facilitate
making justifiable, consistent decisions. The
graphical displays provide an ●ssential link be-
tveen man and machine, and they more clearly sho!~
the

1.

2.

3.

behsvior of materials cccountang eystems.
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