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ABSTRACT 

The MHD stability of spheromak type equilibria from 
the classical spheromak configuration to the diffuse pinch 
limit are analyzed numerically. It is found that oblate 
configurations of eilioticity 0.5 have the optimum stability 
properties with regard to internal MHD modes and can be 
stabilized up to an engineering 8 of 15% (defined with re
spect to the applied external field strength for equilibrium) 
Stability to global modes requires that a conducting shell 
surround the plasma. The location of the shell is de
pendent on geometry and the current profile, but realistic 
configurations that are stable to all ideal MHD modes have 
been found with the shell located at ~ 1.2 minor radii. 
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I. INTRODUCTION 

The "SpheromaJc" configuration shown in Fig. 1 was first studied 
r i , 2 i 

many years ago. It is characterized by low total beta (as 
well as low poloidal beta) equilibria that are almost force-force. 
Recently, the advantages of this configuration as a potential fusion 
reactor have been recognized and have led to studies of the MHD 

r 3 4 1 stability properties.1- ' With no external toroidal field, the 
engineering difficulties associated with tokamak toroidal field 
coils and a toroidal blanket are eliminated. This simplicity plus 
the resultant compact reacting plasma could greatly reduce the 
size and cost of the fusion cell. 

These advantages have long been recognized and have been in
corporated in the reversed field theta pinch and reversed field 
mirror concepts, which are spheromaks with zero toroidal field. 

[71 However, the proposed injection experiment will contain toroidal 
field. In contrast to the spheromak, both these devices have few 
{< 10) Larmor radii within their characteristic dimension and 
significant pressure on the open field lines. 

In the following, we classify any low beta equilibrium with 
zero toroidal field at the plasma edge as a spheromak. Thus the 
classical spheromak is the Aspect Ratio Unity Limit, and the 

I 8 1 stabilized, diffuse pinch is the large aspect ratio limit o 
our equilibrium class. The MHD Stability of these two limits 
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has recently been investigated. ' Here we present and 
compare the results from a complementary numerical study of the 
ideal MHD stability of intermediate configurations using the 
PEST code. We first describe the parameterization of our equi
libria in Section II. In Section III we describe the dependence 
of internal mode stability on ellip-t icity, p.spect ratio, and current 
profile shaping. The stability of global modes is studied as a 
function of these same parameters and the location of a conducting 
wall. Finally, we summarize these results and compare them with the 
analysis of Refs. 3,4. 

The subsequent discussion uses two definitions of :-;. 
Firstly, 

e e = 2u o < P 2 > V
1 / 2 / B J , 

where B is the field at the edge of the plasma. This purely 
poloidal field, which is close to the field strength at 
the equilibrium field coils, is interpreted as the engineer
ing 6 and thus the appropriate figure of merit for these configur
ations. Secondly, for comparison with other conventional toroidal 
devices we have used the values at the magnetic axis, 

B = 2y p /B 2 . o o ro o 
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2. EQUILIBRIUM SOLUTIONS 

We solve the Grad-Shafranov equation 

A J = 2TT x J 

. 2, 2 dp „2 dg 
(i) 

for axisymmetric solutions of the poloidal magnetic flux 
il = 1/2 T IB • V0 di on a cylindrical (x,ft>,z) grJJ using the Princeton 
Equilibrium Code. The pressure and toroidal field functions 

P W 

and 

g(£) = xB,/RB = g ° u 
-T > a 

ie I 
* ° ° \le"5o/ 'J (2) 

are provided; where if i s flux a t the plasma edge. If the f lux a t 
—Q —O 

the magnetic axis R, and g Q is a normalizing- factor that is determined 

by a specified toroidal current. The separatrix surface ]£,_ = 0 is 

defined by the ellipse 

2. 2 , 2 .,2 . x /d + z /b = 1 , 

and the flux at the plasma edge is picked off at some value. 

,5 ̂  . (3) 
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With 6 = 0 and an ellipticity K = b/d = 1.0, we obtain the 
classical spherical spheromak; and in the large aspect ratio limit 
as 5 + 1, stabilized diffuse pinch solutions. The relation between 
the present coordinates (x,<J>,z) and these definitions is illustrated 
in Fig. 1. 

Since the spheromak is not a minimum B configuration, stability 
1 da to interchange modes must be achieved by shear -- -= , 

where q(>W i s t h e safety factor. The classical spheromak has 
q(ij7 ) =0.!J2 and q(iJT } =0.72 at the separatix due to finite current 
on the outer most surface. The introduction of a flux hole 
(6 > 0 with Bi(<F ) = 0) or a vacuum region between the plasma and cp e 
the axisymmetric axis, provides q(<P„) = 0, since B (ijT ) f 0, increases 
the shear and results in an increase of the plasma beta that can 
be stably supported. 

In the subsequent discussion, we investigate the effect of 
geometry in the form of ellipticity, aspect, ratio R/a (r&lated 
to 5)» and current profile shaping as determined by the exponent a, 
on the ideal MHD stability of such equilibria. The role of the 
exponent u can be clarifiec Ly noting that zero beta solutions 
with a = 1 correspond to force free profiles where J a B, and 
a = 1/? corresponds to constant toroidal current solutions for 
zero beta at large aspect ratio. As a increases above unity, 
the current profile becomes progressively more peaked in the 
vicinity of the magnetic axis. 
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MHD STABILITY 

In this section, we analyse the ideal and resistive Mercier 
criteria, and ideal free surface mode stability of spheron'ak. equi
libria as functions of ellipticty < , current shaping a, ard wall 
position ." . I' is defined as the ratio of the distance of a w w 
perfectly conducting wall that surrounds the plasma to the minor 
radius, and is relevant only to free surface mode stability. 

The ideal Mercier criterion may be expressed as 

V * > = k + § G<E>/<!§>"' < 0 , (4) 
where G(^) represents the contribution due to magnetic field curv
ature. Spheromak equilibria are such that changes in the pressure 
pro!lie have little effect on the equilibrium field topology. Thus 
the g(tj)_) and G(ip) of a given equilibrium can be used to calculate 
the "optimum" pressure profile for that topology. These profiles 
for which D (](;) 5 0 are everywhere marginally stable 
to idea], local interchange modes, when 

± /l da' 2 

,-. f 1 q df ) 
? | J | ' ~ J * ^ 7 # ) &- • 

Although changes in G(î ) and q(£) resulting from the modified pressure 
profile are usually small, it is sometimes necessary to iterate on 
the calculation of p(i£) until Dx (£) converges to zero throughout 
the plasma. 

Resistive Interchange or "resistive g" modes are always unstable 
in the absence of minimum B. Non-ideal effects such as viscosity or 
finite larmour radius must be invoked for stability. 



Examples of such optimized pressure and safety factor profiles 

are shown in Figs. 2(a) and (b) . In the optimized condition, the 

pressure profile is rather fLat near the magnetic axis with large 

gradients near the plasma ec.ge where the shear ir largest. Using 
[~12 I the Balloon Code, J we have confirmed that coupling or the 

pressure gradient to the toroidal field curvature is not significant 

for these configurations. This is a consequence of low toroidal 

field strength in the region of large pressure gradients. Thus 

the results using the Mercier criterion are an excellent measure 

of internal mode stability. 

The effect of ellipticity on the achievable $ is shown in 

Fig. 3 for a fixed toroidal plasma current. By oblating the con

figuration to K ~ 0.5 the optimum B-value is increased to 

B = 35%, 0 =5.5%. However, with further oblation (K < 0.5) , the 

magnetic field at the plasma edge increases and consequently the 

3 decreases, e 
Figure 4 shows the advantage of flattening the current profile 

that results from increasing gradients of current and safety factor 

near the plasma edge. These results must be interpreted with 

caution, since cases for which a < 1.0 have a poloidal current jump 

at the plasma boundary, and when < 0.5 there is also a toroidal 

current jump. Such jumps do not affect internal mode stability, 

but are significant for the free boundary modes described below. 

Secondly, for a < 0.7 the safety factor profile tends to become 

doubly valued within the plasma volume. Marginal stability could 

still be achieved provided g£ = 0 at this point. Thus the 

result in Fig. 4 for a < 1.0 should be given the qualitative 

interpretation that flattening the current profile tends to 

improve MUD stability. 
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Figure 5 shows the effect of introducing a center ho?.e 
(6 ^ 0) so that the aspect ratio is increased above unity. For 
5 << 1, H increases linearly with Aspect Ratio m a manner con
sistent with Ref. 4. At Large Aspect Ratio, 6 tends to saturate 
at 10% for >t = 1.0. 

Figure 6(a) shows an optimized equilibrium configuration with 
K = 0.5, a = 1.2, and <5 = 0.05. The corresponding midplane current 
and field prcfiles are shown in Fig. 6(b). It can be seen that for the 
K = 0.5 cb.Limak, flux surfaces in the vicinity of the magnetic axis 
are nearly circular. The magnetic field strength at the plasma edge 
3 is about 1/3 of the field strength at the magnetic axis. 

We now turn to consideration of global modes, driven primarily 
by the parallel current, where a vacuum region extends between 
the plasma edge and an encircling wall a constant distance from 
the plasma. In the spheromak, such modes are unstable even at 
zero B when the vacuum extends to infinity. Our calculations 
using a modified version of the PEST Code required a small residual 
vacuum toroidal field (~ 1% of that at the magnetic axis) to avoid 
numerical singularities. The unstable eigenvectors were found 
to be insensitive to the magnitude of the residual field. 

In the diffuse pinch limit with R/a = 6.7, K = 0.5, we find 
unstable modes for 1 <n< 9 (where n is the toroidal mode number). 
All modes with nq < 1 (q is the q-value.at the magnetic axis) 
have a poloidal plane structure similar to the n = 1 mode of 
Fig. 7, and are primarily m = 1 kinks with a significant m = 0 
sausage component. For nq > 1, the growth rates drop dramatically 
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and very few modes remain unstable. Figure 8 shows that as a 
perfectly conducting wall is moved closer to the plasma, the 
various modes are stabilized, with the n = 8 mode for which 
nq - 1 (q = .125 in this case) being the last mode stabilized at o o 
r =1.75. 
w 

As we decrease the aspect ratio, q Q increases resulting in 
fewer unstable toroidal modes. For R/a = 1.43, only the n = 1 
and n = 2 modes remain unstable where q = 0.63. Toroidicity 
couples in higher poloidal harmonics, but U _j m = 1 component is 
still dominant. However, stabilization requires moving the con
ducting wall closer and closer to the plasma. Figure 9 shows 
the wall position for stability to all modes as a function of R/a. 
At large R/a, stability occurs for r -1.75. However, for R/a < 2, 
the stabilizing wall position drops dramatically. Increasing a 
above unity requires a closer vzall (e.g. r = 1.2 for a = 1.3 2 = w 
at R/a = 2.0). Since for such cases J(I/J j = 0_ in contrast to when 
a < 1.0, this apparent decrease of stability is perhar < surprising. 
However, cmr stability analysis ignores current jumps on the 
surface. As a is increased from unity, the current jump becomes 
a numerically resolvable gradient, resulting in this apparent 
decrease in stability. We therefore view the ~ - 1 results as a 
comparison test with analysis, and the a •> 1 values as more repre
sentative of actual physical behaviour. Nevertheless, equilibrium 
configurations that are stable to all ideal MHD modes exist 
for reasonable conducting wall locations. 
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There exist three other ideal global MHD modes which we have 
not discussed. These are radial, vertical and tilting instabilities. 
The first two were found to exist but are readily stabilized at 
large V , so that the critical wall location is always determined 
by the m - 1 modes described above. The tilting mode, which has 
been discussed elsewhere, is excluded by our boundary condition 
that there be zero perturbation at the axisymmetric axis. 

At this point a brief comparison of the spheromak with its 
shearless closed field line relatives appears appropriate. Rever
sed Field Theta Pinch stability calculations ' obtain much 
larger values of beta for local interchange stability. For 
constant perturbations in the absence of shear, stabilization is 
provided by the compressibility of the plasma, with large values 
of beta dependent on significant open field line pressure. The 
initial results for incompressible perturbations are less favor
able. In contrast, our results cover all possible perturbations 
with zero open field line pressure and suggest that shear is 
desirable for internal mode stability. There is however no experi
mental evidence to suggest that local modes are dangerous in the 
Reversed Field Theta Pinch. With regax'd to current driven modes, the 

absence of an equilibrium parallel current would seem to favor 
the closed field line geometries with additional stabilization being 
provided by the open field line pressure. 
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The current profile's used in this study are perhaps overly 
restrictive.. For instance,.experimental evidence suggests the 

existence of hollow current profiles. We find' that such profiles 
can greatly increase stability. Figure 10 shows midplane profiles 
for one such case at R/a = 2.0, OLQ =0.75, that yielded a critical 
3 =14.6=,;. Si'ch a current profile increases q by lowering the o o 
current density on axis. Consequently, "the Shear is increased 
and hence the internal mode stability. Inraddition, with larger 
q , fewer global modes are unstable. Whether such profiles./Jcan 
exist on the transport timescale remains to be resolved. ., 

4. CONCLUSION 

Frorr. these calculations, we conclude that an oblate spheromak? 

configuration of aspect ratio 2.0, ellipticity 0.5, having a peaked 
current profile (a = 1.3} will be stable to ideal internal- MHD 
modes up to B = 15%, with the axis S .=2%. Further/^global 
modes can be stabilized provided a conducting shell is located 
within 1.2 minor radii of the plasma. Such parameters do not 
appear practically unrealistic, and suggest that further study 
of the spheromak concept is warranted. However, there, remain >-
unresolved questions regarding resistive and non-linear Dehaviour. 
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FIGURE CAPTIONS 

Fig. 1. Spheroraak configuration. 
Fig. 2(a) Optimized p(î ) profiles for c« = 1.0. 

(b) Corresponding q(ij;) profiles for a = 1.0. 
q(0) = 0.59 for 6 = 0.05 and q(0) = 0.51 for 
i = 0.15 

Fig. 3. Dependence of S on ellipticity for a -• 1.0, 6 - 0.05. 
Fig. 4. Dependence of £ on current profile peaking for 

K = 0.6, 6 = 0.05. 
Fig. 5. Dependence of |3 on 6 [R/a is the equivalent aspect 

ratio] for K = 0.6, a = 1.0. The dotted line is the 
theoretical curve given in Ref. [4]. 

Fig. 6. Optimized magnetic field configuration for a = 1.3, 
K = 0.6, and 6 = 0.05. 
(a) Equil ibrium magnetic f lux contours 

(b) 3 . , J , B , along the r a d i a l ax i s (in a r b i t a r y units) 

F ig . 7. n = 1 eigenmode s t r u c t u r e for R/a = 2 .0 , a = 1.0, 

K = 0 . 5 . 

Fig. 8. Normalized growth rate as a function of wall position 
for all unstable toroidal modes at R/a = 6.7, a = 1.0, 
K = 0.5. 

Fiq. 9. r as a function of Aspect ratio for a -= 1.0, K = 0.5. w 
The asterisks are the corresponding analytic results 
of Ref. 4 at unity and large aspect ratio. 

Fie. I'j. 3 , J , B , J along the radial axis for a hollow 
t i P P 

current profile equilibrium (in normalized units). 
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