Microscopic calculation for deformed nuclei

PDF Version Also Available for Download.

Description

The microscopic basis of the Interacting Boson Model for deformed nuclei is discussed. The IBM Hamiltonian is constructed microscopically in the following two steps. In the first step, the collective nucleon pairs of J = 0/sup +/ (S), 2/sup +/ (D), etc. are mapped onto the corresponding bosons. Nucleon-nucleon interactions are also mapped onto boson-boson interactions. This mapping method for deformed nuclei was proposed recently, and it turned out that this method is consistent with the Hartree-Fock-Bogoliubov + angular momentum projection calculation. Low-lying collective states primarily consist of S and D pairs. Consequently, the corresponding boson states mainly consist of ... continued below

Physical Description

Pages: 20

Creation Information

Otsuka, Takaharu September 24, 1984.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The microscopic basis of the Interacting Boson Model for deformed nuclei is discussed. The IBM Hamiltonian is constructed microscopically in the following two steps. In the first step, the collective nucleon pairs of J = 0/sup +/ (S), 2/sup +/ (D), etc. are mapped onto the corresponding bosons. Nucleon-nucleon interactions are also mapped onto boson-boson interactions. This mapping method for deformed nuclei was proposed recently, and it turned out that this method is consistent with the Hartree-Fock-Bogoliubov + angular momentum projection calculation. Low-lying collective states primarily consist of S and D pairs. Consequently, the corresponding boson states mainly consist of s and d bosons, while there are some admixture of g-bosons. In the second step, effects of these g-bosons are included within the s-d boson space by a unitary transformation which transforms a combination of d and g bosons into a new d-boson. By minimizing the coupling between new d and g bosons with an appropriate mixing angle, one can neglect the coupling and obtain the IBM Hamiltonian with s and d bosons. It is demonstrated that the s-d Hamiltonian thus derived indeed reproduces spectra of the original s-d-g Hamiltonian.

Physical Description

Pages: 20

Notes

NTIS, PC A02/MF A01.

Source

  • International workshop on interacting boson-boson and boson-fermion systems, Gull Lake, MI, USA, 28 May 1984

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85000656
  • Report No.: LA-UR-84-3086
  • Report No.: CONF-8405231-9
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 6302238
  • Archival Resource Key: ark:/67531/metadc1113409

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 24, 1984

Added to The UNT Digital Library

  • Feb. 22, 2018, 7:45 p.m.

Description Last Updated

  • June 4, 2018, 3:19 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Otsuka, Takaharu. Microscopic calculation for deformed nuclei, article, September 24, 1984; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1113409/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.