
IS--5049

DE91 007118

The Design of a Scalable, Fixed-Time
Computer Benchmark

p

by
f

JOHN GUSTAFSON

DIANE ROVER

STEPttEN ELBERT

MICHAEL CARTER

Ames Laboratory

Iowa State University

Ames, lA 50011-3020

DateTransmittexl: October, 1990
f

*Operated by Iowa State Univcrsity for the U,S. Dcparuncnt of Energy undercontract

No. W-7405-ENG-82.

MASIEB
..

'l./

II

_(,TABI,E OF (.)NTENTS

Abstract ... iii
)
I

I Chapter 1. Introduction .. 1

I Chapter 2. Perfomlance Measurement Goals 1
i

, Chapter 3. Detailed Description ... 5

° 3.1. Scalable Benchm_king 5

3.2. Fixed-Time Benchmarking ... 8e

3.3. Language/Architecture Independence 10

3.4. Precision Independence .. 11

3.5. Figure of Merit .. 13

3.6. Complete Task Measurement 14

3.7. Minimization of ltuman Effort Bias 14

Chapter 4. Benchmark Results ... 15

Chapter 5. Superlinear Speedup Effects 16

Definitions .. 16

Superlinear Speedup from Changing Routine Profile 17

Conclusions .. 19

Acknowledgements .. 19

Refcrences .. 20

Distribution l,ist ... 72

iii

i
ABSTRACT

By using the principle of fixed time benchmarking, it is possible to compare a very wide

range of computers, from a small personal computer to the most powerful parallel

• supercomputer, on a single scale. Fixed-time benchmarks promise far greater longevity

than those based on a particular problem size, and are more appropriate for "grand

- challenge" capability comparison. We present the design of a benchmark, SLALOM TM,

that scales automatically to the computing power available, and corrects several

deficiencies in various existing benchmarks: it is highly scalable, it solves a real problem, it

| includes input and output times, and ii can be run on parallel machines of ali kinds, using

any convenient language. The benchmark provides a reasonable estimate of the size of

problem solvable on scientific computers. Results are presented thai span six orders of

magnitude for contemporary computers of various architectures. The benchmark also can

be used to demonstrate a new source of superlinear speedup in parallel computers.

!

The Design of a Scalable, Fixed-Time Computer Benchmark*

JOIIN GUSTAFS()N,DIANERI)VER,STEPiiEN I:_I,BER'I',ANl) MICIIAEI,CARTER

Atru:sLaboratory,Ames,lA50011

1. INTRODUCTION

" Computer power has increased over 70% per year for the last 50 years, or over 11 orders of
magnitude. This inc.rcase makes it difficult to measure performance with a teel that does not scale.
Funhennore, a given make of parallel processor can offer a performance range of over 80(X) to t, so the
scaling problern exists even ii applied to a computer of current vintage. Any benchmark of fixed size is
soon obsoleted by hardware advances that render the time and space requirements of the benchmark
unrepresentative of realistic use of the equipment. The common workamund of performing a fixed-size
task repelitively is less lhan salisfactory.

A related issue is the dilTiculty of scientifically comparing computers with vastly different
architectures or programming environments. A benchmark designed for one architecture or prognunming
model puts a different architecture al a disadvantage, even when nominal performance is otherwise
similar. Assumptions such as arithmetic precision, memory topology, and "legal" language constructs are
invariably wedded to the job lo be timed, in the inlerest of controlling as many variables as possible. This
"ethnocentrism" in benchmark design has hampered comparison of novel parallel computers with
traditional serial compulers. Examples of popular benchmarks that have some or ali of the foregoing
drawbacks are LtNPACK {3l, lhc "PERFECT TM Club" [1 II, the Livermore Loops I91, SPEC [131,
Wlletstones 12l, and Dhrystones [14].

(;hapter 2 presents the design goals of a benchmark that attempts to solve these and other dil'ficulties.
Chapter 3 shows our techniques [br achieving these goals. Chapter 4 gives experimental results for a
wide range of parallel and serial computers. Chapter 5 discusses implications of the fixed-time method
for superlinear speedup.

2. PERF()RMANCE MEASUREMENT (;()ALS

Ideally, a benchmark should be scalable, broad in architectural scope, simple to apply and undcrsland,

• representative of the way people actually use computers, and scientifically honest. A proper benchmark
is both a task engineered to meet these goals and a set of rules governing the experimental procedure, lt
is more than just an application program or excerpt. We recognize that many of these goals are at odds
with one anottuer. As with any engineering design, a certain amount of compromise is necessary. In

_' partictllar, it single benchmark with a single figure-of-merit cannot fully characlerize performance for tile
entire range of computing tasks. Ilowevcr, it seems possible to restrict ourselves to large-scale ,,;cienlific
problems and capture salient features of that cla,',s of problems that are absent from other computer
perlimn ance tests.

2

Goal: SCALABLE BENCHMARKING

II is a natural assumption that in measuring computer perlbrmance the problem being solved sllould
be fixed as tile computing power varies. Unfortunately, this is a dubious assumption since it does not
rellect the way people actually use computers. Generally, problems scale to use the available resources,
(both memory and speed), such that the execution time remains approximately constant [1,6, 7, 15].

The problem of solving systems oi" linear equations is a scalable one, and one central to scientific

computing. When the LINPACK software was first introduced, timings lhr solving a 100 by 100 system
were gathered from a number of institutions and published. In 32-bit precision, the problem only required
40,000 bytes of storage and about 670,000 Iloating-point operations. A computer such as a VAX-II/780
took several seconds for the computation---a reasonable unit of time to wait for an answer. As computers
have increased in size and speed, the 100 by 100 problem is increasingly inappropriate for measuring
high-speed computers. The CRAY Y-MPS/832 performs that problem in less than 1/300 of a second,
faster than almost any display can refresh to inform the user that the task is done. Even in 64-bit
precision, the CRAY uses less than 1/30,000 ol its main memory for such a problem. As a result, a new

version of the benchmark was intrc,d_lccd for a 300 by 300 problem. When this also began to look small, ,
a 1000 by 1000 version was added. Variations for precision and allowable optimizations have further
multiplied the number' of meanings of the phrase "LINPACK benchmark." The LINPACK benchmark
has limited scalability even as a kernel, since its random number generator produces singular matrices for
large matrix sizes. In fact, no major benchmark in use today has been designed lhr scalability.

Yet, most real scientific problems are inherently scalable. We use n here to indicate some measure of
both problem size and difficulty, lt need not be tied to instruction counts or floating point operations or
bytes of storage; it Should simply increase with the quality or complexity of the simulation. For example,
scientilic problems often involve n degrees of freedom, where n is variable over a wide range depending
on the accuracy and realism desired. We seek such a problem as the basis of the benchmark. By varying
n, the benchmark should be able to track changes in available performance.

We also wish to allow n to vary on a line scale. That is, the problem should accommodate any
integer n above some threshold and not, for example, restrict n to perfect squares or powers of 2. This
will allow the exploration of the space ot"problem size versus number of processors in detail, for parallel
systems with adjustable numbers of processors.

Goal: FIXED-TIME BENCttMARKING

Rather than fix the size o1"the job to be run, we wish to fix the time and scale the work to be done to
fit within that time. A time of one minute is used in our current effort, but any time range within the
limits of human patience (about 0.1 second to 1 montta) for a single computer task could be used as the
constant. Shorter times do not fully exercise a system, and longer times are tedious and expensive to use
as a benchmark. The benchmark should have logic to time itself and adjust automatically to find the
problem size for the specified time, or allow the user to do the search manually, We wish to consider "
only elapsed time, not "CPU time" or other subsets of what the user perceives.

An important consequence of the fixed-time model is that "Amdahl's law" loses its relevance and its 6
predictive powers in understanding the limits to vectorizati0n, parallel proce,qsing, and other architectural
ideas [6, 7]. We feel that this "fixed-time" approach should be used in benchmarking computers
generally.

lt is important to note that the fixed.dme model is distinct from the "scaled speedup" model in which
the problem size, as measured by the storage of variables, is scaled with the number of processors [7].
On ensemble computers, simply replicating the problem on every processor will usually make total
execution time increase by more than just the cost of parallelism. Fixing work per processor instead of
storage per processor keeps run time nearly constant. A simple example is lhitt of matrix factoring.

• _ til'

(Tonsider the simple problem of solving n equalions in n unknowns, with full coupling between
equalions (dmlse nlatrix represcnlalion). Arithmetic work varies its n 3, with storage varying as n2. On a
/'-processor distributed memory system, simply replicating the storage structures on every processor will
not generally lead to a fixed run time, since the arithmetic work to solve a matrix with Pn 2 elemenls is

P3/2n3, whereas at fixed time model lhal assumes negligible parallel overhead oi_ P processors would call
for t'n 3 arithmetic work. 'l'llis _neans tllal the scaled IlIotlcl execution lime increa_s as I '1/2.

This situation appeared in the wave mcclmuics, fluid dynamics, iu_d structural analysis: probicnls run
on the 1024-processor hypercube at Sandia 17l, wldch similarly involved order O(Ii 2) data storage and
O(n 3) arithmetic complexity. On lhc 1024-processor hypercube, to simulate a like amount of physical
time (or convergence accuracy for the structural analysis problem) took about 1()241/2 = 32 times as much
ensemble computing time. lt was then that we realized that the historical "Just make the problem larger!"
argument for distributed memory might be simplistic to the Ixfint of being fallacious. The sealed model is

" still lhc best one to use ii" storage rather than time dictates the size of the problem that can be run, but the
fixed-time model more realistically limits the extent to which problem scaling can be used to reduce
communication cost for ensemble computers.

0

For these "n 2 - n 3'' problems, it is useful to think about increasing the ensemble size by powers of (_4.
With 64 times as much computing power, increasing n by a factor of 4 increases the work by a factor of
43 = 64, which should keep execution time about constant if parallel overhead is low. However, the total
data storage then only increases by a factor of 42 = 16, 11ot64. Thus, each processor actually decreases in

local storage requirements by a factor of 4. With a typical distributed memory approach of using
subdomains on each processor, the subdomain dimensions shrink by 50% for every factor o1"64 increase
in the number of processors, l:'i._:cd-time performance models must reduce the size of subdomains as th_
humidor (?/'processors P increases, if work £rowsJaster than storage. For the n 2 - n3 problems, the linear

size m of an m by m subd()main will vary as p-l/e_ ii" we assume linear perR)rmance increases. On a log
log graph of problem size and ensemble size, the ideal fixed-time model appears as a line of slope 2/3, the
ratio of the exponents for storage complexity and work complexity (see Fig. 1).

Log of 14t,
Problem

Insufficient :_Size
:Main : x,_\

Memory 6_Oy i

r'" Fixed Size Model

" Communicationi:/:::i!i{

.. :_ /iii::!:.ii!JJ,_,.._

Log of Number of Processors

FI(;. I. Problem Size vs. Ensemble Size

Goal: IANGUAGE/ARCfti7'ECT"URE INDI:.'PENDENCE

Rather ltmn define the task with a particular program wrillen in some language, the problem to he

solved should be specificd at a more abslract level. A benchmark should state what is to be computed for
a given range of possible inputs, but not how lo compute it. The range of possible inputs should be large
enough that major deviations from running some form of the basic algorithm (such as looking up lhc
answer in a large precomputed table) are not praclical. This helps lo conlrol one experirnental wlriable:
the parlicular algorithms being compared. Any version of the benchmark should be permitted that arrives
al correct answers, withou! arlificial binding to language or architecture.

!
(

r Ii,id| ql,,

4

A benchmark should be able to exercise new architectural concepts as they arise, such as massive
parallelism. We are most interested in the use of powerful computers to simulate physical systems. Since
most physical systems have _unple parallelism, use of a physics-based problem should provide a wily for
parallel computers to demonstrate their capabilities. An example ola trivially parallel problem is

I multiple runs with different starting assumptions. An example of an inherently sequential problem is the
3-body problem for a large number of timesteps. Both trivial parallelism and inherent sequentiality
shouhl be avoided as extreme cases of sequential/parallel ratios that arc not representative of mainstream
scicnti ric computing.

' Goal: PRECISION INDEPENDENCE

Rather than specify an arithmetic precision to be used, such as "64-bit IEEE floating-point
,'lrtthmetic," self-consis'_cncy should be requiro,d in the result to a certain relative error. The user is then
l'ree to achieve a result within that tolerance using any calculation method or precision. The yules for
precision should be determined by the desired precision in the result, not by dictating the method of
calculation. Physical conservation laws are very helpful in testing self-consistency in scalable problems.

". Goal: VALID FIGURE OF MERIT o

Performance evaluation is inherently multidimensional. Yet, efforts to disseminate statistical
information have not been very successful. The Livermore Loops present 24 speeds for 3 different vector
lengths, with a variety of ways to sum and average the results, and yet one sees statements like, "Our
computer runs the Livermore Loops at 10.8 MFt.OPS." The SPEC benchmark also contains 10
components of widely varying nature (from matrix kernel operations to a complete circuit simulation), yet
the "SPEC mark" is a scalar quantity derived from these components. Recognizing this, we seek to
produce a single figt_re of merit number that is meaningful, to prevent misuse of multidimensional
information.

Instead of using questionable performance measures such as MIPS (Millions of Instructions Per
Second), or MFLOPS (Millions ot"Floating-Point Operations Per Second), the basis of comparison should
be simply n, the problem size. Although other work measures can be provided by the benchmark as a
guide to optimization, they are not the coin of the realm. A computer should be considered more
powerful than another on this benchmark ii"and only if it runs a "larger" (bigger value of n) problem in
the time allotted, lt is not nccessat.'y that work bc a simple function of n (and it seldom is), but the work
should be a strictly increasing function of n.

Goal." COMPLETE TASK MEASUREMENT

With a fixed-time paradigm, it becomes practical to include costs such as disk input/output and the
setting up of equations to be solved. Since computers tend to improve so as to balance speeds with fixed
time rather than l'ixcd-size jobs in mind, these previously excluded components of computer use can be
fairly included in the measurement. We strongly fcel it is incorrect to test only the compute-intensive part
of a task. Even recent eflorts such as the PERFECT and SPEC test suites excise the input and output •
functions in some or ali of their component routines [11, 13].

Goal." MINIMIZATION OF ttUMAN EFFOgT 5'IAS
Since converting programs to different architectures imposes a burden that is reflected (at least

temporarily) in reduced performance, the benchmark should be disseminated in as many representative
f _"orm, as possible: traditional, vectorizcd shared memory parallel, distributed memory parallel, etc. lt
should also bc maintained in many languages such as C, Fortran 77, Pascal, and Fortran 90, to reduce
language conversion effort. In the sense that computer benchmarks compare programmers as well as
computers, a centralized and collective body of conversion tools makes the comparison fair and
decmphasizes programming skill. For the same reason, great effort should be put into finding the "best
serial algorithm," that is, the solution method with the _';mallest apparent complexity. Otherwise a
problem thought to be some complexity like O(n 3) might later prove to be O(n2 lg n), which only some
programmers would discover and exploit.

i ,7 i,._ll' ' ,_i,Ipnlr'll ,i ,IIIM" m II_" 'lIMllr _, ',"I' "I ' ' ,_' pl ,. 'nrl

5

Goal." ACCOUNTABILITY

For some reason, virtually ali published benchmark data deletes the source of the data. In contrast lo

scienlific reporting, compute r benchmark ligures are seldom accompanied by the name of the person who
ran lhc t_nchmark and tile dale the Iigures were submitted. To preserve the inlegrity and accounlabilily
of the comparison, the benchmark should include this data, along with the institutional affiliation of the
person submitting the measurement.

3. I)I,;'I'AIi,I,;]) I)I,;S(TRIP'i'I()N

The following sections amplify on the preceding ideas. The Scalable, Language-independent, Ames
l_,aboratory One-minute Measurement (SLALOM TM) was created to meet the objectives described above.

3. I. Sealable Benchmarking
w,

In September 1989, we began a search for a complele, practical scienlific problem that demands the

Solulion o[a set of n fully-coupled equations similar lo the traditional LINPACK test. Conventional
mclhods lhr such problems require O(n j) operations for solution, and O(n 2) operations for setup. Storing
the answer, a list o1" n numbers, takes O(n) operations, Reading a description of the geometry and other
physical parameters of the problem takes O(1) operations. The memory required for the problem varies

,, as n2. These scaling characteristics capture the salient features ota wide spectrum of scientific computing
[asks. With careful design of the problem discretization, n can be chosen as any positive number, to
permit fine adjustment of the work and storage needed.

We have been unable to find a genuine scientific problem for which the best known algorithm
requires the direcl solution of a nonsymmetric, dense matrix with parlial pivoting. However, a
diagonally-dominant dense matrix problem was found in the pioneering paper by Greenbcrg, Goral, et
al. on "radiosity," 151which is the equilibrium radiation given off by a coupled set of diffuse surl'accs thai

emit and absorb radiation. The problem is easily described and understood: A room is painted with a
separate color for each wall, plus [loor and ceiling, and one or more of the six surfaces also emits lighl.
Emissivily and reflectivily are described as red-green-blue components for each wall of tt_e morn. The
problem is to find the color variation over each wall. Goral's paper uses an example test case as shown in
Fig. 2, with unit face sizes.

/ emissivity--.(1.27,1.27,1.27)

i -[b refle,ctivity= (0.84,0.84,0:84)
Leftface(red)' , ' I
emissivity=(00 O) L... _] Rightface blue):
reflectivity=,'0.99,0,0) [_missjvity =(0,0,0)

' e_y = tu,v.Vl I retlectlwty (0,0,0.99)6
I _ty = (0.54,0.54,0.54)[

Bottomf
emissivity=(0,0,0) /
reflectivity=(0.84,0.84,0.84)

FIG. 2. Radiosity in a Box

There is a white, light-emitting ceili_g, shades of gray on the Iloor, fronl, and back walls, and saturated
red and saturated blue side w_lis. (We will usually use the term "face" instead of "wall," and "box"
instead of "room," in this paper.) With diffuse surfaces, there is a "bleeding" of color to nearby surfaces.

,i
"lltl' ,, ii ,l_ I_nl,llrr',, rill ' ' ,, lrI1_1.... ,rp ,

6

Goral's paper offers limited scaling, breaking each face into 3 by 3, 5 by 5, and 7 by 7 "patches," with
6m 2 equations to solve for an m by m patch decomposition. The coupling between patches is the "fraction
of the sky" each patch "sees" occupied by another patch, forwhich 151uses an approximate quadrature.

We coded the radiosity problem in a scalable lashion, to allow rely number ofpatches n,.lmm six on
up. The challenge is to write an automatic decomposition algorittma that is both concise and amenalile to
parallel processing, so the process will be treated in some detail here. The initial apprt)ach was to assume

the box is a unit cube, l'ind the largest m such that 6m 2 is less than n, then halve patches until n wasreached. F'or example, for n = 27 !retches, one would start with L'4_77_J = 2 lhr m, and then split three
patches in two (see' Fig. 3).

;

[FIG. 3. Initial Attempt at Scalable DecompositionI

I

This simple approach worked, but with drawbacks, lt created patches of very different areas,
implying uneven accuracy in the numerical solution. A practical program would more likely seek to
reduce the maximum error by keeping patches as similar in area as possible. Furthennorc, the regularity
of such a decomposition encourages a clever programmer to shortcut coupling calculations by noticing!

that ro,my pairs of patches have the same spatial relationship (see Fig. 4).

0, _

I 0,5 _..-

FIG. 4. Exploitable Symmetries

Also, the solution l'or a perfect cube is too special to resemble a practical radiosity calculation.
Hence, we allow variable box dimensions, restricted to the range 1-10() length units, and decompose the
surface of the box into patches that are as nearly square and as nearll equal in area as possible.
Exploitation o1 repeate(l geometric relationships becomes much more difficult, accurz'cy for z_given ,_
number of patches is improved, and the problem merc closely resembles a real problem for wt_i_'h a
scicnti ric computer might be used.

Let Ai be the total area of face i, and A be tlae tota_.larea. Then we want

I_-: Number (71"p;llches on face i =,n x A i I A.

,, Actually, we mark "start-end" patch numbers for each face. Face 1 starts with patch 1; Face 6 ends

with p,atch n. In between, face i starts with the p;._tchthat lac_ i-I endo(l with, plus one. Face i ends withpatch LY_,A/A+ 0.5 J, where the summation is j = to i. The ...+ 0.5 J' technique explicitly rounds to the
nearest integer, breaking lies by rounding up. This explicitness was discovered to be necessary when we
teste0 language independence between Fortran and Pascal, since implicit rounding lunctions in Pascal use
round-to-nearest-even rules, whereas Fortran uses round-toward-zero rules.

i

, _ , , ,r 'I_ ,H llr,,, ,,lqr il]rli_',,...... ,r il_llilli,iiii,i,llql_,,,l, i111..... ,lllil irl, i,iilll_ 1.....

7

Within a face, we desire patches that are as nearly square as possible, to reduce discretization error.
This is accomplished by dividing each face first into columns, with the number of columns given by
[q(patches/eccentricity) + 0.5/, The eccentricity is the ratio of the face dimensions. For example, to put 7
patches on a 2 by 3 face, use [_/(7] 3/2) + 0.5J = 3 columns. We can slightly increase robustness by using
one column when this formula gives zero columns for a face. However, there must still be an error trap
for the case of no patches on a face. For example, a 1 by 1 by 50 box with only six patches will
decompose to having no patches on the 1 by 1 faces (each being only 1/2.00 of flae surface area) and the
benctunark must signal a need for more patches for such a problem.

Let npatch be the number of patches on a face, and i be the local number of a patch on that face,
1 <_i < npatc h. Let neel be the number of coltlmns on the face, as determined by the preceding discussion.
Then patch i resides in the column given by

" icol=[(i - 1) X neel npatchJ+ 1 (1)

for arrays with index origin 1. Note that 1 _<iceI s neeb This assignment of patches to columns distributes

" "remainder" patches (that is, those in excess of an exact integer division of npatch by neet) evenly across
the face rather than clumping them at one extreme. A geometrical interpretation of the subdivision for

npatc h = 7 and neeI= 3 is shown in Fig. 5.

_ column number
i

3 _2patches

2 patches,,,,,"l_pe_ n col2

,,. = npatch

1 3y ''4r

1 2 3 4 5 6 7
patchnumber

FIG. 5. Column numberversus local patcll number

We can invert (l) to find the range of i for a given Value of icol:

icet - 1 < (i- I) x neeI / npatch< icel

¢_(ico I - 1) X npatch/ neel+ 1 < i < ncolX npatch/ neel+ 1

Since the lef: and right bounds are noninteger in general, use floor and ceiling functions to sharpen the
range:

J

[(ice I - 1) X npatch / neel] + 1 <- i < Licol X npatch / neel+ lJ (2)

where the ceiling function [n / m] is calculable from / (n + m - 1) / ml, a more language-independent
construct, lt now follows that the number of rows in a given column is

nrow = [iceI x npatch / ncot]-[(icol- 1) x tlpatch / tlcolq (3)

which gives hrew = {3, 2, 2} for icet = {1, 2, 3} for the example shown in Fig. 5.

Fig. 6 shows a solution for the benchmark problem for a 512-patch de,zomposition.

i,,lilqIl"iisnr1'llr,llppl...... lilt.... Irl".......... _l

FIG.6. Example of Radiosity Solution

This completes the solution to the scalability problem with restx:ct to domain decomtx_sition. For any
problem of size six or greater, tlae preceding method decomposes the benchmark task in a reasonable,
portable, concise, numerically sound manner. For a parallel ensemble, die geometry of any subset of the
patches can bc computed directly from the number of the patch, removing a potential serial bottleneck.

3.2. Fixed-Time Benchmarking

lt is possible to make any scalable benchmark into a fixedtime benchmark simply by putting an
upper time bound in the ground rules of tl_e benchmark. If a user-written program can tilne its own
execution, the program can scale itself to run in a stx:cified time. Just as a rccursive program operates on
its own output, the fixed.time driver creates a benchmark that operates on its own pcrfonnance.

The number to adjust is an integer, n, that describes the "size" of tile problem in some sense. Here, n
is the number of patches in a radiosity problem, but the technique is general. _,

The user is asked by the program to supply a desired time interval, which we call goal. (Wt trove
found, by experiment, that 60 seconds is a good compromise between realistically long run times and
easy-to-bcnclamark short times, but d_e goal time is arbitrary.) The user is then asked to supply a value of
n 3uch that d_e program will take less than goal time to execute.

The program tests that n is within limits imposed by the problem and the computer. For example, the
radiosity problem requires n > 6. (If the box is highly eccentric, the minimum n could _ larger.) If n
passes as a valid lower bound, the timer is started and the benchmark is run. If the benchmark (:ills to run

in less time than goal, the driver repeats its request until a satisfactory lower-bound n is supplic.d. If it
succeeds, the n is saved and the driver proceeds to the next step.

|1

' 'Ill

9

The next stage is to find an n such that the run time is greater than or equal to goal. The reason is to
disallow equality with goal, which rewards low-resolution timers. For example, a computer capable of
self-timing only to 1 second resolution might run 60.999 seconds, report it as 60 seconds, and thus bc able
to run a l:_rgcr n than a computer with a more precise clock.

li'goal is large, n might cxceed the value allowed by the computer mernory allocated by the program
being bcnchmarked. 1'he user is responsible for altering the benchmark to allow sufficiently large n, even
ii" ii means explicil management of mass storage. (Running out of memory to achieve a one-minute
SLALOM mn might be interpreted as a symptom of unbalanced or special-pug)ose computer design.) II
lhc n supplied as an upper bound fails to equal or exceed the goal time, the driver repeats its request until
a satisfactory n is supplied.

Note that a given computer might not be powerful enough to mn even the minimum n pennitled by
" the benchmark in goal time. We have chosen tlm problem and goal such that virtually every

programmable machine cun'cntly marketed is sufficiently powerful to qualify, although computers from a
few years ago might not.

With an upper bound and a lower bound, tlm problem of finding the n that is as large as possib!e
without requiring time greater than or equal to goal is a classic root-finding problem. The time is not
necessarily an increasing function oi'n, nor is it particularly "smooth" for most computers. Pipeline
lengths, cache sizes, and memory organization can complicate pcrl'ormance enough to destroy
monotonicity. Methods such as Newton-Raphson iteration were tried and found nonconvergcnt in
general, for the preceding reason.

There might also be random timing varialion for any single value of n. If the variation is greater than
the difference in timing for values of n differing by unity, then the n detem]ined by the driver will bc a
random variable. Intuitively, the distribution of n is zero above some integer, since the hardware has
inherent limits (Fig. 7). Hence, we look at the record largest n achievable over any desired number ot'
tests to again reduce the measurement to ztsingle integer value.

apparent
upper

Numberof runs limit
determiningn I

I
ht _ I

•
ProblemSize, n

i FI(;. 7 Distribution of n

A coiTvergclit method that is used in the cun-ent version of the benchmark driver is recursive

bisection: While nut,.pernlower > 1, lind n,ru_an =: (nut,per + nlower) / 2. Time the benchmark lhr nnwan;if
less than goal, replace nlowe r by nmean arid repeat. Othe/':wise, replace nupper by nmean ;.in(] repeat.

Oil(.:e nuppe r - nlowe r = 1, the desired n is nlowe r. A problem with this method is that random
' lluctuationsh_ tlm timing might assign a particular n ;.tsbelow goal on one run, but above it on the next.

Currently, our workaround is to refer to the instance where th TM execution time was below goal and use
that run as the result. We ignore the "final" report of an n value if it equals or exceeds goal.

];

'11-, _ii...... , ,Hl........ i1,'_ Irl p_,

10

The ft×cd-time driver has been developed for several computers and written in several langua_,es, lt
works satisfactorily in most cases. On the MasPar and Cray versions, the machines have a preference tor
multiples of 64 in tlae problem size, ,and manual selection is used to find the largest problem that runs in
less than one minute.

3.3. Language/Architecture Independence

Two approaches are used to remove tics to a particular language or architecture: a high-level problem
description, m_da multiplicity of working examples covenng a wide sI._ctrum of environments.

A high-level problem description is practical if gui(lance is supplied as to what, appears to be a "good"
, solution metl_od, and ii the input-output is specified so as tc, rule out unrealistic use of precomputed
[answers. Supply,in)_,guidat'_cc is like :m athletic competition; although certain techniques are known to be ,

effective, compctitc_r:_ n:,ay choose what works best for them individually. Advances in technique that
appear genera! arc made publicly known as quickly as possible to eliminate an advantage based on

' dispara_te knowledge.

If only a single input and output are specified, a benchmark with such liberal rules quickly
degenerates into the trivial recall of precomputed answers, But if input is not specified, run times will
vary with input (in general), itr;ro(luting an uncontrolled variable. The solution is this: the program must
work for a SlYecifiedrange o1+inputs, and must time an input (supplied as standard) using the same method
used tbr arbitrary input. Stated mmther way, the program cannot cont,'_in any information specific to the
standard case.

For the radiosity problem, the standard case is much like the example in Goral's paper [5] shown in
Fig. 2. The main changes are to make the faces rectangular (13.5 by 9 by 8) rather than square, and m
derive the coupling with exact analytic expressions instead o1"approximate quadrature. The matrix
formulation and solution are similar, except _.llatwe divide the matrix, mw entries by the area of the patch
Io which they Ix:train, which rendms the matrix symmelric. The discovery that the radiosity problern
could t)e inade symmetric, cutting soltllion time almost by half for large problenls, was a surprise to us. lt
reduces the resemblance of SLAt.OM to the LINPACK benchmark, but one could argue that symmetric
systems of equati(ms are the nile rather tl_a_ the exception in physical sin-tulations.

As of this writing, we have converted the high-level description of the radiosity problem, as supplied
t)y Goral's pai×:r, into the following fo[ms:

• Fortran 77for ,';utl4, VAX, IBM I'C, etc.
• Vectorized Fortran for sitt,_+leprocessor Iris and NCUBE computers (the NCUBE is scalar, but

benefits from vector lit_rary calls).
• l'as,.'alfor IBM f:'C comlmtihle,s'. +
• &dSlC.fi_r Macintosh (hoth interpreted and compiled).
• C for SUN4 and other UNIX..based workstations.
• C (extended with plural variables).lbr MasPar, 1024 to 16.384 processors. _,
• Fortran with parallel loop compiler directives fi:)r CRAY-2 and tris (shared memory, I-8

processors).
• Fortran with message-lmssing constructsJbr NCUBE (up to 4096 processors)
• Fortran with "PARDO" co,,tstructsfi)r Myrias (supplied by .lira Roche, Myrias Computer Corp.).

We are i,: the process of putting all of the ve_ions under tlm SCCS revision control system.

i

M Pll

11

3.4. Precision Independence

We fcel the goal should Ix: to compute an answer within a specified tolerance of the con'cct answer,

and not specify the word size or anything cise about how to get to that level of precision. The benchmark
has :wt, self-consistency checks. One is inside the timed part of the benchmark, since the check is also

used to improve the accuracy of the answer ii" wi',lfin lolerance limits. The other is a pass/fail verification
after lhc computation is done, not t:,ned. lt is very unlikely thai an incorrect lm,gram will pass tx_th tests,
and experience has confimmd this. (We also use comparison of output files and e×amina'don of graphic
displays of the output as a convenient way to check program corrccmess for small problems).

The first self-consistency check involves _.natrix setup, l.etf, = the fraction oi" the tmmisphere taken ®

up by patch j, as seen from patc, h i. For example, fj = I ['or ci'ose, parallel planes, alxmt 0.2 for unit
squares a unit apart or perpendicular and touching, and near 0 for patches that are small relative to their

" separation (Fig. 8).

O

f# = 0.00

=0.2 I

1 111 fo '= 0.2

i:1(;. _. "t:orm Faclor" E×amplcs

"l'hcse Jlj are variously called "form lacl{)rs" or "coupling factors" or "shape factors" in the radiation
tratlslcr literature. Analylic n_c'ans exisl to compule them for special geometric shapes, based on
cvalu'ation of 4-dimensional itllcurals.

Initially, wc attempted to use approx,,nations to the fonn factors lhat would be easy to comp, , like
those in the Goral papcr l5l. l lowcver, we found the accuracy to be poor for small numbers ol i).,chcs,

unrcalislic l'or a scientific program. We evaluated the integrals in closed form for parallel and

i, perpendicular patches wilh edges parallel to the ._Tz coordinate axes, eventually creating a one-page
program for' the fi' computation that is considerably more compact than any appearing in the literature on- /jt '

lnrm factors. Also, a cyclic ordering of faces eliminated the need R)r extensive "case" statementr,. Fig. 9
illustra, :, this:

:,i.,?) I ' Perpendicular faces have

11 "_0i{ Ii-_ rnod 3----1 or2,.- t " i where i, j= face numl_r

FIG. 9. Cyclic Face Numbering Advantages

II

12

lt is important for a benchmark program to be concise and manageable, to minimize conversion effort
and maintenance costs, yet represent the demands of a real computer application. These te_e setup
portions of the benchmark only take about 200 lines of a high-level computer language.i

By using closed form expressions, tile ./0 factors inherit the property that _,j = 1, for all i, when
correctly evaluated. Since each f0 requires hundreds of operations to evaluate (including square roots,
logarithms, and arctangents), this summation provides a sensitive independent test of the matrix setup.

We clloose a tolerance of 0.5 x 10-8 for the _/,:/to deviate from unity, that is, an accuracy of 7 decimals.
This requires somewhat more than "single-precision" arithmetic on most computers (7.4 decimals ideally,
but fewer because of cumulative errors) but is comfortably within t.hc "double-precision" range. This
provides a level playing field for the various arithmetic tormats. It is usually advantageous to use the
smallest number of bits or digits that satisfies the tolerance. This number will vary with problem size, but
the user is free to meet the tolerance by adjusting precision as needed, throughout the task.

| "
!

For _¢_,/calues widlin the tolerance limits but not numerically equal to unity, tlm f values areq

normalized by the sum to force the sum to unity, q'his helps control minor cumulative rounding errors.
Instead of normalizing the entire row of tl_e matrix, we simply scale tile right-hand side scalar and "

" diagooal elements, trading n multiplications lhr two.

Thr. area of patch i can be denoted a,. Because the ai a;e not all the same, fj #fj,. in general (sce Fig.
10.)

patch i _-_'-"

fii=O.O
._..,j ._t"

FIG. 10. Asymmetric Coupling

This means the radiosity matrix is nonsymmctric, i-lowcvcr, in the process of trying to remove minor
undiscovered shortcuts from the algorithm, we discovered a major one. I1"the matrix rows are divided by
a_, the matri× becomes symmetric, as mentioned in Section 3.3. Symmetry reduces solution cost by
roughly a factor of two. Again, the scalin_,by a_is applied to the diagonal and right-hand side, saving n2
multiplications by l/a, of the other matrix elements. Cholesky factorization can be used for the matrix
solution, for which there are well-tuned routines in many software libraries.

The second self-consistency tesi involves "residual" checks. For tlm linear systemAx = b, where A
is an n by n matrix and x and b arc vectors of n clements, die residual is defined as IIAx -. bll, where we
choose a computationally easy norm, the maximum of the absolute, values of the elements. To specify a Q

tolerance, the residual is normalized by the norms of A and x, a qu_mtity sometimes called the relative
residual. We require that IIAx -- bll / IIAIIIlxll < 0.5 x 10-8 for each of the x values computed by the
benchmark (one x lhr each component of the radiation: red, green, and blue). Thus, the residual check is

_. really three tests, all of which must pass. The residual check is performed after timing, since application
., soliware would generally eliminate such tests once program en'ors appeared to have been removed.

The user is encouraged to use whatever means work best to reduce the residual to the required
tolerance. The problem is well-Ix)seal. Partial pivoting would add O(n 2) lloating-point comparison
operations and introduce a serial bottleneck into the factoring algorithm. When partial pivoting was tried,
the pivot was always on lhc diagonal, and so pivoting was eliminated from the benchmark. Diagonal
dominance can be easily proved from the fac_ that retlectivity is less than unity and the sum of off-
diagonal elements in a row is unity.

'!

13

"File second self-consistency check greatly improves the "rules" under which the benchmark is run.
Some parallel computers might favor iterative methods, or solution methods of very different intenaal
composition from the one supplied. The alteniative method merely has to satisfy the 0.5 x 10-8 tolerance
Ibr the full range of possible inputs, and it is then deemed a fair method Io use.

For this reason, the range of possible inputs has been carefully boundcd. The faces can range in
dimension from 1 to 100 on an cdgc, and from 0.001 to 0.999 in reflectivity. Some cases in these ranges
will be difficult to solve by iterative methods. For example, consider the box shownin Fig. 11.

eccentric sides have'

emissivity = O,

bql----..._ reflectivity = 0.999

en) s £lVttV

" reflectivity --.,0.999 emissivity= I,
reflectivity = O.999

I,'I(_. i I. Difficult Iterative ('.ase

Iterative methods must numerically accumulate enough tenns of a slowly-converging infinite series to
account for the multiple low-loss reIlections of radiation from the left face travelir_g down the box to the
right. Just as

1/(1 +.0= I-x

[_l_,t_l'Sthe right-hand side for case of conat)utatioli when x is near 0,

1/(,! +x)= I--x+x 2-x 3+.,.+x 11

will favor the "direct method" on the left if x is slightly larger than -1. In this manner, wc constrain
coml)cting machines to use methods that are similar (that is, direct solvers), but not by artificial rules.
'l'he rules are instead driven by requirements for the output delivered to the user.

3.5. Figure of Merit

The notion of using operation counts or other "work" measures for computer performance evaluation
has several drawbacks, lt lends to reward inefl]cicnt methods that exercise the hardware, cvcn if they gcr

" tile result merc slowly. 'l'he n(_tion of what to consider an "operation" has not stood the test of time. In
tlac It)5()'s alld 1960's, nlultil)lications domiilatcd ¢)verail run time for compute-intensive problems, so)
con_plexity analysis collsi(lcred only multiply and divide counts. By the 1970's additions and

L. n_ultit>lications had comparable cost and were often weighted equally. Now, memory references often
take lop,gcr than the aritlm_ctic, but are much harder to assess analytically for an abstract computer.

'l'o date, the generally accepted practice has been to use execution time as the figure or merit, lixing
tla,?problem to be timed. This has disadvantages _tlready described, but at least execution time i_;a
physically measurable quantity.

titre, we make problem size the figure of merit (the larger the better), another measurable quantity
not subject to dispute. The use of problem size can lead to slightly unconventional ranking of machines,
as shown in Table I:

I ' ' lit

14

TABLE 1
Differences in Figure of Merit

Computer A Computer B
1392 patches 1400 patches

2.70 billion Ol:xzrations 2.74 billion operations
58 seconds 59 seconds

,16.6 MFLOPS 46.4 MFI.OPS

By Conventional mt::asures, Computer A is ranked higher since it performed more MFLOPS. By our
metric, Computer B is ranked higher because ii ran a larger problem (more patches). Possibly Computer
1 has difficulty applying its speed to a slightly larger run because it runs out of fast memory, exceeds a
tlardware vector length, etc. The effect will generally be ordy a slight difference from the MFLOPS-
based ranking, except when the MFI.OPS i0r a computer is a jagged function of the problem size. ,-

Since supercompuler purchases are generally motivated by a desire to run larger problems (not
achieve higher MFLOPS rates), the problem size makes a better figure of merit. This is the "grand .
challenge" esthetic, lt contrasts, say, with the esthetic of maximizing conventional data processing
throughput. The achievement of a,40,000-patch SLALOM run migltt be more significant than the
achievement o[a "terallop" ot" nominal speed, since there would be at least a little assurance that the
speed might be applicable to real problems.

3.6. Complete Task Measurement

The idea of a fixed-time benc.hmark solves the decades-old difficulty of including such parts of the
benchmark execution as program loading, input, outpul, and other tasks with rather invariant time cost.
With a fixed-sized problem, these components eventually dominate totalexecution time as vector or
parallel methods are applied to the compute-intensive portions of the job (Amdahl's 1967 argument
against parallel architectures). Hence, previous benchmarks have solved the problem by including only
the kernel in the timing, with an enormous loss of realism.

With a fixed time of about one minute, the non-kernel part of the work should take just a few seconds,
and can Ix: included in the timing without distortion effects. For the radiosity problem described here,
time should grow as

O(1) for program loading,
0(1) for reading problem geometry,
O(n 2) l'or setting up tlm matrix,
O(n 3) for solving the matrix, and
O(n) for storing the solution.

Traditional benchmarks only time the O (n 3) part, or possibly both O(n2) and O(n 3) parts. Herc we
time everything essential to the run other than the original writing and compiling of the program (which is
presumably amortized over many runs and hence legitimate to neglect). Interestingly, the lower-exponent
parts o1"the problem are the hardest to make run in parallel, so massively-parallel architectures will reveal .¢
the same input/oulput challenges for SLALOM thai they face in general applications.

3.7. Minimization of ltuman Effort Bias

To reduce the effect of variable human analytical skill in adapting a given program to a particular
computer, we apply the same technique already mentioned in Section 3.3: a variety of best..eflk_rt
versions are maintained in the library of possible starting points, for as many different architectures and
languages as possible. New versions, motivated by the desire of a vendor to show high performance, are
added to the library rather than kept proprietary. In this way, contributors must provide not just
perl'ormance data but also their method for achieving that performance in software, so that others may
build on their accomplishment.

15

4. BENCHMARK RESULTS

Table 11 gives the results of using the SLALOM benchmark on a wide range of machines. Ali runs

took between 58 and 60 seconds, so times are not given. The computers are listed in order of decreasing
problem size that they were able to solve.

TABLE II

SI,AI,()M PERFORMANCE FOR VARIOUS MACltlNES

Machine,environment ProcessorsPatches OperationsMFLOPS Measurer DateMeasured

CrayY/MP-8,167MHz 8 5120 126.G (2130.) J.Brooks(v) 9/21/90
Fortran+tunedLAPACKsolver(Strassen) CrayResearch

.o,

CrayY/MP-4,167MHz 4 4096 65,2G (1190,) J.Brooks(v) 9/21,90
Fortran+tunedLAPACKsolver(Strassen) CrayResearch

CrayY/MP-2,167Mtlz 2 3200 31.6G (557,) J,Brooks(v) 9/21/90
Fortran+tunedLAPACKsolver(Strassen) CrayResearch

CrayY/MP-l,167MHz 1 2560 16,4G (283.) J. Brooks(v) 9/21/90
Fortran+tunedLAPACKsolver(Strassen) CrayResearch

Cray-2S_-128,244MHz 8 2443 14,4G 240, S.Elbert 9/8/90
Fortran+directives,FPP3.00Z25 AmesLab

nCUBE2,20MHz 256 2071 8.90G 153. J, Gustafson 10/1,90
Fortran+tunedsubroulines AmesLab

MasParMP-i,12.5MHz 16384 2044 8.57G 144. B.Wheelock(v) 10/5/90
C withpluralvariables(mpl) MasPar

MasPalMP-1,12,5MHz 8192 1663 4.73G 80.9 K.Jacobsen(v) t0/5,,'°_
Cwilhpluralvariables(mpl) MasPar

nCUBE2,20MHz 64 1438 2.83G 47.2 J Gustatson 9/17/90
Fortran+tunedsubroutines AmesLab

MasParMPd, 12.5MHz 4096 1343 2,57G 43.7 K,Jacobsen(v) 10/5/90
Cwithpluralvariables(mpl) MasPar

MasParMP-1,12,5MHz 2048 1055 1.30G 22.1 J. Brown(v) 10/5/90
Cwithpluralvariables(mpl) MasPar

SiliconGraphics4D/380S,33MHz 8 1010 1.15G 19.2 S,Elbert 6/15,,'90
e Fortran(-02-mp-Iparalin) AmesLab

MasParMP-1,12,5MHz 1024 927 903.M 15,9 J,Brown(v) 10/5/90
C withpluralvariables(mpl) MasPar

SiliconGraphics4D/380S,33MHz 4 853 716.M 11.96 S,Elbert 6/15/90
Fortran(-O2-mp-Iparalin) AmesLab

nCUBE2,20MHz 16 840 687,M 11,5 J.Gustafson 10/8/90
Fortran,tunedBLAS AmesLab

SiliconGraphics4D/380S,33MHz 2 676 378.M 6.39 S.Elbert 6/15,'90
Fortran(-02-mp-Iparalin) AmesLab

IBMRS/6000POWERstation320,20MHz 1 642 328.M 5.6 S.Elbert 5/14/90
Fortran(xlf-O-Q) AmesLab

16

SiliconGraphics4D/380SI33MHz 1 530 195,M 3,27 S. Elbert 6/15/90
Fortran(-02-mp-Iparalin) AmesLab

nCUBE2,20MHz 4 500 167,M 2.83 J.Gustalson 10/9/90
Fortran+tunedBLAS AmesLab

SUN4/370,25MHz, 1 419 105,M 1,75 M.Carter 10/8/90
C (ucc-O4-dalignetc,) AmesLab

iPSC/860,40MHz 1 41g 105,M 1.75 J,Gustafson 5/17/90
Fortran(-OLM4860) AmesLab

MyriasSPS-2(,"nc68020,16.7MHz) 64 399 92,2M 1,56 J,Roche(v) 6/21,'90
Fortran(mplc-Orr) Myrias

nCUBE2,20MHz 1 354 67.5M 1,13 J,Guslalson ,8/13/90 ,.
Fortran+ assemblersubroutines(-02) AmesLab

SiliconGraph;ct6,D/20,12,5MHz, 1 290 40.5M 0.679 S, Elbert 5/15/90
Fortran(177-O2) AmesLab ""

DECStalion2100,12,5MHz, 1 285 38,8M 0,649 J,Gustatson 5/4/90
Fortran(177-O2) AmesLab

CogentXTM(T800Transputer) 1 149 7,89M 0,133 C,Vollum(v) 6/11/9o
Fortran77(-O-u) Cogent

IBMPC-AT,8MHz 1 67 1,26M 0,0216 J.Gustatson 4/30/90
CFGFortran1,7 AmesLab

MacIlcx,68030, 1 24 0,142M 0,00239 J.Gustatson 5/1/90
InterpretedQuickBASIC AmesLab

NOTE: a "(v)" after a name means the benchrnark was run by the vendor. Vendors often have access to
special tools, early compiler releases, and proprietary libraries, so remember the source. We quole
MFLOPS for continuity with earlier benchmarks, but the number ot" patches determines rank. MFLOPS
assume O(n 3) cost for matrix factoring, and are likely to be inaccurale (too large) for problems that use
block methods with O(n 2.s) Strassen multiplication or better.

5. SUPERLINEAR SPEEDUP EFFECTS

5.1. Definitions

Almost every paper on parallc, l speedup makes the following definition: "Speedup is the ratio of the
uniprocessor execution time to the execution time on the p_,rallel processor." Speedup is the ratio of

i speeds, not times. Speed is work divided by time. Work can be defined as essential floating pointoperations, instn|ctions, memory references, or whalcver seems a reasonable currency on a given syslem. .3
The choice of definition for work does not affect the arguments presented here.

Parallel work]Parallel time J
Speedup

[,Uniprocessor time; (5)

'_lllll'

17

The fixed-size model assumes work is constant, resulting in simplification to the ratio of times. Since
problems generally scale to fit the time that a user will tolerate, we avoid this simplification. If anything
is constant in practical computer use, it is the time. Hence, one might simplify speedup as the ratio of
parallel work to uniprocessor work done in a given amount of time. Definition (5) is the one used here.

i

Efficiency is traditionally defined as speedup divided by the number of processors. The definition
assumes the impossibility of sup_rlinear speedup, guaranteeing that efficiency cannot exceed unity. Since
the arguments presented below show that the quantity often exceeds unity, the tcnn "Efficiency" is a
misnomer in this context.

5.2. Superlinear Speedup from Changing Routine Profile

Supcrlinear speedup results when problem scaling causes more time to be spent in faster routines.
i Consider the matrix setup and matrix factoring parts of SLALOM. The setup will take order n2 work and

the factoring will take order n3 work. For small problems, setup might dominate the work, depending on
the cost per matrix entry. The factoring approaches 100% of the work as n increases. Both steps can

"_ readily be,done in parallel. In the fixed-time model, the fraction of the time spent on factoring increases
with the number of processors. If the factoring proceeds at a higher speed than the setup (often the case)
then each processor will run faster (more work per second) as the result of using more processors.

This reasoning is the theory of superlinear speedup by shifting algorithm profile. To test it
experimentally, we used a version of SLALOM for the first-generation NCUBE computer. The speed in
MFLOPS, as a function of P, was measured as follows:

TABLE III

Speedup on SLALOM

P Problem Size, n MFLOPS Speedup
1 112 0.067 1.00
2 150 0.138 2.06
4 2(X) 0.279 4.16

Even after extensive use of assembly larlguage tuning, the problem setup ran at only 0.06 MFLOPS
per processor, because of calls to intrinsic functions and irregular sequences of operations. The matrix
solution, however, ran at 0.12 MFLOPS lhr large n. For the single-processor run, problem setup took 60%
of the time, so the speed was close to 0.06 MFLOPS. On four processors, ,he larger n possible in a one-
minute run causes factorization to take more of the time, so the s_ed per processor increased to about
0.07 MFLOPS. The effect would have been merc dramatic exccpt for the lack of parallelism in the input,

,, output, and backsolving tasks. With further work, these will also run in parallel and the supcrlinearity
should approach about sixfold spccdup on four processors. Fig. 12 illustrates the effect described, with
vertical dashed lines representing the cases in Table III:

t. Fraction of Time
Spent per Routine

100%o • "_ ,
I __.. :_ I ! I _

Solve ~.12MFLOPS
__ii!!l _ per processor

i_'_i!il :!:'::!iii!:iil:i:!::i::!!::!:i:!:!:!:!:!:i::.__
R_,___ i!ii:'!:i:::::::' ::::i:i:i:i:::::::::::::::::::::::::::i:i:i:i::::]:!:i:i:!::i:i.!;i:i.ii:i:!:i:::::iSi_i

10 I00 1000 n

FIG. 12. Routine Fraction vs. Problem Size

18

lt is more accurate to note that the MFLOPS rates within each shaded region are not const,'mt with n. Fig.
13 shows this third dimension, using polynomial fits lhr experimental measurements on a SUN 4/370:

.//"

///

O ///"

/
O

,96"

c_"

FI(" ,. 13. Profile vs. n vs. MFLOPS Rate

5.3. A Fixed-Time Paradox

A curious fact emerges when one examines lhc" SlX',edups of individual routines. For example, in

going from one to lour processors, tile setup spccdut_ was 3.9, the solve speedup was 3.7, and lhe spccdup
for ali remaining routines was 0.7. (That is, the re.maining routines slowed down because of parallel
overhead and unparallelized tasks.) Yet, the overall speedup is greater than 4.

i

This counterintuitive result shows that subtask component spccdups do not average, even with
appr(_priate weights. A rcsolulion of this paradox was suggested by D. Krummc of Tufts University, and
is illustrated in Fig. 14.

:1
'III ' '

19

Profile for 1-minute run on 1 Processor

r ;ii: solve
setup I setup 2 MFLOPS :1 MFLOPS I 1 MFLOPS I

I

Speedup = P I Speedup = 2P Speedup = P

.....,iii;!i',.... ',, 45,ii' ' iii,
Profile for 1-minute run on P Processors

setup solva I solve
P MFLOPS 2P MFLOPS I 2P MFLOPS

Time ---------lm,,,-

FIG. 14. Resolution of Paradox

The superlinear effect is caused by part of the time being replaced by a higher-speed task. For the
part of the benchmark shown in the middle section in Fig. 14, the speedup increases by the product of the
relative MFLOPN rates of the tasks and the number of processors, P. With timing broken down in this

._ manner, one can again think about overall speedup as some average of the component speedups, lt is

fallacious, however, to average components based on subtasks for a fixed-time performance model.
6. CONCLUSIONS

We view SLALOM as a significant step toward providing a level playing field for advanced
architectures. We are committed to maintaining the scientific integrity of this benchmark, and look
forward to measuring and publishing even more wide-ranging SLALOM numbers in the future.

SL,ALOM illustratcs a new source of non-spurious supcrlincar speedup. Specifically, speed jxzr
processor is not constant as problems scale; it changes with fraction of time spcpt in routines of different
algorithmic complexity. Speedup is tlm ratio of speeds, not times. Together, these observations give
reason to expect that an ensemble computer will often be "more than the sum of its parts" in perfo_Tnance
on problems of practical interest.

We hope that the benchmark will last several decades without a fundamental change, lt may be the
fir_;t benchmark with such longevity, and will permit the tracking of technology trends over a wide
baseline.

AC KN OW I,E D(; EM ENTS

We thank everyone who has participated in this effort. In particular, analysts at Myrias, MasPar,
Cogent, and Cray have contributed suggestions, ideas, madversions of the SI.,ALOM program. Much of

" the work was performed at the Scalable Computing Facility at Ames t,aboratory/Center for Physical and
Computational Mathem atits.

20

REFERENCES

1. R.E. Beaner, G. R. Montry, and J. L. Gustafson, "A Structural Analysis Algorithm for Massively Parallel
Computers," Parallel Supercompuling; Methods, Algorithms, and Applications, edited by G. F. Carey, Wiley
Series in Par',.dlelCoinputing, !989,

2 Curno'_ and Wichmann, "A Synthetic Benchmark," Computer Journal, February, 1976.

3. J.J. Dongarra, "Perfornmnce of Various Computers Using Standard Linear Equations Software in a '::ortran
Environment," Argonne N,'ltional Laboratory, Technical Memorandum No. 23, Feb. 2, 1988.

. 4. V. Faber, O. Lubeck, and A. White, "Superlinear Speedup of an Efficient Sequential Algorithm is Not
Poss ble, Parallel Computing, 3 (1986), pp. 259-260.

5. C. M. Goral, K. E. Torrance, 13. P. Grccnberg, ,'rod B. Battaile, "Modeling thiz Interaction of Light Between
. Diffuse Surfaces," Computer Graphics, Volume 18, Number 3, July 1984.

m,• ,

6. J.L. Gustafson, "Reevaluating Amdahl's Law," Communications of the ACM, Volume 31, Number 5, May
, 1988.

'7. J.L. Gustafson, G, R. Montry, and R. E, Bcnner, "Development of Parallel Methods for a 1024-Prcx:essor
' Hypcrctibe," SIAM Journal on Scientific and Statistic.al Computing, Vol. 9, No. 4, July, 1988.

S. D.P. Helmbold. alld C. E. McDowell, "Modeling Si_edup(n) greater ttlan n," 1989 International Conference
on Parallel Processing Proceedings, (1989), Volume III, pp. 219-225.

9. F.M. McMahon, "The Livermore Fortran Kernels: A Computer Test of Numerical Performance Range," Tech.
Rep. UCRL-55745, Lc_wrence Livermore National l_boratory, Univ. of California, October 1986.

10. D. Parkinson, "Parallel Efficiency can be Greater than Unity," Parallel Computing, 3 (1986), pp. 261-262.

I 1. L. Pointer, PERFEC F: Performance Evaluation for Cost-Effective Transformations, Report 2," CSRD Repe,'t
No. 964, March, 1990.

12. C. L. Seitz, "The Cosmic Cube," Communications of the ACM, Volume 28 (1985), pp. 22-33.

"¢;pt;'- "13. SPEC, _ tzU Benchmark SuiteRclease 1.0, October, 1989.

14. R. P. Weicker, "Dhrystonc: A Synthetic Systems Programming Benchmark," Communications of the ACM,
27:1'0, October, 1984,

15. P. It. Worley, "The Effect of Time Constraints on Scaled Speedup," Report ORNL/TM-II031, Oak Ridge

National Laboratory, January, 1989. .3

JOHN GUSTAFSON recciv_l tile B.S. degree in applied mathematics from Caltech (1977), the M.S. and the

Ph.D. at Iowa State University in 1981 and 1982, respectively, t-le was Product Development Manager and Senior
Staff Scientist at Floating Point Systems from 1982 to 1986, Staff Scientist at NCUBE from 1986 to 1987, and a

Member of the Technical Staff at Sandia National l_alboratories from 1987 to 1989. His work on the 1024-processor
hypercube at Sandia, with colleagues Gary Montry a_d Robert Benner, won the inaugural Gordon Bell award in

1988. Since 1989, he has led research efforts in massively-parallel computing at the Ames Laboratory. Dr.
Gustafson is a Subject Area Editor for Performance Evaluation for the Journal of Parallel and Distributed

Computing. His interests include computational physics and chemistry, novel performance metrics, and parallel
algorithms. I-le is a member of SIAM.

I
II

21

DIANE ROVER receiv¢d the B.S. degree in computer science in 1984, tile M,S. degree in coml_uter
engineering m 1986, and tile Ph.I), degree in computer engineering in 1989, ali from Iowa State University. From
1985 to 1988, she was awarded an IBM Graduate Fellowship, In 1986, Dr. Rover was an intern with McDonnell
Douglas Corporation, and in 1987, with the IBM Thomas J. Watson Research Center. Since 1983, she. has been a
Technical Education Consultant for IBM. She is currently a postdoctoral rc.:;¢archer in the Scalable Computing
Facility at the Ames Laboratory. Her research interests include parallel processing, computer architecture,
performance evaluation, instrumentation, and performance visualization, Dr. Rover is a member of the IEEE
Compuler Society, the Association for Computing Machinery, Sigma Xi, and the Society o1"Women Engineers.

STEPHEN ELBERT received the B.S. degree in chemistry from Iowa State University in 1968 and the Ph.1:). in
theoretical chemistry from the University of Washington in 1973. t-le was a postdoctoral fellow at the University of
B_nn from 1973-1975 and at Iowa State from 1975 to 1977. Since 1977 he has been a research scientist on the staff

of the Ames Laboratory. tlis research interests include large scale ab initio quantum chemistry calculations to
determinethe reaction surfaces of small molecules, with particular emphasis on the efficiency of the algorithms
involve'al, l-tc is a memlx'r of Sigma Xi.

,". MICHAEL CARTER' received the B.S and M.S. degrees in electrical engineering from Oklahoma St_lte

University in 1987 and 1989, respectively, and is a Ph.D. candidate in the Department of Electrical Engineering and
Computer Engineering at Iowa State University, His interests incluile image synthesis, ptu'allel algorithms, and

I , computer architecture. Mr. Carter is a member of the ACM, IEEE Computer Society, t'hi Kappa Phi, and Tau Beta
Pi. t {e is currently a rese_rch assistant at the Scalable Computing Facility at the Ames Lab'aratoryl

