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INTERVENTION ADJUSTMENT TO DATA OF THE JGINT PETROLEUM REPORTING SYSTEM

1.0 INTRODUCTION

In January, 1983 the Joint Petroleum Reporting System (JPRS) was replaced
by the Petroleum Supply Reporting System {(PSRS). The PSRS integrates petroleum
data coilection and includes all the previous weekly, monthly and annual
reporting forms. Prior to January, 1983 the Joint Petroleum Reporting System
(JPRS) contained diverse data relating to crude oil, and its refining,
transport and storage, and also containing data relating to other U.S.
petroTeuﬁ products. The system was centered around the four monthly data
collection forms listed in Table 1. The table also shows the identification
numbers of previous and current forms ahd the dates when they were
administered. Since the data used in this report end in December, 1982, only

the JPRS forms are considered in the foliowing.

TABLE 1. JPRS Forms by Reference Number and Date of Implementation

Title 1983 1979 to 1982 1975 to 1979
Refinery Report EIA-810 EIA-87 FEA-P320-M0
Bulk Terminal Stocks of EIA-811 EIA-88 FEA-P321-M0
Finished Petroleum Products
Pipeline Products Report EIA-812 ETIA-89 FEA-P322-MO
Crude 041 Stocks Report EIA-813 EIA-90 FEA-P323-MO

The above forms are used to obtain monthly data on receipts, storage,
production and shipment from refiners, storers and transporters of petroleum
products and ¢rude 0il and to obtain some information on company cperations and

geographical origin of crude oil. The data collected through the JPRS were
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used in such things as the analysis of supply problems and the estimation of
the volume of petroleum products supplied for domestic use. JPRS thus produces
data that is used as a basis for many policy and regulatory decisions. Many

EIA publications are based on JPRS data, including:

DOE/EIA-0008: "Quarterly Report to Congress: Energy Information"

DOE/EIA-CO11: "Monthly Petroleum Status Report"

DOE/EIA-0035: "Monthly Energy Review"

DOE/EIA-C105: "Availability of Heavy Fuel Qils by Sulfur Levels"
?2%2513183?8: "Crude Petroleum Products and Natural Gas Liquids”
DOE/EIA-0115: "Supply, Disposition and Stocks of A1l Qils by States by
{also 0116) County, 1978"

DOE/EIA-C173/2: "Annual Report to Congress; Volume Two: Data"
DOE/EIA-0208: "Weekly Petroleum Status Report"

The four surveys in JPRS collect information at different terminal points
or nodes in the petroleum industry and information relating to one type of
product may be collected on more than one form., EIA-87, Refinery Report,
contains information on production, processing, supply and disposition of
petroleum and petroleum products. EIA-87 collects data specifically for Puerto
Rico, Guam, Virgin Islands and the Hawaiian foreign trade zone. EIA-88, Bulk
Terminal Stocks Report, deals primarily with the inventories of petroleum
products at bulk terminals. EIA-9D, Crude 07l Stocks Report, records the
inventory of crude oil stocks. The inventories of petroleum products in
pipelines is contained in EIA-89, Products Pipeline Report. A flow diagram
illustrating nodes in the distribution of petroleum products and the JPRS col-

lection points is given in Figure 1,
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Since the JPRS survey forms collect data at different nodes, the sampling
frames for each form are separate, Moreover, for any one form, the respondents
also differed over time since sampling frames were revised as companies
entered, merged or went out of business. Table 2 compares the number of
respondents as of June 1982 (as quoted in the JPRS system documentation
prepared by Orkand Corporation) and in 1978 [as quoted in an evaluation report
by Transportation and Economic Research Associates, Inc. (TERA}].

As changes were implemented into the survey forms, the frame of
respondents occasionally was modified. Sometimes new companies were added to
the survey forms without changing the forms. Thus, it is to be expected that
the JPRS data series have changed over time. In the following paragraphs, some
of these changes and their expected effect on the data series are discussed
further,

There are several ways in which data series such as those collected by the
JPRS may change over time as follows:

1.) Respondents may be added to or deleted from the sampling frame.

Deletion may happen because respondents drop out of the survey (due

to plant shutdowns, mergers with other companies or with components

of companies, etc.). As additions, approximately 100 bulk terminals

were added to the frame of the EIA-88 forms in 1977; blending

stations were added to the frame of EIA-87 in 1981 and 1982.

2.) Changes in energy supply, demand or transportatioh modes may impact
the values reported, although the survey forms or the frame have not

changed. For exampie, opening the Alaskan pipeline in 1977

substantially escalated reporting of crude oil stocks from Alaska.
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TABLE 2. Number of Respondents by Date to
JPRS Survey Forms

Number of
Respondents/Month
1982 1978
EIA-87 353 319
EIA-88 178 182
- EIA-89 78 77
EIA-30 151 337

3.) The survey forms may be modified to correct for such things as
misinterpretation, vagueness in wording or redefinition of products.
For example, the country (if the origin of stocks was foreign) and/or
state (if domestic) of origin of crude oil stocks often were not
known by respondents to EIA-87 and EIA-90. Therefore, the 1981
version of EIA-87 and EIA-90 no longer requested this information.
4.) Procedures for computing quantities derived from the data collected
on the forms may change. An example may be found in the way in which
an apportionment of crude burned as fuel o0il was made to residual and
distillate fuel o0ils. In 1981 this adjustment was discontinued, since
the relevant data were collected directly from that time on,
This report deals specifically with changes made to the survey forms
in January 1981 and the resulting changes to the data series. Maturally, when a
series has changed at some time point, the data after the change are no longer
comparable to those before. In many cases, though, comparisons are desired
that use pre- and post-intervention data as a series. It is thus necessary to
have a methodolgy for "updating" the older data so that such comparisons can be

made validly. To produce this methodology, the particular intervention must be
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modeled. However, when'attempting to analyze one particular intervention,
other types of interventions must be considered also. If effects of other
interventions can be modeled, the overall variability of the series can be
reduced and the intervention of interest can be better isolated. Thus, in the
next section, we discuss (in addition to the format modifications of the forms)
the trends and changes noted in the JPRS since January 1976 to December 1982.
The year 1976 was chosen since it corresponds to the first year for which
microdata are computerized in a "universal” format in the JPRS master files.
We will discuss, in particular, changes to the data series for inventories of:
a.) motor gasoline, b.) distillate 0il, ¢.) residual fuel 0il and d.) crude
0il. These are the series studied in detail in subsequent sections of this

report,
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2.0 CHANGES IN THE JPRS

Since 1976 there have been several changes to the JPRS and in the
petroleum industry as monitored by the JPRS that have affected the data series
collected by forms EIA-87, EIA-88, EIA-89 and EIA-S0. For instance, the
Alaskan pipeline was completed in 1977, thus during the last six months of
1977, crude oil production in Alaska, as reported by the JPRS, jumped to an
average of 737,000 barrels/day from 186,000 barrels/day. However, this report
will focus on the major changes made to the JPRS in January, 1981,

In January 1981 several changes were made to the JPRS forms. These
changes were made in response to an analysis of JPRS data, Federal Highway
Administration (FHWA) data, and data on petroleum products from other
external sources. It was concluded that changes had taken place in the
petroieum industry and that these needed to be reflected in the EIA survey
forms. In particular, the changes affected motor gasoline, distillate,
residual fuel and crude oil, however, only the inventories of motor gasoline
and crude oil should have been directly affected. These are discussed in

greater detail in the following sections.

2,1 CHANGES FOR MOTOR GASOLINE

The changes to the survey items relating to motor gasoline were
implemented after noting that the differences between JPRS and FHWA estimates
of volume supplied for domestic use were steadily increasing. Prior to 1979
JPRS estimates of motor gasoline supply had been about 2% lower than those for
FHWA. However, in 1979 the difference increased to about 4%, and in 1980 to

about 5%, In May 1980 estimates by two other EIA surveys were also higher than

2.1



those of JPRS; P-306 exceeded JPRS supply estimates by an average of 3.2%,

EIA-25 by an average of 3.B%.

1.)

These discrepancies were attributed to two causes:

The reported production of motor gasoline in refineries did not
include blending component receipts which were blended into motor
gasoline; e.g., butane or petrochemical feedstocks. These were
treated as intermediate products and were not reported as motor
gascline. In many petrochemical plants, gasoline blending stocks
were treated as a petrochemical processing byproduct and were sold to
refineries which blended them to make gasoline. These receipts of
intermediate products that were blended into finished gasoline were
therefore not reported.

Leaded motor gasoline was produced at downstream blending stations by
adding tetra-ethyl lead to naphthas and butanes to raise the octane
level. Environmental Protection Agency {EPA) regulations allowed the
product of these stations to have five times as much lead content as
the products of refiners, It was hypothesized that blending stations
were taking advantage of these lead provisions and producing
significant amounts of gasoline. The JPRS survey frame did not
include blending facilities and thus would have missed their
production and their stocks.

The following changes were made to JPRS to deal with the above issues:
A new line "Gasoline Blending Components" was added to EIA-87 and
gasoline was reported separately as leaded and unleaded.

The open 1input column was expanded and respondents were instructed

not to report biending components as unfinished oils. The open input
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column also addressed the criticism that JPRS questions were oriented
tﬁward intended use rather than physical characteristics. In
addition, companies were asked to report gross production and inputs.
Thus a net production number was calculated instead of being reported
directly by the companies.

3.) Many blending stations were added to the survey frame in
January 1981. These accounted for an increase of about 2 to 3% in
estimates of motor gasoline supplied for domestic use. As they were
identified, more blenders were added: one in June 1981, four in

October 1981 and nine in January 1982,

2.2 CHANGES FOR DISTILLATE AND RESIDUAL FUEL OIL

There were no specific changes in JPRS survey forms relating to distillate
and residﬁa1 fuel oil. However, in 1981 an adjustment formerly used to correct
for a possible imbalance between unfinished oil supply and disposition was
discontinued. When one refinery reported production of distillate or residual
fuel oil and shipped it to another refinery, the latter refinery might have
reported it as unfinished ¢il at receipt. This same fuel oil was then input
and reprocessed for use or sale and was reported as whatever was produced.

This practice produced a difference between supply and disposition of
unfinished o0il. Inputs to refineries, as reported, exceeded the reported
supply. The adjustment mentioned earlier involved allecating 1/3 of this
difference to residual fuel oil and 2/3 to distillate, Since this could not be
supported by empirical evidence and since the reporting of inputs by product

was intended to eliminate this difference, this adjustment was discontinued.
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Since the series under consideration in this study deal with estimates of
stocks rather than production and inputs, this data adjustment issue was not

relevant to the major interventicn adjustment analyses.

2.3 CHANGES FOR CRUDE OIL

In January 1981, while the motor gasoline changes were introduced to JPRS
forms, another change was implemented to items relating to crude oil in EIA-87
and EIA-90., Many companies did not know the origin of crude 0il held by them
in different locations. Thus, EIA-87 and EIA~90 deleted the state of origin of
domestic crude 0il, and EIA-87 deleted the country of origin of foreign crude
and unfinished oils. Alaskan crude o0il in transit by water was reported
separately on EIA~90 beginning in January 1981. In addition crude oil stocks
at refineries had been reported on both EIA-87 and EIA-90 and the published
data were taken from EIA-90. In January, 1981 refinery stocks were deleted
from EIA and the published values were taken from EIA-87. This resulted in

some confusion,

2.4 0OTHER CHANGES T0 JPRS

There were several other changes implemented to the JPRS in January 1981.
Some of these did not deal specifically with the data series under
consideration. However, these changes are included here for completeness.

1.) Upon checking operator names through a list prepared by the Maritime
Administration, frame deficiencies were noted in the frames for
EIA-88 and EIA-90, that is bulk terminals and crude stock holders.
Marine terminal operators from this Tist, which were not introduced
previously, were added tc EIA-88 and EIA-90 after checking their
eligibility.
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2.) Crude o1l stocks in transit by modes of transportation other than

3.)

pipeline provided a vague category. Respondents indicated that they
did not know specifics about shipment and expected arrival dates.
Most did not report in-transit stocks (mostly crude o0i1). This Tead
to underestimating the stock level. A suggestion was made to combine
in-transit stocks by mode into an overall category of "total
estimated stocks in transit other than by pipeline".

On EIA-87 the "shipments" category was separated from "refinery fuel
use and Tosses". This was because it was observed that the latter
were absorbed in production and were not reported. Shipments were,

in fact, the only data items reported for that question.
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3.0 THE SERIES TG BE ANALYZED

This section outlines the data series studied in the intervention
analysis. Included in this section is a general description of each series.
As noted previously, the four sefies under consideration are reported inventory
levels of motor gasoline, distillate fuel o0il, residual fuel oil and crude oil.

1.) Motor Gasoline: Total motor gasoline consists of finished leaded and
unleaded motor gascline, blending components of motor gasoline, and
gasohol. Finished motor gasoline is composed of volatile
hydrocarbons with or without additives which are blended to form a
fuel. The 1981 survey forms do not provide a “"total" for motor
gasoline as the previous forms did. Previous forms did not provide
the needed detail. Thus, the four components are tracked after 1981
in order to derive a total,

2.) Distillate Fuel Gil: Total distillate fuel 0il consists of petroleum
fractions and iné]udes No. 1 and No. 2 heating 0ils, Ne. 1 and No, 2 |
-diesel fuel 0ils and No. 4 fuel o0il. No. 1 o0ils are used in
vaporizing pot-type burners. No. 2 0ils are used for domestic
heating and in industrial burners. No. 4 ¢il is used in commerciail
burners which do not have preheating facilities. In general,
distillate fuel ¢il is used in space heating, as highway diesel
engine fuel, for agricultural machinery and in electric power

generation.
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3.) Residual Fuel 0i1: Residual fuel o0il includes No. 5 and No. 6 fuel
0ils and is used for space heating, industrial purposes and in
electric power generation.

4,) Crude 0i1: Crude 0il consists of a mixture of hydrocarbons which are

in 1iquid phase while in underground reservoirs and which remain in

1iquid phase under atmospheric pressure after passing through surface

separating facilities.

The components for these four series exist in several locations on Survey
Forms EIA-87, ETA-88, EIA-89 and EIA-S0.

These series have attracted attention both from policy makers and from the
general public. Stocks of these four series are tracked weekly in the Weekly
Petroleum Status Report, showing the actual data as well as plots of average,
range, minimum and seasonal patterns.

Production and refinery stock levels from these series for 1976-1978 were
submitted for preliminary analyses in the study validating the Joint Petroleum
"Reporting System {JPRS) (ORNL 1980). MWithin the EIA, autoregressive integrated
moving average (ARIMA) modeling and seasonal adjustment using the X-11 method
have been applied, particularly to crude oil data dating back to 1967.
Seasonality has been noted for data relating to distillate and residual fuel
oil. The "State of Data” report, a study in progress at EIA for assessing
various EIA data series and comparing them to external sources, also used
estimates of total volume suppiied to the domestic market for motor gasoline,
distillate, kerosene and residual fuel o0il. This study showed that motor
gasoline monthly estimates of price as well as volume had relatively Tow
varijance a.) for data representing the pool of respondents per month and

'b.) for comparisons with external data sets. An exception was noted at
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intervention points. On the contrary, estimates for residual fuel oil were, in
comparison, unstable from month to month. The two series (motor gasoline and
residual fuel oil) thus represent series with essentially different
characteristics over time.

As discussed previously, the 1981 motor gasoline interventions were major;
yet the series were relatively free of intervention prior to 1981 in terms of
changes related to items in the survey forms. Similarly, the changes in 1981
could have affected inventories of crude oil. However, the series for residual
fuel o0il1 and distillate fuel o0ii should not have reflected the 1981

interventions.
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4.0 INTERVENTION ANALYSIS TECHNIQUES

O0f the many intervention analysis techniques only a few appear promising
for the probiem at hand., This section furnishes a short description of several
intervention analysis techniques and comments on their potential applicability

to the inventory data series.

4.1 BOX-JENKINS/BOX-TIAQ MODELING AND INTERVENTION ANALYSIS

This method for time-series modeling and intervention adjustment is
outtined in the references by Hibbs (1977}, Box and Tiao (1975, 1976) and Tiao,
Box and Hamming (1975). Time series modeling can be performed on the EIA
computer using available computer routines in the Statistical Analysis System
(SAS) Econometric Time-Series Package (ETS).

A classical analysis by these methods proceeds by modeling the pre- and
post-intervention series and testing if there are differences between the two
séts of parameters. This requires that there be considerable amounts of data
both before and after the intervention. 1In the present situation this is not
the case, since there are only 60 observations before the intervention and
24 after,

As an alternative, the full series may be analyzed with transfer function
techniques, using an additional intervention-related "dummy variable". Based
on knowledge of the intervention, a model is fitted and tested for
appropriateness. The process is then repeated until an acceptable model is
obtained. In general, a considerable amount of data also is required for this

approach to be successful.
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Box and Tiao (1976) illustrated one method that seems particularly
appropriate for the JPRS data. A model is fitted to the pre-intervention data
and, based on this model, forecasts are made for the post-intervention period.
The residuals from the forecasts are used to test if the original model fits
the post-intervention data. If the test indicates that a change has taken
place, residuals can be computed from a class of possible post-intervention
models and compared to the residuals from the forecasts. Patterns in the
residuals suggest possible changes, and least squares can be used to estimate
the magnitude of the changes.

To.be more specific, suppose that some known change occurs after time t0
so that there are observations Zys cens ztO before the intervention and

Zy 410 ores 2y after the intervention. Further, suppose that the
)

pre-intervention time series is modeled as

o(B) w, = 6(B) a, ' (1)
where the W, are some differences of the zt's,
- pd P
(B} = 1 - 1B - 9B - ... - ¢pB ,
=1 - _ a.pe _ _ o no
8(B) = 1 slB ezB - qu

and where B is the backshift operator defined by BX, = X, ;. It is assumed
that ¢(B} and 8(B) have all of their zeroes outside the unit circle and have no
common zeroes and that {at} is a sequence of independent, identically
distributed random variables with mean zerc and variance 02 (white noise).

Note that some of the ¢1's or ei's may be zero or otherwise restrained, so that
the model could be a multiplicative seasonal model. By performing the
indicated divisions (at least formally) the above model may be written

alternatively as
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2, = ¥(B) a, | (2)
or

n(B) z, = a, . (3)

If the ;t(l) is taken as the minimum mean-square error forecast of Wil given
Wis eees Wes then it is well known that
LA wt(l) =

that is, the a, are also the one~-step-ahead forecast errors.

t
Following Box and Tiao (1976) an overall statistic, Q, to test for an
intervention can be derived based on a standardized sum of the a?. Q is

defined as
2 & 2

where t0+m = N and where o is the standard deviation of the residuals from the
pre-intervention périod. The appropriateness of the model for the
post-intervention period may be tested by comparing the value of Q to a
Chi-square with m degrees of freedom. When the number of pre-intervention
observations, n, is small, Box and Tiao suggest that the value of Q/m be
referred to an F table with m and N - p degrees of freedom. This test is also
equivalent to an appropriate test for intervention applied to all of the lead 1
forecast errors for 1 =1, ..., m.

The statistic Q may be decomposed into components tco study separate
effects of different types of hypothesized interventions. For example the
following situations may be examined: a.) an overall change in mean Tevel, and
b.) a change in one or more of the stochastic parameters. The authors suggest

that the first type of effect may be examined by substituting
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2y - BXy (5)

for z, in {3). B is a parameter to measure the shift in mean and the x, are

t

indicator variables related to the intervention. Thus, the x, are 0 before the

t

intervention and are 1 after. The values of rr(B)xt =X, fort = t0+1, eees N

t
are compared with the series of one step forecast errors, a5 to determine if
any patterns match.

A change in a stochastic parameter is explored by differentiating the
error series with respect to the given parameter. For example, if it is

desired to examine the.parameter 81> the series

-3a
Wit = 3% (6)

is formed for t = totls <ees N. This series of predicted residuals is compared
with the one-step forecast errors to look for patterns. After possible
interventions have been identifed with these methods, the one-step forecast
errors can be regressed on the appropriate Xt's and Ht's to estimate the
magnitudes of the effects.

That is, an approximate model for the at's, assuming one level parameter

and two stochastic parameters is
- 1 - ! -
ap = Xyt (8 - 8p) Wy + (85 - 0y) Wy + 1y
where the Xt's and Hit's are as above, the n, are some iid errors and the
primes indicate post-intervention parameter values. Thus this model may be

fit by least squares to produce B, ei - 8y and Bé - 8 which can then be used

to estimate the post-intervention stochastic parameters,
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4.2 ANALYSIS BY CRITICAL SURVEY ITEMS AND BY COMPANY TYPOLOGY

A second procedure for intervention adjustment is to compare the change
attributable to each of the "critical" survey questions with the overalil change
noted for estimates of petroleum supplied for domestic use. "Critical" survey
questions may be defined as those that were affected most by the intervention;
e.g., those which were added after 1981 or those whose definitions or structure
were significantly modified. Some of these were described previously.

The structure of these analyses may involve the following: a) an analysis
of variance of pre- and post-intervention data indexed by time, responses to
specific survey items and estimate of total volume of that product supplied for
domestic use, and b) a simultaneous check of which specific companies responded
at each time period to insure that overall shifts in pattern are not due to a
respondee profile of additions/deletions from the frame. Then, the adjustment
for intervention would be item-specific values, and adjustment would be only
for those jtems which significantly impact total volume.

An analysis by "company typology" is also possible. If there are certain
types of companies or certain geographical regions to which changes can be
attributed, intervention adjustment would be feasible only for these subsets of
the JPRS data.

Allusions to this type of analysis are made in the paper by Turk (1978).

4.3 REGRESSION-BASED FRAMEWORK USING SAS

This approach would involve implementing the SAS procedure REG to estimate
the intercept and slope of the linear regression line fitted to the pre- and
post-intervention data. Then, the residuals from regression are analyzed to

detect abrupt or gradual changes in the series attributable to the
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intervention, The size of the intervention adjustment would be detenninéd
using the coefficients for slope, intercept and the average magnitude of the
residuals in the proximity of the intervention.

The difficulty with this approach lies in the fact that successive data
are autocorrelated. Also, it is difficult to establish a cutoff for
intervention in the case of noninstantaneous interventions. The concept of a
"washout" as used in clinical trials for pre- and post~intervention would not
be feasible.

Thus, this method appears to offer no advantages over Box-Tiao modeling.

4.4 MODELING AND ADJUSTMENT FOR INTERVENTION USING CTSS

This criterion is based upon deriving an index of pre- and
post-intervention change using a summation procedure obtained from transitions
in successive observations. The Cumulative Transitional State Score {(CTSS) and.
its characteristics are described in the paper by Gardenier (1979). The
"states" correépOnd to partitions in alternative control regions; the regions
are derived from the distributional characteristics on the previously observed
trends.

The methodology of CTSS is reminiscent of cumulative sum (CUSUM)
techniques used in quality control. However, CUSUM techniques aggregate
deviations from a long-term process average while CTSS sums transitions between
successive states. If proximity to an overall process mean is to be maintained
and is considered favorable, then the transition toward the mean carries more
weight than deviations away from the ﬁean. The sum CTSS would yield a summary

index for the post-intervention or post-stabilization change.
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The magnitude of the intervention would be derived using the CTSS score

and the range of the boundaries for the alternative control regions.

4.5 CAUSAL ANALYSIS OF INTERVENTION THROUGH STRUCTURAL EQUATION MODELS

These procedures are discussed in the bibliography references by Hibbs
(1977) and Zellner and Palm (1974). The advantage of structural equation
models is that they provide a semi-causal analysis by relating exogenous policy
parameters or interventions to endogenous target variables. If data could be
obtained for variables associated with the interventions, structural equation
models would provide a very useful approach,

A serious difficulty to the use of structural equation models is the Tack
of external data of a time-series nature which could be incorporated into the

mode].

4.6 METHODS BY AKAIKE AND GRAY ET AL. FOR DIRECT ESTIMATION OF p, d, g

These methods provide a way of directly estimating the parameters of
autoregressive (p), differencing (d) and moving average (q) parameters of the
autoregressive integrated moving average {ARIMA) models. In themselves, these
methods do not provide a separate method of intervention adjustment, but they
do provide a different approach to ARIMA-based methods. The TIMSAC-78 programs
that implement some of the techniques of Akaike are available on the EIA
computer.

An advantage of these procedures is that they should save time.
Furthermore, they eliminate the visual inspection of the autocorrelation and
partial autocorrelation functjons that is typically used to select the most

appropriate model parameters.
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4.7 METHODS TO BE USED ON THE JPRS DATA

Based on the availability of suplementary data, the length of the data
series and the availability of computer programs, the main methods chosen for
analyzing the JPRS data are the Box-Tiao and CTSS techniques. The methods of
Akaike will be used as a check of the models obtained through Box-Tiac modeling
procedures, The next section contains the results of these Box-Tiao analyses.

The results of the CTSS modeling are contained in Section 6,
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plot of stocks divided by the number of companies, should not show the
downturn. Since the change is apparent in this plot also (in fact, this plot
is almost identical to Figure 2), the number of companies does not by itself
explain the change.

To examine further the possible effect of the number of companies on
distiilate stocks several methods were tried. Following Bell and Hilmer (1983)

the model
7. = BX, +N, , (7)

where Xt is the number of companies reporting at time t and Nt is an error
series assumed to have some ARIMA structure, was fit by the process:
1, Use the Zt series and autocorrelatiqn function (ACF) to decide on the
differencing required to achieve stationarity, in this case orders 1
and 12,
2. Estimate 8 from the 1east—sduares fit of the model

12)

(1 - B)1 - 812) 7, = 8(1 - B)(1 - BY) X, + ¢, . (8)

where €y is the differenced error series.
3. Model the residuals ;t from the above fit by standard Box-Jenkins
technigues.
When these steps were performed on the distillate series for times 1 to 84 the
ieast-squares fit of B produced a nonsignificant estimate. This method thus
produced no evidence of a significant effect of the number of companies. After

a discussion of the modeling of the distillate series other attempts at

assessing an effect of the number of companies will be addressed.
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The modeTing of the distillate series proceeded along classical
Box-Jenkins lines. Because of tﬁe intervention after time 60 and the apparent
change at time 49, the series of times 1 to 48 and 1 to 60 were analyzed
separately. The ACF indicated a need for differencing of orders 1 and 12. The
ACF, partial autocorrelation function {PACF) and the inverse autocorrelation
function (IACF) for the differenced series (orders 1 and 12) are given in
Figures 5 to 10. As can be seen, a multiplicative inteqrated movina average
model of orders 1 and 12 is suggested. Several candidate models were
estimated, with the model (0,1,1) x (0,1,1)12 producing the best fit.
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The results of the estimation are given in Table 3.

The ACF and PACF of the residuals indicated no lack-of-fit for either
model; thus, both were tentatively accepted. As a further check on these
models, autoregressive models were fit to the differenced data using Akaike's
AIC procedure to automatically choose the order of the model that minimized the
AIC. For the models given above, we would expect the order chosen to be in the
neighborhood of 13. For the time 1 to 48 series, the order chosen was 14. The

time 1 to 60 series did not behave as well and the order obtained was 1,

TABLE 3. Summaries from Modeling Distillate Fuel 011

Serjes 1 to 48

Differences 1,12

Type Value 5.D. t
MAl -0.726 0.127 -5.,72
SMA1(12) 0.781 0.182 4.28

Residual Mean Square = 54956992
Series 1 to 60

Differences 1,12

Type Yalue S.0. t
MAL -0.740 0.106 -6.95
SMA1(12) 0.760 0.156 4.86

Residual Mean Square = 50379664

However, the plot of AIC versus order exhibited a dip at 13, after which time
it continued to increase. Thus the AIC procedure furnished some evidence to
accept the models.

Before examining the intervention, some other methods were tried to relate
the apparent downturn to the decline in the number of companies after time
point 60. First, using the model developed above for the series 1 to 60, the

one-step forecast error for the times 61 to 84 were regressed on the number of
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companies reporting for these periods. This regression was not significant.
The series 1 to 84 was considered by first modeling the time series and then
regressing the residuals from the model on the number of companies. This
regression was also not significant., Finally, distillate stocks were regressed
on the number of companies and the residuals from the regression examined.
These residuals showed the same structure, i.e., downturn, as the original
series, It was thus concluded that merely the number of companies reporting
does not explain the change in the series. Any possible company "effect" is
more complicated and to begin to understand it would require an examination of
the types of companies reporting before and after January 1981. It could also
be argued that the decline in the number of companies is caused by, rather than
caused, the change in the distillate series. Thus the apparent changes will be
studied in the following.

Since there is not much post-intervention data, the method outlined in Box
and Tiao (19?6) was used to study the possible interventions at 49 and 61. The
Q statistic, described previously, when calculated on the 1 to 48 series for
the period 49 to 60 resulted in a value of 9.62 which is not significant at
even the 0.1 Tevel. However, when calculated on the same series for the
period 49 to 84, Q was 47.55 which is very nearly significant at the
0.10 level. Thus there was a nearly significant change in the series at the
time point 49. Moreover, when the 1 to 60 series was considered, the Q
statistic for the period 61 to 84 is 43.31 which is significant at the .0l
level. Taken by itself this could be interpreted as a significant change in

the data at time point 61.
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Assuming for the moment that the change at time point 61 is "real," can
the nature of this change be determined? Figures 11 to 13 show the X, W1 and
W12 series p10tted with the one-step forecast errors to examine possible
changes in level or in the parameters. These residual plots gave some weak
indication that both the level and the first order moving average term changed,
but when the magnitudes of the changes were estimated with least squares
neither of the coefficients was significant. Thus these methods did not
clearly identify the nature of the intervention.

There is considerable uncertainty as to how the "changes" in the data at
the points 49 and 61 can be interpreted. Recall that the changes in the survey
should have had no important direct effect on the distillate fuel oil data.
Recall, further, that the decision to test the time point 48 was made after
observing the data and noting the apparent change after that time. Thus the
statistical near significance of the change at point 49 should be viewed with
some skepticism. With this in mind, one should.be very reluctant to attribute
the "significant" change at point 61 to any unforeseen effect of the changed
survey forms. Rather, the change at point 61 is better interpreted as a
continuation of a change in the series that Had begun earlier and coincidently

includes the pgint 61.







































the decrease in the number of companies to the general economic conditions at
the time. Many industries that used residual fuel oil were closing or
switching to other forms of energy.

5.3 MOTOR GASOLINE

Total monthly motor gasoline stocks versus month is given in Figure 21,
with month 61 indicated by an arrow. MNote that there tended to be twelve
months between the major peaks and that there was littie evidence to suggest a
change at month 49. However, the early part of the series, months 1 to 25,
appears different from the rest in that there was virtually no seasonal
pattern. This aspect was not examined in detail at this time, but may deserve
some consideration. The series analyzed was the pre-intervention data, times 1
to 60. Figure 22 shows the number of companies used to compute total gasoline
stocks. Note that the intervention at month 61 was very obvious in this plot.

Figures 23 to 25 are plots of the ACF, PACF and IACF for the differenced
series. As before, the ACF, PACF and IACF suggested the need for differences
of order 1 and 12. Since the Bell and Hilmer procedure resulted in no
significant regression of the differenced gasoline stocks on the differenced
number of companies, several other methods were attempted to uncover some
relationship between these two series. First, time series models (to be
discussed later) were fit to the gasoline stocks data for months 1 to 60 and
months 1 to 84. The residuals from these models were then compared to the
number of companies reporting. In neither case.did the plots show any
structure nor was the regression of the residuals on the number of companies
signif{cant. Finaily, the time series of the gasoline stocks divided by the
number of companies reporting exhibits the same structure as the gasoline
stocks series. Thus, any "company" effect on the gasoline stocks is more
complex than just the number of companies reporting.
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AUTOCORRELATIONS
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Several multiplicative models were suggested by Figures 23 through 25.
Many different models were fit in the identification stage of the analysis
including some non-seasonal models. However, the residuals from all non-
multiplicative models exhibited seasonality. Two models appeared promising: a
(0,1,1) x (0,1,1)'% model and a (0,1,0) x (0,1,2)'% model. Both contained a
nonsignificant parameter (the estimation routine would not permit estimation of
either model with the nonsignificant parameter removed) and the residual mean
square of the second model was s1ightly less than that of the first. The
residual ACF's from the two models were about the same, and neither showed a
substantial lack-of-fit. The first mode] was chosen for analysis due to its
comparative simplicity since it lacks the term of order 24 included in the
second model.

The results of the Akaike procedure were ambiguous. The order chosen was
4 and the plot showed a slight dip at order 19. While this did not really
support the model, it was not strong enough evidence to reject the model. More
work on modeling this series might produce a better understanding of its
behavior.

The results of the estimation for the model are given in Table 5.

TABLE 5. Summary from Modeling Motor Gasoline

Series | to 60

Differences 1,12

Type VYalue S.0. t
MA1 -0.237 0.149 - =1.58
SMA(12) 0.755 0.174 4.34

Residual Mean Square = 47901116



Khen calculated for the months 61 to 84, the § statistic discussed
previousty had the value 30.59 which was almost significant at the 0.15 level.
The residual plots, Figures 26 to 28, suggested that the intervention may be
reflected in a change in the MAl parameter, The post/pre change in this
parameter was estimated to be -0.318 and was significant at about the 0.15
level. Thus, an estimate of the post-intervention MAl parameter was "0'555'.
Neither the level change nor a change in the SMAl12 parameter were estimated to

be significant,

5.4 CRUDE OIL

The series chosen for analysis was total monthly stocks at refineries. A
plot of monthly stocks versus time is given in Figure 29 where January 1981 is
marked by an arrow. As can be seen, the data are quite variable with a large
increase between the months 48 to 66, after which time the series seems to have
returned to its behavior before time point 48, This aspect made modeling this
series more difficult. Fiqure 30 plots the number of companies used in
computing the total crude stocks. Figure 29 showed little evidence of
seasonality and no strong indication of the 1981 intervention.

The ACF, PACF and IACF of the differenced series from months 1 to 60 are
given in Figures 31 to 33, The ACF of the original series clearly showed that
a difference of order 1 was required, but that no difference of order 12 was
needed. The same methods as discussed for the gasoline stocks series were also
used to examine any possible effect of the number of companies reporting on the
refinery crude 0il inventory series, The fesu1ts of these analyses were
similar to those for gasoline, That is, no significant effect was found. Thus

modeling proceeded on the raw data series.
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Figures 31 to 33 suggested an autoregressive model for the differenced
data. The best fitting model was a (1,1,0) model. The results of the fit of

this model are given in Table 6.

TABLE 6. Summary from Modeling Crude Qi1

Series 1 to 60

Differences 1,12

Type Value 5.0, t
AR1 -0.304 0.128 -2.37
Residual Mean Square = 32176502

The residuals from this model gave no indication of lack of fit. The
Q statistic caiculated for the time periods 49 to 84 was 259.11. Thus, this
furnished Tittle evidence of an effect of the revised survey forms. However,
the large variability of this series would tend to mask any but the Targest
interventions, and further.analyses could be directed at reducing this
variability. One place to start would be to try to account for the behavior

between months 48 and 66 and thus to remove that source of variability.
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5.5 INTERVENTION ADJUSTMENT

5.5.1 Methods of Intervention Adjustment

In intervention adjusiment the question to be answered is, “"If the present
model {post-intervention) had always been in effect and all other conditions
had been as before, what should the pre-intervention data have been?" For some
types of interventions, methods of adjusting for the change are rather
straightforward, For instance, if the mean level of a series is known to have
changed, and an estimate of the new level is available, it is obvious how to
adjust the past series to obtain data comparable to the contemporary data.
Furthermore, since some measure of the precision of the estimated new level
will most Tikely also be available, error estimates on the adjusted values also
can be produced.

When an intervention affects the stochastic parameters of the model,
however, the techniques for adjustment are more difficult.. Two methods that
are applicable can be summarized as follows:

1.) Use the estimated post-intervention model to forecast the
observations in the pre-intervention time period.
2.} Use the post-intervention model and the estimated pre-intervention

shocks (at's) to estimate the pre-intervention series.

These two are similar in that both use the estimated post-intervention model.
However, the second method takes advantage of the past record also to obtain an
estimate of the random component. Thus, the adjustments should reflect the
past random shocks and should be better adjustments. The first method assumes

total ignorance of the pre-intervention series and produces deterministic
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adjustments based completely on the form of the model. Since this method is
the standard technique used for forecasting time series, there is a
well-accepted method for assessing the variability of the forecasts and several
computer programs for performing the forecasting and estimating confidence
bands for the forecasts are available. Further comparisons of the two

techniques are contained in Table 7.

TABLE 7. Forecasting Versus Adjustment

Forecasting (Box-Jenkins) Adjustment
1.) Assumes parameter estimation errors do not 1.) Has estimates of the
contribute significantly to forecasting shocks (at) available
errors, for the forecast period.
2.) Assumes forecasts depend appreciably only 2.} These estimated shocks
on recent values of the series. have {most 1likely) non-
3.) Assumes variance of forecasts comes only zero expected values.
from lack of knowledge of future shocks 3.) Errors in adjustment
(at's). | come only from parameter
4.) The forecast is E(zt+£!21’ Zys ees zt) estimation errors and
and E(at) is taken to be zero for the the dependence on
forecast period. distant past (unknown)

values of the series.

It should be noted that although commonly ignored in practice, both
estimation and "start-up" errors are present in standard Box-Jenkins type
furecasts also. They are the only sources of error in the adjustment procedure
described above. However, errors in the parameter estimates manifest
themselves not only in the time series model but also in the estimated shocks.

These two techniques will be illustrated on the motor gascline series. As

discussed in Section 5.3 the post-intervention mode] for motor gascline was
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(1-8) (1-8%) z, = (1+0.5558) (1-0.755 81%) a . (7)

Expanding and adjusting the coefficients results in

+ 0.555 a - 0.755 a4 - 0.419 CH (8)

Zt = Zea1 T 212 T P13 T 4413 t+12 1
This expression is used in both methods of intervention adjustment. They

differ in the values used in the a, series. For the first method, the a, are

t
taken to be zero for all pre-intervention periods, that is for months 1 to 60,

and are estimated, by solving for a, in formula (7} above, for months 61 to 84.

t
Substituting the respective values in the above expression produces a recursive
formula for estimating the adjusted series for months 1 to 60. The original
and the series adjusted by the deterministic method are plotted in Figure 34,
The deterministic nature of these adjusted values was evident in the regular
shape of the graph, as was the seasonal effect. It should be noted that this
method results in the minimum mean-square error forecast of the
pre~-intervention series given éﬂll the series from 61 to 84 and expressions for
the variance of any forecast can be derived.

However, in an intervention analysis more is known than just the
post-intervention series. The second method of adjustment that incorporates a
random component attempts to use this increased information. Specifically, the
pre-intervention model was used to recursiveT} estimate a; for t = 1 to 60,

These were combined with the estimated a, for t from 61 to 84 and used in the

t
recursion formuTa. The adjusted series with this method and the original data
are plotted in Figure 35. As can be seen, this method tends to track the data
better than the deterministic method and is, in general, expected to be a

better method of adjusting for an intervention. From the graph it was evident
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that the major differences between the past data and the adjusted data are in

the first 28 months, where the adjusted data were quite a bit greater,

5.5.2 Adjustment Errors

As noted above, the errors of a Box-Jenkins type forecast for intervention
adjustment are well understood up to the assumptions outlined in Table 7.
However for the type of adjustment that uses the estimated shocks, the error
structure is of necessity more complicated since the sources of error are
exactly those taken to be unimportant by the Box-Jenkins procedure. To better
expiain the errors a different form of the models wili be of use.

As in Section 4.1, let Wy denote the differenced data and suppose the wt's

are represented by the stationary invertible model:

$(B) w, = 8(B) a, (9)

where as before B is the backshift operator and the (at) are a series of
independent identically distributed random variables with mean zero and common
variance cg. A surprisingly useful dual form of the model can be obtained by

1

replacing B with B™~ = F, that is F(zt) = z,,9 and by replacing the a 's with

et's where (e.) are also a series of independent identically distributed random

t)
variables with mean zero and variance U§° This "backward" form of the model is

then

o(F) we = o(F) e (10)

and expresses current values of the series in terms of future values of the

series and future shocks. It has the same correlation structure as the
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"forward" model and {s thus appropriate for "forecasting" or adjusting in the
past. Psi-weight and pi-weight forms of the model (10} can be obtained in the
same way as for the standard model.

In the derivation of formulas and calculation methods for the adjusted
values of the pre-intervention series, it is useful to reiterate the steps by
which the model and adjustments are obtained. As above, let Wy and ;t denote
the data and the adjusted values, respectively, after differencing to achieve
stationarity. The pre-intervention data are used to fit a model which can be
written in the form:

1(8) Wy = 5t (11)

or in backward form as
I(F} w, = e, . (12)

The "hat" is used here to emphasize the fact that the quantities are estimated.
When the model (12) is used to produce the estimated "shocks", ;t’ note also
that there is a "start-up" effect. That is; the pi-weights are an infinite
sequence whereas there are only finitely many wt‘s. Thus for t <1l and t > N,
z, and hence w_ are taken to be zero which results in the ét being zero in that

t t
region also.

Once the ét have been obtained, the estimated post-intervention model (in

psi-form) is used as follows to estimate adjusted data:

- " - _
L v(F) B¢ t= to, to -1, ..., 1. {13)

Thus from (12) and (13):
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T
= LW (14)

As previously noted the adjusted values so computed are estimated values
since there are only finitely many wt's and since there are estimation errors
in the ;k's. Let ;k stand for the "true" differenced adjusted values and
assume without loss of generality that E;t = 0 and E;t = 0, In analogy to

{14):

mt = Eg% LI (15)

Thus from {14} and (15);

- - -t . o
we =W = 3 (v v e )t  yw
t t b k™ t+k k™ t+k KeNot+] k™ t+k
(16)
N-t w
= E: R D DR
k=0 ki “t+k Kk=N+] k-t "k
The mean-square error in the adjusted values can thus be written
~ - 2 N"t -~ 2
E(Ht - mt) = E kgo (Yk - Yk) Ht_l_k
(17)

2
+E| D v W + 2E Z Z"f }
{k= k-t "k } k=0 t+k k1 k-t%

N+1
The expression (17} is generally intractable computationally. To derive a
more useful approximation, note that for £ periods (¢ =0, 1, ..., to—]) before

the intervention point to, the true adjusted value of the original,
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undifferenced series can be written as:

z = 3 ¥e
t-t & k t,-L+k (18)

where the ?k's correspond to the post-intervention series. Assuming that the
estimation errors in the psi-weights contribute little to the error and that
the dependence on far future values is slight, an "estimated" adjusted value is

then

o

ES - ~

= e + ¥.e +...t+t¥e + D Ve . (19)
t -2 t -2 17t -2+1 L7t aghp KO EgmLtk

"Estimated" is in quotes since the estimated adjusted value is not and could
not be calculated in this way. This form, however, permits the calculation of

the mean square error of estimation. The error of adjustment is then

2 R .
€ =z, _, -7, , = v, (e - e ), {20)
t -2 t -2 t,-2 égs k 7t -2k t itk
and therefore, the mean-square error of adjustment will thus be approximated by

£l =5 E(e - e )2
-t &g K ot mark T St -aek

(21)

[t is interesting to compare this error of adjustment to the usual forecast
error variance in the Box-Jenkins procedure. .Recall that for the Box-Jenkins

procedure the forecast error for a 2 + 1 Tead forecast would be
é&
¥ a, . (22)
ko Kk

Thus the forecast variance is

2 2
gg ¥ 9, - (23)

~
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Mote that the expression (21) would reduce to this if all of the ek's were
taken to be zero. Furthermore, since it is reasonable to expect that the ek's
will be positively correlated with the ek's, the mean-square error of
adjustment should be smaller than the Box-Jenkins forecast variance.

It is now necessary to assess the magnitude of E(ek - ék)z. Since the

~

et's are computed from the pre-intervention model, (12) s used to write:

t -t
-~ 0 -~ _i
e, = 1- 1§1-"k Foowy (t=1,2, ..oy t-1) . (24)
Thus, ignoring the dependence of the et's on far future values of the wt‘s
. -t .
et - et = .igl (1T_l -' Tri)wt+_i s (25)
and the mean-square error is then for t = 1,2,...,t0-1.
to-t 2
-~ 2 _ ~
which will be approximated by
to-t t -t t0 -t
fle, - 60 ¢ X Elny-7)2 o242 L Y E(ny -7, T ry = 1) cov(wy )
i=1 i=1 j=1+ L
(27)
to-t t -t t -t
= MW +2 §: E: .
jop 1T 15551 13

where T and W are the covariance matrices of the pi's and the w's,

respectively and the ij subscript indicates the 1jth term, For t = t0 we will

- ét ) = 02' Note that for the above approximation it was assumed
0. 0

that the I and Wy were independent, which is not precisely true since the m's

take (e
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are estimated from the w's, Furthermore, since the w's form a stationary
i d wri ..o= R{i-4)
series, we coul rite N1J R{i-3)
W is determined completely by the form of the pre-intervention
model, whereas

w(B) =1+ o B+ ... = g B ; g . (28}

Thus I can be obtained by propogating the parameter estimation errors. That
is, any ms is some function of the vector of parameters, say B' = (81,82,..

Writing

.= f
m; = T(8) |
and expanding with a Taylor series about the estimated parameters

g = (Bi, 82,...,82) gives

ere s 2 Lo gy 1% - (8,-8,)°
J J L= 3B. ‘B iTi =~y B i "
i=1 4§ = )
$r B (5506,
+ . {B.-B.){B_-B,} + higher order terms.
=1 k=741 asiaﬂk g o 1 k 7k

Assuming that’the distribution of é is symmetric about é and that the higher

order terms can be ignored, the mean square error of T can be estimated as

P
YA af
E(wj-ﬂj) = -E [-7;
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and the covariance of “j and %, as

P P A a
E('n -7 (nk-wk) > 3 %l —g—g— COV(Bi,BE)s

i=1l =1 i 3 Bi
where = a(B8).

It is Tikely that in any application only a few of the I terms will be
required,

This procedure for calculating the adjustment errors will be illustrated
on the motor gasoline series. Since the model for the pre-intervention motor

, 1)1

gasoline series is a (0, 1, 1) x (0, 1 series with estimated parameters

é = ~0,237 and 6 = 0.755 and cg = 49701116 the covariance structure of the W
is
- R(D) = W.. = {1 + 82)(1 + &)o 2 = 1.65821 ag
_ 22y 2 _ 2
R(L) = Wy 4y = -8(1 + 8%)c o7 = 0.37210 o
R(11) = W = 8002 = -0.17894 o
i,i+ll - a
_ "2y 2 2
R(12) = w1,112 (1 + 850 % O.?9?41 9
R(13) = W = 9602 = -0.17894 o2
i,1+13 a * a

A1l other wij =0 .

Since

1
(1 + 0.237B)(1 - 0.75581%)

n

(B}

the pi-weights are

5.55

's



v,= -6 1<j<1l

J —
IPRY.
Mo = -(87% + @)
" 1 612 v ey, 13 <j<23
_ .28, 2
Tog = ~{8°7 + 8°)
- el (62% 4 6?%), 25 < j < 35

The standard deviations of the estimates of ¢ and @ (0.149 and 0.174,
respectively) and their correlation, -.027, can be propagated to produce the T
matrix as follows. Writing 1 = 12k + & for k = 0,1,2,... and 0 < % < 11 gives

R A

for i > 12 and m, e’ for 0 <i <12. Thus if i = 12k+p # J = 12k'+8",

1
Elry - %)y - 7))
[(12k+£)812k+£-1 + X(k)gegqlek][(lzkt+£|)812k +¢'-1

Hfj

iz

X(k')ﬂ,'a£ '15kl]Var(5) + kk'a£+£|5k+k'_2Var(é)

+

[((12k+1)§12k+2'1 + x(k)ggi‘lék)(kugiék'-l) + ((12k‘+£')312k'+£"1
X(k')ﬂ'az ~lgk )(kalék_l)] 0(5,6) Naro varo ,

where X(k) = 0 ifk =0
1ifk>0

+

-+

, and

Hll = Yar @;

=
n

-~ . A !2 - 2A - ~
= 12821-2 Yar 8 + gl—iilll-e 2i-4 {var 0)2, 2 <i<11;

i1

=
1]

. ng 11 2 .
y [(12k+12,)el‘?k+ﬂ"1 + aeg'lek] Var{e)
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+ k2822. 2k-2 var(o)
+ 2ketek Y (12k+2)0 2K 1 4 %K) 0(5,8) ar 6 var ©
+ 3 [(12kb2) (12k+2-1)0 K42 4 g (0-1)6% 21 (var §)°
I K2 (k-1)2 02%2K 4 (var 02
for i = 12k+2 > 12 .
The ¥-weights are calculated from
y8) = 3 B! 3 82T (14 0.5558)(1 - 0.75581%) (29)
=0 i=0
and thus are
*1 = ¢2 = ... = wll =1-6=1.555 ¢12 =2 -8 -0=1,800
Vg3 T ¥gg T ees T Vpy T (1-8)(2~-0) = 1.936 Yoq = (1-8)(2-0) + (1-0) = 2.181
bog = Vog = =Yg = (1-8)(3~2¢) = 2.317 ¥a6 = (1-8){3-2e) + (1-0) = 2.562

Substituting these values into the above formulas results in the mean-square
errors of the adjusted values given in Table 8., Figure 36 is a plot of the

data and the Box-Jenkins type adjusted values showing a one-sigma error band

for the adjusted value. Figure 37 is a plot of the data and second

method of intervention adjustment with an error band equal to the square

root of the mean-square error of adjustment. As can be seen, the second method of
intervention adjustment produces estimates that not only track the form of the

original data better, but also have a much smaller error.
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TABLE 8. Mean-Square Errors of Adjusted Values

Adjusted SQRT (Mean-
Time Value Square Error}
1 285362 45605.2
2 286866 44941,3
3 274976 44267.5
4 261434 43583.3
5 260256 42888.1
6 260327 42181.5
7 262583 41462.9
8 263473 40731.6
9 261867 39987.2
10 256286 39229.8
11 260771 38458.8
12 266801 37154.9
13 284963 35570.1
14 285774 35026.0
15 289494 34473.3
16 285993 33911.8
17 292455 33340.7
18 290255 32759.6
19 288126 32168.0
20 289932 - 31565.5
21 287998 30951.5
22 286934 30326.3
23 293552 29689.2
24 289591 28450.3
25 299483 26867.9
26 295955 26430.2
27 280960 25985.2
28 264213 25532.3
29 249897 25071.4
30 233524 24601.7
31 225345 24123.0
32 220183 23634.6
33 225011 23136.3
34 224822 22628.5
35 234395 22110.4
36 250122 20901.6
37 269202 19279.5
38 263318 18953.4
39 245018 18621.5
40 235771 18283.7
41 232439 17939.5
42 234634 17588.5
43 245059 17230.4
44 241037 16864 .8
45 234789 16491.5
46 - 223288 16111.5
47 225429 15723.6
48 239322 14530,1
49 264882 12829.1
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TABLE 9, CTSS Transition Matrix with 5-State System

Initial Final State
_State =2 -1 Y H 2
-2 -1 +1 +2 +3 +4
-1 -1 0 +1 +2 +3
0 -2 -1 0 +1 +2
+1 -3 -2 -1 0 +1
+2 -4 -3 -2 -1 +1

intervention point before and after which the state of the observations was to
be evaluated.
Table 9 is a 5 x 5 matrix of the possible fluctuations from one time

period and the next, ti to t That is, if an observation is at State 0 at

ti’ it may remain within the1ztundaries of the same state or it may fluctuate
upward or downward to any of the other possible states. The same is true for
fluctuations from any other row of the matrix depicting initial states.

CTSS incorporates a scoring scheme to this matrix of transitions. The
cumulative sum increases or decreases depending upon the number of boundary
crossings in adjoining time periods. Different evaluation scenarios may
dictate different scoring schemes depending upon the pattern of past
cbservations and their short-term transition patterns. In the present
analysis, the cumulative sum was not incremented if the observations were in
the -1, D or +1 range and remained therein, If at any time period observations
were found to be cutside the -2 to +2 range and remained in these states {i.e.,
no significant reversal toward the overall process characteristics was
observed), an adjustment to the summation procedure was applied. The
cumulative sum was incremented by +1 if the previous observation was in the +2
state; it was decreased by -1 if the previous observation was in the -2 state.

The framework for this methodology is reminiscent of CUSUMs in that it
cumulates deviations. It differs from CUSUMs in that it evaluates the
transition matrix for successive observations. In cases where the effect of
intervention is to be evaluated, the pattern of observations in the
proximity of the intervention is of interest. CTSS also allows for an
"uncertainty zone" in each evaluation so that outliers do not significantly
affect the results.
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Statistical Markovian properties of time-series data and methods for
evaluating transitions have been discussed by Billingsley (1961) and Whittle
{1955). A nonparametric test for randomness in multinomial observations, which
may be relevant to the partitioning of ranges presented in the CTSS
methodology, is given by Bennett (1964}. Sobel et al. (1973) used the
Rao-Blackwell theorem to find the conditional expectation of CTSS up to Time T
for the run of zero- or one-valued successive evaluations, where ones occur
with probability p and g =1 - p. The minimum unbiased estimator for the
expectation of CTSS up to Time T and its variance are:

-1 -
eerss ) = L+l o]
SRR S L O I
i
n
Var (Tz/n) BT *Z(ET )

n
= E%—[l +6(n - 1)p + 2(n - 1){2n - 3)P2]

6.1.2 Adjustment to Methods in Present Application

Initial exploratory application of the CUSUM technique to the four data
series showed that H0 was rejected often due to the seasonality exhibited in
the data series. Thus, an adjustment to the CUSUM computations was made,
correcting for seasonality in the data using the X-11 procedure. The CUSUM
index in the present analyses cumulated X + S * ko, where S corresponded to the
seasonal factor for each month. X was calculated for the years 1975-1978; k
was chosen as i-standard deviations of the variation in the series during the

same time period; the rejection level h corresponded to 4k.
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When HU was rejected at Time T for a particular series, an adjustment to
the long-term process average was made using the following formula:

Xy =X+ [Nk + (CUSUM/N)]

where Xﬁ corresponds to the new process average and N refers to the number of

successive observations where positive deviations from ¥ were found to occur.

The process for monitoring CUSUMs was reinitiated after each such medification
of the process mean,

In using CTSS, the transitional state score {TS) was recorded as well as
the value for CTSS for each month from 1976-1982. CTSS was tested for
5ignificance using 6-month and yearly time intervals prior to and post
intervention. The cut-off points for significance at « = 0,05 and « = 0.01
werelestainshed by reference to Table 10 for T = 6 and T = 12, Table 10 has
been generated by simulating the possible values of CTSS for a range of time
intervals. In addition, contingency tables were formed for each data series,
tabulating by year, the number of observations where TS was observed as 0, >1 or <l.
Reclassifying TS values which were greater than or less than 1 as +1 was done
in order to minimize the number of zero entries in the contingency tables. A
Chi-square test was applied to each such table to test for time-related

effects.

6.2 APPLICATION OF CTSS ANO CUSUM TO DATA SERIES

This section includes the results, along with schematic displays, showing
the application of CTSS and CUSUH indices to stocks of motor gasoiine,
distillate fuel oil, residual fuel oil and crude oil during the years
1976-1982. The data used are published estimates residing in EIA computer

files which generate the Weekly Petroleum Status Repurt. The analysis used the

single monthly figure in the computer file, not the composite generated for the
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TABLE 10. Tolerance Limits for CTSS for a = 0.05 and a = 0.01

Acceptable Value for S

T a = 0.05 a = 0.01
4 4 -
5 4 5
6 5 6
7 5 )
8 6 7
9 6 7
10 7 8
11 7 g
12 7 9
13 8 9
14 8 9
15 8 10
16 9 10
17 9 11
18 9 11
19 10 12
20 10 12

time~series analysis discussed in the previous chapter. The two estimates are
quite close but not identical in some cases. Data are presented in monthly
intervals; evaluations of CTSS are applied to transitions in adjacent months.
Figures 39 through 42 present the data superimposed upon the zones, from
which the TS and the CTSS are calculated. Figure 39 shows motor gasoline,
Figure 40 shows distillate fuel oil, Figure 41 shows residual 0il, and
Figure 42 shows crude ¢il. The first and second Tines above the figures show
the values of CTSS and TS at each month, using the rules presented in the

preceeding methodology section.
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In summary, significant differences in the pattern of TS5 values were
traced in all four data series during the 1976-1982 time interval. In the two
years prior to the intervention, 1979-1981, significant differences were aiso
observed in all four data series. For motor gasoline, distiliate fuel o0il and
crude oil, the transition matrices stabilized by the end of 1981, about a year
after the intervention. Wide fluctuations in the data were observed for
residual fuel o0il at a few times several years befure the intervention combined

with an upward trend. The 1981 intervention elicited a downward trend.

TABLE 12. Transition Matrix of TS Values in Adjacent
Years for Motor Gasoline Stocks

Year 4 0 # 0R
1976 4 5 2

1977 0 1 11

1978 8 1 3

1979 4 4

1980 0 1 10 1
1981 2 4 6

1982 6 3

Resuits of Statistical Comparisons

Chi~Square d.f. p
Full Matrix: 1976-1982 36.15 12 <0,005
Pre/Post Intervention 1.45 2 ns
1976/1977 12.88 2 <0.005
197771978 12.57 ¢ <0.005
1978/1979 3.28 2 ns
1979/1980 8.34 2 <0.02
1980/1981 4.76 2 <0,10
1981/1982 3.14 2 ns
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TABLE 13. Transition Matrix of TS Values in Adjacent
Years for Distillate Fuel 041 Stocks

Year A O
1976 3 5 3
1977 2 2 7 1
1978 1 2 6 3
1979 7 2 3
1980 3 0 9
1981 6 2 4
1982 9 2 1

Results of Statistical Comparisons

Chi-Square d.f. p

Full Matrix: 1976-1982 29.67 12 <0.005
Pre/Post Intervention 7.10 2 <0.05
1976/1977 3.72 2 ns
197771978 4.47 2 ns
1978/1979 3.60 2 ns
19759/1980 €.60 2 <0.05
1980/1981 4,92 2 <0.10
1981/1982 2.40 2 ns



TABLE 14. Transition Matrix of TS Values in Adjacent
Years for Residual Fuel 0i1 Stocks

ver -4 3 2 21 0 # R
1976 5 3 3

1977 1 5 1
1978 1 2 3

1979 1 10 1
1980 12

1981 6 2 4

1982 12

Results of Statistical Comparisons

Chi-Square d.f. p
Full Matrix: 1976-1982 56.11 12 <0,001
Pre/Post Intervention 9.61 2 <(.01
1976/1977 4.13 2 ns
1977/1978 1.50 2 ns
1978/1979 5.47 2 <0.10
1979/1980 (a) (a} (a)
1980/1981 _ 12.00 2 <0.005
1961/1982 §.00 2 <0.02

(a) Not evaluable due to sparse matrix.



TABLE 15. Transition Matrix of TS Values in Adjacent
Years for Crude 031 Stocks

Year -1 0 +1
1976 8 2 1
1977 5 7
1978 3 5 4
1979 1 9 2
1980 12
1981 12
1982 i2

Results of Statistical Comparisons

Chi-Square d.f,. p
Full Matrix: 1976-1982 77.05 12 <0,001
Pre/Post Intervention 31.48 2 <0.001
1976/1977 13.77 2 <0,005
197771978 3.82 2 ns
1978/1979 2.81 2 ns
1979/1980 17.14 2 <0.001
1980/1981 (a) {a) (a)
1981/1982 (a) (a)  {(a)

(a) Not evaluable due to sparse matrix.
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As discussed previously, a paralle] analysis using seasonally adjusted
CUSUMs was applied to the four data series. Wherever H0 was rejected, the
Tong-term mean was adjusted upward or downward and the CUSUM computations were
reinitiated. Table 16 summarizes the results of this analysis. It tracks the
mean of each data series over time showing when it was updated as well as when
adjustments made to the mean. A summary comparison of times for detecting
change prior- and post-intervention is shown at the foot of the table. An
initial scan of the results based upon CUSUMs shows no significant shift in the
pattern of observations after intervention as compared to data prior to the
intervention point. The one point of departure is in distiilate stocks data
where the only adjustment to the series was made a year after the interventicn

date.



TABLE 16,

Series

Motor Gasoline

Distillate

Residual

Crude Gid

Changes Observed Prior and Post-Intervention and
Adjustments to Mean Value Using CUSUMs

32

80
16

48

Motor Gasoline

Distillate
Residual
Crude

k Initial ¥ + New ¥ Date
+8 239 =20 219 04/1976
+16 231 11/1976
+16 247 0z2/1977
+18 265 08/1977
-16 249 0471978
=20 229 07/1978
+29 258 03/198D
-16 243 03/1982
17 226 05/1982
+20 190 =47 143 01/1982
+4 74 - +9 83 10/1977
-14 69 03/1978
+7 76 10/1978
+10 86 07/1979
+10 96 03/1980
~-12 84 10/1980
-10 74 08/1981
-9 65 04/1982
-8 58 10/1982
x1?2 3060 =12 288 07/1976
+33 321 06/1977
+21 342 12/1977
-19 323 08/1978
+26 349 01/1980
+23 372 06/1980
-29 343 01/1982

Time to Detect Change {months)

Prior to
Intervention
Mean

7.8

7.2
9.6

6.20

Post Intervention

Mean
7.3

7.3

to
First

14
12

8
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7.0 CONCLUSIONS

This section brings together the several conclusions scattered throughout
the report. The conclusions are of two types: conclusions concerning the
overall methodology of intervention analysis and adjustment, and conclusions
concerning the specific time series analyzed in the report. The tw¢ main
methods used in the report, Box-Tiac Intervention Analysis and Cumulative
Transitional State Scores (CTSS), are compared and contrasted. Since CTSS and
Cumulative Sums (CUSUMs} are quite similar in philosophy, the CUSUMs method
will be discussed with CTSS, Some recommendations for further research are

also made,

7.1 OVERALL CONCLUSIONS

The importance of intervention analysis in situations such as studied in
this report is well enough established to require no further justification.
Suffice it to say that it is the exception rather than the rule that a time
series can be collected for any significant Tength of time without some
important change occurring, The effect of adjustment of pfe-intervention data
to be consistent with post-intervention data is less well understood, but it
seems obvious that adjustment of data must always be done with care. The
assumptions necessary to use intervention-adjusted data are extensive and
probably 1imit the usefulness of adjusted data to such things as inputs into
models that require consistent data. The Box-Tiao-Tike method presented in
this report is a straight-forward method to accomplish adjustment, making use
of knowledge of the past and, more importantly, providing a method for

assessing the variability of the adjustments.
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Several approaches to studying an intervention are summarized in the
report and detailed analyses are performed using three of the approaches. The
first of these is not specifically an intervention analysis technique but may
be applied appropriately in several situations.

If there are other variables available that could possibly affect the time
series of interest, the first step that should be taken is to remove the
effects of these variables. After the removal of the effects, the intervention
may no longer be present, as evidenced in the case of residual fuel o011 stocks.
However, even if the intervention is still present, failure to account for
these variables can complicate the analysis or possibly can cause incorrect
modeling (Bell and Hillmer 1983},

Assuming that the effects of other independent variables have been
removed, there are several approaches to modeling the resﬁlting time series and
studying the intervention., When the quantity of data permits, the most
flexible method is to independentiy model the pre- and post-intervention data
and to compare the resulting parameter estimates using their asymptotic
Gaussian distributions. This method requires a minimum of additional
assumptions. Unfortunately, in most applications, it appears that the quantity
of post-intervention data is insufficient for this approach. A more common
situation is that something has happened that has led people to suspect a
change in a series at a known time. It 1is then usually of interest to
determine if the intervention is significant and to identify its nature as soon
as possible. ©One rarely has the Tuxury of waiting until enough data has been

collected to apply this method.
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For all of the series studied in this report, the number of post-
intervention data points was only 24, not enough to permit independent pre- and
post-intervention modeting. Therefore, two approaches were used that
required more be known or assumed about the series, but that worked with
limited data. The first method used was described by Box and Tiao (1976}. As
discussed in Section 4.1, this method requires good pre-intervention modeling
and some notion of the expected effect of the intervention on the model. The
time of the intervention must also be known. With these restrictions it is a
guite useful technigque since it can find changes in the level of a series and
in the stochastic parameters. Since the parameter changes can be estimated,
this technique also allows the adjustment of pre-intervention data.
Philosophically, the method is in the mainstream of Box-Jenkins-Tiao
time-series analysis. It centers around a "fit, forecast and test" approach.
Though Box-Jenkins techniques were used for the fitting in the analyses
described in this report, other methods could be used. In summary, the
Box-Tiao method is generally useful and can be modified to incorporate any
number of favored approaches. This method should be considered for the type of
probiem studied in this report.

The other techniques used to analyze the series in this report were CUSUMs
and CTSS. These approaches are in the spirit of quality control and, as such,
are designed more to monitor than to model a time series. Both methods
accumuiate a sum and raise a warning when the aggregate exceeds some
predetermined 1imit. They do not necessarily require that the location of the
intervention be known beforehand. Further, if the CUSUMs technique indicates
that a significant shift in the mean of a process has occurred, an estimate of

the adjustment to the mean is available.
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As applied to the series analyzed in this report the standard techniques
had to be modified to account for the iZ-month seasonal trend inherent in the
data series. Even when so modified, the methods are still designed primarily
to detect a change in the level of the series. How well short-term Tevel
changes can be used to model changes in stochastic parameters of a series is
not known.

Other possible problems with applying CTSS or CUSUMs methods to time
series are the effect of the autocorrelation on the determination of the size
of the acceptance regions or state boundaries and on statistical tests
performed on transition scores. Whereas CUSUMs accumulates deviations from a
mean, CTSS accumulates ;cored transitions of successive observations, Two
effects of this scoring are a resistance to outliers and a reduction of the
autocorreiations. However, more general aspects of the effect of the method
used to score transitions on the properties of the test are not well
understood. For detecting interventions these methods represent an alternative
to the Box-Tiac procedure. For shifts in the mean, CTSS or CUSUMs identify the
change fairly quickly. However, the limitations discussed above, especially
the inability of these methods to provide estimates of changes in stochastic
parameters, hinder the application of these techniques to general intervention

analysis problems.

7.2 SPECIFIC CONCLUSIONS

For distillate fuel o0il stocks, all approaches to intervention analysis
identified changes in the series after January 1980 and after January 1981.
The methods indicated that these changes were because of a decrease in the
overall level of the series. As noted in Section 5.1, the changes in the
survey forms should have had no effect on the distillate fuel oit stock series,
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and it was theorized that these observed changes were caused by general shifts
in the use of distillate fuel 611. Attempts to explain the changes by changes
in the number of companies reporting were unsuccessful. It should be stated
again that care must be exercised in 1interpreting the change after
January 1981, especially in light of the earlier observed change in the series.

As in the case of distillate fuel o0il, the changes to the survey forms
should have had no direct effect on the residual fuel oil stocks series.
However, the residual series exhibits an apparent downturn in the neighborhood
of the time when the forms were changed. Both the CTSS and CUSUMs techniques
identified several changes in the series, probably caused by the
nonstationarity. However, the change in the series after January 1981 was
found to be a statistically significant change by the CTSS method, whereas the
CUSUMs method did not ciearly identify this as a significant change. Likewise,
when applied naively to the raw déta series, the Box-Tiao procedure did not
find the January 1981 change to be statistically significant. This lack of
statistical significance is probably because of the large variability in the
data, since the downturn in the data is quite marked. However, when an attempt
is made to reduce the variability by incorporating the number of companies
reporting into the éna1ysis, the apparent downturn disappeared. Thus the
change in the residual series is related to the decrease in the number of
companies after January 1981, which in turn may Ee related to the general
economic climate during that period which caused many users to switch from
residuaij fuel oil to other fuel sources.

For motor gasoline, the different methods produced different results.
Neither CUSUMs not CTSS identified the difference between the pre and post

intervention in January 1981 as even slightly statistically significant,
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although both methods identified several significant changes in the data series
when compared year to year. It is possible that these changes are due to the
inherent nonstationarity in the series. The Box-Tiao procedure concluded that
the intervention was significant at between the 0.15 and 0.10 Jevels, not a
very strong change in the series. 1t also indicated that the effect of the
intervention was a change in the first-order, moving-average parameter. But,
as expected, when the pre-intervention data were adjusted using the
post-intervention model, the adjusted values were not significantly different
from the original data even when based on the tighter confidence intervals
derived in Section 5. Incorporating the number of companies reporting in the
analysis yielded no useful results,

The crude o011 stocks series presented different sorts of problems. Many
different interpretations of the time-series plot and the effect of the
January 1981 intervention were possible. The series exhibited large
variability and the Box-Tiao procedure did not identify the intervention as
significant. CTSS and CUSUMs identified several significant changes and CTS3
found the January 1981 intervention to be very significant. However, these two
procedures were performed on the series including tank farm and pipeline
stocks, whereas the Box-Tiao analysis was performed on only the refinery stocks
series. The large trend present in the data may be causing CTS5 and CUSUMs to
identify changes in the mean caused by nonstationarity as interventions.
Moreover, the effect of seasonally adjusting data, such as the crude stocks
data, that do not seem to exhibit seasonality is not clear. In summary, no
simple explanation of the behavior of the crude stocks data appears possible,
Clearly, more work, especially the consideration of other explanatory
variables (number of companies reporting was not useful), is necessary to
understand crude oil stocks data.
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7.3 RECCGMMENDATIGHS

The methods discussed in this report represent several valuable techniques
for identifying an intervention and for assessing its effect. Further work is
possible, not only on these techniques but also on applying other techniques.
For instance, if it were desired to automate the modeling phase of the Box-Tiao
analysis somewhat, an application of the Akaike Information Criteria to certain
classes of models might be appropriate along with different methods of modeling
and fitting.

The expression for the error in the adjusted values was derived through
the use of several simplifying assumptions. The importance of these
assumptions needs to be better understood and the general question of the
variability of the adjusted values needs to be studied in more detail.

Finally, for CUSUMs, more work is necessary to evaluate its behavior when
the data are not independent, especially when this dependency can be modeled by
a time-series model. The effect of the particular scoring function on the
behavior of the CTSS procedure would appear to be an interesting and important

-dred.
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APPENDIX A

A GENERAL METHOD FOR INTERVENTION IDENTIFICATION
AND ADJUSTMENT

A.1 INTRODUCTION

The purpose of this section is to describe a general method that, starting
with the original time series data,

Identifies an intervention,
Quantifies the intervention in terms of the time series' parameters,

Produces adjusted {for the post-intervention model) values for the
pre-intervention data points, and

4, Estimates the error in the adjusted values.
The use of this method is illustrated with a worked example. Where no
generally available software exists for the required operation, FORTRAN
programs are provided and described in this and the following appendix.

The method roughly follows the steps named above with some expansion and
can be outlined as:

Model the pre-intervention time series,

Test to determine if the intervention is significant,
Determine the nature of the intervention,

Estimate the magnitudes of the parameter changes,

o B N =
. . . - .

Adjust the pre-intervention data to correspond to the
post-intervention situation, and
6. Produce estimates of the error in the adjusted values.

Each of these steps will be more fully described in subsequent sections.
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A.2 PRE-INTERVENTION MODELING

The first step in this method can be stated simply, but is probably the
most difficult both to describe or to perform correctly. What is needed is an
adequate time domain (ARIMA) model of the pre-intervention time series. There
are several statistical analysis packages that can be used for time series
modeiing, the most notable being SAS-ETS since it is available on the EIA
computer. Likewise there are many books that attempt to explain time series
modeling at all levels of abstraction,

Time series modeling is an iterative process of identifying possible
models, estimating parameters in the entertained model, diagnostic checking of
the residuals and modifying the tentative model. Though there have been
several attempts to automate model selection, these methods are rather limited
in the types of series they can handle effectively and thus can not be
seriously recommended for routine use. There is unfortunately no substitute

for experience in the area,

A.3 TESTING FOR AN INTERVENTION

There are at least two ways in which the examination of a time series for
interventions can be interpreted. First, when considering the whole history of
the series one might wish to determine if any interventions have occurred.
Since all time points must be considered this is in general a quite difficult
problem. In this report, however, it is assumed that the Tocation of an
intervention is known and the question being asked is whether or not the
intervention has significantly affected the structure of the time series.

If enough data is available the most natural procedure is to independently
model both the pre- and post-intervention series and to compare the results,
The asymptotically normal distributions of the parameter vectors Tlead
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immediately to tests for significant differences between fhe two modeis.

Though the above situation is obviously the most desirable, it often
happens that there is not enough post-intervention data to permit effective
modeting with traditional techniques. In these cases the Q-statistic defined
in Section 4.1 can be used to test for the significance of the intervention,
To use this technique one must previously have obtained an adequate time domain
model of the pre-intervention series, From the results of this modeling it
will be assumed that the parameter estimates, the residual mean square, and the
residuals from the model are available for input into the intervention program
TSIAA described in Appendix B. TSIAA in the intervention analysis mode
requires the input of the total number of time points (both before and after
the intervention), the number of the Tlast pre-intervention time point, the
model parameters, the original series, Zys and the residuals, a,. TSIAA will
accept models with an arbitrary order of nonseasonal differencing and with a
single seasonal difference-also of an arbitrary order. The timé series model
can be anything up to a second order seasonal ARMA model, i.e. two
autoregressive (AR} and/or two seasonal autoregressive (SAR) and/or two moving
average (MA) and/or two seasonal moving average (SMA) parameters.

Sample output from TSIAA in the intervention analysis mode is shown in
Table A.1. TSIAA uses the pre-intervention model, the data and the residuals
to compute a, (one-step ahead forecast errors) for the post-intervention
period. The Q-statistic is then computed from the squares of these a; divided
by the mean square of the pre-intervention series. As shown TSIAA provides
both the Q-statistic aﬁd its p-level, that is, the probability that this value
of Q could have been obtained by chance alone., This p-level is computed from a
Chi-square statistic with degrees of freedom equal to the number of time points
after the intervention.
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TABLE A.1. Example Output of TSIAA in Intervention Analysis Mode

PHOGHAR TS1AM -
TITLE OF AUN: EXAMPLE JNTERVENTION ANALYSIS
TYPE OF BUN: INTERVENTION AHALYSIE
HODEL:
{(1-B}**D)*({1-B**5}*4SD)*{1-AR(])B-AR{2)@%42) 4 (1-SAR([1)}B*35-SAR({2}1D4*25)*2(T) =
{1-MA(1YB-HA[2}B**2) * {1 -SHA(1)B4*S-SHA{2)E**25) *A(T)
WHEHRE
&= 12 D= 1 8b = 1

PHRE-INTERVENTION PARAMETERS;:

AR[1l} =~ 0.0C000E+DO AR{2} = 0,00000E+00
BAR{L) = 0,00000E+0D SAR{2} = 0,00000E+00
MA{l} = -0.23700E+00 WA (2} = 0.00000E+ 00
SMA(l) = 0.7S500E+00 SHA(2) = 0,00000E+D0Q

NUMUEK OF TIHE POINY VALUES = B4
THTERVENTION OCCURREMCE AFTER POINT = &0

HESTDUAL MEAN BOQUARE = G.473011E+Q8

s ORIGINAL DATA are
T 3T AMT)
1 0.142409E+06 wkas
2 O,2504313E+04 e
3 0,240293E+06 bbb
4 0.216551E+06 ke
5 0.22716HB+06 s
6 0,.121367E+06 whaw
T 0.229034E+06 taan
B D.2324S9E+06 L
9 0.221745E+08 Atk

10 0.22430BE+06 e
17 0.229BB4E+06 bl
12 ©0,231825E+06 Lia g
13 G.255625E+06 g

14 0.258052E+06 -0,691BOOE+0]
15 0.26491%E106 0.159964E+05
6 0.261065E106 D.116150E+D4
17 0.266197E+D6 D.699590K 04
14 0,259258E+06 -0.615340E+04
19 0.260843%E:06 -D.970300E+03
20 0.2593A14E+Dé§ 0.145450B+04

60 0.263707E+06  -0.906T40E+04
61 D0,279560E+06 -0.276851E+04



g Y

B0

a2
83
84

KOTE:

0.305891E+0D2
F-VALUE FOR A CHI-S{UARE WETH

TABLE A.1.

0.2074%2E10D6
0.2808462E+D6
0.275759E+06
0.261541EiQ6
0. 244246408
0.230429E+046
0,236156E4106
0.2403726+06
0,239245E106

0.227963E+06
0,2315537E106
0.2317117E+D4
0.232663E106
0.237073E+04

AFTER T =

Q STATISTIC =

AT}

-0.277Ev04 D,
0,.543E+04 -0,
0.3%3E+04 O,

-0.530E104 -0,

-0,65%E+04 O.

-0.134E+D5 -0,

-0,124E405 O,
0.126E105 -0,
0.121E+D4 D,
0,.SBSE+04 -D.
0.568E404 O,

-0.602E+04 -0,

-0,B91E104 -D.

~0.5643E104 0,

-0.657E+D4 0.

-0,1317E405 0.
0,482E+D4 -D.
0.844E4D4 O,
0.656E+04 -0,

-0,903E402 ©.
0.654E104 -0,
0.57SE104 0.

-0.126E105 -0,

-0.549E+03 0,

0.542551E+04
0,393434E+04
-0.529842E+04
~0.659175E+04
-0.138422E+05
-0,12382DE+05
D.12554TE+05
D.121438E+04
0.585068E104

-0,903186£+02
D.6S4273E+D4
0.575093E+D4

-0.125547E+0D5

-0.54B8931E+03

60, A{T) IS COMPUTED

WETH

FROM THE FRE-INTERVENTION MODEL

24 DEGREES OF FREEDOM
24 DEGREES OF FREEDOM =

0.1680

PRE

10000E+DL
23700E+400
56169E-D]
13312E-01
31550E-02
J4TT2E-D3
17721E-03
41399E-04
95538E-05
23550E-05
55909E-06
13250E-06
ZASO0DEFDO
SHOGS5E-D)
13761E-01
32615E-02
T71296E-D)
14319E-03
43417E-04
10290E-04
24167E-05
S57796E-06
11694 E-06
J2464E-07

AR{1)

~0,906T4E+D 4
-0.276085E4+04
0.54155E+04
0.39343E+04
-0,52%3JE+ D4
~0,65%1BE+D4
-0,13842E+05
-0.12302E+05
0.12555E+05
0.12144E+D4
D.5B50TE+D4
D.56827E+04
-D.6B215E+ D04
-0.89090E+04
-0,64257E+04
-0.65729E+D4
-0.13729E+05
0.48230E+ D4
0. BA{44EL DA
0. GSE44E+D4
-0.90319E+02
D.65427E+D4
0.57509E+04
-0,12555E+05

AR(2)

0. BISEIED4
~0,30674E+04
~0.27685E+04

0,54255E+04

0.39343E+ 04
-0.52904E+04d
-0,65918E+04
-0,13B42E+05
-0.12382E+05

0,)12555E+05

0.12144E+04
0.58507E+04
0.56827E+04
-0.68215E+04
-0.89090K+ 04
-0, 64257E+04
-0.65729E+D4
-0.13725E40%
0.48238E+D4

O.BA444E+Dd

0.65B844E+04
-0,90319E+02

0.65427E104

0.57509E4 04

DICTED ERRORS

DUE TO A CHANGE IN:

Example Qutput of TSIAA in Intervention Analysis Mode
{Continued)

SAK(1)

0, 45855E+v D4
0.1131 2E+05
0.13676E+DS
~0.7I4STE+O4
-0.312001E+D4
D.69566E+04
-0.101 H4E+ 05
0.50055E+04
~0,.10501E+04
-0.50273E+04
0.B35631E+04
~0.90674E+D4
-0, IGHSE+D4
0.54255E+04
0.35343E+D4
-0.52984E+04
-0.65910E+D4
~0.13042E4 05
-0,12392E+05
0.12555E405
0.12144E+04
0.50507€+04
05608278104
~D.6B215E+04

BAR({2)

~0.2312IE+04
-0.47433IE+04
-0,59042E+04
0.64991E+04
-0.39548E+ 04
0.B7677Ev D4
B.66705E+04
~-D.73008E+D4
-0.21059E+04
~0.690B1E+04
-0.15040E+03
D.7T4107E+D4
0.45855E+04
0.11312E+05
0.13676E+05
~0.TINSTE+ 04
~0,2200)E+D4
0.69566E+D4
-0.J0144E+D5
0.50055E+04
-0,10501E+D4
~0.5B8273E+04
0.835631E+04
-0.906T4E+ D4

HA(L)

0.5%06T4E+04
0.61951E+0]}
~0.5572IE+04
~0.261317E+04
0.59179E+04
D,518%2E+04
D.12612E+05
0.93928E+04
~0.,147B1E+0D5
0.22087E+04
~0.63911E+D4
~0,4167SE+D4
0. 7R092E+D4
0,70582E+D4
0.47529E+D4
0,54454E+04
0.12430E+05
~0.7TT116E+DA
-0.66025€+04
-0.5019GE+D4
0.12800E+04
-0.6B461E+Od
-0, 41 2B LE D4
0,33533E+05

HA(2)

-0,83563E+04
0.110D4BE+ 05
0.15017E+03

-0.54611E+04

-0, 26401 E+ (4
0.59241E+04
0,.518T7E+04
0.12613E+05
0.93928E+04

~0.147B1E+D5
0.12687E+04

-0,61931E+D4

-0.41675E+04
0.70092E+04
0.70502E+04
0.47529E+D4
0. 5446 4E+DY
0.1241BE+D5

-0.77716E104

-0.66025E+04

-0.50196E+04
0.12800E+D4

-0.6B461E+D4

-0.41204E+04

SMA ({1}

~0,45855E+04
-0.11312€+05
-0,13676E+05
0.7345TE+D4
0.22001E+04
-0.69566E+D4
0.101 44E+D5
-0,50055E4+04
0,10501E+04
0.58273E+04
-0, 8156 1E+04
B.9067T4B+0d
~0,89354E+03
-0,11966E+05
-0, 4259E+05
0.10844E+05
0.82526R+04
0.85%00E+04
0.20040E+05
~0,16314E+05
~0,42156E+03
=~0,14511E+04
-0,11932E+05
0.13667E+05

SMAI2)

0.23123E+04
0. 4T43IIE+04
0.59042E+04
~0. 64991 E+04
0,319548E404
~0.876TTE+D4
-0,66705E+04
G.7I00BE+ 04
0.21059E+04
0.69081E+04
0.15040E+03
~0.741878+04
-0.210397E+04
-0.7T7312B+04
~0.921TRE+04
0,243B9E+04
0.51B60E+04
-0,13576E+05
0,.51D73E+04
0.5066GE+0)
0.26401E+04
0.11043B+05
~0,.82427E+04
0.3466IE104



A.4 DETERMINIMG THE NATURE OF THE INTERVENTION

Assuming that the intervention has been determined to be significant, the
next step is to attempt to identify which parameters or combinations of
parameters have changed due to the intervention. The program TSIAA in the
intervention analysis mode implements the method described in Section 4.1.

As shown in Table A,1, TSIAA provides, under the heading 'PREDICTED
ERRORS DUE TOQ A CHANGE IN:', the information necessary to decide if any of the

model's parameters have changed. To make this decision, the a,'s {i.e. the

t
one-step ahead forecast errors using the pre-intervention model and the data
points after the intervention) and the predicted errors resuiting from some
hypothesized change in the model are examined for similarity in structure. One
way to determine similarity is to plot the at's and the hypothesized errors
together and look for patterns. For example, see Figures 26 to 28. The
correlation coefficient between the at's and the different hypothesized
residuals can also be examined. As described in Section 4.1, when similarities

are seen between the a,'s and one or more of the collections of predicted

t
errors, linear regression can be used to estimate the change in the parameters.
That is, the at‘s are regressed, with no constant, on the sets of predicted
errors and the estimated coefficients provide estimates of the difference
between the post- and pre-intervention parameters. Thus if B8 is a

pre-intervention parameter, B' is the corresponding post-intervention paranmeter

and b is the estimated regression coefficient then
g' =8 +b

As described in Section 5.3, for the current example, similar patterns
were noticed between the at's and the predicted errors due to a change in the

MA(1) parameter. No other similarities were found. Thus the at's were
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TABLE A.2. Example Output of TSIAA in Intervention Adjustment Mode

PROGRAM TSIAA -

TITLE OF RUN: EXAMPLE INTERVENTION ADJUSTMENT WITHOUT MSE

TYPE OF RUN: INTERVERTION ADJUSTMENT WITHOUT MEAN SQUARE ERROR COMPUTATION
MODEL: '
{((1-B)**D)*({(1-B**5)**SD}*(1-AR(1}B~AR{2)B**2)*{1-SAR(1)B**S-SAR(2)B"*25)*Z(T) =
(1-MA{1)B-MA(Z)B**2)* (1-SMA (1) B**S—SMA{2)B**2S) *A(T)

WHERE
S= 12 D= 1 5D = 1
PRE-INTERVENTION PARAMETERS:
AR(1l) = 0.00000E+00 AR(2) = 0.00000E+00
SAR(1) = 0.00000E+00 SAR(2) = 0.00000E+00
MA(l) = ~0,23700E+00 MA(2) = 0.00000E+Q0
SMA(l) = 0.75500E+00 SMA{2) = 0.00000E+Q0
POST~-INTERVENTION PARAMETERS:
AR(l) = 0.00000E+00 AR{2) = 0.00000E+00
SAR(l) = 0.00000E+00 SAR(2) = 0.00000E+00
MA(l) = =-0.55500E+00 MA(2) = 0,00000E+00
SMA (1) = 0.75500E+00 sSMA(2) = 0.00000E+00Q

HUMBER OF TIME POINT VALUES =

84

INTERVENTION OCCURRENCE APTER POINT = 60
RESIDUAL MEAN SQUARE = 0.479011E+08
rin ORIGINAL DATA e

T Z(T) A(T)

1 0.242409E+06 L
2 0.250433E+06 *aRE
3 0.240293E+06 el
4 0.2265S1E+06 LT
5 0.227168E+06 EhnH
6 0.227367E+06 rhxn
7 0.229034E+06 rrun
8 0.232459E+06 *ak
9 0.231745E+06 AL

10 0.228388E+06 erw

11 0,229884E+06 Adad

12 0.233B25E+06 *Han

13 0.255625E+06 ok ko

14 0.258052E+06 -0.693800E+03

15 0.264919E+06 ©¢.159964E+0Q5

16 0.261065E+06 0.116150E+04

17 0.265197E+06 0.699590E+04

18 0.2592S8E+06 ~0.615340E+04
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TABLE A.2. Example Output of TSIAA in Intervention Adjustment Mode
(Continued)

19 0.260849E+06 ~-0.970300E+03
20 0.259814E+06 0.145450E+04
80 0,.227963E+06 ~0.405885E+04
Bl 0.2355317E+06 0.968132E+04
82 0.237117E+06 0.173808E+04
B3 0.232663E+06 -0.132126E+05
84 0.2370731E+06 0.532137E+04

NOTE: AFTER T = 60, A{T)} IS5 COMPUTED FROM THE POST-INTERVENTION MODEL

AUTOCOVARIANCES CF THE
DIFFERENCED PRE-INTERVENTION SERIES

PS1 WEIGHTS FOR THE
POST-INTERVENTION SERIES

LAG AUTOCOVARIANCES INDEX PSI WEIGHTS
0 0.794301E+08 0 0.100000E+01]
1 0,17823BE+08 1 0.155500E+01
2 0.000000E+00 2 0.155500E+01
k| 0.000000E+00 k] 0.155500E+01
4 0.000000E+00 i 0.155500E+01
5 0.000000E+0C0O 5 0.155500E+01
6 0.000000E+00 6 0.155500E+01
7 0.000000E+00 7 0.155500E+01
] 0.000000E+00 B 0.155500E+01
9 0.000000E+00 9 0.155500E+01

1o 0.000000E+00 10 0.155500E+01
11 -0.857118E+07 11 0.155500E+01
12 -0,381967E+08 12 0.180000E+01
13 -0.85711BE+07 13 0.193598E+01
14 0.00000DDE+DO 14 0.193598E+01
15 0.000000E+00 15 0.193598E+01
16 0.000000E+00 16 0.193598E+01
17 0.000000E+Q0 17 0.193598E+01
18 0.000000E+00 18 0.193598E+01
19 0.000000E+00 19 0.153598E+01
20 0.000000E+00 20 0.193598E+01
50 0.000000FE+00 50 0.307820E+01
51 D.00DOODE+DD 51 D.307890E+01
52 0.000000E+00 52 0.307890E+01
53 0.000000E+00 53 0.307890E+01
>4 0.000000E+00 >4 0.30789%0E+01
35 0.000000E+00 55 0.307850E+01
36 G.000000E+00 56 0.307890E+01
57 0.0D00000E+00 57 0.307890E+01
58 0.000000E+00 58 0.3078%90E+01
59 0.000000E+00 59 0.307890E+01
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TABLE A.2. Example OQutput of TSIAA in Intervention Adjustment Mode

(Continued)

T ADJUSTED Z (T}

1 0.285362E+06
2 0.2B6B66E+O6
3 0.274976E+06
4 0.261434E+06
5 0.260256E+06
6 0.260327E+06
7 0.262583E+06
8 0.2634T73E+06
9 0.261B67E+06
10 0.256286E4+06
11 0.260771E+D6
12 0.266801E+06
13 0.284963E+06
14 0.285774E+06
15 0.289494E+06
16 0.285993E+06
17 0.292455E+06
18 0.290255E+06
19 0.288126E+06
20 0.2B9932E+06

40 0.235771E+06
41 0.232439E+06
42 0.234634E+406
43 0,245059E+06
44 0.241037E+06
45 0.234789E+06
46 0.223288E+0G
47 0.225429E+06
48 0.239322E+06
49 0.264882E+06
50 0.277406E+06
51 0.285505E+06
52 0.274069E+06
5] 0.264723E+06
54 0.267691E+06
55 0.263123E+06

56 0.261194E+06
57 0.261323E+06
58 0.24951CE+06
59 0.259782E+06
60 0.263707E+06
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regressed on the predicted errors corresponding to a change in the MA(1)
parameter resulting in an estimated change of -.318. The post intervention

MA(1) parameter was therefore estimated as -.555.

A.5 ADJUSTING THE PRE-INTERVENTION DATA

Once the nature of the intervention has been identified and the values of
the post-intervention parameters estimated, the pre-intervention data may be
adjusted to produce a consistent data series. TSIAA provides two modes in
which to accomplish this, The first such mode permits only the adjustment of
pre-intervention data, while the second also allows an assessment of the mean
square error of adjustment. The first mode will be discussed in this section.

As detailed in Appendix B, TSIAA in this mode requires the input of the
values of the parameters for the post-intervention model as well as the other
inputs described above. Once these have been provided, TSIAA computes the
estimated at's in the post-intervention period using the post-intervention

model. From these and the pre-intervention a,'s TSIAA then computes the

t
adjusted post-intervention data using the recursion formula (8) from Section

5.5 and outputs these values as shown in Table A.2.

A.6 ESTIMATING THE ERRORS OF ADJUSTMENT

To obtain the approximate errors in the adjusted values, TSIAA impliements
the method described in Section 5.5. The program requires the additional input
of the covariance matrix of the pi-weights as defined in Section 5.5. Since
the pi-weights are rational functions of the parameters in the pre-intervention
model, the variances of the parameter estimates can be propagated to estimate
this covariance matrix. One such method of propagation is illustrated in
Section 5.5, The degree to which the several Taylor series expansions are
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expanded will depend on the level of accuracy desired in the estimated errors,
the complexity of the model and the distribution of the random component of the
series.

From the form of the pre-intervention model, TSIAA computes the covariance
structure of the differenced pre-intervention series. From the form of the
post-intervention model TSIAA calculates the psi-weights as defined in Section
5.5, Formulas 27 and 21 from Section 5.5 are then used to calculate the
approximate adjustment variance.

TSIAA in this mode, as well as in the previous mode outputs the estimated
covariances of the differenced pre-intervention series, the psi-weights, and
the adjusted values for the pre-intervention period as shown in Table A.Z2.
Further, the estimated mean square error of adjustment and approximate 95%

confidence bounds for the adjusted vaijue are also output as shown in Table A.3,
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40
41
42
43
14
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TABLE A.3.

ADJUSTED Z{T)

e S e e e e e

D.2B5316ZE+06
0.2B6B66E+06
0.274976E+06
0.261434E+06
0.260256E+06
0.260327E+06
0.262583E+06
0.263473E+06
0.261867E+06
0.256286E+06
0.260771E+06
0.266801E+06
0.284963E+06
0.2B5774E+06
0.289494E+06
0.285993E+06
0.292455E+06
0.290255E+06
0.288126E+06
0.289932E+06

0.235771E+06
0.232439E+06
0.234634E+06
0.245059E406
0.241037E+06
0.2347B9E+06
0.223288E+06
0.225429E+06
0.239322E+06
0.264882E+06
0.277406E+06
0.285505E+06
0.274069E+06
0.264723E+06
D.267691E+06
0.263123E+06
0.261194E+06
D.2613231E+06
0.249510E+06
0.259782E+06
0.263707E+06

of Adjustment is Calculated

MSE Z{T)

————— e k —— — a

0.207983E+10
0.201972E+10
0.195961E+10
0.189950E+10
0.183935E+10
0.17792BE+10
0.171917E+10
0.165906E+10
0.159898E+10
0.153898E+10
0.147908E+10
0.138049E+10
0.126523E+10
0.122682E+10
0.118841E+10
0.115001E+10
0.111160E+10
0.107319E+10
0.103478E+10
0.996378E+09

0.3342921E+09
0.321824E+D9
0.309355E+09
0.296807E+09
0.204421E+09
0.271971E+09
0.259581E+09
0.247233E+09
0.211124E+09
0.16458B6E+09
0.159840E+09
0.155093E+09
0.150347E+09
0.145601E+09
0.140855E+09
0.136105E+09
0.131366E+09
0.126641E+09
0.121993E+09
0.1175B9E+09
0.479011E+08

APPROX,

A.12

95% C. I.
LOWER LIMIT

o e e e o e

0.195976E+06
0.1987Bl1E+06
0.188211E+06
0.176011E+06
0.176195E+06
0.177651E4+06
0.181316E+06
0.183619E+06
0.183492E+06
0.1793%6E+06
0.185392E+06
0.193977E+06
0.215246E+06
0.217123E+06
0.221927E+06
0.219526E+06
0.227107E+06
0.226046E+06
0,225076E+06
0.228063E+06

0.199935E+06
0.197270E+D6
0.200160E+06
0,211287E+06
0.207902E+06
0.202465E+06
0.191709E+06
0.194611E+0D6
0,210843E+06
0.239737E+06
0.252626E+06
0.261096E+06
0.250036E+06
0.241073E+06
0.244429E+06
0.240257E+06
0.238729E+06
0.239266E+06
0.227B62E+06
0.218528E+06
0.250142E+06

Additional Output of TSIAA When MSE

FOR ADJUSTED Z{T}

UPPER LIMIYT

—— e e ke —

0.374748E+06
0.374951E+06
C.361740E+06
0.34685BE+06
0.344317E+06
0.343002E+06
0.343850E+06
0.343307E+06
0.340242E+06
0.333177E+06
0.336151E+06
0.339625E+06
0.3546B0E+06
0,.354425E4+06
0.357062E+06
0.352460E+06
0.357803E+06
0.354464E+06
0.351175E+06
0.351800E+06

0.271607E+06
0.267600E+06
0.269107E+06
0.278830E+06
0.274092E+06
0.267112E+06
0.254866E+06
0.256248E+06
0.267801E+06
0.290027E+906
0.302186E+06
0.309914E+06
0.298102E+06
0.288B373E+06
0.290953E+06
0.2859B9E+06
0.2B3659E+06
0.2833BOE+OE
0.27115BE+06
0.281036E+06
0.277272E+06
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APPENDIX B
TIME SERIES INTERVENTION ANALYSIS AND ADJUSTMENT COMPUTER PROGRAM

B.1 INTRODUCTION

The Time Series Intervention Analysis and Adjustment (TSIAA) program is a
FORTRAN computer code developed to assist the user in time series intervention
analysis. TSIAA can handie up to a second order seasonal ARMA time series
model with arbitrary order of seasonal and nonseasonal differencing. Program
TSIAA is designed to be used with a computerized time series modeling package
{e.g. the SAS ETS package) and is executed in two steps. In the intervention
analysis step, the user supplies as program inputs the original time series
and the pre-intervention model parameters and residuals. Program TSIAA
computes and outputs the Q statistic and the predicted ervors due to a change
in Tevel and model parameters. In the intervention adjustment step, the user
additionally supplies the post-intervention model parameters and optionaily
supplies the covariance matrix of the estimated pi weights of the
pre-intervention model. Program TSIAA then computes and outputs the adjusted
time series., If the optional covariance matrix of the estimated pi weights was
supplied, then TSIAA also calculates and outputs the mean square errors of the
adjusted time series values and the approximate 95% confidence 1imits about
each adjusted value,

The remainder of this appendix is divided into five sections. The first
section describes the data input to program TSIAA. The cutputs from TSIAA are
presented in the second section. The third section describes how to use TSIAA
on the EIA computer. The program's structure and its hodu1es are described in
the fourth section and the Tast section provides a listing of the program's

FORTRAN source code.

B.1



B.2 PROGRAM INPUT

Input to program TSIAA consists of a data file. The input data file has
a specific structure which is defined in Table B.1. Table B.l1 1ists the card
image sequence within the input data file and the field(s) of each card image
in terms of the variable name that program TSIAA assigns to a field, a
description of the field, and the FORTRAN format specification used by program
TSIAA to read a field's value from the card image.

The amount of information that must be supplied in the input data file
will depend on the purpose for which program TSIAA is to be used. If an
intervention analysis is desired, then, in reference to Table B.l, only cards
1 through 12 need be supplied. If an intervention adjustment analysis is
desired, then, in addition to cards 1 through 12, cards 13 through 16 must
also be supplied. If, for an intervention adjustment analysis, the mean
square errors and 95% confidence limits for the adjusted time series values
are desired, then cards 17 and 18 must also be supplied.

The value of the field IPT on card 2 indicates to program TSIAA which
of the three types of program usage (i.e., intervention analysis, intervention
adjustment wjthout mean square error computations, or intervention adjustment
with mean square errvor computations) is in effect and directs how TSIAA reads
the data file. Thus, when proceeding from an intervention analysis run to a
intervention adjustment run for a given time series, modifications to the data
file would involve changing the value of IPT from 1 to 2 or 3, as well as
appending the additionally required card images to the existing data file.

For an example time series, Table B.2, Table B.3, and Table B.4
illustrate the forms of the input data file corresponding to the three TSIAA
run types of intervention analysis, intervention adjustment without mean
square error computations, and intervention adjustment with mean square error

B.2



Card

10+

Variable

TITLE

IpT

IPRT

N

Iv

IS

ID

ICD
PHI(1)
PHI(2)
THETA (1)
THETA (2)
CPHI(1)
CPHI(2)
CTHETA (1)
CTHETA (2)

FMT

Z(I}
{*)

TABLE B.1. Input Data File Structure

Description

The title of the run,.

Type of run. IPT = 1 indicates an
intervention analysis run. IPT = 2
indicates an intervention adjustment

run WITHOUT mean square error
computations. IPT = 3 indicates an
intervention adjustment run WITH mean
square ertor computations.

Print flag for the VP matrix (defined on
card 18), If IPRT = 1, then the VP matrix
is output on the report, {(IPRT is used
only when IPT = 3},

Number of input time points.

Time point after which the intervention
occurred,

Crder of seasonality.

Degree of non-seasonal differencing.
Degree of seasonal differencing.

AR(l) pre-intervention model-parameter.
AR({2) pre-intervention model parameter,
MA(l) pre-intervention model parameter.
MA{2) pre-intervention model parameter.
SAR{l) pre-intervention model parameter.
SAR(2) pre-intervention model parameter,
SMA(l) pre-intervention model parameter.
SMA{2) pre-intervention model parameter.
FORTRAN format specification for the
following 2 array. For example:
(BF10.2)

Original time series {where I = 1,...N}.

Card 10 is repeated as necessary to read
all the Z2{I}.

B.3

Format

2004

IS

IS

I5

I5

I5

I3

Fl1¢.0
Fl0.0
F10.,0
F10.,0
Flo0.0
Fl0.0
Fl0.0
F10.0

2044

FMT



TABLE B.1.
Card Variable
11 FMT
12+ A(I}
[*)
L2228 3% Cards 13
13 PHIN(1)
PHIN(2)
14 THETN (1)
THETN(2)
15 CPHIN{1)
CPHIN{2}
le CTHETN (1)
CTHETN(2)
& ok ok ok ok ko CaIdS 17
17 FMT
18~ VP(1,J)

(*}

Input Data File Structure {Continued)

Description Format

FORTRAN format specificaticn for the 2044
following A array.

Pre~intervention residuals ({(where FMT
I = 1;--.IV]-

Card 12 is repeated as necessary to read

all the A({I).

- 16 are input only when IPT = 2 or 3 ookl

AR{l} post-intervention model parameter. r10.0
AR(2) post=-intervention model parameter. F10.0
MA(l} post-intervention meodel parameter. Fl10.0
MA({2) post-intervention model parameter, Flo.0
SAR(l1} post=-intervention model parameter. F10.0
SAR{2) pest-intervention model parameter. F10.0
SMA(l) post-intervention model parameter, Fl0.0
SMA{2) post-intervention medel parameter, F10.0
and 18 are input only when IPT = 3 o

FORTRAN format specification for the 20a4

following VP array,

Covariance matrix of the estimated pi FMT
weights of the pre-intervention model

{where I = 1,...IV and J =1I,...1IV).

This matrix is read in upper triangular

form a row at a time,

Card 18 is5 repeated as necessary to read

all the VvP(I,J).

B.4



TABLE B.Z.

Example Input Data File - Intervention
Analysis (IPT = 1)

EXAMPLE INTERVENTION ANALYSIS

1 1]
84 60
12 1

75
76
17
78
79
80
81
82
83
84

0.
0.
0.
0

242409,
250433,
240293,
226551,
227168,
227367,
229034,
232459,
231745.
225388,
229884.
233825.
255625,
258052,
264919,

-
L]

248928.
224235,
217512.
221435,
228029.
2279613,
235537,
237117.
232663,
237073.

~693,.8
15996.4

-14244.0
-221530.5
=1736,7
9770.6
9020.0
6344.2
6671.4
9164.2
=-7449.0
-7543.9

B.5

TITLE

IPT (1=AMALYSIS), IPRT
N, IV

1s, ID, ICD

PHI(1l), PHI{2)

THETA (1), THETA(2)
CPHI(1l), CPHI{2)
CTHETA (1), CTHETA(2)
FMT

Z(I)



TABLE 2. Example Input Data File - Intervention
Analysis (IPT = 1) (Continued)

{18X,F12.0} -- FMT
1 242409, 0. == A(I)
2 250433, 0.
3 240293, 0.
4 226551. 0.
5 227168, 0.
& 227367, 0.
7 229034. 0.
8 232459, 0.
9 231745. 0.

10 228388, 0.
11 229884, 0.
12 233825, 0.
13 255625, 0.
14 258052, -693.8
15 264919, 15996.4
30 277406, 11312.4
51 285505, 13675.5
52 274069, ~7345.7
53 264723, -2200,1
54 267691, 6956.6
55 263123, -10143.5
56 261194, 5005.5
57 261323, =1050.,1
58 249510, ~-5827.3
59 259782, 8356,3
60 263707, ~9067.4
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TABLE B.3. Example Input Data File - Intervention
Adjustment Without MSE (IPT = 2)

EXAMPLE INTERVENTION ADJUSTMENT WITHOUT MSE -= TITLE
2 0 == IPT (2=ADJUST WITHOUT MSE), IPRT
B4 60 -- N, IV
12 1 1 -- IS, ID, ICD
0. 0. -« PHI{l), PHI(2)
-.237 0. -— THETA{l), THETA{2)
0. 0. _ —— CPHI(l}, CPHI(2)
.755 0. -- CTHETA{l}, CTHETA(2)
(6X,F12.0) —— FMT
1l 242409, a. -~ 2{I)
2 250433. 0.
3 240293, 0.
4 226551, 0.
5 2271619, 0.
6 2271367, 0.
7 229034, 0.
8 232459, 0.
9 231745, 0.
10 229388. 0.
11 229884, 0.
12 233825, 0.
13 255625, 0.
14 258052, -693.,8
15 264919, 15996.4
75 248928, -14244.0
76 224235, «2235%0.5
77 217512, -1736.7
79 221435, 9770.6
79 228029, 9020.0
a0 227963, 6344.2
a1 235537, 6671.4
82 2317117. 9164.2
B3 232663, -7449.0
84 237073, -7543.9

B.7



TABLE B.3.

(18X,F12.0)

50

52
53
54
55
56
37
58
59
60

-.555

.755

Without MSE (IPT = 2} {Continued)

242409. 0.
250433. 0.
240293, 0.
226551. 0.
227168. 0.
227367, 0.
229034. 2.
232459, Q.
231745. 0.
228388, 0.
229884, 0.
233825, 2.
255625, Q.
258052, «693.8
264919, 15996.4
277406, 11312.4
2855405, 13675.5
274069. =7345.7
264723, =2200.1
267691, 6956.6
263123, -10143.5
261194. 5005.5
261323, =1050.1
2495140, -5827.3
259782. 8356.3
263707, -9067 .4
Q.

0.

0.

0. -

B.8

Example Input Data File - Intervention Adjustment

FMT
A(I)

PHIN(1), PHIN(2)
THETN (1), THETN(2)
CPHIN(1), CPHIN{2)
CTHETN(1}, CTHETN(2)



68

TABLE B.4. Exampte Input Data File - Intervention Adjustment with

MSE (IPT = 3)
EXAMPLE INTERVENTION ADJUSTMENT WITH MSE -- TITLE
3 0 =— IPT {3=ADJUST WITH MS5E), IPRT
B4 60 -- N, IV
12 1 1 -- 1§, 1D, ICD
o, 0. --  PHI(1), PHI(2)
-.237 0. —- THETA{l), THETA{2}
o. 0. -~ CPHI{1l), CPHI(2)
. 755 0. -- CTHETA{l), CTHETA(2)
. (6X,F12.0) -- FHMT
1 242409, 0. -— E{I}
2 250433, 0.
3 240293, 0.
4 22655]. 0.
5 227168, 0.
6 227367. o,
7 229034, 0.
8 232459, 0.
9 231745, 0.
10 22B3BB. 0.
11 229884, 0.
12 233825, 0.
13 255625, 0.
14 258052, -693.8
15 264919, . 15996.4
75 248928, -14244.0
76 224235, ~22350.5
77 217512, ~1736,7
78 221435, 9770.6
79 228029, 9020.0
80 227963, 63144.2
a1 235537, 6671.4
B2 237117, 9164.2
63 232663, -7449.0

e 237073, -71543.9
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TABLE B.4. Example Input Data File - Intervention Adjustment with
MSE (IPT = 3} ({Continued)

{18X,F12.0) -  FMT
1 242409, 0. -- a{n)
2 250433, 0.
3 240293, 0.
4 226551, 0.
5 227168. 18
6 227387, 0.
7 2290234, 0.
8 232459, 0.
9 231745, 0.
10 228388, 0.
11 229884, 0.
12 233825, 0.
13 255625, 0.
14 258052, . -693.8
15 264919, 155996.4
50 277406, 113124
51 2855405, 13675,.5
52 274069, -7345.7
5] 264723, -2200.1
54 267691. 6956.6
55 263123, -10143.5
56 261194, 5005.5
57 261323, =-1050,1
58 249510, -5827.3
59 259782, 8356.3
50 263707. ~-9067 .4
0. 0. -- PHIN(1), PHIN{2)
-.555 0. -— THETN{1), THETN(2}
0. 0. == CPHIN{(l)}, CPHIN{2)
. 755 0, -— CTHETH(l}, CTHETN(2)



LL-d

TABLE B.4.

(6F10.0)
0.222E-01-0.105E-01
0.199E-05-0,524E-06
0.,265E-03-0.753E-04
0.1296-01-0.606E-02
0.114E-05-0.299E-06
0.152E-03-0.431E-04
0.750E-02-0.349E-02
0.64%9E-06-0.171E-06
0.647E-02-0.177E-0D2
0.248E-06-0.647E-07
0.357E-04-0.987E-05
0.207E-02-0.102E-02
0.142E-06-0.370E-07
0.204E-04-0.564E-05
0.165E~02-0,584E-03
0.810E-07~0,211E-07

MSE {IPT =

0.374E-02-0,11BE-02
0.137E-06-0,700E-013
0.208E-04~0,564E-05
0.215E-02-0.677E-03
0.7B0E-07-0.120E-02
0.119E-04-0,322E-05
0.123)E-02-0,388E-03
0.445E-07-0,114E-02
0.560E-03-0.166E-01
0,332E-03-0.802E-02
0.267E-05-0.713E-06
0.321E-01~-0.950E-04
0.568E-03-0,466E-02
0.153E-05-0.407E-06
0.184E-03-0.544E-04
0.539E-03

3) {(Continued)

0.350E-03~0.996E-04
0.169E-01-0.798E-02
0.150E-05-0.396E~06
0.200E-03-0.57CE-04
0.984E-02-0.460E-02
0.859E-06-0.226E-06
0.115E~03-0,326E~04

0,.472E-04-0,131E-04
0.378BE-02-0.134E-02
0.188E-06-0,489E-07
0.270E-04-0,746E-05
0.218E-02-0.771E~D]
0.107E-06-0,.279E-07
0,.154E-04-0,427E-05

0.275E~04-0.746E-05
0,283E-02-0.895E-03
0.103E-06-0.106E-02
0.157E-04-0.426E-05
0.163E-02-0.513E-03
0.589E-07-0.121E-02
0.900E-05-0.244E-05

0.354E-05-0.943E-06
0.424E-03-0.126E-03
0.501E-03-0.612E-02
0.202E-05-0.539E-06
D,243E-03-0.719E~0D4
0,571E-03-0,355E-02
0,115E-05-0.308E-06

Example Input Data File - Interventlon Adjustment with

FMT
VP {FIRST ROW OF UPPER TRIANGULAR FORM)

VP (SECOND ROW OF UPPER TRTANGULAR FORM)

VP {ETC)



computations, respectively. Note that in these tables, the variable names are
placed to the right of the data file records only for readability purposes and

they are not a part of the actual data file,

B.3 PROGRAM OUTPUT

Outputs from a TSIAA program execution consist of a report file and a
data file. The contents of both files vary depending on the type of TSIAA
run. The following describes the program's outputs for the three TSIAA run
types of intervention analysis, intervention adjustment without mean square
error computations, and intervention adjustment with mean square error
computations,

Intervention Analysis - (IPT = 1)

Table B.5 presents an example report file from a TSIAA intervention
analysis run. This report fiie corresponds to the input data file given in
Table B.2. For any type of run, the TSIAA report file first lists the user
supplied title and the type of run selected. MNext, the general form of the
second order seasonal ARMA model is displayed, followed by the values in
effect for seasonality {S), nonseasonal differencing (D}, seasonal
differencing (SD), and the pre-intervention model parameters (AR(1), AR({2),
SAR(1), SAR(Z), MA(1), MA{2), SMA(1l), and SMA{2)).

For an intervention analysis run, the report file then gives the number
of time points input, the intervention time point index, and the calcuiated
residual mean square of the pre-intervention time series. Mext the input data
series, Z(T), and the résidua]s, A(T), are listed. For puints beyond the
intervention, the values for A(T) are computed using the pre-intervention
model. Mext the Q-statistic (described in Section 4.1) and the p-value for a
Chi-square with degrees of freedom equal to the number of time points after

B.12
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TABLE B.5. Example Report File - Intervention Analysis (IPT = 1)

FPROGRAM TSIAA -
TITLE OF RUN: EXAMPLE INTERVENTION ANALYS1S

TYPE OF RUM; INTERVERTION ANALYEIS

MCDEL:

{(1-B}*4D} ¢ ({1-B*4E) **SD} * (1-AR(1)B-AR{2)D**2)* {1 -SAR())B**5-SAR(2) B**25}*3(T) =
(1-MA{1)D-MA(Z)R**2) 4 (1-BMA{1}B**S-5SMA(2)R**2E) A {T)

WHERE

8= 12 D= 1 5D = 1

FRE-1NKRTERVENTION PARAMETERS:

AR{1l) = 0,00000E+D0 AR(2} = 2.00000E+D0
SAR(1} = 0.00000E+0D SAR{2} = 0,00000E+DD
HA(L} = -0.237008+00 MA(2) = 0.0000GE+00
SMA (1) = 0,75500E+00 SEMA(2) = 8.00000E400

HUMBER OF TIME PGINT VALUES = 84
INTERVENTION OCCURREKCE AFTER POINT =~ 60

RESIDUAL MEAN SQUARE = D,47%0))FE+D8

L ORIGINAL DATA e
T i(T) A{T}
1l 0,242409E+06 arka
2 0.250433F+06 ke
3 0.240293E+06 L
4 0.226551E406 LR
5 0,22716BE+06 thda
6 0.227367E+06 okl
7 0,229034E+06 rea4
8 0.232459E+06 LA
9 0.231745E+08 LAl

10 0.228388E+06 ke
11  0.229884E+06 hhaw
12 0,233825E406 *EAN
13 0,255625E106 haes
Id 0.258052E+06 -0,693000E+0]

60
61

0.264919E406
0.261065E+06
0,265197E406
0.259258E+06
0.260049E4 06
0.259814E+06

0.263707E106
0.279560E4106

0.159964E405
D.11615DE+D4
0.699590E+404
-0.615340E+04
-0.970300E+03
0.145450E+04

-0,906740E4 04
-0.276851E+D4



vL'd

B0

a2
B3
a4

HOTE:

0 ETATISTIC =

TABLE B.5. Example Re

{Continued
0,2087492E+06 G.542551E+04
0,288 462E+06 0.393434E+0d
0.275759B+06 -0,529842E+04
0,.261541E+06 -0,.659175B+04
O0.254246E+06 -0,.138422E+05
0.230429E+06 -~0.123820E+05
0.236156E+06 0.125547E+05
0.240372E+06 0,.12143BE+04
0.239285E+06 0.585068E+04

0.227963E+06 ~-0.9031B6E+D2
0,235537E+06 0.654273E+04
0.237117E+06 0,5250938+404
0,232661E+06 -~0.125547E405
0.237073E4+06 -0.548911Et03
AFTER T =

0.305891E+02
P-VALUE FOR A CHI-BOUARE WITH

WITH

60, AT} I5 COMPUTED FROM THE PRE-INTERVENTION RODEL

24 DEGREES OF FREEDOM
24 DEGREES OF FREEDOM =

0.1660

e e o —————— e P o S e ———————— ,——————— -

T

61
62
63
6d
&5
66
67
68
69

1
12
73

75
16
T

79
80
§)

a3
B4

A{T}

~D.2T7E+04
D.543E+04
0.393E404
-0.530E+04
-~0.659E+04
-0.13BE+05
~0.124E4 08
0,126E405
0.121E+04
0.585ErD4
0.56BE$D04
~0,682E+04
-0.B91E104
-0,.643E+04
-0.657E+04
-0.137E+05
0.482E+04
D.B44E+D4
O.650E¢04
-0.903E+02
0.654E+04
0.575E4104
~0.126E408
~0,549E403

0.10000E+01
~0.23700E+D0
0.56169E-0)
~0.13312E-01
0,.31550€-02
-0,74732E-03
0.17721E-03
-0, 41999E-04
0.99538E-05
-0.231590E-05%
0.55909E-06
~0.131250E-D06
-0.24500E+00
0.58065E-01
-0.13761E-0]
0.312615€E-02
-0.77296E-D3
G.1831%E-013
—0.43417E-04
0.102%0E-04
-0.24387E-05
0.57796E-06
-0.13698E-06
0.32464E-07

~0.90674E+0 4
-0,27685E+D4
0.54255E+04
0,393438+04
-0,529Q4E+ 04
-0.6591BE+04
~0.13842E+05
-0,123082E+03
0.12555E+05
0.121 44404
0,58507E+04
0.56827E+04
~0.662)15E+04
~-0.69090E+04
~0.64257E404
-0,65729E+04
-0,13729E+05
0.48230E+04
0.84444E+04
0.65844E+04
-0.90319E+02
0.65427E404
D.57509E104
-0.12555E+4D5

VFHEDICTED ERRGRB

0,83563E+04
~0.906 74E+04
-0,27685E+DQ
0,54255E404
0.39343E 04
~0.52984E+04
-0,65918E+04
-0.13842E+05
-0.12382E+05
0.12555E+05
D.12144E+04
0,58507E+04
0.56827E+04
-0.68215E+04
-0.89090E+04
—0.64257E+04
~0.65729E+04
~0,13729E405
0.48238E+04
0.84444E+04
0,65844E+04
-0,90319E+02
0.65427E+04
0,5750%E1D4

SAR(1)

0. 45B55E4+04
0.11312E+0%
0.13676E+05
-0.73457€+04
-0,22001E+04
0.69566E+04
-0.10144E+05
0.50055E+04
-0.10501E+04
-0.58273E+04
0.8356)E404
-0.90674E+04
-0.276B5E1 04
0.54255E+04
0.39341E+04
-0.52984E+04
-0.65918E+D4
-0.13842E405
~8.,12382E405
0.12555E405
0.12F44E+04
0.58507E404
.56B827E404
~0.662)5E+0d

DUE TO A CHANGE TM:
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SAR(2)

~0.23123E+04
~0.4TAIIE+O4
~0.59042E+04
0.64591E+04
-0,3954BE+04
0.87677E+04
0.66705E+04
-0.7I00BE+04
-0,21059E+04
~0.69081E+D4
-0,15040E+03
Q.74187E+04
0.45855E+04
0.11312E+05
0.13676E105
-0,73457E+04
-0.22001E+04
0.69566E+04
~0.10144E105
0,50055E+04
-0,10501E+04
-0,58273E+04
0.8)S61E+04
~0,90674E+04

MA{l)

0,906 74E+04
0.61953E+D)
-0.55723E+04
-0,26137E+04
0.59179€+04
0.518%92E+04
0.12612E+05
0.939208E+04
~0.14781E+05
0.22807E+04
-0.63931E+04
~0. 41675E+0M
0,.78092E+04
0.70502E+04
0.47529E104
0.54464E+04
0.1243BEv05
-0,77716E+04
-0,66025E+D4
~0.50196E+04
0.12800E404
~D.6B461E+0A
-0, 41284E+04
¢.13533E+05

gort File - Intervention Analysis (IPT = 1)

MA(2)

~0.83563E+D4
0,1104BE+05
0,15017E+0)
-0.54611E+04d
-0,26401Ev04
0.59241E+04
0.51R7TTEFOAL
0.12613E+0%5
0,.91928E+D4
-0.14781E+DS
0.22887E+04
-0.63931E+04
~0.41675E+04
0.78092E+04
0.70582E404
0.47529E+04
0,54464E+04
0,12418E+05
0. IVILGEADA
~0.66025E+04
-0.5Q0196E+Q4
0.12800LE+04
-0,.6B461E+04
-0.41 2B4E+04

SMA(L)

—0,.45855E+04
-0.11312E+05
-0.13676E+05
0.73457E+04
0.22001E4+0D4
~0,.69566E+04
0.10144E¢05
-0.50055E+04
0,10501E+D4
0.58273E+04
-0.083563IE+04
0.90674B404
-0,69354E403
-0.131966E+09
-0,14259E+05
0.10844E+05
0.82520E+04
0.85900E+04
0.2004DE+05
-0,16334E+05
-0,42156E4013
-0.14511E+04
-0.11992E+05
0.13667E+05

Emha(2)

0.23123E+04
O.474I3E+04
0,.59042E+04
-0,64991E+04
0.3954BE+04
-0.87677E+04
-0.667T05E+04
0.71008E+D 4
0,.21D59E+04
0.690R1E+04
D,15040E+01]
~0.T4I8TE+OA
-0,20397E+04
-0,773L2E+04
-0,92178E104
0,24189E+0¢
0.51060E+04
~0.13576E+D5
0.51073E+04
0,.50660E+02)
0,26401E404
0, 11043E+05
~0.82427E+04
0,.34662E+04



the intervention are given. Lastly, the intervention analysis report file
Tists the one-step ahead forecast errors A{T}'s) and the corresponding
predicted errors due to a change in level (MEAN) and model parameters (AR(1)},
AR(2), SAR(1), SAR(2), MA(1), MA(2), SMA(1), and SMA(2))}.

The data file produced by program TSIAA in the intervention analysis mode
consists of T, A{T), and the predicted errors due to a change in level and
model parameters for T = IV+1, IV+2, ..., N, where IV is the time point after
which the intervention occurred and N is the number of time points input.

That is, the data file contains the last eleven columns listed on the report
file. These values are written to the data file in order to facilitate their
input to subséquent plotting or analysis procedures. This data file contains
N-IV records corresponding to the N-IV time points after the intervention. The
FORTRAN format by which each record is written is (1X,I13,1X,E10.3,9E13.5}.

Intervention Adjustment without Mean Sguare Errors - (IPT = 2)

Tabie B.6 presents an example report file from a TSIAA intervention
adjustment run without the mean sguare error computations. This report file
corresponds to the data input file given in Table B.3. As in the intervention
analysis mode, this report file gives the run title, run type, generail modei,
seasonality, differencing values and the pre-intervention model parameters.
However, immediateiy following the pre-intervention parameters, the
post-intervention model parameters are also given. Then, as in the
intervention analysis mode, the number of time points, intervention time
point, residual mean square, Z(T)'s, and A(T)'s are listed. However, in the
intervention adjustment mode, the A(T)'s, for T after the intervention, are
computed using the post-intervention model parameters.

For an intervention adjustment run, the réport file then lists the
autocovariances of the differenced pre-intervention time series and the psi
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TABLE B.6.

PROGRAM TSIAA -

TITLE OF RUN:

TYPE OF RUN:

MODEL:

((1-B}**D}* ({1-B#*5) **SD) * (1-AR (1) B~AR(2)B**2) * (1-SAR(1)B**S~SAR(2) B**25) *7 (T}
{1-MA(1)B-MA{2)B**2) *(1-SMA (1) B**S—SMA (2)B**25) *A(T)

WHERE

58 =

PRE~

POST-INTERVENTION

12 b = 1

INTERVENTION
AR(1)
SAR(1)
MA{l)
SMA (1)

AR(1)}
SAR(1}
MA(1}
SMA (1)

Example Report File - Intervention Adjustment
Without MSE (IPT = 2)

5D = 1

PARAMETERS:

0.00000E+00D
0.00000E+00
-0.23700E+00
0,75500E+00

PRRAMETERS:
0.00000E+Q0
0.00000E+00

-0.55500E+00
0,75500E+00

NUMBER OF TIME POINT VALUES = 84
INTERVENTION OCCURRENCE AFTER POINT = £0

RESIDUAL MEAN SQUARE =

ok

ORIGINAL DATA

Z{T)

0,.242409E+06
0.250433E+06
0.240293E+06
0.226551E+06
0.227168E+06
0.227367E+06
0.229034E+06
0,232459E+06
0.231745E+06
0,2283688E+06
0,2298B4E+06
0.233825E+06
0.255625E+06
0,258052E+06
0.264919E+06
0.261065E+06
0.265197E+06
0.259258E+06

LR

A(T)

LA R E ]
LA R 1
L2 L
LR R X ]
*kok
LA 2
ko
Thhk
* &k ok
LA &
LA LR
R 2 X
& W ok

-0.693800E+01
0.159964E+05
0.116150E+04
H.699590E+04

-0.615340E+04

AR (2}
SAR(2)
MA(2)
SMA (2}

AR({2)
SAR{2)
MA(2)
SMA (2}

0.479011E+08

B.16

EXAMPLE INTERVENTION ADJUSTMENT WITROUT MSE

INTERVENTION ADJUSTMENT WITHOUT MEAN SQUARE ERROR COMPUTATION

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00D

0.00000E+00
0.00000E+00
0.00000E+00
0.,00000E+00



TABLE B.6. Example Report File - Intervention Adjustment
Without MSE {(IPT = 2) (Continued)

19 0,.26094%E+06 -0.970300E+03
20 0,259814E+06 0,145450E+04
80 0,227963E+06 -0.405885E+04
81 0,235537E+06 0,.968132E+04
82 0,237117E+06 0.173808E+04
83 0,232663E+06 ~-0.132126E+05
84 0.237073E+06 0.532337E+04

ROTE: AFTER T = 60, A(T} IS5 COMPUTED FRCOM THE POST~INTERVENTION MCDEL

AUTOCOVARIANCES OF THE
DIFFERENCED PRE-INTERVENTION GSERIES

PSI WEIGHTS FOR THE
POST-INTERVENTION SERIES

LAG AUDTOCOVARIANCES INDEX PSI WEIGHTS
0 0.794301E+08 0 0,100000E+01
1 0.17823BE+08 1 0.155500E+01
2 ¢,000000E+00 2 0,155500E+01
3 0.000000E+00 3 0.155500E+01
4 0.000000E+00 4 0.155500E+01
5 0.000000E+00 5 0.155500E+01
6 0.000000E+00 & 0.155500E+01
7 0.000000E+00 7 0.155500E+01
8 0.000000E+00 8 0.155500E+01
9 0.000000E+00 9 0¢.155500E+01

10 0.00000CE+00 10 0.155500E+01
1 -0.857118E+07 11 0.155500E+01
12 -0.181967E+08 12 0.180000E+01
13 -0.85711BE+07 13 0.193598E+01
14 0.000Q00E+00 14 0.193598E+01
15 0.C0000DE+0D 15 0.19359B8E+01
1s 0.000000E+00 16 0,193598E+01
17 0.000000E+00 17 0.193598E+01
18 0.000000E+00 18 0.193598E+01
19 0.000000E+00 19 0.19359BE+01
20 0.000000E+00 20 0.19359BE+01
50 0.000000E+00 50 0.307B90E+01
51 0.000000E+00 51 0.307B90E+0L
52 0.0000Q00E+00 52 0.307890E+01
53 0.000000E+00D 53 0.307890E+01
54 0.000000E+0C0 54 0.307890E+01
55 0.000000E+00 55 0.307890E+01
56 0.000000E+00 56 0.307890E+01
57 ¢.000000E+00 57 0.307890E+01
58 ¢.000000E+00 58 0.307890E+0]
59 0.000000E+00 59 0.307890E+01
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TABLE B.6. ECxample Report File - Intervention Adjustment
Without MSE (IPT = 2) {Continued)

T ADJUSTED Z(T}

1 0.205362E+06
2 0.2B86866E+06
3 0.274976E+06
4 0.261434E+06
5 0.260256E+06
6 0.260327E+06
3 D.262583E+06
8 0.263473E+06
9 D.2618B67E+06
10 0.256286E+06
11 0.260771E+06
12 0.266B01E+06
13 0.2849613E+06
14 0.285774E+06
15 0.289494E+06
16 0.28B5993E+06
17 0,292455E+06
la 0.290255E+06
19 0,288126E+06
20 0.289932E+06

+

40  0.235771E+06
41 0,212439E+06
42  0.234634E+06
43 0.245059E+06
44  0.241037E+06
45  0.234789E+06
46 0.22328BE+06
47 0,225429B+06
48  0,239322E+06
49 0,264B882E+06
50 0.277406E+06
51 0.2B5505E+06
52  0.2T4069E+06
53 0,264723E+06
54 0.267691E+06
S5 0.263123E+06
56 0.261194E+06
57 0.261323E+06
58 0.249510E+06
59  0.259782E+06
60 0,263707E+06
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TABLE B.7. Example Report File - Intervention Adjustment
with MSE (IPT = 3)

T

DD e Of O e L ) e

[y
B )

[y
U

[y
oo~ O

M=
[—N"-]

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ADJUSTED 3{T} MSE Z{T)
0.285362E+06 0.207983E+10
0.286866E+06 0.201972E+10
0.274976E+06 0.195961E+10
0.261434E+06 0.189950E+10
0,260256E+06 0.183939E+10
0.260127E+06 0,.177928E+10
0.262583E+06 0.171917E+10
0.263473E+06 0.165906E+10
0.261867E+06 0.159898E+10
0.256286E+06 0,.153898E+10
0.260771E+06 0.147908E+10
0.266B01E+06 0.138049E+10
0.284963E+06 0.126523E+10
0,285774E+06 0.122682E+10
0,.289494E+06 0.118841E+10
0,285993E+06 0.115001E+10
0.292455E+06 0.111160E+10
0,290255E+06 0.107319E+10
0.288126E+06 0.103478E+10
0.289932E+06 0.996376E+09
0.235771E+06 0,334293E+09
0.232439E+06 0.321824E+09
0.2346314E+06 0.309355E+09
0,245059E+06 0.296887E+09
0.241037E+06 0,284421E+09
0.234789E+06 0,271971E+09
0,223288E+06 0.259581E+09
0.225429E+06 0.247233E+09
0.239322E+06 0.211124E+09
0.264882E+06 0.164586E+09
0.277406E+06 0.159840E+09
0.285505E+06 0,155093E+09
0.274065E+06 0.150347E+09
0,264723E+06 0.145601E+09
0.267691E+06 0,140B55E+09
0,263121E+06 0.136109E+09
0.261194E+06 0.131366E+09
0.261323E+06 0.126641E+05
0.249510E+06 0.12199%93E+09
0.259782E+06 0.117589E+09
0.263707E+06 0.479011E+08

APPROX,
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95% C, I.
LOWER LIMIT

0.195976E+06
0.1987B1E+06
0.188211E+06
0.176011E+06
0.176195E+06
0.177651E+06
0.181316E+06
0.183639E+06
0.183492E+06
0.1793196E+06
0.185392E+06
0.193977E+06
0.215246E+06
0.217123E+06
0.221927E+06
0,219526E+06
0.227107E+06
0,226046E+06
0.225076E+06
0.228063E+06

0.199935E+06
0.197278E+06
0.200160E+06
0.21128B7E+06
0.207982E+06
0,202465E+06
0.191709%9E+06
0,194611E+06
0.210843E+06
0.239737E+06
0.252626E+06
0,261096E+06
0.2500316E+06
0,241073E+06
0.244429E+06
0.240257E+06
0.238729E+06
0.239266E+D6
0.227862E+06
0,238528E+06
0.250142F+06

FOR ADJUSTED Z{T)

UPPER LIMIT

0.374748E+06
0.374951E+06
0.361740E+06
0.346B5BE+06
0.344317E+06
0.341002E+06
0.3431850E+06
D.343307E4+06
0.340242E+06
0.333177E+06
0.336151E+06
0,339625E+06
0.3546B0E+06
0,354425E+06
0.357062E+06
0,352460E+06
0.357803E+06
0.354464E+06
0.351175E+06
0.351800E+06

0.271607E+06
0.267600E+06
0,269107E+06
0,27B830E+06
0.274092E+06
0.267112E+06
0.254B66E+06
0.256248E+06
0.267801E+06
0.290027E+06
0.302186E+06
0.3099]1 4E+06
0.298102E+06
0.288373E+06
0.290953E+06
0.2855989E+06
0.283655E+06
0.2833B0E+06
0.271158E+06
0.281016E+06
0.277272E+06



weights of the post-intervention time series. Lastly, in the case of
intervention adjustment without the mean square error computations, the
adjusted Z(T) are listed for T =1, 2, ..., IV.

The data file produced by program TSIAA in the intervention adjustment
mode without the mean square error computations consists of T and the adjusted
2(T) for T =1, 2, ..., IV. That is, the data file contains the last two
columns listed on the report file. These values are written to the data file
in order to faciiitate their input to subsequent plotting or analysis
procedures, This data file contains IV records corresponding to the IV time
points prior to the intervention. The FORTRAN format by which each record is
written is (1X,13,2X,E13.6).

Intervention Adjustment with Mean Square Errors - (IPT = 3)

For the intervention adjustment run with the mean square error
computations, the report file is essentially identical (with thé exception of
the run type and possibly the user supplied run title) to the report file for
the 1ntervention adjustment without the mean square error computations up to
the point at which the adjusted Z(T)'s are listed. At this point the
covariance matrix of the estimated pi weights (VP matrix) will be displayed if
requested {i.e., the input field IPRT is set equal to one}. This matrix is
displayed on the report file in lower triangular form. Then, in addition to T
and the adjusted Z(T), the report file also lists the mean square error of the
adjusted Z(T)} and the approximate 95% confidence interval‘s Tower and upper
1imits for the adjusted Z(T). Table B.7 presents the last portion of an
example report file from a TSIAA intervention adjustment run with the mean
square error computations.

The data file produced by program TSIAA in the intervention adjustment
mode with the mean square error computations consists of T, adjusted Z(T}, the
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mean square error of the adjusted Z{T), and the lower and upper 95% confidence
interval limits for the adjusted Z(T} for 7 = 1, 2, ..., IV. That is, the data
file contains the last five columns Jisted on the report file. These values
are written to the data file in order to facilitate their input to subsequent
plotting or analysis procedures. This data file contains IV records
corresponding to the IV time points prior to the intervention. The FORTRAN
format by which each record is written is

(1X,13,2X,E13.6,2X,E13.6,7X,E13.6,2X,E13.6)

B.4 PROGRAM OPERATION

This section describes how to use program TSIAA together with other
facilities available on the EIA computer to perform time series intervention
analysis and adjustment. This description follows the methodoiogy presented
in Appendix A.

Pre-intervention Modeling

If the original time series data are available on a file, the SAS-ETS
procedure ARIMA can be used to perform the pre-intervention modeling. In
addition, the re;u]ting residuais can be output to a data file with this
procedure. Table B.B gives example JCL and SAS commands to perform the
modeling and to output both the original time series and the residuals to a
data file. In this example, the file SERIES.DATA contains the original time
series and the file PREINT.DATA contains both the original time series and the
residuals.

Testing for an Intervention

Before using TSIAA in the intervention analysis mode, it is necessary to
prepare the data file containing the original time series and the residuals for
input to TSIAA. This involves editing the data file so that it includes the
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TABLE B.8. Example JCL and SAS Commands for
Pre-Intervention Modeling

//STEP1 EXEC SAS,OPTIONS='S=72 NOCENTER',

// TIME.SAS=(1,20),REGION=264K

//***

// INF DD DSN=SERIES.DATA,DISP=0OLD

//iti

//OUTF DD DSN=PREINT,DATA,DISP={NEW,CATLG)...
//iii

//SYSIN DD *

DATA SERIES:
INFILE INF;
INPUT @10 2 9.;
PROC ARIMA DATA=SERIES;
IDENTIFY VAR=Z(1,12);
ESTIMATE Q=(1)(12);
FORECAST LEAD=24 OUT=PREINT;
DATA _NULL_;
SET PREINT;
FILE OUTF;
PUT @7 2 12, €19 RESIDUAL 12.1;
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TITLE, IPT, N, IV, IS, ID, ICD, PHI, THETA, CPHI, CTHETA and FMT fields
described in the Program Input section of this appendix. This type of file
editing can be performed on the EIA computer with the SUPERWYLBUR utility.

Once the TSIAA input data file s ready, TSIAA can be executed. In’
preparing the JCL to run TSIAA, note that the program reads the input data on
FORTRAN unit 5 and writes the report on unit & and the output data on unit 1.
Table B.9 gives example JCL commands to run TSIAA., In this example the input
data file is named TSIAA.IN, the output data file is named TSIAA.DAT and the
report is on TSIAA.RPT. The TSIAA report file contains the Q-statistic and its
p-level. From this information it can be determined if the intervention is
significant.

Determining the Nature of the Intervention -

If, from the results of the TSIAA intervention analysis run, it is decided
that the intervention is significant, then the TSIAA output data file {which
contains the one-step ahead forecast errors and the predicted errors due to a
change in level and model parameters) can be input te the SAS procedures PLOT
and REG. The PLOT procedure is used to plot the predicted errors versus the
one-step ahead forecast errors to observe similarities, If similarities are
seen, then the REG procedure is used to regress the one-step ahead forecast
errors on the sets of predicted errors to estimate changes in the parameters.
The TSIAA data file can be read directly by SAS. The record format of this
file is described in the Program Output section of this appendix.

Adjusting the Pre-intervention Data and Estimating the Errors of Adjustment

Once the post-intervention model parameters have been determined, TSIAA
can then be used to adjust the pre-intervention gata. This invoives adding the
post-intervention parameters PHIN, THETN, CPHIN, and CTHETN to the TSIAA
intervention analysis input data file. In addition, the IPT field is modified
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TABLE B.9. Example JCL Commands to Run TSIAA

//AAAAZZZZ JOB (1234,FOR,1,99), "PNAME',TIME=(0,20)} ,REGION=300K

//***

VAL
//STEP1 EXEC

//FORT.SYSIN
//***
//GO.FTO5F001

//i*t
//GO.FTO6F001
//

//
//*ii
//FTO1F001

//
/ALl

FORTGCLG
DD DSN=TSIAA.FOR,DISP=0LD

DD DSN=TSIAA.IN,DISP=0LD

DD DSN=TSIAA.RPT,DISP=(NEW,CATLG},
UNIT=DASD,SPACE=(TRK,10),
DCB=(RECFM=FB,BLKSIZE=13200,LRECL=132)

DD DSN=TSIAA.DAT,DISP={NEW,CATLG},

UNIT=DASD, SPACE=(TRK,10},
DCB=(RECFM=FB,BLKSIZE=13200, LRECL=132)
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to indicate an intervention adjustment run. If only the adjustment of the
pre-intervention data is desired, then IPT is set equal to 2. IPT is set
equal to 3 if, in addition to the adjusted data, the adjustment errors are
desired. However, this requires that the fields VP and FMT {the covariance
matrix of the pi weights and its format) be added to the input data file. The
necessary editing of the data file can be performed by using SUPERWYLBUR. The
ordering and formats of the additional fields for an intervention adjustment
run are described in the Program Input section of this appendix. Once the
input data file for the TSIAA intervention adjustment run jis prepared,

TSIAA is executed in the same manner as for the intervention analysis run
(refer to Table B.9). The TSIAA report file contains the adjusted data and, if
requested, the adjusted errors. The TSIAA data file in the intervention
adjustment mode also contains the adjusted values and, if requested, the
adjusted errors, If desired, this data file can be input directly to SAS for
piotting. Its record format is given in the Program Output section of this

appendix.

B.5 PROGRAM DESCRIPTION

Program TSIAA consists of 13 modules. These are the main program TSIAA,
eleven subroutine subprograms and one function subprogram. A description of
each module is given below. Table B.10 lists the major program variables
together with a short description of each variable. To simplify the variable
descriptions and to provide a link between the computer program and the theory
presented in Section 4.1 and Section 5.5, Table B.10 also includes equivalent
symbolic representations for many of the program variables. Thus, variables

and their symbols are used interchangeably in the descriptions that follow.
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TABLE B.10.

VARIABLE
NMAX

Iu
10U
IPT
IPRT

1y

IS
I

ICD
PHI(1)
PHI(2)

THETA(1)

THETA(2)
CPHI{1}
CPHI(2)

CTHETA(1)

Major TSIAA Program Variables
(In Order of Qccurrence in the Program)

SYMBOL

B.26

DESCRIPTION

Maximum number of time

points allowed by

TSIAA

Data input unit number

Data output unit number
TSIAA run type

VP matrix print flag

Number of original
time points

Time point after which
intervention occurred

Order of seasonality

Degree of non-seasonal
differencing

Degree of seasonal
differencing

ARl, pre-intervention
mode]

ARZ2, pre-intervention
medel

MAl, pre-intervention
mode]

MAZ2, pre-intervention
mode?

SAR1, pre-intervention
mode]

SARZ, pre-intervention
mode]l

SHMAl, pre-intervention
mode’



VARIABLE
CTHETA(2)

Z(1)
A(T)
PHIN(1)

PHIN(2)
THETN(1)
THETN(2)
CPHIN{(1)
CPHIN(2)
CTHETN(lj
CTHETN(2)

vP(I,d)

IDIF

XP

SSQA

TABLE B.10.

Major TSIAA Program Variables
(In Order of Occurrence in the Program)
(Continued)

SYMBOL

I..
]
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DESCRIPTION

SMA2, pre-intervention
model

time series
residuals

ARl, post-intervention
mode]

AR2, post-intervention
mode

MAl, post-intervention
model

MA2, post-intervention
modeT

.SAR1, post-intervention

model

SAR2, post-intervention
mode]

SMAl, post-intervention
model

SMA2, post-intervention
mode]

Covariance matrix of the
estimated pi weights of
the pre-intervention
model

Total degree of differ-
encing (IDIF = d + Ds)

Number of non-zero pre-
intervention model
parameters

Residual mean square,
pre-intervention model



TABLE B.10, Major TSIAA Program Variables
(In Order of Occurrence in the Program)

VARIABLE
DCOEF(I)

CDCOEF(T)

WCOEF(I,d)

WL}

IDF

PVAL
cX(1)

CWPHI(I,1)
CWPHI(I,2)
CWTHE(I,1)
CWTHE(1,2)
CWCPHI{I,1)
CWCPHI{I,1)
CWCTHE{I,1)

CWCTHE(I,2)

(Continued)

SYMBOL
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DESCRIPTION

Coefficients of

polynomial (1-8)d

Coefficients of

polynomial (1-BS)D

Coefficients of poly-
nomial (1-8)¢ (1-8%)P

differenced z.

(v, = (1-8)%(1-8%)02,)

Q-statistic

Degrees of freedom for
Q-statistic (IDF = N-to)

p-value for Q-statistic

Predicted errors
a4 change in mean

Predicted errors
a change in ¢1

Predicted errars
a change in ¢2

Predicted errors
a change in 91

Predicted errors
a change in 8,

Predicted errors
a change in @1

Predicted errors
a change in ¢2

Predicted errors
a change in 9

Predicted errors
a change in 8,

due

to

Tevel

due

due

due

due

due

due

due

due

to

to

to

to

to

to

to

to



VARIABLE

PSI (I)

GAMMA(T)

XMSE (I)

TABLE B.10.

Major TSIAA Program Variables
(In Qrder of Occurrence in the Program)

(Continued)

SYMBOL

v

W. .
1]

i
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OESCRIPTION

Psi weights for the post-
intervention series

Autocovariances of the
differenced pre-inter-
vention series

(“1j = GAMMA(|I-d] + 1))

Mean square error of
the adjusted z,



Hain Program TSIAA

Main program TSIAA contains the dimension statements for all arrays which
depend on the number of points in the time series. Currently the maximum
number of time points allowed by the program is 150. If intervention analysis
and adjustment are desired for a time series with greater than 150 points, then
the program must be modified. That is, all arrays with a dimension of 15C must
have the dimension increased to the desired number. In addition, the variable
NMAX (which is set in the first assignment statement of the program) must be
assigned the new value. Main program TSIAA also contains the assignment
statements for the unit number varijables of the input data file (IU = §) and
the output data file (I0U = 1), The program directs all report output to unit
6.

Upon program initiation, TSIAA calls subroutine INDAT to read the input
data file. Next TSIAA computes the residual mean square of the input ai's and
calls subroutine DIFFZ to difference the input zi‘s to get the wi's. Then
TSIAA calculates the values of d, from i = t0 + 1 to N using the pre-inter-
vention model in the intervention analysis mode or the post-intervention model
in the intervention adjustment mode.

If the intervention analysis mode is in effect, then TSIAA computes the
Q-statistic according to equation 4 in Section 4.1, TSIAA calls subroutine
GAMCUM to calculate the Chi-square p-value for the Q-statistic with N - t0
degrees of freedom. Lastly, in the intervention analysis mcde, TSIAA computes
the predicted errors due to a change in mean Tevel {as described in Section
4.1) and calis subroutine PARAMC to calculate the predicted errors due to
changes in the model parameters.

I[f the intervention adjustment mode is in effect, then TSIAA cails
subroutine ADJSTW to perform the intervention adjustment on the wi's. TSIAA
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undifferences the adjusted wi's to get the adjusted zi's. Next, TSIAA
computes the autocovariances of the differenced pre-intervention time series
(Hij's) and the psi weights for the post-intervention series (?%s). Lastly,
if requested, TSIAA calculates the mean square errors of the adjusted zi's

(using the Nij's, wi's, and I, 's according to equations 21 and 27 in Section

J
5.5) and the 95% confidence interval limits about the adjusted values.

Subroutine ADJSTH

ADJSTW is called by TSIAA to adjust the wi's for i = to’ t -1,...1
according to the method described in Section 5.5,

Subroutine AMISS

AMISS is called by TSIAA to determine the A{I)'s which are undefined based
on the current model (i.e., order of seasonality, degrees of seasgnal and
non-seasonal differencing, and the non-zero model parameters).

Subroutine BINEXP

BINEXP is called by DIFFZ to compute the coefficients of the polynomial
(1-x)%.

Subroutine DIFFEQ

DIFFEQ is cailed by TSIAA to compute a; using the equality

2 5 2s _
{1- $,B - ¢,B ) (1 - 9,8” - ¢,B ) W =
(1 -0 BS - 0,8%5)

B - 3232) (1-o0 a

1 1 2 i

Where
¢1, ¢2, @1, ¢2, el’ 92,.91, 92, 5, W, and a, are input parameters.

Subroutine DIFFZ

DIFFZ is called by TSIAA to compute
D

wo = (1 -84y (1 -89 z,
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Subroutine GAMCUM

GAMCUM is called by TSIAA to compute the Chi-square p-value for the
Q-statistic.

Function GAMLN

GAMLN is used by GAMCUM to compute the natural Togarithm of the gamma
function with argument IDF/2.
Subroutine INDAT

INDAT is called by TSIAA to read the input data file on unit IU. The
number of input variable values read depends on the value of the input variable
IPT. INDAT checks the input values for consistency and writes the values of
the input variables TITLE, IS, ID, ICD, PHI, CPHI, THETA, CTHETA, PHIN, THETN,
CPHIN, CTHETN, N, and IV to the report file.

Subroutine PARAMC

PARAMC 1is called by TSIAA to compute the predicted errors due to changes

in the model according to the method described in Section 4.1. That is, PARAMC

computes
Ni,¢k = ¢1”1'-1,¢k+ ¢2N1'2’¢k Ty
0, T MMis,e, T Micas,e, t ks
Mo, T 9Mi-1e, T fMiz,e, T Piek
“is0, T OMies,0 T %2Mi2s,0, T ticks
for k = 1,2,

Subroutine POLYD

POLYD is called by TSIAA to perform polynomial division.
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Subroutine PRTORG

PRTORG is called by TSIAA to write the input values of Z and VP to the
report file. The input values of A and the values of A computed from the
current model {i.e., for the points occurring after the intervention), are also
written to the report file.

Subroutine RATIOC

RATIOC is called by TSIAA to compute the coefficients of the polynomials

(1- 8.8 - 8,8%) (1 - 0,8 - 0,8

1 1

and
2 s 2s
(1- 1B - ¢,B ) (1 - ¢8> - 0,B }
where

01, 855 91, @y B1s ps @1, ¢, and s are input parameters,

B.6 PROGRAM LISTING

The following pages comprise the FORTRAN source code listing of program

TSIAA.
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D00

PROGRAM TSIAA

TIME SERIES INTERVENTION ANALYSIS AND ADJUSTMENT

IMPLICIT REAL¥*4 (A-H, 0-37)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

2({150),A(150}) ,W{150) ,WCQEF{150,150)
CDCOEF {150} ,DCOEF(150}, IAMS(150Q)
XTMP(150},X(150),CX{150}
PHI(Z2},THETA(2),CPHI(2),CTHETA(2)
PHIN({2),THETN(2),CPHIN(2),CTHETN{2)
KP{2),ET(2) ,RCP(2) ,RCT(2)
CWPHI(150,2),CWCPEI(150,2}
CWTHE{(150,2),CWCTHE(150,2)
ANUM(150) ,ADEN(150) ,PSIP(150)

GAMMA (150) ,ADEN2(150} ,PDEN{150)
PSI(150),VP{(150,150) ,XMSE{150)
PARAM(2)

FCR THE Q-STATISTIC, CHI-SQUARE TEST --

PARAM(])
PARAM(2)

DF/2 (DF = DEGREES OF FREEDOM} AND

= ALPHA
= 1/2 IN THE GAMMA DISTRIBUTION:

BETA

A** (ALPHA-1} * EXP{BETA*X)

DATA PARAM(2) / 0.5 /
DATA NOFRAM / 2 /

NMAX = MAXIMUM NUMBER OF TIME POINTS ALLOWED

NMAX=150

IU = DATA
I0=5

INPUT UNIT NUMBER

IOU = DATA CUTPUT UNIT NUMBER

10U=1

WRITE {6,200)

READ DATA

CALL INDAT (IU,NMAX,IPT,IPRT,N,IV,IS,ID,ICD,PHI,THETA,CPHI,

CTHETA,Z,A,PHIN, THETN, CPHIN,CTEETN, VP}

IDIF = TOTAL DEGREE OF DIFFERENCIKG

IDIF=ID +
IVP1=IV +

ICD*IS
1
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NN OO0 00

10

13

15

20

25

*

IDP1=ID + 1
ICDP1=ICD + 1

DETERMINE MISSING VALUES OF A (PRE~INTERVENTION MODEL)
CALL AMISS (N,IV,A,IAMS,IS,IDIF,PHI,THETA,CPHI,CTHETA,
KP,KT,KCP,KCT)

CALCULATE SSQA (RESIDUAL MEAN SQUARE, PRE~INTERVENTION MODEL)

AN=0
SUM=0
pbo 10 I=1,IV
IF (IAMS(I) .EQ. 0} SUM=SUM + A(I)
IF (IAMS(I) .EQ. 0) XN=XN + 1
CONTINUE

XMEAN=SUM/XN
AP = NUMBER OF NON-ZERQC MODEL PARAMETERS
ip=0
Do 13 1=1,2

Xp=XP + RP(I) + KT(I) + RCP{I} + RCT(I)
CONTINUE
55QA=0

IF {IAMS{(I) .EQ. 0)

SSQA=SSQA + (A(I) - XMEAN)*(A(I) - XMEAN}
CONTINUE

IF (XN .LE. XP} 58QA=0
IF (XN ,GT. XP} SSQA=SSQA/{XN - XP)

WRITE (6,210) SSQA

DIFFERENCE Z TO GET W
CALL DIFFZ (NMAX,N,2,ID,ICD,IS,DCOEF,CDCOEF,WCOEF,W)

Ir (IPT .EQ. 2 ,OR. IPT .EQ. 3) GO TC 20

CALCULATE A(T) FROM IV+1 ON (PRE-INTERVENTION MODEL)
CALL DIFFEQ (W,N,IVPl,PHI,THETA,CPHI,CTHETA,IS,A,IAMS)

GO TO 25

CONTINUE

DETERMINE MISSING VALUES OF A (POST-INTERVENTION MODEL)

CALL AMISS (N,IV,A,IAMS,IS,IDIF,PHIN,THETN,CPHIN,CTHETN,
Kp,XT,KCP,KCT)

CALCULATE A{(T) FROM IV+l1 ON (POST-INTERVENTION MODEL}

CALL DIFFEQ (W,N,IVPl,PHIN,THETN,CPHIN,CTHEETN,IS,A,IAMS)

CONTINUE

PRINT REMAINING INPUT DATA AND THE A{T)} FROM IV+l ON
CALL PRTORG (NMAX,N,IV,Z,A,IAMS,IPT,IPRT,VF)
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NN o0n

1

OO 00n

[eNeNe]

1000

30

40

45
50

&

IF (IPT .EQ. 2 .OR. IPT .EQ. 3) GO TO 70

CONTINUATION OF THE INTERVENTION ANALYSIS
CALCULATE THE Q STATISTIC AND CHI-SQUARE P-VALUE
Q=0

DC 30 I=IVPL,N
Q=0 + A(I)*A(I)

CONTINUE
IF (SSQA .EQ. 0.0} Q=0.0
IF (SSQA .NE. 0.0) Q=Q/5SQA

IDF=N - IV
PARAM(1)=FLOAT(IDF)/2.0

CALL GAMCUM (NCPRAM,PARAM,Q,PVAL}
PVAL=1,0 - PVAL

WRITE (6,215) Q, IDF, IDP, PVAL

COMPUTE PREDICTED ERRCRS DUE TCO CHANGE IN LEVEL OR PARAMETERS

LEVEL CHANGE

FORM XTMP = ARRAY OF ZEROS AND ONES CORRESPONDING TO
PRE-INTERVENTION AND POST-INTERVENTION TIME PQINTS
Lo 40 I=1,N
CX(I)=0.
IF (I .LE. IV) XTMP(I)=0
IF (I .GT. IV) XTMP{I)=l
CONTINUE

DIFFERENCE XTMP TC GET X
DO 50 Kal rN
X(R})=0
IF (K .LE. IV) GO TO 50
DO 45 I=1,ICPl
DO 45 J=1,ICDF]
ENDX=(I-1) + (J-1}*IS
X(K)=X(K) + WCQEF{I,J)*XTMP (K-KNDX}
CONTINUE
CONTINUE

CALCULATE CX FROM X USING THE DIFFERENCE EQUATION
IB=l
CALL DIFFEQ (X,N,IB,PHI,THETA,CPHI,CTHETA,IS,CX,IAMS)

CHANGE IN PARAMETERS

CALL PARAMC (NMAX,N,IV,IS,A,PHI,THETA,CPHI,CTHETA,KP,KT,KCP,XCT,

CWPHI,CWTHE,CWCPHI,CWCTHE)
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60
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72
73

75

PRINT OUT PREDICTED ERRCRS AND ALSC WRITE
THEM TO THE OUTPUT DATA FILE
WRITE (6,220)

DO 60 I=IVP1,N
WRITE (6,225) I,A(I),CX{(I),CWPHI{I,l),CWPHI(I,2),
CWCPHI(I,1) , CWCPHI(I,2),CWTBE(I,1},CWIHE(I,2),
CWCTHE(I,1l) ,CWCTHE(I,2)
WRITE (IOUD,225) I,A{I),CX(I),CWPHI(I,l},CWPRI(I,2),
CWCPHI(I,1) ,CWCPHI(I,2),CWTRE({I,Y},CWTHE(I,2),
CWCTHE{I,1} ,CWCTHE (1,2}
CONTINUE

END OF THE INTERVENTION ANALYSIS

GO TO 9999

CONTINUE

CONTINUATION OF THE INTERVENTION ADJUSTMENT

PERFORM ADJUSTMENT TO W
CALL ADJSTW (N,A,IV,IS,PHIN,THETN,CPHIN,CTHETN,W)

UNDIFFERENCE ADJUSTED W TC GET ADJUSTED 2

DO 75 J=1,1IV
WOREK BACEKWARDS
I=IV - J + 1
INDX=IDIF
SUM=W{I+INDX)
bo 72 K=1,IDP1l
DO 72 L=1,ICDPl
IF (K .BEQ. IDPl .AND. L .EQ. ICDPl) DIV=WCOEF(K,L)
IFf {K .EQ. IDP1l .AND., L .EQ. ICDPl} GO TO 73
ENDX=(E~1) + (L-1}*IS
MOVE TO RHS (SUBTRACT)
SUM=SUM - WCOEF(K,L)*Z(I+INDX~KNDX)
CONTINDE
CONTINUE
Z{I)=8UM/DIV
CONTINUE

ERRCR BOUND COMPUTATION

COMPUTE AUTOCOVARIANCES OF THE DIFFERENCED PRE-INTERVENTION
TIME SERIES (GAMMA)

MAX DIMENSION OF PSIP POLYNCMIAL

IPDIM=MAXO(IV,2%*I5+2)

IF (IPDIM .GT. NMAX) IPDIM=NMAX

GET NUMERATOR AND DENOMINATOR POLYNOMIAL COEFFICIENTS OF PSIP
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85

CALL RATIOC (IPDIM,IS,PHI,THETA,CPHI,CTHETA,ANUM,ADEN)

COMPUTE PSIP=ANUM/ADEN
CALL POLYD {ANUM,ADEN,IPDIM,PSIP}

COMPUTE POSITIVE TERMS OP GAMMA (B)=SSQA*PSIP({B)*PSIP(F)
DO 77 1I=1,IPDIM
GAMMA (T) =0,
E=0
DO 76 J=I,IPDIM
E=Kk + 1
GAMMA (I)=GAMMA (I) + PSIP(K)*PSIP(J)
CONTINUE
© GAMMA {T) =SSQA*GAMMA (T}
CONTINUE

COMPUTE MEAN SQUARE ERROR OF THE ADJUSTED Z

MAX DIMENSION OF POLYNOMIAL PSI = ANUM/(ADEN*ADENZ)
IDIM=MAXO (IDIF+2*I5+2,1IV)
IF (IDIM .GT. NMAX) IDIM=NMAX

GET COEFFICIENTS OF THE POLYNOMIALS ANUM AND ADEN
CALL RATIOC (IDIM,IS,PHIN,THETN,CPHIN,CTHRETN,ANUM,ADEN)

COMPUTE COEFPICIENTS (ADENZ) OF THE POLYNOMIAL

" ((1=B) **ID) ( (1=-B**IS) **ICD)

DO 79 K=1,IDIM
ADEN2 (K) =0.
Lo 78 I=1,IDP1
Do 78 J=1,ICDPLl
IF ((I-1) + IS*(J-1} + 1 .EQ. K)
ADEN2 (K)=ADENZ2 (K} + WCOEF(I,J)
CONTINUE
CONTINUE

GET COEFFICIENTS OF PDEN=ADEN*ADEN2
LO 81 I=1,IDIM
PDEN(I})=0Q.
K=1
Do 80 J=1,I
PDEN(Ii=PDEN(I} + ADEN2(J)*ADEN{K)
K=K -
CONTINUE
CONTINUE

COMPUTE PSI=ANUM/PDEN
CALL POLYD (ANUM,PDEN,IDIM,PSI)

PRINT OUT GAMMA AND PSI
WRITE (6,230)

po 85 I=1,1V
INDX=I -1
WRITE (6,235) INDX, GAMMA(I}, INDX, PSI(I)
CONTINUE
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IF (IPT .EQ. 3) GO TO 90

PRINT QUT ADJUSTED Z'S AND ALSO WRITE
THEM TO THE OQUTPOT DATA FILE

WRITE (6,240)
DO 88 I=1,IV
WRITE (6,242) I,

Z{I)

WRITE (IOU,242) I, Z(I}

CONTINUE

END OF THE INTERVENTION ADJUSTMENT WITHOUT MSE COMPUTATIONS

GO TO 9999

CONTINUE

XMSE(T) = MEAN SQUARE ERROR OF ADJUSTED Z({T)

DO 95 I=1,IV
INDX=IV - I + 1
XMSE (INDX) =0.
DO 94 E=1,I

KRDX=IV - I + K

SuM=0,
SuM2=0. .

IF (KNDX .EQ.
IF (KNDX .EQ.

IV) SUM=SSQA
IVv) GO TO 93

KNDXM1=IV - KNDX
DC 92 L=1,KNDXM1
SUM=SUM + GAMMA (1) *VP(L,L)

IF (L .EQ.
LPl=L + 1

ENDXM1) GO TO 92

DO 91 M=LPl,KNDXM1

SUMZ=SUM2 + GAMMA (IABS(L-M}+l1}*VP(L,M)

CONTINUE
CONTINUE

CONTINUE

XMSE (INDX) =XMSE (INDX) + PSI(K)*PSI(K)}*(SUM + 2.%5UM2)

CONTINUE
CONTINUE

PRINT CUT THE ADJUSTED 2'S WITH MSE
ALSC WRITE THEM TC THE CUTPUT DATA FILE

WRITE (6,250)

DO 98 1I=1,1IV

CI=1.96*SQORT (XMSE(I})

XL=2(I) = CI
Uu=2(1) + CI

WRITE (6,255} I,%2(I),XMSE(I).XL,XU

WRITE (IOQU,253)
CONTINUE

I,2(I),XMSE(I),XL,XU
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CONTINUE

STOP

PORMAT ('OPROGRAM TSIAA - ")

FORMAT {'ORESIDUAL MEAN SQUARE = ',E13.6)

PORMAT (1x,/, T4,/
1 Q STATISTIC = ',E13.6,' WITH ',I3,

2 ' DEGREES OF FREEDOM',/,

3 ' P-VALCE FOR A CHI-SQUARE WITH ',I3,

4 ' DEGREES OF FREEDOM = ',F7.4,/,

5 L T4A{=-"), /0 1XK)

FORMAT ('0',50X, '"PREDICTED ERRORS DUE TO A CHANGE IN:',/,
1 17x,11s5('=-"),/,

1 2X,'T',2X,3X,'A(T)",3X,5X, "MEAN', 4X,4X, 'AR(1) ', 4X,
2 4%, "AR(2)',4X,4X, "SAR(L1) ', 3X,4X, "SAR(2) ', 3X,

3 4%, "MA (1) ',4X,4X, "MA(2) ", 4X,4X,'SMA (1) ', 3X,

4 4%, 'SMA(2)',/,1%)

FORMAT (1X,I3,1X,E10,.3,9E13.5)

FORMAT (1X,/,'0"," AUTOCOVARIANCES OF THE ', 5X,
1 ' PSI WEIGHTS FOR THE',/,

2 ! ', *DIFFERENCED PRE-INTERVENTION SERIES 5%,

3 'POST~INTERVENTION SERIES',/,

4 g, LAG',3X, 'AUTOCOVARIANCES t,5%,

5 ' INDEX',3X,' PSI WEIGHTS ',/,

6 BX,'=-—=',3X,15("'="},12X,2X, 'w~=—=m- PL3X,13(=),/,1X)
FORMAT (8X,I3,3X,1X,E13.6,15X,1X,13,1%,3X,E13.6)

FORMAT (1X,/,'0'," T *,2X,'ADJCOSTED Z(T)',/,

l ' "'---I’ZXrl ------------- 'f/'lx)

FORMAT (1X,I3,2X,El13.6)

FORMAT (1X,/,'0',37X,'APPROX, 95% C. I.',

1 ' FOR ADJUSTED Z(T)}',/,

2 1X,' T ',2X,'ADJUSTED Z(T)',2X,' MSE Z2{T) ',7X,
3 ! LOWER LIMIT ',2X,' UPPER LIHIT‘,/,

4 lx: "-"';ZX, ------------- ;zxf -------------- Ir.?xr
5 ' ,ZX, ------------ r/plX}

PORMAT (1X,I3,2X,E13.6,2X,E13.6,7%X,E13.6,2X,E13.6)

END
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SUBROUTINE ADJSTW (NMN,A,IV,IS,PHIN,TRETN,CPHIN,CTHETN,W)

ROUTINE TO ADJUST W FROM POINT IV TO 1 USING THE DIFFERENCE
EQUATION:

W{T)-PHIN(1) *W(T-1)-PHIN{2) *W{T=2)}=-CPHIN(1} *W{T~15)
+PHIN{1) *CPHIN{1) *W{T-{IS+1))+PRIN(2} *CPHIN(]l) *W({T~(IS+2))}
~CPHIN{2) *W({T-2*IS)+PHIN{1) *CPHIN(2} *W{T-{2*IS+1)}

+PHIN(2) *CPHIN(2) *W(T-(2*IS5+2)) =

A(T)-THETN(1} *A(T=1}~-THBETN(2) *A(T=2)~-CTHETN (1) *A(T-I5)
+THETN (1) *CTHETN (1) *A(T-{IS+1))+THETN{2) *CTHETN (1} *A(T-(1S+2)}
~CTHETN{2) *A(T-2*IS}+THETN(1) *CTHETN (2) *A(T={2*IS+1))
+THETN (2) *CTHETN(2) *A (T-{2*I5+2})

VARIABLES:
N =~ NUMBER OF TIME POINTS
A - RESIDUALS (INPUT FQR TIME 1 TO IV, COMPUTED VIA THE
POST-INTERVENTION MODEL FOR TIME IV+l TO N}
Iv -~ TIME POINT AFTER WHICH INTERVENTION QCCURRED
IS - DEGREE OF SEASONALITY
kxwd POST-INTERVENTION MODEL PARAMETERS
PHIN - COEPFICIENTS (2) OF THE PHI PQLYNCMIAL
THETN - COEFFICIENTS (2) OF THE THETA POLYNCMIAL
CPHIN - COEFFICIENTS (2) OF THE CAPITIAL PHI POLYNOMIAL
CTHETN -~ COEFFPICIENTS (2} OF THE CAPITAL THETA POLYNOMIAL
Rk
W -

DIFFERENCED INPUT TIME SERIES

LOCAL VARIABLES:

COEL - COEFFICIENTS OF THE LEFT HAND SIDE OF THE EQUATION

COER =~ CQEFFICIENTS OF THE RIGHT HAND SIDE OF THE EQUATION
ISUB - SUBSCRIPTS OF THE LEFT (W) AND RIGHT (A) SIDE TERMS
IMA - FOQR EACH TERM OF THE LEFT HAND SIDE OF THE EQUATION,

IMA(TERM} = 1 IF THE MINIMUM SUBSCRIPT IS ATTAINED
AT THIS TERM, OTHERWISE IMA{TERM) = 0

IMPLICIT REAL*4 (A-H, 0-I)

DIMENSION A(N) W{(MN) ,PHIN(2),THETN{(2) ,CPHIM(2} ,CTHETN(2)
DIMENSICN COEL(9) ,COER(9),ISUB(9),IMA{9)

COEL{1) =1
COEL({2)==-1.*PHIN(L)
COEL{3)=-1,*PHIN{2}
COEL{4)=-1.*CPHIN(1}
COEL(5)=PHIN(1)*CPHIN(L}
COEL{6} =PHIN(2) *CPHIN(1}
COEL{7)==-1.*CPHIN(2}
COEL{8)=PHIN(1l)*CPHIN(2}
COEL{9) =PHIN(2)*CPHIN(2!}

COER{1})=1
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COER(2) ==1,*THETN (1)
COER(3}=-1,*THETN(2)
COER(4}==1,*CTHETN (1)
COER(5} =THETN (1) *CTHETN (1)
COER (6) =THETN{2) *CTHETN (1)
COER(7) =~1,*CTEETN (2}
COER(8) =THETN (1) *CTHETN( 2)
COER (9) =THETN { 2} *CTHETN ( 2)

ISUB({1l)=0
ISUB(2) =1
ISUB(3}=2
ISUB{4)=IS
ISUB{S)=IS + 1
ISUB(6)=IS + 2
ISUB(7)=2*IS
ISUB(8)=2*IS + 1
ISUB(9)=2*IS + 2

ISMAX=0

DO 50
IF

I=2,9
(COEL(I} .NE. 0.) ISMAX=MAXC{ISMAX,ISUB(I}))

CONTINUE

DO 60

I=1,9

IMA(TI)=0

IF

(ISUB(I} .EQ. ISMAX) IMA(I})=l

CONTINUE

Do 179

J=1,1IV

WORK BACKWARDS
I=IV - J + 1

W(I)=0,
SUM=0.
DIV=0.
COMPUTE TERMS -~ LHS PIRST
DO 65 K=1,9
IGNORE TERMS WHERE COEF IS 0
IF {COEL(K) .EQ., 0.) GOTO 65
INDX=I + ISMAX - ISUB{K)
CHECRK FOR VALID TERM
IF (INDX .LT. 1 .OR. INDX ,GT., ®) GO TO 70
USE IMA TO DETERMINE IF MOVE TO RHS {SUBTRACT) OR DIVIDE
IF (IMA(K) .EQ. 0) SUM=SUM - COEL(K)*W{INDX}
IF (IMA(K) .EQ. 1) DIV=DIV + COEL(EK)
CONTINUE
COMPUTE TERMS OM RHS NOW
DO 67 K=1,9
IGNORE TERMS WHERE CQEF IS 0
IF (COER(K) .EQ. 0.) GO TOD §7
INDX=I + ISMAX - ISUB(K)
CHECK FOR VALID TERM
IF (INDX .LT. ! .OR. INDX ,GT. N} GO TO 70
ADD TERM TO SUM
SUM=SUM + COER(EK)*A{INDX)
CONTINUE
W{I)=8UM/DIV
CONTINUE
RETURN
END
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SUBROUTINE AMISS (N,IV,A,IAMS,IS,IDIF,PHI,THETA,CPHI,CTHETA,
* KP,KT,EKCP,RKCT)

ROUTINE TO DETERMINE MISSING VALUES OF A

PARAMETERS:

N - NUMBER OF TIME POINT VALUES
IV - NUMBER OF INPUT VALUES OF A
(SAME AS THE INTERVENTION POINT)
A - INPUT ARRAY OF RESIDUALS
IAMS - IAMS(I) =1 IP A(I) IS UNDEFINED, OTHERWISE IAMS(I) = 0
IS - ORDER OF SEASONALITY
IDIF - TOTAL DEGREE OF DIFFERENCING
PHI, THETA, CPHI, CTHETA - PARAMETERS OF THE MODEL
KP, KT, EKECP, ECT - SET = 1 IF THE CORRESPONDING
MODEL PARAMETERS ARE NON-ZERO

IMPLICIT REAL*4 (A-H, 0-Z)

g sReRelrReEeie e RsRs ke Rsinis e skt

DIMENSION A{N),IAMS(N)
DIMENSION PHI(2),THETA({2},CPHI(2),CTHETA(2)
DIMENSION EP(2) ,KT(2),RCP(2),RCT(2)

[oNe]

DO 5 I=1,2
RP{I)=0
IF (PHI(I) .NE. 0.) RP(I}=1
KT{I)=0
IF {THETA(I) .NE. 0.) KT(I}=1
RCP{I)=0
IP (CPHI(I) .NE. 0.} RCP(I)=l
RCT(I)=0
IF (CTHETA(I) .NE. 0.) KCT(I)=l

5 CONTINUE

NMISS=IDIF

Do 10 I=1p2
NMISS=MAXO(NMISS, (IDIFP+I)*KP{I})
NMISS=MAX0{NMISS,I*KT(I})
NMISS=MAXO{NMISS, (IDIF+I*IS) *RCP(I))
NMISS=MAXO(NMISS,I*IS*KCT(I))

bCc 8 J=1,2
NMISS=MAXQ(NMISS, (IDIF+J*IS+I)*KCP(J)*KP(I))
NMISS=MAXO (NMISS, {J*IS+L}*KCT{J) *ET(1))
8 CONTINUE
18 CONTINUE

po 15 I1=1,N
IAMS(I}=0
IF (I .LE. NMISS) A(I}=0.
IF (I .LE. NMISS) IAMS{I)=1
15 CONTINUE
C
C

RETURN
END
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SUBROUTINE BINEXP (N,DCOEF,ID)

ROUTINE TO COMPUTE BINOMIAL EXPANSION CQEFFICIENTS OF
(1-X)**ID

IMPLICIT REAL*4 (A-H, O-I)

DIMENSION DCOEF({N)

IDP1=ID + 1

DO 25 I=1,IDPl
DCOEF{I}=0
CONTINUE

DCOEF (1) =1
IF (ID .EQ. 0) GOTO 35
DO 32 I=2,1IDP1 :
DCOEF (I)=DCOEF(I~-1}*(ID-I+2)/({I-1)
CONTINUE

o 33 1=2,IDPl
DCOEF(I)=(-1.*{I-1))}*DCOEF{I)
CONTINUE

CONTINUE

RETURN
END
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ROUTINE DIFFEQ (W,N,IB,PHI,THETA,CPHI,CTHETA,IS,A,IANS)

TINE TO CALCULATE A(T} FOR T = IB,...N USING

(1-PHI{1l)*B-PHI(2)*B**2) (1-CPHI{1) *B¥*IS-CPHI{2)*B"*2IS)W(T) =
{1-THETA (1) *B-THETA (2} *B**2} {(1-CTHETA (1) *B**IS-CTHETA{2) "B**2IS}A(T)

50

* % & ¥ % ¥ ¥  w W

OTHER PARAMETERS:

I

AMS - IAMS(I) = 1 IF A(I) IS UNDEFINED, OTHERWISE IAMS({I}) =

IMPLICIT REAL*4 (A-H, 0-2Z)

DIMENSION W(N) ,A(M),IAMS(N)

DIM

Do

CON

RET
END

ENSION PHI(2),THETA(2),CPHI(2),CTHETA(2)

50 I=IB,N
IF (IAMS(I} .EQ. 1) GO TO 50

A{I)=W(I) - PHI{l}*W(I-l} - PHI(2)*W(I-2) + THETA(1l)*A(I-1)
+ THETA(2)*A(I-2) '

A{I)=A(I)

CPHI(1)*W(I-IS) + CTHETA(l)*A{I-IS)
PHI(1) *CPBI{1)*W(I~{IS+1}}

THETA (1) *CTHETA (1) *A(I~-(IS+1))
PHI{2}*CPHI(1)*W(I-(IS5+2})

THETA(2) *CTHETA{1) *A(I~-{IS+2})
CPHI(2)*W({I-2*IS) + CTHETA(2)*A{I-2*IS)
PHI(1)*CPRI{2)*W(I-{2*IS+1})

THETA (1) *CTHETA (2) *A(I-(2*IS+1))
PHI(2)*CPHI(2)*W(I~(2*1IS+2)}
THETA(2) *CTHETA (2} *A (I~ (2*15+2))

L+ 1+t 1+ ++

TINUE

URN
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SUBRCUTINE DIFFZ (NMAX,N,Z,ID,ICD,IS,DCCEF,CDCOEF,WCOEF,W)

ROUTINE TC COMPUTE W(T) = {{(1-B)**ID)*((1-B**IS)**ICD)*2(T)
OTHER PARAMETERS:

NMAX -~ MAXIMOM DIMENSICN OF ARRAYS
N - NUMBER COF POINTS

DCOEF - ARRAY OF CCEFFICIENTS FOR (l-B)**ID
CDCOEF - ARRAY OF COEFFICIENTS FOR (1-B**IS)**I(CD
WCOEF - ARRAY OF COEFFICIENTS FOR ((l1-BY**ID)*((L-B**IS)**ICD)

IMPLICIT REAL*4 (A~-H, 0~2)
DIMENSION Z(N),DCOEF(N),CDCOEF (N),WCOEF (NMAX,N) ,W(N)

CALCULATE POLYNOMIAL COEFFICIENTS
CALL BINEXP (N,DCOEF,ID)
CALL BINEXP (N,CDCOEF,ICD)

IDP1=ID + 1
ICDP1=ICD + 1

DO 40 I=1,IDPl
DO 40 J=1,ICDPl

WCOEF (I, J) =DCOEF { 1) *CDCOEF (J)
CONTINUE

NMISS = NUMBER OF UNDEFINED W(T)
NMISS=ID + ICD*IS

DC 45 K=1,N
W(K)=0
IF (K .LE. NMISS} GG TO 45
DC 43 I=1,IDFPl
DO 43 J=1,1ICDP1
KNDX={I-1) + {J-1)*1S
W(E)=W{K} + WCOEF(I,J)*Z(K-KNDX)
CONTINUE
CONTIRUE

RETURN
END
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SUBROUTINE GAMCUM{NOPRAM,PARAM,X,P)
IMPLICIT REAL*4 (A-H, 0-32)

DIMENSION PARAM(I)

GAMCUM COMPUTES THE COUMULATIVE (0, X} PROBABILITY
P FOR THE GAMMA DISTRIBUTION WITH PARAMETERS ALPHA AND BETA.
FCRM OF GAMMA IS

U*+* {ALPHA-1) * EXP(BETA™U).

ON ENTRY:
NOPRAM

0 DEFAULT VALUES FOR ALPHA {=1] AND
BETA {=1) ASSUMED
2 USER SPECIFIES PARAM(1l) = ALPHA
PARAM(2) = BETA

PARAM ARRAY OF USER DEFINED VALUES.

MAY BE DUMMY ARGUMENT IF NOPRAM = 0,

=
|

VALUE CUMULATIVE PROBABILITY DESIRED FOR

ON RETURN:
P

CUMULATIVE PROBABILITY OF GAMMA (ALPHA,BETA)
{0, X}
PRINTING: NONE

COMMCN BLOCKS: NONE

EXTERNAL REFERENCES:
FUNCTION - GAMLN

IF X.GE. (ALPHA/2 + 4) THE ASYMPTOTIC EXPANSION GIVEN BY

EQ. 6.5.32 IN ABRAMOWITZ AND STEGUN IS USED.

OTHERWISE, A CONFLUENT HYPERGEOMETRIC FUNCTION REPRESENTATION
FOR THE INCOMPLETE GAMMA FUNCTION IS USED, SEE EQUATIONS .
6.5.12 AND 13.1.2 IN ABRAMOWITZ AND STEGUN.

THE RESULTS OF THE ROUTINE WERE CHECKED AGAINST TABLE 26.7

IN ABRAMOWITZ AND STEGUN

DATA ERR/1.E-4/
IF (NOPRAM) 2,1,2
DEFAULT VALUES
ALPHA=L.

BETA =1.

GO TO 13

ALPHA=PARAM(1)
BETA =PARAM({2}

A=ALPHA

IF(X.GT.0.) GO TO 4
P=0.

RETURN

Y=BETA*X
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IF(Y.LT. (A/2.+4.)} GO TO 30
SUM=1,

R’l -

L=INT(A)

DO 10 I=1,L

AI=I

RaR* (A-AI}/Y

IF (R.LT.ERR} GO TO 20
SUM=SUM+R
P=1.~SUM*EXP ( (A=1.) *ALOG(¥) -Y-GAMLN(A))
RETURN

SUH=1 L]

R=1 -

DO 40 I=1,50

AI=I

R=R*Y/{A+AI)
IF{R,LT.ERR) GC TO SO
SUM=SUM+R

P=SUM/A*EXP (A*ALOG(Y)-Y-GAMLN({A})
RETURN

END

FUNCTION GAMLN(ALPHA)

IMPLICIT REAL*4 (A-H, 0-2)

COMPUTES LN{GAMMA(A))

FOR A.LT.4 USES RATIONAL FUNCTION EXPANSION GIVEN BY
WILK, GNANADESIKAN, HUYETT (1962} TECHNOMETRICS 4_1-18
ATTRIBUTED TC HASTINGS(1955) APPROXIMATIONS FOR
DIGITAL COMPUTERS, '

FOR A.GE.d4 THE ASYMPTOTIC EXPANSION GIVEN BY EQ.6.1.41
IN ABRAMOWITZ AND STEGUN IS USED.

THE RESULTS WERE CHECKED AGAINST THE VALUES TABLED IN
ABRAMOWITZ AND STEGUN_ PP. 267 AND 274

ON ENTRY:
ALPHA = VALUE FOR GAMMA FUNCTION ARGUMENT

ON RETURMN:
GAMLN = LN(GAMMA (ALPHA))

PRINTING: NONE

COMMON BLOCEKS: NONE
EXTERNAL REFERENCES: NOKRE

DIMENSION B(B)},C(4)

DATA B/.5771%1652,.98820589%1,,897056937,.918206857,
1 -756704078,.482199394,.1935278B18,.035868343/
DATA C/12.,-360.,1260,,-1680,/

IF(ALPHA.GE.4.) GO TC 100

RATIONAL FUNCTION APPROXIMATION ALPHA.LT. 4

IA=INT (ALPHA) -1
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AP=ALPHA-AINT (ALPHA)

G=B(8) *AF

« DO 10 J=1,7
I=8-J

10 G=(B(I)}=G]*AF
G=l.=G

IF{IA) 20,50,30
20 G=G/ALPHA
GO To 50
30 DO 40 I=1,IA
Al=I
40 G=G*(AP+AI)
50 GAMLN=ALOG{G)

RETURN
c
C=~== ASYMPTOTIC APPROXIMATION FOR ALPHA.GE.4d
C
100 G=0.

DO 110 I=1,4
110 G=G+1./{C{I)*ALPHA** (2%I-1))
GAMLN=ALPHA* (ALOG (ALPHA)=1.)+ALOG(6.2831853/ALPHA) /2.4G
RETURN
END

B.49



9] N0 OOON OO0 OOO00O0a0

aann

SUBROUTINE INDAT {IU,NMAX,IPT,IPRT,N,IV,IS,ID,ICD,PHI,THETA,
CPHI,CTHETA,Z,A,PYIN, THETN,CPHIN, CTHETN, VP)

ROUTINE TO READ INPUT DATA
PARRMETERS:

IU - DATA INPUT UNIT NUMBER
NMAX - MAXIMUM NUMBER OF ALLOWABLE TIME POINTS
IPT - TYPE OF RUN
(1=INTERVENTION ANALYSIS, 2=INTERVENTION ADJUSTMENT
WITHOUT MSE, 3=INTERVENTION ADJUSTMENT WITH MSE)
IPRT - IF IPRT = 1 THEN THE INPUT VP MATRIX IS PRINTED,
OTHERWISE THE VP MATRIX IS NOT PRINTED
N - NUMBER OF TIME POINTS
IV - TIME POINT AFTER WHICH INTERVENTION QCCURRED
IS - ORDER OF SEASONALITY
ID - DEGREE OF NON-SEASONAL DIFFERENCING
ICD - DEGREE OF SEASONAL DIFFERENCING
*¥4% PRE-INTERVENTION MODEL PARAMETERS

PHI - COEFFICIENTS (2} OF THE PHI POLYNCMIAL
THETA - COEFFICIENTS (2} OF THE THETA POLYNCMIAL

CPHI - COEFPFICIENTS {(2) OF THE CAPITAL PHI POLYNOMIAL
CTHETA - CQEFFICIENTS -(2) OF THE CAPITAL THETA POLYNOMIAL

e W

Z -~ ORIGINAL TIME POINT VALUES
A - RESIDUALS (PRE-INTERVENTION MODEL)

*#kwk FOLLOWING INPUT ONLY WHEN IPT = 2 QR 3
*k*%  POST~-INTERVENTION MODEL PARAMETERS
PHIN ~ COEFFICIENTS (2) OF THE PRI POLYNOMIAL
THETN - - COEFFICIENTS (2) OF THE THETA POLYNOMIAL

CPEIN - COEFFICIENTS (2) OF THE CAPITAL PHI POLYNOMIAL
CTHETN - COEFFICIENTS (2) OF THE CAPITAL THETA POLYNOMIAL

LE AR

*hkddkx POLLOWING INPUT ONLY WHEN IPT = 3
VP -~ COVARIANCE MATRIX OF THE ESTIMATED PI WEIGHTS
OF THE PRE-INTERVENTION MODEL
LOCAL VARIABLES:
FMT - FORMAT SPECIFICATION FOR Z, A, AND VP ARRAYS
TITLE - TITLE OF RUN
IMPLICIT REAL*4 (A-H, 0O-2)
DIMENSION PHI(2),THETA(2),CPHI(2),CTHETA (2}
DIMENSION PHIN(2),THETN(2),CPHIN(Z2},CTHETN{2)

DIMENSION Z{NMAX),A(NMAX),VP(NMAX, NMAX)
DIMENSION TITLE(20),FMT{20)

ITERM = EARLY TERMINATION FLAG
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ITERM=0

READ (IU,120) TITLE
READ (IbL,100) IPT,IPRT
READ (IU,100) N,IV

READ (IU,100) IS,ID,ICD
READ (IU,110) PHI

READ (IU,110) THETA
READ (IU,110) CPHI

READ (IU,110) CTHETA

WRITE (6,200) TITLE

ASSUME IPT = 1 IP IT IS NOT VALID

IF {IPT .LT. 1 .OR. IPT .GT. 3) IPT=l
SET ID, ICD, IS = ZERO IF NEGATIVE

IF (ID .LT. 0) ID=0

IF (ICD .LT. 0) ICD=0

IF {Is .LT. Q) IS=0

IF (IPT .EQ, 1) WRITE (6,205)
IF (IPT .EQ., 2) WRITE {(6,210)
IF (IPT .EQ. 3) WRITE (6,211)

INSURE THAT IP THERE IS NO SEASONALITY, THEN THE CORRESPONDING
POLYNOMIAL AND DIFPERENCING PARAMETERS ARE ZEROQ

IF (IS .GT. 0) GO TC 2

ICD=0

DO 1 I=1,2
CPHI(I}=0,
CTHETA(I}=0.

CONTINUE

CONTINUE

WRITE (6,213)

WRITE (6,215)

WRITE (6,220)

WRITE (6,225) IS,ID,ICD
WRITE (6,227}

WRITE (6,230) PHI

WRITE (6,235) CPHI
WRITE (6,240) THETA
WRITE {(6,245) CTHETA

CHECK THAT THE INPUT VALUES ARE VALID
IF NOT, THEN STOP

IF (N .LE. NMAX)} GO TO 5

WRITE (6,300} MMAX

ITERM=1

CONTINUE
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IF (ID + ICD*IS .LT. IV) GO TO 6
WRITE (6,305)
ITERM=1

CONTINUE

IF (IV .GE, 1 .AND. IV .LT. N) GO TO 7
WRITE (6,310) N
ITERM=1

CONTINUE

IF (ITERM ,EQ. 0) GO TO 10
DATA INPUT NQT VALID
WRITE (6,315)

STOP

CONTINUE

READ TIME POINT VALUES OF T AND A
READ (1IU,120) FMT
READ (IU,FMT) (Z2(I),I=1,W)

READ (IU,120) FMT
READ (IU,FMT) (A(I},I=1,IV)

IF {IPT .EQ. 1) GO TO 50

ADDITIONAL DATA FOR INTERVENTION ADJUSTMENT RUNS
READ POST-INTERVENTION MODEL PARAMETERS

READ (IU,110} PHIN
READ (IU,110) THETN
READ {IU,110) CPHIN
READ (IU,110) CTHETN

IF THERE IS NO SEASONALITY, INSURE PARAMETER CONSISTENCY
IF (IS .NE. 0) GO TO 25
DO 20 I=1,2
CPHIN(I)=0.
CTHETN({I}=0.
CONTINUE

CONTINUE
IF (IPT .EQ. 2) GO TO 40

ADDITIONAL DATA FOR TYPE = 3 INTERVENTIQON ADJUSTMENT RUN
READ VP MATRIX

READ (IU,120) FMT

ASSUME ONLY UPPER TRIANGLE OF VP IS INPUT
READ (IU,FMT) {(VP(I,J},J=I,IV)

CONTINUE

FORM REST OF SYMMETRIC VP MATRIX
DQ 35 I=1,1V
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Do 35 J=1,1
VP{I,J)=VP(J,I)

35 CONTINUE
40 CONTINUE
WRITE (6,250}
WRITE {6,230) PHIN
WRITE (6,235) CPHIN
WRITE (6,240} THETN
WRITE (6,245} CTHETN
50 CONTINUE
WRITE (6,255) N, IV
RETURN
100 FORMAT (315)
110 FORMAT (2F10.0)
120 FORMAT {20A4)
200 FORMAT {'OTITLE OF RUN: ',20A4)
205 FORMAT ({'0 TYPE OF RON: INTERVENTION ANALYSIS')
210 FORMAT ('0 TYPE OF RUN: INTERVENTION ADJUSTMENT WITHOUT MEAN',
1 ' SQUARE ERROR COMPUTATION')
211 FORMAT {('0 TYPE OF RUN: INTERVENTION ADJUSTMENT WITH MEAN',
1 ' SQUARE ERROR COMPUTATION')
213 FORMAT {'0OMODEL:')
215 FORMAT (' ((1=-B)**D)*((1-B¥**S)**gD)*(1-AR(1}B~AR{2)B**2}',
* "*(1-SAR(1)B**S=-SAR(2)B**25})*2(T) = ',/,
* 28X,' (1-MA(1l)B=MA(2)B*¥2)*(1-SMA{1}B**S-SMA(2)B**2S)',
* '*A{T)")
220 FORMAT ('OWHERE')
225 FORMAT ('0 8 = ',I3,' D= ',I3,' 8D = ',I3)
227 FORMAT {'0 PRE~INTERVENTION PARAMETERS:')
230 FORMAT (' AR(l) = ',E13.5, ' AR(2) = '",E13.5)
235 FORMAT (' SAR(1) = ',E12.,5, " SAR(2)} = ',El13.5)
240 FORMAT (' MA(1l) = ',E13.5, ! MA(Z) = ',E13,5)
245 FORMAT (' SMA(l) = ',E13.5, ' SMA{2) = ',E13.5)
250 FORMAT ('0 POST-INTERVENTION PARAMETERS:')
255 FORMAT ('ONUMBER OF TIME POINT VALUES = ',I3,/,
* ' INTERVENTION OCCURRENCE AFTER POINT = ',I3)
300 PORMAT {'Q*x** THE NUMBER OF TIME POINTS',
* ' EXCEEDS THE PROGRAM MAXIMUM CF ',I4)
305 FORMAT ('Q**** ApPTER DIFFERENCING, ALL TIME POINT VALUES',
* ' PRICR TO TYE INTERVENTION WILL BE UNDEFINED')
310 FORMAT {'Q**** THE INTERVENTION MUST HAVE OCCURRED AFTER',
* ' TIME POINT 1 AND BEFORE TIME POINT ',I4)
315 FORMAT ('O***% PROGRAM TERMINATED ***%!')
END
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SUBROUTINE PARAMC (NMAX,N,IV,IS,A,PHI,THETA,CPHI,CTHETA,KP,KT,
- KCP,EKCT,CWPHI,CWTHE, CWCPHT, CWCTHE)

ROUTINE TO COMPUTE THE PREDICTED ERRORS DUE TO CHANGES IN THE
PARAMETERS OF THE EQUATION:
A(T) =

{(1~THETA(l) *B-THETA(2) *B**2) (1-CTHETA (1) *B**IS-CTHETA{2) *B**215)

OTHER VARIABLES:

NMAX - MAXIMUM NUMBER OF ALLOWABLE TIME POINTS
N -~ NUMBER OF TIME POINTS
IV - TIME POINT AFTER WHICH INTERVENTION OCCURRED
EP, KT, KCP, XCT - SET = 1 IF THE CORRESPONDING PARAMETERS
{PHI, THETA, CPHI, CTHETA)} ARE NON ZERO
CWPHI - ERRORS WITH RESPECT TO PEI(1l), PHI(2)
CWTHE - ERRORS WITH RESPECT TO THETA(l), THETA(2)
CWCPHI - ERRORS WITH RESPECT TO CPHI{l}, CPHI(Z)
CWCTHE - ERRORS WITH RESPECT TO CTHETA(l), CTHETA(2)

IMPLICIT REAL*4 (A-H, O-Z)

DIMENSION A({N),PHI(2),THETA(2),CPHI(2),CTHETA {2}
DIMENSION KP(2} ,KT(2),RCP(2),RCT(2)

DIMENSION CWPHI(NMAX,2),CWTHE (NMAX,2)

DIMENSION CWCPHI{NMAX,2),CWCTHE (NMAX, 2}

WITH RESPECT TO PHI
Do 35 I=1,2

NMISS=MAXO{KP (1)} ,2*KP(2),I)
NMISS=MAXO0{NMISS,IV)

Do 13 J=,N .
CWPHI(J,I)=0.
IF {7 .LE. NMISS) GO TO 33
CWPHI(J,I)=PHI(1)*CWPHI(J=-1,I) + PHI(2)*CWPHI(J-2,I)
* + A(J-I)
33 CONTINUE
35 CONTINUE

WITH RESPECT TO CPHI
DO 45 I=1,2

HMISS=MAX0{IS*RCP(1l),2*IS*KCP(2),I*IS)
NMISS=MAX0 (NMISS, IV)
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0O 43 J=1,N
CWCPAI(J,I)=0.
IF {(J .LE. NMISS) GO TOQ 43
CWCPHI(J,I)=CPHI(l) *CWCPHI(J-IS,I) + CPHI(2)*CWCPRI{J-2*IS,I)
* + A(J-I*IS)
43 CONTINUE
45 CONTINUE

WITH RESPECT TO THETA
DO 55 I=1,2

NMISS=MAXO(EKT(l) ,2*KT(2),I)
NMISS=MAXO{NMISS, IV)

Lo 33 J=1,N
CWTHE(J,I)=0.
IF (J .LE., NMISS) GO TO 53
CWTHE(J, 1) =THETA (1) *CWTRE(J-1,I) + THETA(2)*CWTHE{(J-2,TI)
* - A{J-TI)
53 CONTINUE
55 CONTINUE

WITH RESPECT TO CTHETA
DO 65 I=1,2

NMISS=MAX0 (IS*ECT(1l),2*IS*KCT(2),I*15)
NMISS=MAXO(NMISS,IV)

DQ 63 J=1,N
CWCTHE (J,I)=0.
IF (J .LE. NMISS) GO TO 63
CWCTHE (J,1)=CTHETA (1) *CWCTHE (J-1S,1}
* + CTHETA(2} *CWCTHE(J-2*I5,I} - A(J-I*IS)
63 CONTINUE
65 CONTINUE

RETURN -
END
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SUBRCUTINE POLYD (H,G,N,D)

ROUTINE TO PERFORM POLYNOMIAL DIVISION
PARARMETERS:

B « NUMERATOR
G - DENOMINATOR
D - QUOTIENT

IMPLICIT REAL*4 (A-H, 0-I)

DIMENSION H(N) ,G(N},D{N)}

DO 1 I=1,N
D(I)=H(I)
CONTINUE

ALPHA=1./G(1}

Do 5 J=1,N
BETA=ALPHA*D (J)
K=J+1
Do 5 I=K,N
D{I)=D{I) = (BETA*G{I-J+1))
CONTINUE

bo 10 J=1,N

D{J}=D{(J) *ALPHA
CONTINUE

RETURN
END
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SUBROUTINE PRTORG (NMAX,N,IV,Z,A,IAMS,IPT,IPRT,VP)

ROUTINE TO PRINT CUT ORIGINAL INPUT ARRAYS

PARAMETERS:
NMAX - MAXTMOM DIMENSION OF ARRAYS
N =~ NUMEBER OF TIME POINTS
I¥y =~ INTERVENTION INDEX
Z - TIME SERIES
A - RESIDUALS (PRE~INTERVENTION MODEL)
IAMS - TIAMS{I} =1 IF A(I) IS ONDEFINED, OTHERWISE IAHS(I)—O
IPT - 1IF IPT=1, THEN THIS IS AN INTERVENTION ANALYSIS ROUN
IF IPT=2, THEN THIS IS AN INTERVENTION ADJUSTMENT RUN
WITHOUT MSE CALCULATIONS
IF IPT=3, THEN THIS IS AN INTERVENTION ADJUSTMENT RON
WITH MSE CALCULATIONS
IPRT - IF IPRT=]1 THEN THE INPUT VP MATRIX IS PRINTED OUT,
OTHERWISE THE VP MATRIX IS NOT PRINTED
VP -~ COVARIANCE MATRIX OF THE ESTIMATED PI WEIGHTS

OF THE PRE-INTERVENTION MODEL

IMPLICIT REAL*4 (A-H, 0-12)

DIMENSION Z(N),A(N),IAMS(N),VP(NMAX,IV)

WRITE (6,100}

" WRITE (6,110)

WRITE {6,113)

DG 3 I=1l,N
IF (IAMS(I) .EQ. 0) WRITE {6,115} I,2{(I),A(I)
IT (IAMS(I} .EQ. 1) WRITE ({(&,120) I,Z(I)
CONTINUE

IF (IPT .EQ. 1) WRITE (6,125} IV
IF {IPT .EQ. 2 ,OR. IPT .EQ. 3) WRITE (6,126} IV

IF {IPT .EQ. 1 .OR. IPT .EQ. 2) GO TO 20
IF {IPRT .NE. 1) GG TO 20

WRITE (6,130)
WRITE (6,113}

DG 15 I=1,IV

WRITE (6,133) I

WRITE (6,135} (vp(I,J),Jd=1,1}
CONTINUE

CONTINUE
RETURN

FORMAT ('Q#%= ORIGINAL DATA AL AR

FORMAT ('0Q T 2(T) a{m")

FORMAT (' ")

FORMAT (1X,I14,1X,E13.6,2X,E13.6)

FORMAT (1X,I4,1X,E13,6,6X, "#ks¥)

FORMAT ('ONOTE: AFTER T =',I4,', A(T) IS COMPUTED FROM THE ',

* 'PRE-INTERVENTION MODEL'")
FORMAT ('ONOTE: AFTER T =',I4,', A(T) IS COMPUTED FROM THE ',
* 'POST-INTERVENTION MODEL')

FORMAT ('OCOVARIANCE MATRIX OF THE ESTIMATED PI WEIGHTS')
FORMAT (' T =',I4)
FORMAT (1X,10E13.5)
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SUBROUTINE RATIOC (IDIM,IS,PHI,THETA,CPHI,CTHETA,ANUM,ADEN}

C
o
C ROUTINE TO COMPUTE THE NUMERATOR AND DENOMINATOR COEFFICIENTS OF:
C
C (1-THETA (1) *B=THETA(2) *B*%2) (1-CTHETA{l} *B**I1S-CTHETA{2) *B¥*21§)
C - o - ——
C (1-PHI{1) *B~PHI(2)*B**2) (1-CPHI(1)}*B¥*IS~-CPHI(2)*B**2I5)
o
C
IMPLICIT REAL*4 (A-H, 0-I)
C
C
DIMENSION PHI{2},THETA(2),CPHI(2),CTHETA(2)
DIMENSION ANUM(IDIM),ADEN(IDIM)
o
c _
DO 10 I=1,IDIM
ANUM(I1)=0,
ADEN{I}=0,
10 CONTINUE
C
ANUM(1l)=1.
ADEN(1l)=1.
ANUM({2)==]1_ *THETA {1}
ADEN{2)==-1.*PHI{1)
ANUM(3) ==1.*THETA (2)
ADEN{3)==-1_,*PHI{2)
c
DO 20 I=1,IDIM
IF {I .EQ. IS+1) ANUM{(I)=RNUM(I) -1,*CTHETA({1l}
IF (I .EQ, Is+l) ADEN{I}=ADEN{I} ~l1.*CPHI(1l)
IF (I .EQ. IS+2) ANUM(I)Y=ANUM(I) + THETA(1l)*CTHETA(l)
IF (I .EQ. IS+2) ADEN{IY=ADEN(I) + PHI{1l)*CPHI{(1l)
IF (I .EQ. IS+3) ANUM{I)=ANUM{I) + THETA(2)*CTHETA(l)
IF (I .EQ. IS+3) ADEN{I)=ADEN(I) 4 PHI(2)*CPHI{1l)
IF {I .EQ. 2*IS+1) ANUM({I)=ANUM{(I)} =-1,*CTHETA(2)
IF (I .EQ. 2%IS+1) ADEN(I)=ADEN(I) =1.*CPHI(2)
IF (I .EQ., 2*IS+2) ANUM{I}=ANUM{I) + THETA{l)*CTHETA{2)
IF (I LEQ. 2*IS+2) ADEN(I)=ADEN(I) + PHI(1l)*CPHI(2)
IF {I .EQ. 2*IS+3)} ANUM(I)=ANUM(I) + THETA(2)*CTHETA(2)
IF (I .EQ. 2*IS+3) ADEN(TI)=ADEN(I} + PHI (2} *CPHI(2)
20 CONTINUE
C
C
RETURN
END
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