Conceptual design studies of the Modular Stellarator Reactor (MSR)

PDF Version Also Available for Download.

Description

A preliminary conceptual study has been made of the Modular Stellarator Reactor (MSR) as a steady-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinment with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11.

Physical Description

5 pages

Creation Information

Miller, R. J. & Krakowski, R. A. October 1, 1981.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A preliminary conceptual study has been made of the Modular Stellarator Reactor (MSR) as a steady-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinment with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11.

Physical Description

5 pages

Notes

NTIS, PC A02/MF A01.

Source

  • 9. symposium on engineering problems of fusion research, Chicago, IL, USA, 26 Oct 1981

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE82002386
  • Report No.: LA-UR-81-3146
  • Report No.: CONF-811040-39
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 6131318
  • Archival Resource Key: ark:/67531/metadc1112756

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1981

Added to The UNT Digital Library

  • Feb. 22, 2018, 7:45 p.m.

Description Last Updated

  • Nov. 16, 2020, 1:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Miller, R. J. & Krakowski, R. A. Conceptual design studies of the Modular Stellarator Reactor (MSR), article, October 1, 1981; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1112756/: accessed April 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen