

STATIC CORREIATIONS IN SEFWDYYYE POLYMER SOLUTIONS* by
D_{f} W. Schaefer
Sandia Laboratories ${ }^{\dagger}$, Albuquerque, New Mexico 87185 and
R. W. Hendricks

Oak Ridge National Laboratory ${ }^{\ddagger}$, Oak Ridge, Tennessee 37830

Introduction

Static correlations in polymer solutions may be conveniently characterized using small angle x-ray scattering (SAXS). In this work, we report SAXS measurements of the concentration dependence of the correlation range, ξ, in semidilute solutions of polystyrene in butanone, a marginal solvent. The purpose of the work is to verify that ξ scales with concentration $\mathbf{C}\left(\xi_{-} \mathcal{C}^{-X}\right)$ and to compare the static scaling exponent x with the dynamic scaling exponent measured by light scattering methods.

Static correlations in polymer solutions are represented schematically in Figure 1, which shows the concentration dependence of a "characteristic length" associated with monomer-monomer correlations. In dilute solution, the polymer chains are widely separated so monomer spatial correlations extend for distances comparable to the radius of gyration R_{G} of the individual chains. At a critical concentration C^{*}, however, the chains begin to entangle and the correlation range becomes concentration dependent. In this semidilute regime(1) correlations within a polymer chain are "screened out" due to the presence of other chains. A considerable body of evidence $(1,2,3)$ indicates that ξ scales with concentration $\left(\xi \sim^{-x}\right)$. In very concentrated or bulk systems the screening length becomes comparable to the monomer dimension I and the scaling concept breaks down.

More detailed analysis shows that an exponential spatial correlation function is expected in the semidilute regime(1). That is, if $\delta C(\underset{\sim}{x})$ the fluctuation in monomer concentration at point $\underset{\sim}{r}$, then

$$
\begin{equation*}
\langle\delta \mathrm{C}(\underset{\sim}{r}) \delta \mathrm{C}(0)\rangle \sim \exp [-r / \xi] \tag{1}
\end{equation*}
$$

The static structure factor $S(K)$ measured by SAXS is the Fourier transform of Eq.(1):

$$
\begin{equation*}
\mathrm{s}(\mathrm{~K}) \sim \frac{1}{\mathrm{~K}^{2}+\xi^{-2}} \quad \text { MNDI? } \tag{2}
\end{equation*}
$$

where K is related to the scattering angle θ and incident wavelength $\lambda(K=2 \pi \theta / \lambda)$.

The experiments were performed in long slit geometry on a Kratky camera with a one-dimensional position sensitive detector(4). Using weighting function theory(5) the slit-smeared intensity $J(K)$ for this system becomes:

$$
\begin{equation*}
J(K)=\frac{A}{\left(K^{2}+\xi^{-2}\right)^{\frac{1}{2}}} \tag{3}
\end{equation*}
$$

*Supported by the U. S. Department of Energy under Contract AT(29-1)-789. with Sandia and W-7405-eng-26 with Union Carbide Corporation.
$\dagger_{\text {A U. S. Department of Energy Facility. }}$
Foperated for DOE by Union Carbide Corporation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
where A is an apparatus constant. Therefore, $\boldsymbol{\xi}$ can be obtained from the slope and intercept of J^{-2} vs. K^{2}.

Results

Figure 2 shows J^{-2} vs. K^{2} for a typical sample. Although the signal to noise is poor, it is clear that Eq. (3) is obeyed within error. The data in Figure 2 have been corrected for sensitivity of the position sensitive detector and a background due to solvent scattering has been subtracted. Points near $K=0$ have been dropped because of large errors due to detection of the incident beam. A weighting function of J^{-2} was used in the least-squares straight line fit shown. Data similar to Figure 2 were obtained at five concentrations and two molecular weights. The measured screening length obtained from the data is shown in Figure 3. Within error the data are consistent with the scaling assumption $\xi \mathcal{C}^{-x}$ and ξ is independent of molecular weight M. The scaling exponent is obtained from the slope of the data in Figure 3 with the result $x=.5 \pm .1$.

Discussion

The SAXS results are consistent with dynamical scaling behavior observed by light scattering on the same system.(2) In both cases, M independence and scaling behavior are consistent with the model developed by Daoud, et al.(1). In addition, the static and dynamic exponents are equal within error. The magnitude x, however, is not consistent with measurements (1) in good solvents ($x \cong .75$) or with the predictions of scaling theory (.75〈x(1).

- The model of entangled polymers developed by Daoud, et al.(1) follows directly from the observed properties of the data (scaling, M independence) and the crossover concept embodied in Figure 1. If ξ is to scale with concentration ($\xi \mathcal{C}^{-x}$) and become equal to R_{G} at the entanglement concentra.
 $x=v /(3 v-1)$ follows immediately from the known M dependence of $R_{G}, C *$ and $\xi\left(R_{G} \sim M^{\nu}, C^{*} \sim M^{1-3} \nu, \xi \sim M^{0}\right)$ where v is the excluded volume exponent $\psi=\partial \operatorname{lnR} R_{G} / \partial \ln M$. Taking the Flory value for $v=.6$, the predicted scaling exponent is $x=.75$. This result assumes that the chain displays excluded volume behavior ($\nu=.6$) for distances small compared to ξ. While this assumption is valid to very low M in good solvents, excluded volume behavior is observed only at very high M in marginal solvents such as butanone. In fact, a temperature dependent crossover molecular weight M_{T} can be defined(6) such that excluded volume behavior is observed for $M\rangle>M_{\top}$ while ideal chain statistics $(\nu=.5)$ are observed for $M\left\langle\left\langle M_{T}\right.\right.$ 。

The crossover molecular weight can be estimated by application of the dilute solution theory of Benmouna and Akcasu(7) to the diffusion data of Gabler, et al.(8) to yield $M_{-}=6 \times 10^{4}$. A single chain then can be visualized as consisting of $\mathrm{M} / \mathrm{M}_{\mathrm{T}}$ "renormalized" monomers. The renormalized chain would be expected to show excluded volume statistics for $\mathrm{M} / \mathrm{M}_{\tau}$ > 10 (limiting statistical behavior is expected for a self-avoiding random walk of more than ten steps). It is reasonable to expect, therefore, that in semidilute solution limiting scaling behavine will be observed only for $\mathrm{M}>10 \mathrm{M}$ T or M> 6×10^{5}.

Although the concept of monomer renormalization provides a satisfactory explanation for the observation of different scaling exponents in marginal and good solvents, the magnitude of scaling exponents is still in question since direct applicátion of single chain renormalization along with scaling assumptions leads to the prediction x). 75 in marginal
this prediction, it is clear that contemporary understanding of polymer entanglement in marginal solvents lags that in good solvents.

References

1. M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit. R. Duplessix, C. Picot, and P. G. de Gennes, Macromolecules 8, 804 (1975).
2. D. W. Schaefer, Polymer Preprints 19, 733 (1978).
3. M. Adam and M. Delsanti, Macromolecules 10, 1229 (1977).
4. T. P. Russell, R. S. Stein, R. E. Zedler, R. W. Hendricks, and J. S. Lin, "The Application of a One-Dimensional Position Sensitive Detector to a Kratky Small-Angle X-Ray Camera." Dak Ridge National. Iaboratory Report (in preparation, Oct. 1978).
5. R. W. Hendricks and P. W. Schmidt, Acta Phys. Austriaca 26, 97(1967): 37, 20(1973).
6. B. Farnoux, F. Boue, J. P. Cotton, M. Daoud, G. Jannink, M. Nierlich and P. G. de Gennes, J. de Physik 39, 77 (1978).
7. M. Benmouna and Z. Akcasu, Macromolecules, October 1978.
8. R. Gabler, N. C. Ford, Jr., and F. E. Karasz, Polymer Prints 12, 776 (1971).

CONCENTRATION

Fig. 1 - Characteristic lengths measured by SAXS of polymer solutions.

Fig. 2 - Slit-smeared scattered intensity for a polystyrene in butanone at $23^{\circ} \mathrm{C}$. $\mathrm{M}=390,000, \mathrm{C}=4.9 \mathrm{gm} / 100 \mathrm{ml}$.

C [GM/100ML]

Fig. 3 - Concentration dependence of the static screening length. $M=390,000 x ; M=230,000 \nabla ; T=23^{\circ} \mathrm{C}$.

