INVESTIGATION OF THE DISC-AND-WASHER STRUCTURE*

G. Mavrogenes
Argonne National Laboratory
Argonne, Illinois 60439

and

W. J. Gallagher
Boller-Gallagher Engineering Company
2606 Eagle Avenue
Alameda, California 94501

Introduction

About 1971 a proposed accelerating structure was described by the Radiotechnical Institute, Moscow, which was intended for proton acceleration in a planned meson factory linac.¹ The structure has several quite useful features and has been subsequently investigated by AECL (Chalk River, Canada), LASL (UC Los Alamos, NM) and Argonne National Laboratory. A sketch of the structure is shown in Fig. 1, which reveals the origin of the name "disc-and-washer structure (DAW)."

The origin and development of the concept upon which the structure is founded is provided from considerations of a chain of Individual TM-01 cavities designed to produce kinetic energy gain to a bunched beam transiting their common axis. It is assumed the cavities are individually excited without inter-coupling; so that for maximum energy gain there is a specific phasing requirement based on the transit time from the previous cavity. Such a system would be very complex to operate and would only be considered in the special case of a few cavities as, for example, the LASL PHRMS.

What is wanted is an automatic or self-phasing system. This system could be provided by a coaxial drive line that in the ultimate case included the accelerating cavities within the center conductor, as in Fig. 2. The principal drawback to such a simple system, in addition to the stored energy in the feedline, is that in the case of periodic positioning of the cavities the consequent periodicity of the coupling apertures, and the associated reactances, would cause in the coaxial line a propagation constant which would depend on details of the coupling apertures and therefore the phasing of the cavities would not be automatically optimized. This defect could, of course, be corrected by including periodic compensating reactances in the coaxial line so as to produce a filter network with the appropriate phase shift per periodic length, which results in the structure shown in Fig. 3. Alternatively, one can view this structure as being composed of two sets of cavities with different modes of resonance where, in the standing wave case, alternate, unexcited cavities are removed from the beam line. This is, of course, the principle of the side-coupled waveguide design.

Field Description

In a physically complicated structure, such as the DAW, one cannot hope to find a solution of the wave equation which also satisfied Maxwell's equations, both conditions being necessary to describe a wave which will exist. The usual technique of solving this sort of problem is "mode fitting", that is, to describe in each region of the structure a supposed set of modes which match the boundary conditions and each other at their common boundary. Such a program has been described by Andrew, et al.,² but the results are too complicated to be practical. For the purpose of determining the appearance of the cavity modes, a practical program consists of experimentally producing a resonance in each of the two types of cavities at the intended frequency. This is done in the present case by fabricating two cavities, shown in Fig. 4, corresponding to the beam line and side-coupled cavity severed in the planes of symmetry. The dimensions of the cavities are varied to

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the best available copy to permit the broadest possible availability.
produce a TM resonance in each at the same frequency, and the cavities when part of a periodic structure will be the $\pi/2$ or intended mode. In this process certain dimensions will not be varied, for example, the drift tube (nose cone) and the washer thickness. Of course, the periodicity of the structure is fixed by the operating frequency and phase velocity. The inside diameter of the waveguide is, interestingly, set approximately by the solution of $J_0(D_0) = 0$, i.e., $\lambda = 4$, the condition for propagation in the TM-02 mode (assuming the lowest TM-mode on the axis is intended).

Exploration of the fields in the structure, by means of perturbation theory, using needles and small dielectric and metallic spheres, revealed the patterns shown in Figs. 5, 6 and 7. There is no quantitative significance to the sketches; the lines shown are the conjectured electric lines.

What is wanted by accelerator designers is the shunt Impedance, energy (group) velocity and attenuation coefficient of the structure, and these can be measured in a conventional manner. Some experimental values for phase velocities $0.4 < V_p/c < 0.8$ have been given, based on S-band scaled models by Andreev and an extensive study in the phase velocity range $3.4 < V_p/c < 1.0$ has been done by computer simulation by Schriber. By scaling laws, one can anticipate that

$$\frac{r_1}{r_2} = \sqrt{\frac{f_1}{f_2}}$$

insofar as frequency dependence of surface resistance can be ignored. Group velocity does not depend on wavelength, i.e., is a constant in scaling. Also, the computer simulation (LASSL SUPERSH) program can only accommodate cylindrical symmetry and must use a conjectured surface resistance, which depends on the material and the surface finish of the material.

Experimental Program

For the purpose of estimating the difficulties to be encountered in fabricating this structure and determining the achievable microwave properties an experimental study was undertaken. In every case the studies were for $B = 1$ only; for an electron linac application only this phase velocity is of interest.
thicker than the original R1 model. Obviously the ID of the disc was adjusted for resonance when the OD of the waasher was chosen.

The first part of the present study was an examination of S-band structures, because of fabrication coats. Three structures were fabricated and tested at 2450 mc:

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>S-1</th>
<th>S-2</th>
<th>S-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyl diam., 2R, in.</td>
<td>5.570</td>
<td>5.896</td>
<td>6.822</td>
</tr>
<tr>
<td>Disc diam., 2h, in.</td>
<td>4.448</td>
<td>4.972</td>
<td>5.974</td>
</tr>
<tr>
<td>Wash diam., 2K, in.</td>
<td>3.948</td>
<td>3.874</td>
<td>3.810</td>
</tr>
</tbody>
</table>

In every case:
- Cyl length, t_c = 1.834 in.
- Wash thin., t_w = 0.150 in.
- Disc thin., t_d = 0.574 in.
- g/L ratio = 0.6
- Nose Cone, θ = 3°

For these models the following properties were determined:

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>v_g/c</th>
<th>K</th>
<th>(r/Q)_{eff}</th>
<th>G</th>
<th>Z_0</th>
<th>Wg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>0.76</td>
<td>0.593</td>
<td>3.11 c</td>
<td>0.593</td>
<td>22,000</td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td>1.02</td>
<td>0.69</td>
<td>0.70 c</td>
<td>0.70</td>
<td>41.7</td>
<td>0.82</td>
</tr>
<tr>
<td>S-3</td>
<td>1.36</td>
<td>0.69</td>
<td>0.69 c</td>
<td>0.69</td>
<td>4.11</td>
<td>0.39</td>
</tr>
</tbody>
</table>

v_g/c is normalized group velocity
K is the coupling coefficient
\((r/Q)_{eff} \) is the effective r/Q
G = (v_g/c)²/V_g/c is the normalized group velocity
Z_0 is the series impedance

At this point there was no object in continuing to increase the cylinder diameter because the Brillouin diagram showed the r-mode was dropping down to the m/2-mode (Fig. 8). In addition, the washers were so thin that the possibility of cooling them by inside water passages appeared to be impractical. The values given in the table above are only comparable to those given by Andreev since the disc thicknesses were designed to be thin as in the R1 model. Some indication of the usefulness of the structure is ordinarily given by the product (m/2) (r/Q)(c/v_g), the series impedance of the structure. Because of the high energy velocity, the structure appears to be of little use; as a traveling wave structure it is of no use (a typical value of series impedance is 20 W/sq in S-band), but it is a consequence of the intended mode of operation (resonant) that this unusual structure has great usefulness.

Because of the necessity of obtaining a value of Q, in the L-band study aluminum models were investigated and the final model (best structure) was brazed and copper plated. This best version had the dimensions:
- Cylinder length, t_c = 6.030 cm
- Cylinder diameter, 2h = 34.772 cm
- Disc length, t_p = 5.501 cm
- Disc diameter, 2h = 30.774 cm
- Washer diameter, 2K = 18.144 cm
- g/L ratio = 0.60
- Nose cone angle = 30°
- Beam aperture diameter 2t_h = 2.283 cm
- Geometrical periodic length L = 11.531 cm

REFERENCES