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ABSTRACT

Analytical solutions have been developed for the problem of solute
transport in a steady, three dimensional field of groundwater flow with
non-equilibrium mass transfer of a radiocactive species between fluid and
solid phases and with anisotropic hydrodynamic dispersion. Interphase mass
transport is described by a linear rate expression. Solutions are presented
also for the case of equilibrium distribution of solute between fluid and
solid phases. Three types of release from a point source were considered:
instantaneous release of a finite mass of solute, continuous release at an
exponentially decaying rate, and release for a finite period of time. Graph-
ical displays of computational results for point-source solutions show the
expected variation of sorptive retardation effects progressing from the
case of no sorption, through several cases of non-equilibrium sorption, to
the case of equilibrium sorption. The point=~source solutions can be inte-
grated over finite regions of a space to provide analytical solutions for
regions of solute release having finite spatial extents and various geo-
metrical shapes, thus considerably extending the utility of the point-source

solutions.



I. Introduction

The study of transport of chemically reactive solutes by flowing
groundwater systems has many applications to current investigations in
the fields of hydrology and geochemistry. Processes of mass transport
and interphase mass transfer play important roles in natural systems
such as ore deposits and geothermal reservoirs. Disturbances of natural
systems by human activities also may reguire evaluation and prediction
of rates and extents of mass transport. These disturbances include,
for examples, subsurface disposal of radioactive or toxic chemical
wastes, acidic drainage from mines, and leaching of landfills, tailings
dams, and spoil heaps.

The work reported here is a part of a larger study of non-equilibrium
processes in mass transport by flowing groundwater. This work presents
“analytical solutions for convective-dispersive transport of a radioactive
solute which undergoes time-dependent sorption on surfaces of the matrix
supporting the flow. The rate of sorption is represented by a linear
kinetic rate law, corresponding to the approximation of very low sorbate
activity in the fluid phase. These solutions were derived, along with
solutions for the case of equilibrium sorption,vto serve as references
for comparison with numerical results for transport problems using non-
linear kinetic rate laws of sorptiqn and with more complex treatments
including effects of thermodynamic coupling of transport processes; these
investigations are now in progress.

The solutions presented here are geometrically symmetric about an axis
parallel to the direction of fluid flow, and include different values of

the coefficients of hydrodynamic dispersion in longitudinal and transverse
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directions. The medium supporting fluid flow is assumed homogeneous and
infinite in extent. Three éonditions governing release of solute are con-
sidered: (1) an instantaneous release of a finite quantity of solute; (2) a
continuous, time-dependent release; and (3) a time-dependent release which is
terminated at a finite time.

Our approach has been to derive analytical solutions to the problem of
release of solute at a hypothetical, single point in space. The analytical
solutions to this problem are useful in two ways. First, the point-source
solutions by themselves are useful approximations to solute concentration
histories at distances sufficiently far from source regions that the dimen-
sions of the latter can be considered relatively negligible. Second, the
point-source solutions can be used as the kernels of integrals over finite
volumes of space to provide analytical solutions for source regions having
finite spatial extents and a variety of geometrical shapes. This extension
allows evaluation of solute concentration histories at source-to-observer
distances which are not large relative to source dimensions. The point-
source solutions are derived in Section III of this work; the method for
their extenéions to finite source regions and several examples are presented
in Section IV.

The solutions presented here for the cases of non-equilibrium sorption
are expressed in closed form as definite integrals in which time is the
variable of integration. These integrals appear to be irreducible, and must
be evaluated numerically. We have composed a computer code which numerically.

evaluates the point-source solutions presented here.



IX. Previous Work

A large body of literature exists on the subject of mass transport, in a
mobile fluid phase, of solutes or components which can be sorbed by a stationary
phase supporting the flow of the mobile phase. Published writings on this sub-
ject range in content from theoretical studies of ion-exchange chromatography
and gas chromatography to predictive analyses of the long-term hydrological
safety of sites of underground nuclear explosions. The papers in the relatively
small sampling which follows have been selected on the basis of their relation-
ship to the topic of this paper.

Early theoretical treatments of ion-exchange chromatography described one-
dimensional, advective transport in sorbing, porous media without hydrodynamic
dispersion. Hougen and Marshall (1947) and Thomas (1949) considered non-equilib-
rium sorption with a linear, reversible rate expression. Hiester and Vermeulen
(1952), Goldstein (1953 a, b), and Goldstein and Murray (1959 a, b, c) extended
this work to non-linear, reversible, non-equilibrium sorption and to equilibrium
sorption characterizable by a non-linear sorption isotherm. Tien and Thodos
(1959) provided a numerical solution to the problem of advective transport in
an ion exchange column in which sorbent and sorbate are at equilibrium, the
sorption process is described by a non-linear isotherm, and the sorbate
diffuses in the solid phase.

Lapidus and Amundson (1952) appear to have been the first to provide a
compleﬁe treatment of the effect of longitudinal dispersion in transport; they
considered both equilibrium sorption with a linear isotherm and non-equilibrium
sorption with a linear, reversible rate expression. Theif work was followed
by many papers written by other workers, all dealing with advective~dispersive
transport with sorption and differing principally in their treatments of the

sorptive process.



Houghton (1963) developed an analytical solution to an approximation of
the transport differential equation incorporating equilibrium sorption with a
non-linear sorption isotherm.

Lynch (1964) considered transport in fractured flow systems with linear,
non-equilibrium sorption. Ogata (1964, 1970), Lindstrom and Narasimhan
(1973), Marino (1974, 1978), and Lindstrom (1976) treated the same type of
sorption in flow through porous media.

Lindstrom et al. (1967), Holly and Fenske (1968), Cleary and Adrian (1973),
and Selim and Mansell (1976) used linear, equilibrium sorption in their treat-
ments of transport. Holly et al. (1971) extended the work of Holly and Fenske
to two dimensions using approximation and numerical methods. Both treatments
incorporated radioactive decay of the transported material. Burkholder (1976)
treated radiocactive decay chains arising in the transport of actinide elements.

Numerical methods were used by Lai and Jurinak (19272), Rubin and James
(1973), and van Genuchten et al. (1974) in studies of transport with non-linear,
equilibrium sorption. The latter workers included hysteresis in sorption-desorp-
tion processes and also treated non-linear, non-equilibrium sorption. Numeri-
cal methods were used also by Gupta and Greenkorn (1973) to treat non-linear,
non-equilibrium sorption.

Several authors have reported studies of transport in two dimensions.
Eldor and Dagan (1972) used a perturbation method to derive approximate,
analytical solutions for the case of linear, non-equilibrium sorption.

Pickens and Lennox (1976) included linear, equilibrium sorption in their
numerical treatment of transport in an inhomogeneous, steady flow system.
Pickens et al. (1979) extended this work to unsteady flow systems with either
equilibrium, or non-equilibrium, linear sorption.

Van Genuchten and Wierenga (1976 a, b) treated one-dimensional models



of transport in which linear, non-equilibrium mass transfer occurs between
mobile and immobile fluid phases concurrently with mass transfer between fluid
and solid phases. They obtained analytical solutions for the case of linear,
equilibrium sorption on the solid phase, and used numerical methods to study
effects of hysteresis in non-linear, equilibrium sorption. De Smedt and
Wierenga (1979 a, b) later used the same model without fluid-solid mass
transfer.

Cameron and Klute (1977) used a model of transport in which linear
equilibrium and linear non-equilibrium sorption occur simultaneously at two
kinds of sorption sites.

Mansell et al. (1977) fitted experimental data with a numerical model
incorporating linear equilibrium, non-linear equilibrium, and non-linear
non-equilibrium reversible sorption with irreversible precipitation or chemical
immobilization.

Gureghian et al. (1979) used numerical methods to study transport in
unsteady flow with non-linear, equilibrium sorption and sequential chemical
reactions following linear rate expressions in the fluid phase.

Fenske (1979) presented experimental data on non-linear, non-equilibrium
sorption by rock surfaces, and used them in a numerical model of non-dispersive
transport with time~dependent sorption based on the binomial probability
distribution.

Harada et al. (1980) derived analytical solutions for one-dimensional
transport through isotropic, homogeneous or layered, porous media of radio-
nuclides belonging to three- and five-member decay chains. Linear, equili-
brium sorption was assumed, and various modes of release of radioactive

precursors from a plane source were treated.



III. Development of Analytical Solutions for the Transport Equations.

A. The Equations of Transport and Interphase Transfer

We begin by deriving the differential equations of transport with inter-
phase mass transfer; these will be general expressions of the principle of mass
conservation. We then progress toward solutions of the these equations, retain-
ing as much generality as possible. Ultimately, we specify assumptions and
conditions leading to specific solutions describing transport of a solute away
from a zero-dimensional point of release. We take this approach because of the
utility of "point-source" solutions in constructing solutions for other source
region geometries, i.e. lines, surfaces, and volumes.

Let us consider an arbitrary volume, V, of a medium having porosity € and
saturated by a fluid phase containing a solute species which may undergo
sorption on surfaces of the solid phase. Volume V is fixed with respect to
the external coordinate axes. The fluid flows with pore velocity ;. The
mass concentrations of solute within V are C mass units per unit volume of
fluid and Q mass units per unit volume of solid. Because the system under
consideration is not at equilibrium, concentrations C and Q, are not con-
stants but are functions of position and time. The masses of solute
associated with the fluid and solid phases within volume V are M; and
Ms respectively, where

Mf ﬁcav (1)

\'4

s ﬁ1 - €)Qdav. (2)

v

il

=
]

The time rates of change of Mf and Ms are given by the time derivatives

of (1) and (2). Since the volume V is fixed with’respect to the external



coordinate axes, the order of differentiation and integration may be inter-

changed, so that we have

daM

_f_ [2 3

dt'__/;t (eC)av (3)
v

dMs 3

—s_ [ - . 4

3t th (¢ £)Qlav (4)
v

Other expressions for de/dt and dMS/dt may be obtained as follows.
The surface of the volume V is divided into infinitesimal elements of area dA.
The vector dz, of magnitude dA, is defined for each element of area. The
direction of dA is taken perpendicular to the element of surface dA and
pointing outward from the volume V. If 3 is the current density or flux of
solute mass crossing the surface of volume V, then the rate of change of mass

->
within V due to J is

- >
- J * daa
A
where the integration is taken over the entire surface of V. We now make the
assumption that a solute mass flux 3 exists only in the fluid phase, i.e.
sorbed solute remains fixed with respect to the solid phase, which in turn
is fixed with respect to the external coordinate axes. We next define a

>
solute mass flux in the fluid phase, Jf, referred to unit area of the

fluid phase. Then the rate of change of solute mass Mg within V due to

flow of solute through the portion of the surface of V occupied by fluid is

> ->
- €EJ_* .
£ da

A

We now consider changes of solute mass arising from internal processes within



volume V. First, we hypothesize that solute mass may be removed from both fluid
and solid phases by radiocactive decay with a rate constant, A, Second, we
account for interphase mass transfer by hypothesizing a mass transfer rate, S,
expressed as mass units of solute per unit time and volume of the solid

phase. Adding the changes in Mf and Ms within V due to fluid flow through

the boundary of V and to internal processes, we have

am

f -> -> )\
3% - EJf « dA - Cedv - S(1 - ¢ )dav, (5)
A v \'
S
—_— = - - g + - Vo
3t AQ(1 )yav S(1 e)d (6)
v v

(Note that positive S corresponds to a transfer of solute mass from the fluid
phase to the solid phase.) The first integral on the right-hand side of (5)
may be transformed by use of the divergence theorem (Boas, 1966, p. 247):
~> 2> >
€J * 4A = eVe J av. (7)
f £

A v

Combining (3), (5), and (7), and (4) and (6), we find

[[E_a_c+ 66. —5f+€>\c+ (1 —E)SJdV-":O, . (8)

ot
v

‘/‘E1_€)%%+(1—€)>\Q_(1-8)81(1‘7:0. (9)
v

Since the volume V under consideration is arbitrary, the only way for (8) and (9)
to be valid for all volumes V is for the integrands to vanish. Therefore, we

obtain the conservation equations



‘ac_ —>'+ _ _

53—;—— - € Jf exc - (1 €)8, (10)

(1 -E)—BQ=—<1 - €)AQ + (1 - €)s (11)
ot : *

>
We now investigate the constitutions of the solute mass flux, Jf, and the

interphase mass transfer rate, S.

The flux of solute is the mass of solute flowing per unit area
of fluid phase in unit time, and is equal to the product of mass concentration

.+
C and the solute velocity vector, vs:

> -
Jf = Cvs. (12)
> >
We note that v is not, in general, equal to the total flow velocity vector v.
s

+
We define a dispersive flux, jf, of solute relative to the local center

of mass as

> -> -
g = Clv_ = v). (13)

> >
Then the mass flux, Jf, is related to the dispersive flux, jf, by

> -
+ Cv. (14)

-
J_=3
£
The divergence of the mass flux is then

o, -+ + T -+
V°Jf=V-'§ +veVC+CV T, (15)
> >
We make the approximation that V * v is zero, substitute (15) into (10),

£

and obtain an expression for conservation of solute mass in the fluid phase

which contains, explicitly, terms accounting for diffusion and advection:

-5

ac _ R TN o
€at = -V . €v * VC = gAC (1 £)S. (16)



-10-

: >
We need to relate the dispersive flux, jf, to observable quantities through
a constitutive (or phenomenological) relation. For the present purpose, we

assume the validity of the expression

>

3o =-D"vc, (17)

g
a form of "Fick's law of diffusion" (Crank, 1975, p. 2) which has been used
extensively in studies of solute transport; in this context, the second-rank
tensor D is known as the coefficient of hydrodynamic dispersion and is a
function of the velocity of flow, 3 (Scheidegger, 1961; Bachmat and Bear,

1964). With this relation, (16) becomes

3 -> > >
g = €V* (D °VC) - eV *VC - €XC - (1 - €)s, (18)

The interphase mass-transfer rate, S, may assume many forms. For example,
the rate expression for ion erchange in which the ionic solute of interest

replaces another ion of equal charge on the solid phase is

S = kf](Qsat - Q)c - k2(CT - C)Q (19)

where Qsat is the ultimate capacity of the solid phase for sorption of the
solute, CT is the total concentration in the fluid phase of the exchanging
solutes, and k; and k' are forward and backward rate constants (Hiester and

Vermueulen, 1952). For another example, the rate expression for "Langmuir"

adsorption at a surface is

s = k:(Qsat - Q)C - sz (20)

where k: and k" are rate constants and the other symbols have the same
meanings as previously.

Equations (19) and (20) are both non-linear; they may be linearized by
assuming in both that Q « Qsat and in (19) that C « CT. Then the linear,

non-equilibrium form of S in both cases is
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S = k1C - k2Q (21)

in which k1 equals k; Q and k_ equals kéCT for ion exchange, and k1 equals

sat 2

k'1'Qsat and k2 equals kg for Langmuir adsorption. S given by (21) will be used in

{10) and (11) for analysis of mass transport with linear, non-equilibrium inter-
phase mass transfer.

If it is assumed that the fluid and solid phases are in a state of chemi-
cal equilibrium with respect to transfer of the solute of interest, the net
mass transfer rate, S, is identically zero, and we must proceed in the follow-

ing manner. We add (11) and (18) to obtain a mass conservation equation with

respect to a unit volume of porous medium:

>

+
Eg—:+(1-€)g—%= eV. (Q-Vc)—e;-_V)c—skc-(1-6)}\9. (22)

If fluid and solid are at equilibrium, the distributed solute concentrations C

and Q may be related by

2.
S = F(C),

where F(C) may be a non-linear function. If our assumptions made about linear-
ity in the non-equilibrium case can be carried over to the equilibrium case,

then we may set S equal to zero in (21) and obtain

k
e_ 1
c k2
In either event, we may set the ratio Q/C equal to a function, F, which may be

a constant (k1/k2) in the linear case or may be a function

of C. Then we have

Q = FC (23)
and

.3__2_._8_ - ' B_C 24

at—at(FC)—(F+FC)8t (24)

where F' is 9F/3C.
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Substituting (23) and (24) into (22), dividing by g, defining o by

a:

collecting terms, and dividing by (1 + aF), we get .

1+0(i.(_:__..a_c—_v).._2_o~V)C __—‘*’.__-_v)‘c_)\c (25) =
1 +0QF[9t 1 + OF 1 +QF ;

which is the transport equation for the nonlinear, equilibrium case. Passing
to the linear equilibrium case, we assume F to be equal to the constant k1/k2;

then F' is zero and (25) becomes

D > >
ac .____.__= . 4 .,_._._V .
-9 [1+o¢F VCjl-'1+ocF Ve - Ac. (26)

We note that if F is set to zero in (26) we have the transport equation for a
non~-sorbed solute. It is apparent that equilibrium sorption causes movement of
solute with an effective velocity and effective dispersion coefficient reduced,
relative to these quantities in the absence of sorption, by the gquantity

(1 + aF). This quantity has been called the "retardation factor" in studies

of subsurface transport of radionuclides (e.g. Holly et al., 1971, p. 20).

B. Solution of the Equations of Transport

We wish to derive analytical solutions of the transport equations for three
cases which cover the entire range of the sorptive behavior that can be described
by linear equations: no sorption, linear non~equilibrium sorption, and linear
equilibrium sorption. We proceed by making the following assumptions. .
1. We are working with a homogeneous, porous medium of infinite
extent.
2. The fluid flow field is steady in time, and is uniform throughout
space; fluid flows with velocity v parallel to the z axis of a

Cartesian coordinate system in the direction of increasing z.
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3. The principal axes of the dispersion tensor are oriented parallel to

the coordinate axes; the longitudinal dispersion coefficient is DL

in a direction parallel to the z axis, and the lateral (or transverse)
dispersion coefficient is DT in any direction perpendicular to
>

the z axis; DL and DT are functions only of the flow velocity, v.

With these assumptions, the transport equation without sorption is

2 2 2

oc o°c , d°c °¢c aC

5% = Ppl=5 * T3] * DL T3 7 Vh, -AC. (27)
dx dy oz

For the case of linear equilibrium sorption we have

3¢ Dp <azc 3%c\ g 3% v &

A= o
A
k1
Q=’};—C, (29)
2

B=1+4+ ag— . (30)

The case of linear non-equilibrium sorption involves two simultaneous equations:

2 2 2

oC 2°C 9" ¢C a”¢C oC

5t D 5 + 5 + DL 5 " VS; - AC - G(k1C - sz), (31)
ox Ay dz

g% = A + K .C - k0. (32)

We require solutions to (27), (28) and (29), and (31) and (32) subject to
the initial conditions:
C=0, Q=0 for p> 0, t =0, (33)

2 2
where p =x +y + z,
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and the boundary condition:

lim Cc =0, t > 0. (34)
>

Conditions (33) and (34) will determine the required solutions up to a multipli-
cative constant which will be fixed by the nature of the solute release.

The Laplace transform with respect to time of (28), the case of equilibrium

sorption, is

bp /3% 3%\ by 3% v oE

B 5;-*._8? +B—Q-§a—z'(s+>\)c=o (35)

where the overbar indicates the transformed function (or image function) and s
is the parameter of transformation. We note that the transform of (27), the

case of no sorption, is given by (35) with B = 1. The Laplace transforms of

(31) and (32) are

3% 3% 3% ¢ - - -

D __E + ——5 + DL ——5 - Vg; - (s + A)C - d(k1C - sz) =0, (36)
ax ov 9z

sQ = -A0 + k1E - kzé. (37)

Initial conditions (33) were used in deriving (35), (36), and (37). The trans-
formed boundary condition is

lim C = 0. (38)
fogacs

Solving (37) for 0 gives:

k,C
1

TS K, (3%)

Inserting (39) into (36) and combining terms, we arrive at the following equa-

tion for the case of non-equilibrium sorption:
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2= 2= 2= p ok k

9 3 c) P 3 12 -
Dl[l—/M 4+ —m |+ D — - v=— = s+>\+0¢k - ———— IC = 0, (40)
T ax2 ay2 L 822 0z 1 s + ) + k2

We now note that (35) and (40) may be expressed in the general form:

pp (5% 326\ pp st wvge
T L = -
f ax2+3y2 +f_322 —gé—z— [s + A + h{(s)]C 0 (41)

where h(s) 0 for the cases of no sorption and equilibrium sorption,

ak_ k
h(s) =ak, = 1.2 for the case of non-equilibrium sorption,
1 s+ A + k2
f = 1 for the cases of no sorption and non-eguilibrium sorption,
and f = B for the case of equilibrium sorption.

In order to find a complete solution of (41), we need another condition
in addition to the boundary condition (38). The second condition will be a
statement of conservation of solute mass in all space, and will provide a
relationship between solute concentration and the "strength" of a point source

releasing solute.

We require that the amount of solute present in all space at any time, t,
be equal to the total amount of solute released at the source with correction
for conversion of solute to another material by chemical reaction or radioac-
tive decay. Hence, if M(t) is total mass of solute present atbtime t, it

follows that

[eC + (1 = €)Q]1dV = M(t). (42)

all
space

The Laplace transform of (42) is

[EC + (1 - €)Q1dV = M(s) (43)

all
space
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The form of the function M(t), and of its Laplace transform ﬁ(s), will
be determined by the temporal behavior of the solute-emitting source. Leaving
this specification open for the time being, we proceed to the solution of (41),

subject to conditions (38) and (43), and find:

2 1/2
vz v
- e L 1/2(5 +A+—+h
I CE O W S T “, f @
1/2 n
41rDTDL €
2 2\1/2

where 11 = (E— + ZL'\
D D

T L /
2 2 2
r =x + vy ;

h and f remain as defined following (41). A detailed derivation of (44) is
given in Appendix A.

Before the solution (44) can be inverted from s-space to t-space, M(s)
must be specified. 1In the following sections we consider several release
scenarios: (1) an instantaneous release, (2) a continuous, time-dependent
release, and (3) a time-dependent release for a finite time period followed by

no further release (a "time-dependent pulse").

1. Instantaneous Release

A quantity, Mo, of solute is released instantaneously at time zero at
the origin of coordinates. BAllowing for disappearance of solute by radioactive
decay, the quantity, M(t), of solute present at time t is

M(t) = M e'xt.
(o]

The Laplace transform of M(t) is

M(s) = = - (45)

-
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Inserting (45) into (44) gives

2
vz 1/2
M 2D, —nf1/2<s At h> /
= o e v e L
C=
1/2 n (46)
AﬂDTDL €

We now use (46) to find C and Q for specific cases of sorptive behavior.

a. Equilibrium Sorption

In this case, h(s) = 0 and £ = B; the inverse of (46) is then found from

tables (e.g., Erdelyi, 1954, p. 245, No. 5.6(1)) to be

B 2 B( t/B)2
172 =\t - =r_ _=2z-7
B Me 4D t 4D_t
[e] T L
€= 1/2 3/2 © ’ (47)
8
DTDL e(mt)
and Q is then,
k1
o = —]E— C. (29)
2

b. Non-Equilibrium Sorption

Substituting f = 1 and the appropriate value of h(s) into (46) give:

2Vz < ) v2 _ aklk2 1/2
D -nis + A + — + ok, - —=—=
s _ Mo e L e 4DL 1 s+ A+ k2 > (48)
1/2 n ’
4TTDTDL £
Then, using (39), we have
2 ak,k 1/2
vz v 172
-Nis + A + — + ok, -
N kM 2D, ( oy T TS E A K
Q= °o__.¢& . & (49)
4TD_D 1/2€ n s+ A+ k
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C in (48) is inverted by use of (B-13), Appendix B, with

2
V —
Bl—}\‘i'ﬁl—l' +(],klk2, andB3—)\+k2.
The result is
2 2
_r  _(z-vt)" ok, t
M e-At ADTt 4DLt 1
= —p—1 |~ ]
3 3/2
8m DTDL £ t
2 2
r (z - v1T)
- - - - - T
1/2 k2t 4DTT 4DLT (akl kz) (50)
+ (ak,k,) e e
172
0
dt
I [2\/0.1( k ’l.'(t - T)] ——__'_i'
1 172 e - Y
If we make the substitution u=r1/t, the second term within the curly
braces in (50) becomes
1l/2 -k_t !
<ak1k2 e 2 B r2 _ (z—vtu)2 - (ok. - k) t
t o 4D, tu 4D_tu s S
T L
0
I [2tVek ko(lu)] —S8
1 12 1/2 !
u(l-u) .

a form useful for numerical evaluation.

L
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To invert é in (49), we note that *

v2 ctklk2 12
-nls + A + —4— + -
L SR~ i By wrin
-lje L 2
L
s + A+ k2
2 1/2
-n<s + vV 4 ok, - k, °‘k1k2>
<At - k,t 4Dy, s
-e 2" -1 )
8
Then, using (B-11), Appendix B, with
v2
By = 4n_ toky -k, By = Okgky, and By =0,
we find
t 2 2
-(A + k)t _x  _(z-vD)  _ - k)T
kM e 2 4D T 5D, T (ok; - k)
Q= en3/20 o 172, € (51)
T L
0
dTt
Io[Zfaklsz(t - T)]TS/Z .
or
- 1
k.Me A+ ke R _(zzvtw)? (ak. -k, )t
Q= —L2o . | o 4Djtu 4D, tu 1727
81r3/2DT (DLt)l' 2¢ A - S
ok k. u(l-u)] & _
Io[2t klkzu(l u)] u3/2

-1 .
* Symbols L and L signify the operations of Laplace transformation and

inversion, respectively; see Appendix B.



2. Continuous, Time-Dependent Release

Solute is released continuously at the origin beginning at time =zero.
The rate of release is mo mass units per unit time at time zero, and decreases
exponentially with time with a time constant, Y; simultaneously, solute
disappears by radioactive decay with a decay constant, A. Then at time t
the net rate of change of solute mass, M(t), in space is:

am(t) =(vy+ Mt _
—ar = M.e AM(t), (52)

with the initial condition
M(0) = 0. (53)
Laplace transforming (52), using (53), and solving for ﬁ(s) gives:

m
o . (54)

(s + A)(s + v + %)

M(s)

Inserting (54) into (44) gives:

2 1/2
L e L L T AR
m 2D, 4D f
T = o e . e . (55)
1/2 n s+y+ 2
AWDTDL €
a. Equilibrium Sorption
With h(s) = 0 and £ = B, (55) becomes
2 \1/2
vz 1/2 v
2 wt2(e g ___)
3 mo eZDL . 4DLB
€= 2. n s+ 7Y+ A (56)
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Using the convolution property and a table of inverse transforms (Erdelyi,

1954, p. 245, no. 5.6(1)), the inverse of (56) is found to be:

vz t nzB v2
1/2 -(y + M\t 5= - - -YT
B m e 2DL 4t 4DLB at

o
C = e e . (57)
8TT3/2DTD 1/2e T3/2
L
0
. . -1/2 . . .
We make the substitution u =71 for 717 in (57); then, using the following

indefinite integral given by Gautschi (1964, p. 304, no. 7.4.33),valid for a + 0:

2 2 2 =2 1/2
- - m b b - b
~/; au b u du = [eza erf (au + G) + e 2ab erf(au - Gﬂ

4a

+ constant, (58)

we find:

me (Y Mt 20 (-mB - g5g - Y r1/2 2 1/27
C= e £ e L erfc B 1/2 - 4; ; - Yt
g p /% T 2¢ L )
TL /2
2 1
1/2{ v -
+nB <_4D B~ Y r1/2 2 1/2
+e L erfe|2—0 + | 2= - vyt " (59)
th1/2 4DLB |
Then
k
1
Q = 7 Ce.
k2

.2
V.

In the event that ZD.B -Y < 0 we use (D-4), Appendix D, which
L

gives the result:
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vz
o e (y+\)t 2D

L 2 1/2
Ca o© e erfc Bl/zn . cos nBl/z Y- v
1/2 n 1/2) 4D B

4ﬂDTDL € 2t L

-Bn’ .
A : 1/2 v /2]
__]Tﬁ; l-cos B Y - iD B

mB L

_BnZ © 2 N
— -m°/4 2 \1/2 2 \1/2
' 2B1/2n t S [cosh m (Y‘ ———1L——> © -cos nBl/2 <Y‘ v\

t——75 © 22 4D_B 4D_B
mel/2 m2+32 L L /

—m=1

2
If ZBXE =Y # 0, (57) can be integrated using the substitution y = T %
L
to give:
5o = (1t
m e 1/2
C= o £ B n
41D, D l/zen e 1/2
L 2t
Note that both C and Q are unbounded positively at n = 0.
b. Non-Equilibrium Sorption
In this case (55) becomes B
vz < VZ aklkz 1/2
—= onis +A+ 57— + ak -~ TIO T R
n 2DL QDL 1 s+ A k2
C= ° 5 ’ (60)
' + v +
4mpp /2% M s+Y
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and (39) becomes

vz v2 uklkz 1/2
o 55; -n{s + A + Zﬁ;-+ akl - g-:fif;—iz
q = 1o e e . (61)
41D D 1/2E n (s+ Y+ AN + A+ k2)
TL
To invert C in (60), we note that
.2 ok, k, 1/2
st At tek c gAY
1 L 2
L =
s+ Y+ A
V2 oaklk2 )1/2
-n{s +—+ 0ok =Y - ————
SO e 1)1 ( 4, 1 st ky =Y
s
Then we use (B-10), Appendix B, with
v2
81 = ZB; + ak1 - Y, 82 = ak1k2, and 33 = k2 - v,
and find*
t _ r2 (z - VT) + akl + 1) yT
-(A + Y}t 4DT 4D_T kz-Y
m e e T
C=T"372__"1/2
8m DTDL € ; | (62)
ak_k T art
12 , (k, -t -1))—
J P 2 £3/2

*The function J(x,y) is defined in Appendix B.
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The following form of (62) is convenient for numerical evaluations

1
2 2 ak
— O+ __r _ (z - vtu) 1
me ()t 4DTtu 4DLtu + k2 -y + 1llytu
C= e
32 2
8 DT(DLt) €9
ak.k,.tu :
.I( 172 du
——, tk,~7) (1) | &,
| T » k) (=u) |- 570
To invert 6 in (6l), we note that
2 ak, k, 1/2
ph R S Wiy wra
L 2
L—l e
(s+yY+A)(B+ A+ kz)
< o2 ak, k, )1/2
_ -nis + 57—+ ok, - Y - —/————
=Yt N 1y 4D 1 s+k, - Y
k. - Y Lse
2
2 ok, k, 1/2
‘(x+k2)t —ns+H+akl—k2- S )
-e L—l l-e L
k2 -y s
Then using (B-10), Appendix B, with
2
B ==+ ok, -y, B, = ok .k,, and . = k. -
1 4DL 1 r T2 T2 3 2 Y

~

and (B-11), Appendix B, with

2

— V -—
61— 4D, toak -k,

By = okjk,, By =0,

£y
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we find
2 2
-(A + k2)t t _r  (z - v1) - (ak. - k)T
kl moe 4DTT 4DLT 1 2
Q=—V—""13C - =37 €
ky =Y gn’?p p /2
TL
0
(63)
dt
Io 2 aklkzr(t - T) T3/2
1- 2 _ (z-vtw)® -(ak,~k,)tu
K, moe-(x+k2)t 4D tu 4D, tu 172
& —— { C~ e
k,- 3/2 1/2
2 8m DTDL € 0

du
IO[ZEVaklkzu(l-u)]-:§7i— s

where C is given by (62). 1In the event that y = 0, corresponding to a rate of

release of solute affected only by radioactive decay, (63) becomes

2
ae  BooE _fz - vD)
- ~ 4D 1 4D_T
ky "¢ T L 1 - Jlk.(t -~ T),0k T —‘1;5, 64)
Q=1 —37 1/2 | ¢ 2 1{,3 (
2 8m 2DTDL €

in which (B-8), Appendix B, has been used.

If y = k2 # 0, the following expressions are obtained for C and Q:

' t
2 2 .
-kt . 1 _(z=vD)® -
n " O, " 4D T 4D T (ak,~k,)T
C=—375——172 e T L
81 DD 4
E____;---—-)-] dt
2 2 ;
t T . _r _ (z~vu)® - )
k,m e~ (M, D 4Dy (ak;~k,)u
Q= 9 dt e
8 3/2 1/2 ,
" “p.D €
TL o 0 du
1_[Nok k,u(l-uv)] 577 -
o 172 u

ote that C and Q are unbounded Ppositively at n = 0.
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3. Time-Dependent Pulse Release

Solute is released at the origin beginning at time zero. The rate of
release is m mass units per unit time at time zero, and decreases exponen-
tially with time with a decay constant, Y ; simultaneously, solute disappears
by radioactive decay with a decay constant,A .« The release proceeds from
time zero until time T, when it stops; transport‘of previously released solute
continues after time T. At any time, t, the net rate of change of solute
mass, M(t), in all space is:

am(t) _ -(Y +A)t - - -
g = m.e [U(t) = U(t - T)] - AM(t) (65)

with the initial condition
M(0) = 0. (66)
U(t) is the unit step function, defined by:
0 for £t < 0
u(t) =

1 for £ > 0.

We form the Laplace transform of (65), using (66), and solve for ﬁ(s):

m
= _ o _ =T(s + Y +X)
MS) = T (s v Y F ) [1 e ] (67)

Inserting (67) into (44) gives:

2 1/2
vz 1/2 v
—_—  nf s+ A+——<+nHh
2D, N
C = To e L e 4DL£ ~T(s + vy + A)

. , . g
It is evident that at any time, t, less than or equal to the "shut-off time",
T, concentrations in fluid and solid phases are given by the appropriate

expressions in Section III.B.2 for a continuous, time-dependent release.
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For a time t greater than T, the concentration in a phase is composed of the
difference of two terms, one term being the hypothetical concentration that
would be computed for a continuous release up to time t and the other term

being a correction to account for the cessation of release at time T.

a. Equilibrium Sorption

The fluid concentration at time t, t > T, is

C=c, - Cpy
where Cc is given by (59) and CP is given by:

- o (MT

C (t) C (t-T);
p c

thus,

vz 2 1/2
.. moe-(Y + W)t eﬁ; ;Bl/zn("_;? - Y> / RS 2 1/2 12
P B“DTDLI/ZE n erfc[z(t Y <4DLB - 7) (t -1 ]
(69)
“1/2”(7.';)% - 7)1/2 5172 2 1/2 2
e _erch(t n T)l/Z + <4DLB - y) (t -T) ] .

At a time t, t>T, (59) and (69) cannot be evaluated at the point r=z=0
(r=0) because 7 appears in the denominators of these eXpressions. In this

case, C is evaluated by direct integration of a modified version of (57):
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, V
B1/ -(y+\)t <E)_B -Y)T
C = : e L dt
81T3/2DTDL1/2€ 13/2
t-T
} 2 \ 2
/2, -+t —(—"— =Y] (£-T) —(— - Y)t
S e VOB ) I e ' (70)
3/2 . 1/2 =
47 DTDL € (t_T)l/z tl/z’

) 12 124 V2 .
1/2 [ v? V2 (vz ) T < v2 )1/2 T
+ a2 (X Y et (Y= o) (-1 [T -y 1 :
<4DLB ) [ 4D B - (t-7) - 4D B er (\ i, Y

v2

ip g ~ Y < 0, we use (D-5), Appendix D, in (70) to give:
L

If

/2. -(y Ot [ [ -v° _ _v?
o= 2 Tt eé’ 4DLB> (e=1) <Y 4D B>

/2 1/2
am DTDL € (t-T)U t

Y v
“IiD. B 2
+ -,'DLB ‘2 ' v2 1/2 oo e -m /4 (71)
7 WENETH gl ) DS
™ T L

m =0

o nf- B)‘é?- = Il
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b. Non~Equilibrium Sorption

The fluid concentration at time t, t > T, is

c=C -¢C,
c p

where Cc is given by (62) and Cp is given by:

c(t) = e MVT ¢ (pomy;
P o)
thus,
2 2 ok
t-T r (z - vT) 1
- - - +
m e (v + Mt 4D, T 4D. T * <k -y %)YT
c = fo) o T L 2
P 3/2 1/2
87 DTDL € J

kz -Y

The solid concentration at time &£, t > T, is
Q=Q-QI

where Qc is given by (63} and Qp is given by:

= e MNT 5oy

ak. k, T
J[—l—z—, (kz-mt-r-r)] -

T

_ (Z -w)z_ (or.k

0 (t)
P
thus, t=T r2
-+ k)t (k)T T W T
kl moe e e T
Q = ————={C_ - 3
p  k,-Y|P 3/2, 1/
2 8t DTDL £ 3

where Cp is given by (74). 1In the event that y = 0, Qc

and Q by )
P At T _ tz _ (z - vT)
ky n e 4D, T 4D T [ ( y k.t
Q == e 1= Jjk,(t =T - 1),0k
P 2 8n3/2D p 22 ?

4DLT

(72)

1 " k)T

(73)

is given by (64)

(74)
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IV. Computational Results

Calculations were made for the solutions given in Section III corre-
sponding to each type of solute release and sorptive behavior. Values found
in the literature on mass transport through porous media (e.g. Bredehoeft
and Pinder, 1973) were used as a guide for the choice of the following para-

meter values used in the calculations.

D =17 m2/yr
Dg =2 m?/yr
v =1 m/yr
€ = 0.2

A =0

The source decay constant Y was not included in the computer program, so
the calculations correspond to solutions forY = Q.

Figures 1 to 3 show the results of contouring the concentration data
at a contour level of 10-lO moles/liter in the fluid phase. To compare
the effects of different types of sorptive behavior, results for the cases
of no sorption, equilibrium sorption and non-equilibrium sorption, the
latter with varying rate constants, have been superimposed in each fiqure.
Figure 1 shows the level curves for the three types of sorptive behavior
ten years after an instantaneous release of one mole of solute at r = 0,

z = 0. Figure 2 shows the resulting level curves after ten years of con-
tinuous solute release at r = 0, z = 0 at the rate of one mole per year,
and Figure 3 shows the same at a time nine years after the cessation of

a one-year period of solute release at the rate of one mole per year.

It is clear from the figures that the level curves for non-equilibrium
sorption for varying rate constants fall hetween the level curves for the
cases of no sorption and equilibrium sorption. In a non-sorbing medium,
transport of the solute is not retarded at all relative to motion of the

fluid phase. In the presence of non-equilibrium sorption, interphase

[
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transfer occurs at a rate determined by the magnitudes of the forward and
backward reaction rate constants, kl and k2, as shown in (21). At the
leading edge of a solute front the ratio §/C, and thus alsoc the retardation
calculated from this ratio, increase with increasing magnitudes of the rate
constants and with increasing residence time of a parcel of fluid within an
elemental volume of the fluid-solid system. In the equilibrium state Q/C and
the retardation factor, B, achieve their maximum values given by (29) and
(30).

It is difficult to show from the analytical solutions that the non-
equilibrium solution tends to the equilibrium solution as the rate constants
increase. Consider instead the expression for the mass transfer rate S re-

written in terms of Q, obtained by rearranging (21):

ky 1
Then as k1 and k2 increase while the ratio kl/k2 is kept constant, l/k2
goes to zero and the expression for Q approaches that of the equilibrium
case, (29).
Figures 1-3 show that as the values of the rate constants increase

while the ratio kl/k2 is kept constant, the non-equilibrium solution
tends to the equilibrium solution. The calculations for the equilibrium
case were made for ky = 0.01 and k, = 0.001 so kl/k2 = 10. Note that the
rate constants k; and k, do not appear individually in the equilibrium
solution, but only in the ratio ky/k5+ For the non-equilibrium
sorption solution, calculations were made for k; = 0.01, 0.1 and 1.0 ,
where k5, was determined by the ratio ky/k, = 10.

The influence of the flow field (v = lm/yr in the direction of the

positive z-axis) and of the different longitudinal and lateral dispersion
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coefficients can be seen in the location and shape of the curves. Without
a flow field, the curves would be circular and centered at r = 0, z = 0.
Though not shown on the figures, the 10-.20 mole/liter level curve for

the no sorption case would fall within a rectangle formed by r = 50 m and
z = + 110 m, whereas a rectangle formed by r = 14 m, z = + 16 m would con-
tain the 10-20 mole/liter level curve for the equilibrium case. In
accordanée with the discussion above, all of the 10-20 mole/liter level
curves for non-equilibrium cases with varying rate constants fall between
those for the no sorption and equilibrium cases.

A comparison of Figure 2 to Figure 1 and to Figure 3 shows only a slight
difference between sets of level curves. This is unexpected in light of the
fact that the concentration in the continuous release case (Figure 2) is the
result of a solute release ten times as large as the amount released in the
instantaneous release (Figure 1) or one-year continuous release case (Figure
3). Examination of concentration values near the point of release reveals
that the concentration is one to two orders of magnitude higher for the
continuous release case than for either of the other release types. For the
continuous release case, the concentration near the point of release, at r=2,
z=0 m, is between 0.2 x 10-4 and 0.7 x 10-4, in the instantaneous
release case, at r=0, z=0, the range is 0.2 x 10-6 to 0.4 x 10- and
for the one-year continuous release case, 0.1 x 10-6 to 0.5 x 10-5 also
at r=0, z=0. Calculations for times larger than ten years would show more

appreciable differences between results for different release mechanisms.
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V. Extension of Solutions to Finite Sources.

The point source solutions developed in earlier sections can be used
to construct solutions resulting from non-point sources. The term non-
point source is used to denote one-, two-, or three-dimensional regions
which contain a uniform distribution of point sources. The concentration
at a point outside the source region is the sum of the contributions from
each point source in the source region. This method has been widely used
to solve heat conduction problems (e.g., Carslaw and Jaeger, 1959, Chapter
10) in which temperature is analogous to concentration and the quantity of
heat released is analogous to the mass of solute released.

In the devélopment of the point source solutions earlier in this work,
the point source was assumed to be located at (0,0,0) and the concentration
was calculated at a point (x,y,z). If the point source is instead located
at (x', v', z'), the variables x, y and z in the point source solutions must
be replaced by x-x', y-y', and z-z'. The spatial integrations are then with
respect to x', y' and z'. For example, if point sources are distributed
along the x-axis from x_ to x_, then the integration is with respect

1 2

to x' with lower and upper limits of integraﬁion x1 and x2. If the source
region is a circular disk of radius R in the x-y plane, then one inte-
gration is first performed with respect to x' with limits of integration

2 £ "2 ' :
from -1JR - y’zto + ¥R - y'zfollowed by an integration with respect

to y' from -R to R. If a radial coordinate system is used instead of a

Cartesian coordinate system and the appropriate change of variable is made in
the integrand, then the integration is from O to R with respect to r' and from 0
to 27 with respect to 0'. The last example shows how a change of coordinate
system may simplify the integration. The integration may also be simplified by

aligning the source region with the coordubate axes and bv making use of a plane
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or axis of symmetry if it exists.
In a Cartestian coordinate system, the integration will be with respect
to x', y' and/or z'. One or more of the following integrations will occur

in almost every solution:

x
2 - ESE_:_ELli 1/2 1/2
4DTt . ﬂDTt B "(x - xl) Bl/z(x - x,)
e dx' = erf - erf 2
% B 2(0, )12 200,.¢) /2 (75)
1 T T
y
2 B( - ')2 .
-2y ) 1/2
4Dt . [™qt Bl/z(y-yl) Bl/z(y-yz)
e dy' = B erf ——1/2 " erf - 1/2
Y1 , 2(DTt) 2(Dpt) ™
(76)
z
2 2
B(z — z' - vt/B)
4DLt 'nDLt 1/2 31/2(z -z - vt/B)
e dz' = \—3 erf 173
2(D, t)
z, L
(77)

Bllz(z -z, - vt/B)
172

- erf 1
2(DLt)
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Multiple integrations will result in products of error functions. The argu-
ments of the error function will in most cases involve the time variable and
therefore the error function will be a part of the integrand in the integra-
tion with respect to time. Though the integrands are quite complicated, there
are many available software routines which compute error functions and Bessel
functions quickly and efficiently.

Approximation of volume sources by point sources is reasonable when the
distance between the source region and the point of calculation is large.
A spherical source could be approximated by a point source and a cylinder
source by a line source. It is difficult, however, to determine the range
of validity of such an approximation by means other than direct calculations.

Examples of non-point source solutions illustrating the method and some
of the points mentioned above are given in the next section. The case of an
instantaneous release with equilibrium sorption is emphasized in the examples
because the exponential term involving spatial variables which occurs in this
case also occurs in all other cases. Aside from this, the selection of ex-
amples is eclectic.
A. Line Source

Consider a line source consisting of a distribution of point sources
along a line parallel to the x-axis between xl and X, and intersect-

ing the y-z plane at the point (y',z'). Then the concentration is given by

%2

C(x,y,2z;5t) C(x-x' y-y',z-z';t)dx' ,
line source N point source

Specifically, in the case of instantaneous release with equilibrium sorption
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At _ B(y - y')2 _B(z - 2' - vt/B)2 1/2
Mle 4Dt - 4Dt B~ “(x - %)
©- 810Dy 2ot et 1/2
7L 2(Dyt) (78)
B1/2(x - x2)
- erf
1/2
2(DTt)
where M ' is the mass release per unit length, M ' =M /(x_-x_).
o o) o 21

If the center of the line source is located at the origin of the coordinate

system then in (78) y' = 0, z' =0, x1 = -L/2 and x2 = L/2, where L is

the length of the line source. If the line source is infinite then

(79)

The solution for a line source along the z-axis is slightly different in

form. For the instantaneous release, equilibrium case

re - B+ ¥

- 1/2
Mé e 4DTt B / (Z'Zl‘Vt/B) Bl/z(z—zz-vt/B)
C=gre erf -erf (80)
81D £t
T 2(DLt)1/2 200, )2
L
where the line source extends from z = z_ to z = Z
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B. Disk Source
Next consider a disk source of radius R in the x-y plane centered at

z = z'. After changing to a radial coordinate system

n
o)
(=%
R
[a W
)

C(r,z,0;t) C(r-r',z-z"',0-0";t)
disk source point source

jo]
o

In the case of instantaneous r«lease with equilibrium sorption

2 2
B1/2M"e -\t _B(z-z'-vt/B) _ Br
C = - o] e ADLt ADTt
8D.D 1/ze(nt)3/2
TL
R (81)
2 i
Br' rr
o 4Dt = 2p,_re0s(®'-9)
r'e T dr'f e T de’
0
where Mo" is the mass instantaneously released per unit area, MO" = MdKZWRz).

As long as the integration with respect to ©' is over a period of 21 , the

limits of integration can be replaced by O and O+27 . After a change of variable,

@' = Q' - O, the solution becomes
2
" 2 2 - Br'
Bl/zMo e At _B(z-z'-vt/B) _ Br R 4Dt '
C = e 4 t AD t - Brr [} [
4p,_(np, )1/ 2372 "L T e To\2p_c)° 94t (82
T L 5 T

where the integral with respect to 0'' is given by Watson (1966, p.79, no.3.7
(9)). This form shows the radial symmetry of the solution, a result not un-

expected from the geometry of the problem. Using the definition of the
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function J(x,y) in (B-7), Appendix B, the final solution can be written

Mv!e—At _ B(Z-Z'-Vt/B)2

o 4D_t

C. Spherical Source

L /BR? Brz‘]
1-3{ 22— ———)
[ \4D e , 4D t)

(83)

The solution for a spherical source region with radius R, centered

at the origin of coordinates, is most easily developed by superposition of

disk sources in the x-y plane, centered on the z-axis at z=z

R' given by R'2 = R2 - z'2.
27
C (r,z3t) = j dz' r'dr'
spherical 0
source

d4e' Cc(x-r
point source

' and with radii

Thus, in cylindrical coordinates,

',z=2',0-2":t)

For the case of instantaneous release with equilibrium sorption, superposi-

tion of disk sources gives:

R
MY"e-kt I. _ B(z-z'-vt/B)?
2__12 2
c=-2 73 e 4Dt 1—J[B(R 2 t] dz'
2(mBD_t) sJ T
trYy LAt
- Mo € orf 1/2(7+R—vt/B)J orf ( 1/2(z—R—vt/B (84)
2Be 2(DLt)1/2 |20 t)1/2
L
R B(z-z'-vt/B)?
_( B )1/2-1‘ e" 4Dt 3 ’—B(Rz-z'z) Br? dz’
£ ’
D, t i 4D.Tt 4Dt

-R
L A |
where M

3
Mo/(4wR /3).

D. Cylindrical Sources

Ty

is the mass instantaneously released per unit volume, M =
o

For a cylindrical source of length L and radius R, centered at the origin
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of coordinates with axis along the z-axis,

L/2 R 27
C(r,8,z;t) = [ dz' r'dr' dé'- c(r-r',6-6', z-z";t) .
gzi;ndrlcal J1.)2 0 0 point
ce source

The necessary integration with respect to z' is that used in the line source

example and the integrations with respect to §' and r' are those used in the

disk source example. The final expression for the concentration for the case

of instantaneous release with equilibrium sorption involves the product of

those integrations

2(DLt)

trr —At
M, e 1-3 BR?  Br? of EVZ(’z+L/2-vt/,B)_er
C= 28 LDt "Dt 172

f1

where M0 is the mass instantaneously released per unit volume, Mo =

M /(ﬂRzL).
o

(85)

For a further example, we state the solutions for C and Q in the case of

a continuous, time dependent release with non-equilibrium sorption, using the

same geometry as that just considered:

LA
S -t

R? r? ]E (z+L/2—vT
. o ZTLj =V
C = 1-Jf—— , —— rf -erf
2€ [ <4DTT ADTT> ZNELT >

+l> YT cxklsz
J _R—ZTY_ ,(kz_‘y)(t-’[) dt,

)

L
(86)
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t
kl mvvv,e—()\'*'kz)t ) )
o R r +L/2~-
Q =——iC - [i—J< s——| | lerf(Z v z-L/2-vT
k,=Y 2€ 4D.T *4D T “V’=2 R erf{=——===_—-
2 ! 0 T T L Z\IDLT |
—(akl-kz)T (87)
e I -
o [ZQaklsz(t T)]dT
Tt Tty
where mo is the rate of release of mass per unit volume, m =m /(TR L).
o o
Finally, consider a cylindrical source region having lencth L and
radius R, centered at the origin of coordinates, with its axis coincident
with the y-axis. Here,
2
L/2 R YR2-7"
C(x,y,z3t) = dy'f dz' dx' C(x-x',y-y"',z-z";t)"
cylindrical L/2 -R _‘/ z_z.? point source
source
For the case of an instantaneous release with equilibrium sorption, it
follows that
tee '-}\t I—- //)
C= MO ° [erf [——X—LBI/L'( L, 2)] —erf -———(LLH ~(y- )]]
1/2 x L Tt
8¢ (BTD, t) bt bt
(88)

L erf{ 2\ Dyt J—erf ZNJth dz'.

R ' 2 ] " by
j- _ B(z-z'-vt/B) Bl/z(XJr R2_2,29] 31/2<x+_ R2_2'2>

R .
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VI. Discussion

We have derived analytical solutions to the transport egquation under
the assumption that the number of sites, on surfaces of the solid phase,
available for either ion exchange or the Langmuir type of sorption is very
large relative to the number of sites occupied by sorbate ions or molecules.
This assumption leads to a kinetic law for the rate of mass transfer between
fluid and solid phases which is linear in concentrations of sorbate in both
phases. Thus, our analysis is strictly applicable only to sorption upon a
solid phase in which the concentration of sorbate is small relative to the
saturation concentration or, equivalently, to sorptive systems characterized
by a linear isotherm for sorption.

Our point-source solutions will serve as standards for checking of,
and comparison with, numerical models of non-linear, sorptive systems now
under development. Additionally, the point- and line-source solutions are
useful approximations, in the far field, to solutions of linear transport
problems involving source functions for which a total rate of release of
sorbate can be specified. Finally, the point-source solutions are directly
applicable to the development of analytical solutions of problems involving
source functions occupying finite regions of the space in which transport
takes place. This application is possible because the transport equation
and, in the cases of non-equilibrium sorption, the associated mass transfer
equation are linear equations, and the principle of superposition can be
used to construct the analytical expressions for finite sources.

It is a characteristic of point-source solutions that they may become
infinite at the point where mass is introduced into the transport system.

In our derivations, this point is the origin of coordinates (r = 0, z = 0).

In the following paragraphs we discusss the behavior of our point-source
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solutions at this point for each type of mass release.

Instantaneous release: In this case, the expression (47) for equilib-

rium sorption is finite everywhere when t > 0, and as t~>0 (47) tends to
zero at all points except the origin where it becomes infinite, as ex-
rected. For non-equilibrium sorption, equation (50) for C exhibits
identical behavior; however, the integrand in this expression appears

to become infinite for r = z =0, at the lower limit of integration

when t > 0. This apparent singularity can be removed by a change of the
variable of integration from T to'fz, and by using the limiting form

of the modified Bessel function for vanishingly small values of its
argument. On the other hand, the integrand in the expression for Q in
(51) has a non-removable singularity at the lower limit of integration
(r=0) when r = z = 0 and t > 0. This behavior appears to be a con-
seaquence of our assumption that the sorptive capacity of the solid phase

is unbounded.

Continuous release: As expected, all solutions become infinite at
r =2z =0 when t > 0.

Pulse release: Here the solutions for equilibrium sorption clearly

are bounded at the point r = z = 0 when t > T. For non-equilibrium
sorption, the integrands in the expression for C formed by subtracting
(72) from (62) appear to become infinite at their lower limits when

r =2z =0 and t > T, contrary to expectation. However, it can be

shown (by two partial integrations) that this apparent sinqularity is
removable. On the other hand, the integrands in the complete expression
for 0 have non-removable singularities at their lower limits when r =

z =0 and t > T, again apparently because of the assumption of infinite

sorptive capacity in the sclid phase.
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The singularities in Q in the cases of non-equilibrium sorption following
an instantaneous release and cessation of a pulse release are not signifi-
cant limitations to application of the point-source solutions. First, in the
use of these solutions as approximations of solute concentration histories
in the far field there will be little, if any, interest in the point r = z = 0.
Secondly, when the point-source solutions are integrated in space to form
solutions for spatially finite source regions all singularities, both real
and apparent, disappear.

It should be noted that solutions for finite source regions, derived
from our point-source solutions, descrihe transport away from source regions
which have physical and chemical properties identical to those of the surround-
ing medium, except that mass is introduced within the source regions. In
particular, the source regions do not perturb the fluid flow field. Thus, for
example, these solutions do not describe transport of a solute which is intro-
duced at the surface of a region of space which is impervious to fluid flow.
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LIST OF SYMBOLS

Following each symbol is a brief definition and dimensions. Dimensions are

mass (M), length (L), and time (t).

elemental area in porous medium [L2]

A

B retardation factor [1]

c concentration of solute in fluid phase [ML'3]

c Laplace transform (image) of C [ML3]

Ce concentration, C, from continuous release for t < T [ML'3]

Cp correction to concentration, C, for t > 7T [ML'3]

Crp total concentration in fluid phase of exchanging solutes [ML~3)

D rank 2 tensor coefficient of hydrodynamic dispersion [LZt~1)

Dy, coefficient of longitudinal dispersion [L2t'1]

Drp ' coefficient of transverse dispersion [L2t'1]

£ constant defined below eqn. (41) [1]

F ratio of Q to C at equilibrium [1]

a function of s defined below egqn. (A-6) [1]

h function of s defined below egn. (41) [t'1]

In(x) modified Bessel function of the first kind of order n with
argument x [1]

jf solute flux per unit area of fluid phase relative to motion of
local center of mass [ML'2t'1]

J solute flux per unit area of porous medium [ML'zt'1]

Jg solute flux per unit area of fluid phase [ML‘2t‘1]

J(x,y) function defined in Appendix B [1]

k4 forward rate constant for linear sorption reaction [t'1]

ko backward rate constant for linear sorption reaction [t'1]

k1’ forward rate constant for ion exchange reaction [M'1L3t'1]

k2' backward rate constant for ion exchange reaction [M'1L3t'1]

kq'! forward rate constant for Langmuir sorption reaction [M'1L3t'1]

ky'! backward rate constant for Langmuir sorption reaction [t'1]

L Laplace transformation operator [t]

L1 Laplace inversion operator [t'1]

m rate of release of solute from point source at zero time [Mt'1]
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rate of release of solute from differential element of volume source

at zero time [ML'3t'1]

total mass of solute in all space at time t [M]

Laplace transform (image) of M [Mt]

mass of solute in fluid phase within volume V [M]

mass of solute in solid phase within volume V [M]

mass of solute released from point source [M]

mass of solute released from differential element of line source [ML"]
mass of solute released from differential element of plane source (ML~2]
mass of solute released from differential element of volume source [ML'3]
function of s defined by eqn. (A-5) [t~ 1]
concentration of solute in solid phase [ML'3]

Laplace transform (image) of Q [ML'3t]

sorptive capacity of solid phase [ML'3]

Laplace transform variable [t'1]

rate of transfer of solute from fluid phase to solid phase [ML'3t'1]
time of cessation of release of solute [t]

unit step function defined below eqn. (66) [1]

average velocity of fluid [Lt‘1]

average velocity of solute [Lt'1]

elemental volume of porous medium [L3]

ratio of solid volume to fluid volume {1]

constants used in Appendix B, i = 1,2,3,4 [t‘1]

time constant for decay of release rate [t'1]

porosity [1]

reduced coordinate defined below eqn. (44) [t1/2]

time constant for radiocactive decay of solute [t'1]
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Appendix A. Derivation of Equation (44).

We make the following changes of variables:

- 2 D \1/2 D\ 1/2
- _ - 7 L L
u = Ce L X A\p X, ¥1 9o y.
T T

Then (41) becomes

2- 2= 2- 2 i
gu . Ju, 3“-——(s+x Y in\g=o, (A-1)
3 2 9y2 3,2 D 4D, f
¥ Y F BA .

and the boundary condition (38) becomes

1i a1 =0, wh 2 0% 22 (A-2)
pugmu— » wherep o = x, Y, .
,

(A-1) is spherically symmetric in the coordinate system with axes x1,y1,z;
therefore (A-1) can be recast in the form:
e 2 an £ 2 -
cu,e o I s+)\+v + hju =0, (A=-3)
2 4D_f
dO1 01 d01 L L

where p1 is the radial coordinate defined in (A-2). The general solution of

(A-3) consistent with (A-2) is

- o[£ H s+ A+ v? + 12
A 1{p, - o fTh
e

u == L ,
P

where A is a constant of integration. Then C is given by

L 1/2
‘e (fp)""™n (a-4)




~56~

where n was defined following (44), and

2
+h . (A-5)

s +A 4+ —
p:
4DLf

We next evaluate A using the mass balance expressed by (43), and noting that é
can be related to C by:
é =gqg° 6: (A-6)

where g is a function of the transformation parameter s and is given by:

k
1
g(s) = ——————  for the case of non-equilibrium sorption;
s + A+ k2
k1
g(ls) = P for the case of equilibrium sorption; and
2
g(s) =0 for the case of no sorption.

We substitute (A-4) and (A-6) into (43) and use the volume element AV = 2Trdrdz;

the result is

P © vz 1/2 r2 22 1/2
57— - (fp) -t o
2me 2Dy Pr Do
= _ (1 +ag)Aldzlrdr - e =M . a-7
D 172 ( g —3\173 M(s) (a-7)
L -= 5 I 4z
DT DL

2 2\ 1/2
To integrate (A-7), let N = %— + %;> ; then (A-7) becomes
T L

o vZ o
27eD 2D -(f 1/2 - (A-8)
—i7'§(1+ag)A eLdzf e(p) ndn=M(s)
D
g = "zl
D 1/2

L
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The result of the integration with regard to N in (A-8) is broken into a sum

of two integrals with reacard to z; i.e.,

1/2
~ vz _ (i / 2]
- ZWEDT ZDL D
M(s) = — 177 (1 + ag)a e * e dz
(£pD; )
0 1/2_1/2 v 2
2meD,, , *(f Pt 1/2) 172
=——377 (1 + o)A e L L g
(£pD; )
_<£.1/zp1/z v _) 2
1/2 1/2
+ e 2Py DL dz| .
0

Evaluating the integrals and solving for A gives the result:

(fp - v2/4DL)ﬁ(s)

lmeD,r(l + ag) (r=9)

A=

Inserting appropriate values of h(s) into (A-5) and of g(s) into (A-9) and sub-

stituting (A-5) for p in (A-9) and (A-4) gives (44).
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Appendix B. Inversion of some Image-Space Solutions

In this appendix we establish two results which are useful in Section III.B.
In the following discussion we use the symbol L to signify the operation of
Laplace transforming an original function, F(t), into an image function, E(s),
and the symbol L-1 to signify the inversion of an image function back to

an original function; thus,

F(s) z L{F()} = | e SCF(t)dt,
0
xtio
F(t) = L N {F(s)} = (2ni) -1 et® F(s)ds.
X-ie

We begin by considering inversion of an image function, 51(5), given by

B, \1/2
R N T N

- 1 -
Fl(s) = L‘Fl(t)' =se (B-1)

where 81”82 and »Bgare constants, and 83#0. We define a function
F b
2(s) M4

-n(s + 81)1/2

It is clear that Fl(s) has the form
Fols - _F2
2\ s+ B,

s

»

?1(5) =
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Then it can be shown (see Appendix C) that the original function, F1(t),
corresponding to the image function, 51(5), is given by

t
-1f =
F1(t) =L 4F1(s)} = f F2(T) F3(t -T,T4aT, (B-2)
0
where
B,T
s + 83

1= -1 e
F,(t) = L 1‘F2(s)| and Fy(e,1) = LT { S

From tables (Erdelyi, 1954, p. 245, no. 5.6(1)), we find:

1‘ -N(s + 6)1/2]
- 1
L e

F2(t) =
-8Bt _1{ _ns1/2} (B-3)
= e L e
2
n
_ n e' Bt - % .
2(ﬂt3)1/2

To find F3(t,T), we write:

BZT 821
1 es + 83 o 83 es + 83
F3(t,‘r) =L — (" L 1+ r —S—_T_—B-B‘ . (B-4)

We have from tables (Erdelyi, 1954, p. 245, no. 5.5(35)):

6’2T B.T

s + B .
3 -B.t s -B.t
-1)e 3t -1]e ~ 3 (B-5)
A, = = t ’
L T, e L - e 10(2\/821 )
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where I (x) is the modified Bessel function of the first kind and order n

n
having argument x. Then, using the, result (B-5) and the convolution property,
(B-4) becomes:

t
-8Bt -8 &
F3(tﬂJ —e Qﬁzv %Tt) + % e ° 10(2V82T£)d£ . {B-6)

0

The integral in (B-6) is related to the function J(x,y) which was introduced by
Anzelius (1926) and has been discussed by Goldstein (1953a), Masters (1955), and
Luke (1962). The function J(x,y) is defined by:

X

J(x,y) =1 -e~ e_OIo(Z Yy o)do (B-7)
0

and it has the pfoperty:

1 - 3(x,y) = J(y,x) - e'x'ylo(zvf§§ ). (B-8)

If, in (B-7) and (B-8), the following substitutions are made:

then it is easily shown that (B-6) is equivalent to

BZT
B BT
3 2
F.(t,T) = e J(-—— » B t) . (B-9)
3( 83 3

We now substitute (B-3) and (B-9) into (B-2) to obtain

t 2 B2
n T\ T B, )" B,T e-ny | T
F.(t) = —75 e e J|—5 , B (t-T 3 (B-10)
1 21T1/2 83 3 13/2
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the image, §1(s), of F1(t) is given by (B-1).

In the special case when f% = 0, (B-6) becomes simply

F (t,T) =1 (2 YB 1t ),
3 o 2

and (B~10) becomes

t 2
e 2_1 ey 1 [2\[8 T(t-'l')]—d;r— (B-11)
F1“)'33-0 - /2 e . ‘o 2 32
0
Next, we consider inversion of the image function,
-n{s + B - -—BL— v
_ 1 s+ By
F4(s) = e .
We note that
Fy(s) =s * F,(s) =s * L{F (0)} . (B-12)

Using the rule for transforming the derivative,

3
L%SE F1(t)$ = s L3F1(t)$ - F1(0)-
From (B=10), F1(0) is zero, so (B-11) becomes
f‘(s)=L-a—F(t)
4 9t 1 !

-1 d
L F =+— F (t).
g 4(S)£ Yy 1( )
We perform the indicated differentiation on (B-10) using Leibniz' rule ( Boas,

1966, p. 162) and the following properties of the function J(x,y} (Goldstein,

1953a):
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-X
J(x,0) = e ,

2 gix,y) = e XY X 1/21 (2
ay Iy y 1 Xy )'
The result is:
B, \1/2
2 Y 2
-1 -n<s+81-s+83) n '2?'81"
e RN v A *
2(mt")
(B-13)
t n2
B,\1/2 =-B,t - == (B, - BT .
] R i S
T(t-T)

0
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Appendix C: A useful Rule for Inversion of certain Image Functions.

The problem can be stated by the following.

Given: an image function, 51(5), which is the Laplace transform

of an original function, F1(t)7 and
given: functions g1(s) and g2(s) such that the function fz(s), where

-Tg1(S)
- e
F_(s) =
2 92(5)

is the Laplace transform of an original function F2(t,T); then

find: the original function, F3(t), whose Laplace transform, F3(s), is
given by
F,[s + g (s)]
- 1 1 .
F3(s) = T3
92

From the definitions of 51(5) and Ez(s) as Laplace transforms, we have

o]

51(s) = Ul—e-STF1(T)dT (c-1)
0
and
-Tg1(S) Y,
= = & -s0 -
F2(s) = gz(s) e FZ(O, 40, (Cc-2)
0

{C-1) can be regarded also as the definition of the functional form of §1(s);

accordingly we may write

- -ls + g,(s)]q
F1[s +,g1(s)] = e F1(T)dT,
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and then

- F,ls + g, (s)] -[s + g (
' 1 1 g, (s)])t
1-‘3(5) .J e 1 Fl(‘r)d'r
0

g;(s) 8, (s) ' (c-3)
(C-3) can be rearranged to read:
-18, (s)
F.(s) = -e—l- e ST F (1)d
3 8, (s) 1 T (C-4)

The quantity enclosed in brackets in (C-4) is a Laplace transform defined by

(C~2); substitution of (C-2) into (C=-4) gives:
o w0
F-‘3(s) =de. e_STF1(T)-l’ 4o . e-SGFZ(o,T) . (C-5)
0 0

Now let a new variable of integration, t, be given by
t=T+ 0 or O =t -7
and substitute t- T for O (holding T constant) in the integral with regard to

0 in (Cc-5). Then (C-5) becomes

o0 [0 0]
53(5) =.I’d'r. F1(T)~/ﬂdt . e-StFZ(t—T,T) . (C-6)
0 T

In (C-6), the integration with regard to t ranges from t = T to t = ® in strips
of width 47, and the integration with regard to T sums these strips from T = 0
T =®, If we visualize the t- T plane with the line T = 0 as the abscissa and
the line t = 0 as the ordinate, we see that the integrations in (C-6) cover a
wedge-shaped area in the first quadrant of the plane, this area lying between

the abscissa t = 0 and the line T = t. We now adopt a procedure used by Boas

”

“
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(1966, pp. 608-609) and reverse the order of integration. We now integrate
first with regard to T so that this integration ranges from 7T =0 to 1=t in
strips of width dt, and the second integration with regard to t sums these
strips from t = 0 to t = ©; this procedure covers the same area in the t-T

plane that was covered by the integrations in (C-6). The new double integral

is:
© t

4T . F1(T) . Fz(t-T,T) . (Cc-7)

We recognize (C-7) as the Laplace transform of the quantity enclosed in

brackets. (Compare (C-1).) Therefore,

F1[s + g1(s)]

—— -1 pu— -
F3(t) =L 92(5) = F1(T)F2(t T, VAT
where
-Tg1(s)
=14 - -1je
F (t) = L {F (s)} and F.(t,T) =L -t
1 1 2 gz(s)

As an example of application of the method, we shall derive a known,

general inversion formula. Let §1(s) be the transformed image of an original

function, F1(t), and let g1(s) = s1/2 and gz(s) = s1/2. Then by our procedure,
2
—1s1/2 - =
e - “-1/2t-1/2e 4t

-1
_Fz(t,T) L ——;175-
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where we have used a result given by Erdelyi (1954, p. 246, no. 5.6(6)) for

the inversion. It must follow that

2
_ 1/2 F —
F.(s +s ") - - - -
e 172 = q1/2 F, (0) (£-1) 12 o 4D g, (c-8)

The result (C-8) is also given by Exdelyi (1954, p. 227, no. 5.1(2)).

Appendix D. Error Function with Complex Argument

Define the function ® (z), where the argument z is the complex variable

z = x + iy, x and y real, by:

o(z) =] e Y du - (D-1)

0

The error function wi.th argument z, erf(z), and its complement, erfc(z), are

related to ¢ (z) by

20y (D-2)

erf(z) = 1 - erfc(z) = 27
Salzer (1951) has derived the following approximate formula for computa-

tion of ®(z):

2

-x
d(z) = d(x) + e% [1-cos(2xy) + i sin(2xy)]
4Tk
(D-3)
-x2 = —mz/v 4

e e . .
+ =57 = [A_(x,y) + iB_(x,y)] + E(2)
il 2 =1 m?+4x? o m
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where

Am(x,y) = 2x - 2x-cosh(my)-cos(2xy) + m-sinh(my).sin(2xy),
B (x,y) = 2x-cosh(my)-sin(2xy) + m-sinh(my)-cos(2xy),

m

and | E(z) | =169 ()

The following results can be derived from (D-1):

e Y ore (x-iy) + 2% erfe (x+iy) = 2-cos(2xy)-erfe(x)

2

-x .2 © _ 24

+ g-~—[1-<:os(2xy)] + 8x e * z ern/ _ [cosh(my)-cos(2xy) ],
TX m —2—+—4—'2
£=f m+hx

and

—m2 4

3o
[\,18
. 1]

=)
n
’.—l

icerf(diy) = - %-- ! sinh(my).

(D-4)

(D-5)
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