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ABSTRACT 

Initial assessments of ignition spherical tori suggest that they can be 
highly cost effective and exceptionally small in unit s ize . Assuming 
advanced methods of current drive to ramp up the plasma current ( e .g . , 
via lover hybrid wave at modest plasma densities and temperatures), the 
inductive solenoid can largely be eliminated. Given the uncertainties 
in plasma energy confinement times and the effects of strong paramag
netism on pla&aa pressure, and allowing for the possible use of 
high-strength copper alloys (e .g . , C-17510, Cu-Ni-Be al loy), ignition 
spherical tori with a 50-s burn are estimated to have major radii 
ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum 
toroidal f ields from 2 to 3 T, plasma currents from 10 to 19 MA, and 
fusion power from 50 to 300 HW. Because of i t s modest f ield strength 
and simple poioidal f ield coil configuration, only conventional 
engineering approaches are needed in the design. A free-standing 
toroidal f ield coil/vacuum vessel structure i s assessed to be feasible 
and relatively independent of the shield structure and the poioidal 
field co i l s . This exceptionally simple configuration depends signifi
cantly, however, on practical fabrication approaches of the center 
conductor post, about which there i s presently l i t t l e experience. 

v 



1. SOtUaT AMD DISCUSSIOB 

An initial assessment of ignition spherical torus1 (1ST) has been 
completed. The purpose of this study is to quantify the potential and 
the challenges of an 1ST, to characterize its critical issues, and to 
highlight its data base needs. An 1ST is to achieve ignition for pulse 
lengths of the order of tens of seconds with at least the minimum number 
of cycles sufficient to demonstrate repeatability of results and to 
accomplish lowest overall cost. The major physics assumptions of an 1ST 
include: 2 , 3 

1. critical beta scaling proposed by Troyon, with 0 - 0.035 1 (MA)/a 
(m) B Q (T) and B D T - 0.776c; 

2. lower hybrid current ramp-up5' with inductive assist only from 
vertical field (VF) coils (Sect. 2.1) and some plasma current decay 
during plasma heating, ignition, and burn, lasting for tens of 
seconds (a time scale much shorter than the resistive decay time of 
the burning plasma); 

3. plasma current determined by free-boundary magnetonydrodynamic (MHD) 
equilibrium calculations, taking advantage of the natural elongation 
at low aspect ratios (Sect. 2.2); 

4. paramagnetism as exhibited by the plasma enhancement of the toroidal 
field over the externally applied field at the plasma axis, B/B Q 

(Sect. 2.2); 
5. energy confinement scallngs, including the options of Mirnov' and 

o 
neo-Alcator (Sect. 2.4); and 

6. plasma density below the Murakami limit, n (cm"3) i 10 B (T)/R 
(m), where R is the major radius. 

Because of the anticipated modest field related to this concept, 
only conventional angineering assumptions are used in this study, with 
one exception: the option of using high-strength copper alloy C-17510 
(Cu-Ki-Be) 1 0 in the center conductor post (Sects. 4.3 and 4.4) to allow 
for a highly compact 1ST and for more objective comparison with the 
IGNITOR clase of short-pulse ignition tokamaks. Otherwise, the 
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engineering and costing approaches are in accordance with the recent 
Toroidal Fusion Core Experiment (TFCX) pract ices . 1 2 

The major results of this study include the following. 

1. A nominal 1ST with conventional coil current density (about 
3.3 kA/cm2) i s estimated to have a vacuum toroidal field BQ « 2 T at 
a major radius B - 1.6 m, a minor radius a - 1.0 a, a toroidal field 
coil current I c - 16.2 MA, a plasma current I- - 14 HA, a fusion 
power P D T - 55 MW, and an ignition margin (based on Hirnov scaling) 
Cj_ « 1 . 0 (see Table 1.1). The estimated constructed cost of the 
1ST project ready for operation at an ini t ia l ly undeveloped s i t e i s 
$573 million in 1984 dollars (see Table 1.2). The total direct cost 
of the nuclear island i s estimated to be $119 million. The major 
parameters of this benchmark case are provided in Table 1.3. Based 
on neo-Alcator scaling, Cj_ for this device would become 0.27. 

2. The impact of using high-strength copper al.loy for the center con
ductor i s to permit a highly compact 1ST with B« - 3 T, R - 1.0 m, 
a - 0.61 m, I c - 15.1 MA, I p - 11.9 MA, C l g (Mirnov) - 1.0, and 
PDT " 56 MW (see Table 1.1). The direct cost of the nuclear island 
can then be reduced by about $20 million, while the total direct 
cost i s reduced by about $30 million. 

3. The plasma paramagnetism i s shown to increase strongly when the 
aspect ratio i s decreased to less than 2.5 and when the plasma 
elongation i s increased to and beyond 2.0. The ratio B/Bn has a 
range between 1.5 and 2.3 at an aspect ratio of 1.6 when the plasma 
i s elongated from 1.9 to 3*0. The impact of such strong paramagne
tism i s to allow for an 1ST with BQ - 2 T, R - 1.1 m, and a - 0.67 m 
to have C i g (neo-Alcator) - 1.4 (see Table 1.1). The application of 
the plasma-enhanced field in the plasma scaling laws is currently 
lacking in data base. When this possible effect of paramagnetism i s 
not included, C l g i s smaller by roughly a factor of 4, assuming 
neo-Alcator scaling. 

4. By combining the center conductor engineering design trade-off win 
the 1ST parameter space trade-off, i t i s determined that the use of 
the C-17510 alloy permits feasible 1ST designs with current density 
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Table 1.1. Major poraawfc 
(Wall thickness A - 0. 

arm of typical ignition spherical tofc 
11 m and a scrapeoff of A - 0.1 a. 

s—o 

Parameters 
Nominal 
TF coils 

High-tech 
TF coils 

Paramagnetic 
elongated 
plasma 

B 0. T 2.0 3.0 2.0 
B/BQ 1.7 1.7 2.3 
Jc, kA/cm2 3.3 10.0 7.0 

K 2.0 2.0 3.0 
R, m 1.6 1.0 1.07 
a, m 1.0 0.61 0.67 
R T F c, m 0.40 0.22 0.21 
Ijpc, MA 16.2 15.1 10.7 
V MA 14.0 11.9 18.9 

*c 0.24 (0.l4)a 0.23 (0.14) 0.49 (0.21) 
n D T , 1 0 l 4 / c m 3 0.96 (1.6) 2.0 (3.4) 1.9 (4.4) 
Pj)f • 55.0 (160) 56.0 (160) 76 (404) 
W L , M W / m 2 0.26 (0.77) 0.69 (2.0) 1.5 (7.9) 
PRU» '* 8.0 5.0 6.0 
C i g(Mirnov) 1.0 (2.0) 1.0 (1.9) 1.1 (3.1) 
C i g(neo-Alcator) 0.27 (0.73) 0.22 (0.73) 0.33 (1.4) 

aThe parameters in parentheses reflect the impact of switching from 
B t 0 to B t in the beta limit according to Troyon. 

For a current ramp-up time of 50 s. 
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Tatole 1.2. momlm! 1ST 

Account 
title 

Cost 
(millions of 1984 dollars) 

Structures and site facilities *2.4 
Reactor plant equipment 

Reactor systems 
Shielding 11 .8 
Structure 28 .9 
Energy, particle removal 15 .4 

Total reactor systems 56.1 a 

Magnet systems 
TF magnets 19 .2 
PF magnets 37 .6 

Total magnet systems 56.8 a 

Vacuum systems 8.2 a 

Power injection systems 19.7 
Power conditioning systems 39.6 
Heat transport system* 11.J» 
Fuel handling systems 5.8 
l&C 3^.7 
Maintenance equipment 28.7 

Total reactor plant equipment 258.0 
Electric plant equipment 27.0 
Miscellaneous plant equipment 7.3 
Heat rejection system 4.1 

Total direct cost 338.8 
Total indirect cost 101.7 
Contingency 132.1 

Total constructed cost 572.6 

Component costs constituting the nuclear island. 
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Table 1.3. Reference parameters for a nominal 1ST 

Description Value 

Geometry 
Major radius Rn 1.62 m 
Plasma radius a 1.01 m 
Plasma elongation K 2.0 
Aspect ratio A 1.60 
Scrapeoff layer 0.10 m 
Distance from scrape-off to conductor post 

Plasma 

0.11 m 

Average ion temperature <Ti> 20 (10) keV 
Safety factor (edge) q (flux surface average) 2.4 
Effective charge (during bum) Z e f f 1.5 
TF ripple (peak-to-average), edge TBD 
Plasma current I p 11.0 MA 
Average electron density <n e > 0.62 (1.25) * 10 1* cm"3 

Average DT density <nDT> 0.4(1 (0.88) * lO 1 4 cm"3 

Epsilon beta poloidal e0 0.20 
Total beta <B > 24.3* 
DT beta <BDT> 18.7% 
Toroidal field at major radius BQ 2.0 T 
Q 

Operating Mode 

Ignited 

Maximum burn time t b u r n 50 s 
Average burn time t b a v e 20 s 
Fusion power P f u a 50 (55) MW 
Cumulative DT burn time 2 * 10U s 
years of operation 10 



Table 1.3. (continued) 

Description Value 

First wall - vacuum vessel 
Coolant 
Average neutron wall load at plasma ed&? 
Average neutron wall load at first wall 
Average thermal wall load 
First wall/vacuum vessel thickness 

H 20 
0.41 MW/m2 

0.26 Mti/m2 

0.03 MW/m2 

0.10 m 

Shield 
Inboard shield thickness 
Dose rate to TF coil insulation 
Time after shutdown to permit pesonnel 

access (2.5 mrem/h) 
Outboard shield thickness (90} water, 10) 

stainless steel) 
Maximum structure temperature 

None 
110 1 0 rad 
36 h 

2.50 m 

200 *C 

Vacuum 
Initial base pressure 
Preshot base pressure 
Postshot base pressure 
Pressure at duct inlet during burn 

Number 
Peak design field at winding 
Conductor current density 

TF colls 

PF coils 
Total flux capability 
EF flux 
Total maximum ampere-turns 
Total maximum EF ampere-turns 
Conductor winding pack current density 

10~^ torr 
10*5 torr 
3 x 10 ^ torr 
10~2 torr 

36 
8.1 T 

3250 A/om2 

9.414 Mb 

9.44 Wb 

11.61 MAT 

11.61 MAT 

1500 A/cm2 



Table 1.3 continued 
Description Value 

Current ramp-up 
Lower hybrid wave 

Rise time 50 s 
Power 8 MW 

Frequency 

Bulk heating 

0.564 GHz 

Lower hybrid wave 
Time 10 s 
Power 8 MW 

Frequency 1.325 GHz 
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J c as high as 11 kA/cm2. The resulting design remains within the 
stress limits of the alloy conductor, cool3d with high-velocity 
pressurized water in a compact 1ST at a f ield of 3 T. 

5. An 1ST configuration i s arrived at which features internal 
restraining and supporting structures to allow the toroidal field 
(TF) configuration to be essentially free-standing (Fig. 1.1). This 
approach has high potential in decoupling the torus from the shield 
structure, contributes to minimizing the "disposal" portion of the 
nuclear island, and eases maintenance without significantly compro
mising the need to achieve very small aspect ratios. 

The results of this study, although preliminary, indicate the high 
potential of the spherical torus concept in permitting compact ignition 
at modest f ield. The prevailing confinement and beta scaling laws, 
while relatively secure in their application to large tokamaks with 
conventional aspect ratios, yield predictions that diverge by an order 
of magnitude in spherical tori . A concrete physics data base i s needed 
before the potentials of the spherical tori can be quantified with more 
certainty. 

2. PLASMA ASSESSMENTS 

2.1 LOHBR HYBRID CURRENT RAMP-UP REQUIREMENTS 

The elimination of induction c o i l s in a spherical tokamak i s made 
plaus ib le by the use of lower hybrid current ramp-up, which i s chosen 
here because of the recent success in Princeton Large Torus (PLT) 
current drive experiments. The subsequent success in theoret ica l 
modeling by Flach 5 has allowed a r e l a t i v e l y straightforward application 
to 1ST. By maintaining the observed ve loc i ty sca l ing , 6 V T H - VR - c/4 
( V T H , V R , and c being the thermal, runaway, and l ight v e l o c i t i e s , 
r e spec t ive ly ) , and by employing a similar spectrum of the paral le l pha3e 
v e l o c i t i e s with U (- V p n a a e / V R ) " 1 * 2 5 > a n e n « r 8 y conversion efficiency 
from rf to poloidal field of about 25$ (similar to the PLT results) can 
be assumed. The corresponding plasma density range and temperature are 
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estimated to be 2 to 4.4 x 1 0 1 2 cm~̂  and 1 keV, respectively. The 
required rf power launched into the plasma i s estimated to be about 8 MW 
at 561 MHz for an 1ST with R - 1.5 m, BQ - 2 T, I p - 14 MA, leading to a 
ramp-up time of 55 s . With the same power at 838 MHz, the ramp-up time 
decreases to 20 s for an 1ST using a high-technolocy TF coil ( J c -
10 kA/cm2) with R - 0.82 m, B 0 - 3 T, I_ « 11.5 MA. Additional parame
ters used in th is assessment can be found in Table 2 . 1 . 

2 . 2 SCALING OF PXOIDAL FIELD COIL CORRBITS WITH ASPECT RATIO 

Free-boundary MHD equilibrium studies were performed for elongations 
that increase from 1.62 at an aspect ra t io of 4.0 to the natural elonga
tion of nearly 2.C at an aspect r a t i o of 1.5. Only a pair cf VF coi ls 
and a pair of shaping field (SF) coi ls at a distance twice the minor 
radius from the plasma are assumed, as depicted in Fig. 2 .1 . In these 
calculations, the plasma beta i s set by 0.041 /(aBg), q(axis) « 1.0, and 
q(edge) - 2.4. The resul ts are plotted in Fig. 2.2, showing tha t , while 
I V p/I_ remains essentially constant, Isp/l0 decreases dramatically as 
the aspect ra t io i s decreased from 4.0 to 1.5. Also plotted are the 
total re lat ive ampere-turns of the poloidal field and the toroidal field 
coi ls , I | l__ | / I and I T p / I p , respectively, showing similar reductions. 
This dependence of the coil currents i s expected to reduce the cost of a 
fusion spherical torus, such as 1ST. 

2.3 THE EFFECTS OF ENHANCED ELONGATION AND PARAMAGNETISM 

The plasma enhancement of the toroidal f ield, B/BQ, at the tokamak 
plasma major radius (defined here as paramagnetism) increases as the 
aspect ra t io ia reduced and as the plasma elongation i s increased. For 
the range of para-meters of interest to spherical tokamaks, these 
dependences are calculated and shown in Fig. 2.3. The figure also shows 
that the natural elongation increases as the aspect r a t io is reduced. 
The use of plasma-enhanced field in the beta and the confinement scaling 
laws, subject to future experimental verification, would lead to 
increased plasma pressure and performance. These effects are used in 
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Table 2.1. 1ST I_ ramp-up parameters 

(Values assuming Pop - 8 MM, conversion efficiency of 25%, V D - c/4, 
b R 

V T O » c/24, and V » 1.25 V R f with A - 1.57, K - 2.0, T f t - 1 keV, 

q - 2.4, and li - °' 7- TRU is the estimated rasp-up time of plasma 

current.) 

«0 

1.50 m 0.978 m 0.823 • 

a, m 0.952 0.623 0.523 

Ip. MA 14.1 12.2 11.5 

&,., T 2.0 2.65 3.0 

V WH 1.0 0.656 0.552 

Lplp. V-s 14.1 8.0 6.35 

V* v/n 2.74 x lo" 2 

4.85 x 10"2 6.12 x 10" 2 

- e _ 3 

n, m J 2.0 x I0 1 8 3.50 x 1 0 1 8 4.4 x 1 0 1 8 

»|' ¿ " C / V p h 
ni • 3.2 (0 - 1) 

n. - 4.5 (0 - 1.4) 

n. e ($ ~ 1) 2.0 t n. í 8.0 

TRÜ» s 55 27 20 

f 
fLH» M H z 

564 746 838 

a25* efficiency obtained for U (- V p n/V R) «1.25. 

The ability to maintain T e • 1 keV with multimegawatt rf levels is 

an area of concern. 

Electric field and density values required to maintain V R * c/4. 

ractor to account for upshift in n, for waves in plasma, 

e na - spectrum range for 0.5 i v <• 2.0. 

fLH " " L H ^ 0 ^ * w i t t l a 8 S u m e ( 1 parabolic density profiles. 
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scoping the 1ST size and the major parameters. Assuming the strong 
elongation and paramagnetism indicated in the figure and neo-Alcator 
scaling, an 1ST with K - 3-0, BQ - 2 T, C l g - 1.1, and central conductor 
current density J c - 7 kA/cm2 would have B/B Q - 2.3t R « 1.07 m, a -
0.67 m, A - 0.49 (with respect to Bg), and a fusion power near 4C0 MH 
(Table 1.1). 

2.4 COBFMEMHrr SCALING ASSUHFTIOBS 

A new physics code" has been developed for the fusion Engineering 
Design Center (FEDC) Tokamak Systems Code. The unique features of this 
code include a two-fluid model of the ion-electron power balance and a 
comprehensive treatment of the confinement modeling. The code can 
generate contours of steady-state plasma operating and heating regimes 
for a given device showing sensitivities to various eqv'libriua, 
stability, and confinement assumptions. Results from the code show a 
reasonable agreement with those from the 1^-D radial transport WHIST 
code.11* 

In the ignition system studies performed for the spherical torus, 
the following specific confinement modeling assumptions were utilized: 
the Chang-Hinton neoclassical formulation for the ion losses -* and the 
Mirnov' or neo-Alcator8 empirical scaling laws for the electron losses. 
The global energy confinement time is given by: 

Rnt + 1 

t E " ( Rnt / TEi> * ( 1 /<Ee> ' 

where i- is the electron energy confinement time, which is assumed to 
follow the Mirnov, H-mode scaling (T,,^ - 0.39 il ) or the neo-Alcator 

2- - t e P scaling (T. - 0.08n R aq), with a (average minor radius) and R in 
r>f\ "3 

meters, I p in MA, and n e in 1 0 2 0 m" 3; T_. is the neoclassical ion energy 
confinement time, given by 

TJ^V(rt) 
TEi ' m ,e „ ^ - 2 2 , v , .3/2„ 2 ^(6.5 * io > K z

e f f A n
e<r 
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and we have defined R R t - (n l/n e)(T i/T e); B Q is the vacuum toroidal 

• 2 2 1/2 
field on axis in tesla; a - a[2ic /(1 + K )] , depicting the transport 

step size for concentric elliptical flux surface geometry; Z e f f is the 

effective charge; K Is the large-aspect-ratio correction factor, 

K - [0.66 • (1.88/A 1 / 2) - (1.51/A)] [1 • (1.5/A2)] ; 

f Is the factor relating x and T •• whioh is about 3/16 for flat density 

and parabolic temperature profiles; and fj is the enhancement factor 

reflecting anomalies in ion energy loss. In this analysis (Table 1.1), 

we assume t i - 2, Z e f f - 1.5, T¿ - T e - 10.0 keV, A - 1.6, and q - 2.1. 

The large plasma current in the low-aspect-ratio spherical torus 

results in a prediction of a significantly larger ignition margin under 

the Nirnov confinement scaling than under the neo-Alcator model. 

3. SYSTEMS CODE TRADE-OFF STUDIES 

3.1 BENCHMARK (REFERENCE) CASE 

The Tokamak Systems Code has been modified from the current version1 

and used to assess the dependences of the 1ST on field, coil current 

density, and uncertainties in confinement scaling. These code 

modifications include the elimination of the ohmic heating (OH) solenoid 

and the inboard shield, the alterations to the TF coil and the shield 

configurations, the adjustments in the operating scenario, etc. The 

benchmark configuration with a major radius of 1.62 m, an aspect ratio 

of 1.6, and an ignition margin of 1.5 was calculated to have a direct 

capital cost of $102 million in 1981 dollars (with some adjustments). 

Approximately $72 million of this total is for the nuclear island, which 

includes shielding, vacuum vessel, limiters, reactor structure, TF and 

poloidal field (PF) magnets, and reactor vacuum equipment. The bench

mark case parameters are given in Table 1.3. 
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When the neo-Alcator confinement scaling is applied to the benchmark 
case, a decrease of the ignition margin to 0.4 results if T - 10 keV 
(Table 1.1) and if the plasma pressure is not enhanced by plasma para
magnetism. The potential benefit of field enhancement by the spherical 
torus plasma is summarized in Sect. 2.3. 

3.2 DEPENDENCE ON COIL CURRENT DENSITY 

Trades were performed for increasing the center post current density 
(selected values were 3.0, 5.0, 7.5, and 10 kA/cm2) with the results 
plotted in Fig. 3.1. An ignition margin of 1.5 was maintained under 
Mirnov scaling, and the externally applied field on axis was kept at 
2.0 T. There is an increase in beta (with respect to B n) from a minimum 
of 24< to a maximum of 32? as the current density increases due to a 
modest decrease in aspect ratio from 1.62 to 1.48. Simultaneously, 
there are decreases in fusion power (from a maximum of 50 MW at 3 kA/cm2 

to 42 MW at 10 kA/cm2) and major radius (1.66 to 1.20 m ) . Costs for the 
nuclear island decreased from $74 to $52 million, while the total direct 
cost decreased by about $30 million. The 3-kA/cm2 machine was $3 mil
lion more than the benchmark case; the 10-kA/cm case was $30 million 
less. Note that the systems code used does not have the dependence of 
TF coil resistivity on the coil temperature, which increases with 
current density. Power requirements for the coil and coil cooling 
equipment increase significantly as the 10-kA/cur value is approached. 
This issue is more thoroughly addressed in Sects. 4.3 and 4.4. Also 
note that a dual use of lower hybrid resonance wave for current ramp-up 
and heating at a single frequency in the 1ST operating scheme was 
assumed in these calculations. Two separate systems with different 
frequencies are currently expected for these functions. The cost of the 
rf system does not reflect this, although the total rf power estimated 
is included In the estimates. 
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3 . 3 DEPENDENCE Oil BXTBBJULU APPLIED TOROIDAL HELD 

Trades were performed by varying the field on axis from 2 to 1 T 
with a center post current density fixed at 10 kA/cm and an ignition 
margin of 1.5 (Nirnov). The aspect ratio increased from 1.48 to 1.8 
with D 0, as did the fusion power (42 to 60 NH). The nuclear island cost 
decreased from $53 million to $34 million; the total direct cost 
decreased from the benchmark case by $30 million at 2 T and $67 millioi. 
at 4 T. Beta decreased from 32 to 18} with aspect ratio A increasing 
from 1.48 to 1.8 as the major radius is decreased to 0.9 m. The results 
are plotted in Fig. 3.2. 

3.4 SENSITIVITY TO UNCERTAINTIES IN CONFINEMENT SCALING 

Because of its cubic dependence in plasma size, the neo-Alcator 
scaling exhibits a dramatic deviation from the Mirnov scaling in con
finement predictions for spherical tori. Three neo-Alcator cases were 
examined at 10 kA/cm2 using an ignition margin of 1.5 and varying the 
vacuum field on axis (B Q) from 3 to 5 T. The trends with increasing 
field are similar to the preceding calculation, except that the fusion 
power now decreases with increasing field but at a much higher level. 
Relative to the case with Mirnov confinement scaling, Fig. 3.3 shows 
that as BQ is increased from 3 to 5 T, R decreases from 1.8 to 1.3 m; 
P D T decreases from 1 to 0.89 GW; B decreases from 29 to 18%; the nuclear 
island cost decreases from $156 million to $83 million; but A increases 
from 1.42 to 1.64. These results show a dramatic contrast with the 1ST 
parameters when the piasma-enhanced B field, rather than the externally 
applied field ( B Q ) , is used in the confinement and beta scalings. As 
shown in Table 1.1, this assumption would lead to R » 1.1 m and P D T -
0.4 GW. 

4. ENGINEERING ASSESSMENTS 

4.1 REFERENCE CONFIGURATION 

Elevation and plan views of the reference 1ST are shown in Figs. 4.1 
and 4.2, respectively, corresponding to the major plasma parameters 
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l isted in Table 4.1. The primary features of the reference concept 
are: (1) a 36-turn TF coil system connected in series with the top leg 
of each co i l , which i s removable for access, (2) a thick-wall vacuum 
vessel/first-wall structure, which also functions as intercoil struc
ture, and (3) a 2.5-m-thick external shielding system of water in steel 
tanks, which can be added by phased construction prior to deuterium-
tritium (DT) operation. 

The TF coi ls in this concept are rectangular in shape with the 
center leg having wedged TF turns. In the radial build, the center leg 
begins at a radius of 5 cm and ends on a radius of 40 cm. The toroidal 
wedge angle i s 10°. The average current density i s 3 kA/cm . 

The outer leg of each TF coil turn has a toroidal thickness of 40 cm 
and a radial thickness o' 10 cm. The current density in the outer leg 
i s about 1 kA/cm2. The 40-cm width for each of the 3* TF coil outer 
legs arranged in a toroidal array allows access openings (60 cm in the 
toroidal direction) at s ix equally spaced locations. Access openings at 
midplane are for lower hybrid rf heating units. Access openings at the 
limiter elevation are provided for coolant and attachment connections. 

The top and outer legs of the TF coil are removable. The center leg 
mates with the top leg by means of an eight-finger lap joint with two 
bolts. The top leg mates with the outer leg by means of a bolted lap 
joint. Turn-to-turn electrical connection occurs between the outer leg 
and the bottom leg of the adjacent turn at floor level. The turn-to-
turn connector l ies on top of the inlet electrical bus, which makes a 
full toroidal loop around the machine prior to mating with the bottom 
leg of the f irs t turn. Current in the turn-to-tjrn connector flows in 
the opposite direction to the current flowing in the inlet bus, cancel
ling the error fields generated. The total TF coil weight i s estimated 
to be 150,000 kg (330,000 lb) . 

The inner and outer rings of the vacuum vessel function as TF inter
coil structures for both in-plane and out-of-plane TF coil loads. The 
l id of the vacuum vessel i s removable for access to the plasma chamber. 

This 36-turn concept has two distinct advantages over concepts with 
fewer turns (such as 12). First, the thin center legs of the TF coil 
allow the entire coil to be made by machining copper plate or bar stock, 
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Table 4.1. Major plaaaa paraaatara for 1ST rafaranoa configuration 

Major radius, m 1.62 
Minor radius, m 1.01 
Field on axis, T 2.0 
Elongation 2.0 
Plasma current, MA 11.0 
Current in center legs, MA 14.8 
Average beta, % 23 
Safety factor 2.4 
Fusion power, MW 52 
Averago neutron wall load, MH/m2 0.45 
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while the 12-turn center legs require large castings. Second, the power 
supply cost for the 36-turn concept is substantially less than that for 
the 12-turn concept (33Í less for an ac/dc power converter and 20Í less 
for a storage battery system, see Sect. 4.5K The design challenges in 
this concept are essentially the san- * as for the 12-turn concept, and 
involve the cooling of the thin, .^n-current-denslty center conductors 
and the vacuum vessel structures. 

4.2 ALTERNATE COHFIGORATHMS 

4.2.1 Conventional Configuration 

Elevation and plan views of the conventional configuration are shown 
in Fig. 4.3; its major parameters are listed in Table 4.2. The primary 
features of this concept are: (1) one center TF conductor with 12 
discrete outer TF coil legs connected in parallel circuits, (2) a 
separate vacuum vessel, which also functions as a first wall, and (3) a 
1.0-m-thick shield (80$ steel, 20? water) between the plasma and the TF 
outer legs. 

The center TF conductor is 8.65 m in height and has a diameter of 
0.62 m. Because the current density is 4.5 kA/cm , the center conductor 
will require approximately 100 separate cooling channels. Each outer TF 
coil leg has a width of 0.65 m and a thickness of 0.18 m, resulting in a 
current density of less than 1.0 kA/cm. Because the outer TF coil legs 
are parallel circuits, each leg will require a separate power supply, 
providing 1.125 MA. 

The key design challenges of this concept are the center conductor 
and the dual-function vacuum vessel/first wall. The center conductor 
gross weight is 24,000 kg (51,000 lb); it would be manufactured by a 
special, one-of-a-kind casting process. Both c? these processes are 
close to being beyond the state of the art. The vacuum vessel/first-
wall component is an actively cooled structure that must carry vacuum 
pressure loading as well as surface and neutronic heat loads. Intercoil 
structure is expected to be required to react in-plane and/or out-of-
plane forces. 
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Table 4.2. Major parameters for conTentiooal configuration 

Major radius, m I.35 
Minor radius, n 0.88 
Field on axis, T 2.0 
Elongation 2.0 
Plasma current, MA 14.1 
Current in center leg, MA 13.5 
Average beta, % 26 
Safety factor 2.4 
Fusion power, MH 52.4 
Average neutron wall load, MW/m 2 0.59 
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1.2.2 Configuration with 12-Turn TF Coils 

Elevation and plan views of a concept with 12-turn TF coils are 
shown in Figs. 4.4 and 4.5, respectively, with the major plasma 
parameters listed in Table 4.3. The primary featues of this concept 
are: (1) the 12 center TF conductors with 12 continuous outer TF legs 
connected in series circuits, (2) a separate vacuum vessel, which also 
functions as a first wall, and (3) a 2.5-m-thick external shielding 
system of water in steel tanks, enclosing the TF coil structure. 

The center TF region i3 composed of 12 pie-shaped TF conductors, 
which are 5.2 m in height and have an outer radius of 0.38 m. Wedging 
of the pie-shaped conductors reacts in-plane centering loads of the 12 

o 
conductors. The current density of the center region is 3.0 kA/cm . 
Approximately 100 separate cooling channels will be required in the 
center TF region. The top, bottom, and outer TF legs each have separate 
cooling channel circuits. Each outer TF coil leg is 1.5 m wide and 8 cm 
thick, resulting in a current density of less than 1.0 kA/cm . Because 
this configuration has 12 separate TF coils in a series circuit, only 
one 1.15-MA power supply is required. The turn-to-turn connectors are 
located at the joint of the outboard and bottom legs of the TF coils 
where the current in the outboard leg is transferred to the bottom leg 
of the adjacent turn. Reaction of the in-plane and out-of-plane forces 
in the top, bottom, and outer legs of the TF coils is carried by the 
external shielding structures (steel structures for top and outer legs 
and concrete for bottom legs). 

The key design challenges of this concept are the center TF conduc
tors, the Joint of the top and bottom TF legs to the center conductor, 
and the vacuum vessel/first-wall structure. Each center conductor would 
be manufactured by a casting process requiring 1750 kg (3850 lb) of 
copper. Actual Joints C the top and bottom legs to the center legs 
require more detailed evaluation. The vacuum vessel/ first-wall struc
ture is actively cooled and must be designed for vacuum pressure and 
thermal surface and ne .*,ronic heating loads. The concrete shielding 
system below the floor level is expected to be adequately flexible to 
shield the bottom region of the plasma chamber. 
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Table 4.3- Major plasaa parameters for alternate configuration 

Major radius, • 1.41 
Minor radius, • 0.91 
Field on axis, T 2.0 
Elongation 2.0 
Plasaa current, MA 14.0 
Current in center leg, MA 13.8 
Average beta, % 25.5 
Safety factor 2.4 
Fusion power, MW 52.0 
Average neutron wall load, MW/a2 0.57 
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4 . 3 CONFABISOM OF CONVENTIONAL GOPPBR A » HIGH-STRENGTH OOPPBR ALLOT TF 

COILS 

Investigation of oxygen-free high-conductivity (OFHC) copper TF 
coils shows that the limiting problem i s the magnetic compressive s t ress 
in the copper. If annealed copper i s used, the product of current 
density times central leg radius, JCRC» must be kept below 10 NA/m. In 
the reference 1ST, a current density of 30 MA/nr in a conductor radius 
of 0.39 m can be satisfied by a modest 10 to 20? cold working of the 
copper. Other c r i t i c a l parameters, such as copper temperature, water 
velocity, and pressure drop, are estimated to be 148°C, 3.4 m/s, and 
21.8 kPa, respectively, in a center conductor 3.8 m in length. 

Investigation of high-strength, high-conductivity copper al loys, 
such as C-17510 (Cu-Ni-Be), for use in the central legs of the TF coi ls 
shows that the alloy will allow current densities as high as 10 kA/cm 
with acceptable but challenging levels of copper temperature (327°C), 
water velocity (27.4 m/s), and pressure drop (2.63 MPa) in a center 
conductor 3.1 m in length. The compressive stress in the copper alloy 
is not a l imiting factor in the center conductor design with J C R C -
19 MA/m in a highly compact 1ST of R - 0.82 m and BQ • 3 T. Additional 
parameters of the operating conditions of these center conductor posts 
are provided in Table 4.4. 

4.* CENTER CONDUCTOR POST 

A trade-off study was performed to determine the center conductor 
post current density that minimizes the direct capital cost of the 
1ST. Two materials, pure copper and a high-strength Cu-Ni-Be alloy 
(C-17510), were evaluated. Compressive stresses in the coil limit the 
current density to below 4.4 kA/cm2 for pure copper and to 11 kA/cm for 
the alloy, subject to effective heat removal at acceptable temperatures 
to maintain the strength of the copper (see Fig 4.6). Operating pure 
copper at the above current density limit results in a savings of 
$24 million compared with a device operating at the nominal current 
density of 3 kA/cm (see Fig. 1.7). Designing the Cu-Ni-Be alloy center 
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Table 4.4. Representative operating conditions of 1ST center 

conductor post 

Parameters 

J c, kA/cm2 

R c. m 
R, m 
B 0. T 
L c . •» 
I c- « 
B c. T 
Copper stress, ksi 
I 2R power, MH 
V w, m/s 
ppump' ** 
Passage radius 
Cooling duct distance, cm 
Pressure drop, psi 
Inlet temperature, °C 
Outlet temperature, °C 
Maximum copper temperature, °C 

OFHC C-17510 
copper copper 

3.0 10.0 

0.39 0.19 

1.5 0.82 

2.0 2.9 
4.8 3.1 

11.3 11.5 

7.7 12.5 

11.1 29.6 

61 237 

3.1 27 .1 
0.01 1.2 

1.5 0.71 
7.8 3.8 

3.6 381 
20 20 

80 140 

118 327 
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conductor post to operate at a current density of 7 kA/ca* would 
ainiaize the cost and save $32 Billion corpared with the noainal device 
design (Fig. 4 .7) . These results suggest that highly compact ISTs are 
possible i f a high-strength conductor can be used, contributing to a 
highly cost-effective nuclear island. 

4.5 1ST ELECTRICAL POWER SYSTEMS 

Several alternate TP coil power conversion systems were investi
gated, including hoaopolar generators, batteries, high-current thyristor 
power supplies, and gas turbine flywheel generators. All of these 
options are estimated to be relatively costly for single-turn currents 
that range froa 1 to 10 MA. For currents ranging froa 200 to 500 kA, 
however, the batteries and the thyristor supplies appear to be the sore 
economical. When the power conditioning control and maintenance equip
ment are included, the thyristor supplies appear to be the most econom
ical. The best trade-off between the number of TF coil turns and power 
supplies occurs when the TF coils have about 36 turns. 

In the case of ac helicity injection,^tlo a silicon controlled 
rectifier (SCR)-controlled power factor correction of about 280 MVA 
reactive (NVAR) is required to accommodate a 1J current modulation at 
the estimated frequency of about 5 Hz. This would add about $9 million 
to the substation cost estimate. The total cost estimated for the 
electrical power systems is then $40 million based on the thyristor 
approach. 

4.6 LOWER HYBRID CURRENT DRIVE SYSTEM 

The 1ST assumes lower hybrid current drive (LHCD) to ramp up the 
plasma current to 14 MA. The plasma density and temperature during 
ramp-up are such that a wave-to-toroidal current efficieny of 25$ i s 
obtained. The LHCD system necessary to accomplish this can be 
characterized by a source frequency of 564 MHz and a launcher gr i l l 
spectrum centered around N - 3.? and a width of 0.5 m. Two 0.65- by 
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0.56-m arrays of 2 x 12 apertures each are needed. Each aperture 
measures 0.03 by 0.31 • and carries a maximum of 250 ktf. Adjacent 
apertures are phased 180° apart. Twenty-four rf sources are used to 
produce 12 MM, of which 8 MW are launched at the plasma edge. 

4.7 DDQilD SUELDIK RBBIIRBBmTS 

Radiation exposure limits for the spherical torus center conductor 
post were examined. Damage to the copper conductor and turn-to-turn 
insulation was considered. Based on the analysis, i t i s unnecessary to 
provide inboard shielding in the design of the 1ST. For a reference 
total DT burn time of 2 « 10 s , epoxy-flberglass insulation i s margin
ally acceptable. To ensure adequate Insulation lifetime, polyimide 
fiberglass insulation i s recommended. 

4.8 PBE0CKBPTUAL COST ESTIMATE 

A preconceptual cost estimate of the 1ST device has been generated 
utilizing the FEDC computerized cost estimation spreadsheet and cost 
data base file. 1' This menu describes the assumptions, definitions, and 
methodology incorporated into the development of the 1ST cost estimate 
and presents a detailed breakdown of the projected costs. As shown in 
Table 2.1, the estimated total constructed cost of the 1ST device in 
mid-1984 dollars is $573 million. This includes contingency, construc
tion of the facility at an undeveloped site, and bringing it into 
operation. The total direct cost of the nuclear island is estimated to 
be $119 million. 
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