SLAC-PUB-4407

DE88 000709

CHARMLESS B DECAYS TO BARYONS*

M. Groniv \dagger
Stanford Linear Acceferator Center
Sianford University, Stanford, Californta, 94905

ABSTRACT

We stitempt an estimate of $\left|V_{\omega} / V_{\omega}\right|$ from the recent ARGUS observation of $B^{*}, \rightarrow \cdot p j \pi^{*}$ and $B^{0} \rightarrow p i \pi^{+} \pi^{-}$by studying general processes of the type $B \rightarrow$ $N N+n \pi(n \geq 0)$. The maln ingredienth of the analysis are the pion mulliplicity dintribution and a tew modela for the leospin atructure of the final state. It is concluded quite generally that $\left|V_{\omega} / V_{\phi}\right|=0.25 \pm 0.10$ and $\left|V_{\omega} / V_{\boldsymbol{d}}\right| \geq 0.08$. The ralio may become lower only in the event that both the relevant experimental and theoretical quantities oblain the iexireme values considered in our atudy, We also discust brlefly a posible realizalion of a $\Delta l=1 / 2$ rule in these processes,
\because

[^0]
ΔR $0321-2<$

1. Introduction

The ARGUS collaboration has recently reported ${ }^{2}$ the observation of the following two charmless \boldsymbol{B} decay modes:

$$
\begin{align*}
B\left(B^{ \pm} \rightarrow p \bar{p}^{ \pm}\right) & =(0.7 \pm 1.3 \pm 1.4) \times 10^{-4} \tag{1}\\
B\left(B^{0} \rightarrow p \bar{p} \star^{+} \pi^{-}\right) & =(6.0 \pm 2.0 \pm 2.2) \times 10^{-4}
\end{align*}
$$

These are the first direct indications for a nonzero value of the Kobayashi-Maskawa matrix element V_{u}. In this talk ${ }^{2}$ I would like to deseribe a way which leads from the actual measurementa to an estimate of the ratio $\left|V_{u b} / V_{c b}\right|$. After studying processes of the type $B \rightarrow N \bar{N}+(n x)(n \geq 0)$ | will indicate how to improve this estimate
 by further measurements. Such measurements may also slied some light on the dynamica of this type of nonleptonic weal decays. Due to the shortage of time I will not discuss other related toples, such as nod-spectator contributions, other charmless decay modes and CP violation in the baryonic modes. A discutsion of these subjects may be found in Ref. 2.

Two of the chararteristic features of the 32.7 ± 7.7 observed events are the back-to-back nature of the $p \bar{p}$ pairs and their relatively high energies $\left(E_{p}\right) \sim 2 G e V$. The pions are soll and there seems to be a aignificant signal of Δ 's or other low-mass N_{π}^{π} states. I will refer to these features when applicable.

2. Comparison with Inclusive Decay to Charmed Baryous

To put the branching ratios of Eq. (1) in due perspectiv.: let us compare them with the inclusive claarmed baryon ratea ${ }^{3}$

$$
\begin{equation*}
B(B \rightarrow \text { charmed baryon }+X)=(7.4 \pm 2.9) \% \tag{2}
\end{equation*}
$$

2

Fiom $E(B \rightarrow \operatorname{ev} X)=(1 i 4 \pm 0.6) \%$ and standard phase space factora* one oblains Th a mitightorward manier a total hadronic branching ratio.

$$
\begin{equation*}
B(B \rightarrow \text { hadrons }) \simeq 74 \% \tag{3}
\end{equation*}
$$

amuli fraction of this rate which corresponds to $b \rightarrow$ uEd is estimated to be

$$
\begin{equation*}
B\left(u \rightarrow u[d)=4.3 \% \times\left(\frac{\left|V_{u} / V_{\Phi}\right|}{0.2}\right)^{2} .\right. \tag{4}
\end{equation*}
$$

I have normalized the ratio V_{ω} / Va by its experimental upper limit of 0.2^{2}.
Equations (2) and (3) yield a fraction of charmed baryona from $b \rightarrow c$ at the level of $(10 \pm 4) \%$. If the ame traction applies to baryons from $b \rightarrow u$, which I will cmume from now on, then

$$
\begin{equation*}
B(B-N+X)=(4.3 \pm 1.7) \times 10^{-5} \times\left(\frac{\left|V_{u b} / V_{d}\right|}{0.2}\right)^{3} \tag{5}
\end{equation*}
$$

This indurive branching ratio ahould be compared with the two exclusive measuremeinte of Eq. (1). For such a compariton I will stidy the general processea of the type $B \rightarrow N N+n \pi(n \geq 0)$. To obtain an estimate for $\left|V_{\omega} / V_{\omega}\right|$ one must analyze two factor:
a. The ratio of the rate of charmless baryonic modes with one or two pions to the total rate of the modes of thin type

$$
\begin{equation*}
R_{1+2}=\frac{\Gamma(B \rightarrow N N \pi)+\Gamma(B \rightarrow N N \pi \pi)}{\sum_{n \geq 0} \Gamma(B \rightarrow N \bar{N}+\pi \pi)} . \tag{6}
\end{equation*}
$$

b. The ration of the observed rates to the corresponding total rates of the single and double pion modes

$$
\begin{equation*}
R_{i}^{a b c}=\frac{\Gamma\left(B^{+} \rightarrow p \bar{j} \pi^{+}\right)}{\Gamma\left(B^{+} \rightarrow \overline{N N} \pi\right)} ; \quad R_{2}^{\text {ole }}=\frac{\Gamma\left(B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{a} \rightarrow N \bar{N} \pi \pi\right)} . \tag{7}
\end{equation*}
$$

Estimaten of these ratios will be diacussed in the sulbsequent two sections.

3. The ratio \boldsymbol{R}_{1+2}

A simple approach which leads to an estimate of this ratio is to consider the multiplicity distribution for $\boldsymbol{B} \rightarrow \boldsymbol{N} \bar{N}+(n \pi)$. There are various ways to estimate the average multiplicity of pions. Applying an old model of Fermis to count the number of degrees of freedom in a hadronic siate intially confined within radius hc/ E_{0} (at lemperature T), one finds for $B \rightarrow N^{\prime} N+(n \pi)$

$$
\begin{equation*}
\overline{\mathrm{n}}=0.53\left(\frac{M_{B}-2 E_{N}}{E_{0}}\right)^{3 / 4} \tag{8}
\end{equation*}
$$

where $E_{0}=0.2 \mathrm{GeV}$ in a typical hadrom energy scale. This scheme describes adequately the average pion multiplicity in $D \rightarrow K \pi+(n \pi)$. Equation (8) yields $n \simeq 4$ for $E_{N}=M_{N}$ and $n \simeq 2$ for $E_{N}=2 \mathrm{GeV}_{1}$ which is about the average energy measured for the proton (and antiprotons) in the observed events. I quite safely conclude that

$$
\begin{equation*}
2 \leq \pi \leq 4 . \tag{9}
\end{equation*}
$$

The average pion muliplicity in p and (non-annihilation) $\bar{p} p$ collision at $\sqrt{3}=M_{B}$ is a bit larger than three and supports our estimate. 'The relatively high momentum protons and antiprotons in the observed events seem to indicate a value close to the lower value of Eq. (9).

The mulliplicity distribution will be assumed to be Poisson-like or surnewhat narrower, as motivated by current- algebra. Such a distribution describes adequately the decays $\psi \rightarrow$ hadrons and $D \rightarrow K \pi+(n \pi)$. This distribution with Eq. (9) imply that ${ }^{2}$

$$
\begin{equation*}
R_{1+2}=0.45 \pm 0.25 \tag{10}
\end{equation*}
$$

4. $R_{1,2}^{o p}$ and an Estimate of $\left|V_{u b} / V_{c b}\right|$.

Sthe fition Ripe depend on the isorpin structure of the final states. The free quark deeay $b \Rightarrow$ und is a mixture of $I=1 / 2$ and $I=3 / 2$ transilions. In B^{-} decayi if leadi to $I=1,2$ ataten, whereas the final etate in B^{0} decay is made of $J=0,1,2$

In a implestadicieal model one may assume that the multiparticle decay amplltudes into' a given isospip state are independent of the isonpins of subsyatems and add up incoherently : [n another model one may adopt $\Delta I=1 / 2$ dominance (aee dinetisaion in the nemt section) and fiaslly, oue may assume that the multiparLicle stales are dominated by $\boldsymbol{B}^{\mathbf{0},-} \rightarrow \boldsymbol{Z} N+(n-1) \pi$. The detailed predicions of these schemes are given in Ref. ${ }^{2}$. The overall range allowed tor $R_{1,2}^{\text {obe may }}$ be summarized in followat

$$
\begin{equation*}
R_{i}^{\mathrm{db}}=0.5 \pm 0.25 ; \quad R_{1}^{\mathrm{obs}}=0.25 \pm 0.05 \tag{il}
\end{equation*}
$$

Combining Eqs. (1), (5), (10), and(11) one finds

$$
\begin{align*}
& B\left(B \rightarrow N N_{\pi}\right)+B\left(B \rightarrow N N_{\pi}\right) \\
& \quad=(3.1 \pm 1.4) \times 10^{-3}=(0.45 \pm 0.25)(4.3 \pm 1.7) \times 10^{-3} \times\left(\frac{\left|V_{u t} / V_{c \alpha}\right|}{0.2}\right)^{2} . \tag{12}
\end{align*}
$$

errors ate added in quadrature. This implies

$$
\begin{equation*}
\left|V_{1} / N_{d}\right|=0.25 \pm 0.10 . \tag{13}
\end{equation*}
$$

Allowing a 1.64σ deviation from the central value we oblain a " 90% c.l." limit

$$
\begin{equation*}
\left|V_{w} / V_{a}\right| \geq 0.08 . \tag{14}
\end{equation*}
$$

Since part of the uneertainty in Eq+ (13) is theorelical, thin lower value should not
be consjidered to have a 90% c.l. in a stalistical mease. It rather represents our own judgement.

$$
\text { 5. } \Delta I=1 / 2 \text { and Dynamics of } B \rightarrow N \bar{N}+(n \pi)
$$

The effective weak Hamiltonian for $b \rightarrow$ uid, which included ahort-distance QCD corrections, is*

$$
\begin{equation*}
H=-V_{u} V_{u \pm} \frac{G_{F}}{2 \sqrt{2}} \sum_{i=1}^{2} c_{i}\left[(\bar{u} b)_{L}(d \mu)_{L}+(-1)^{i}(\overline{d b})_{L}(\bar{u} u)_{L}\right] \tag{15}
\end{equation*}
$$

where $c_{1} / c_{3}=1.5-2$ for the botiom quark mass acale. This implien some $\Delta J=$ 1/2 enhancement, since the operatu: which is antisymmetric in $\bar{u} \leftrightarrow \bar{d}$ is a pure $\Delta I=1 / 2$ operator, while the symmetric one leods to bolh $\Delta I=1 / 2$ and $3 / 2$ trangitions. The actual enhancement depends alao on the relative atrengith of the matrix elements of the two operators in a particular process. In the baryonic decay modes of B there seems to be an additional relative enhancement conning from the matrix elements.

Figure 1

Conitar otié diagram of Fig. 1, in which the ud pair of quarks turns into a ftryont by picktas ap quari a from a factuated gy pair and aimilarly the pair of antiquiris turn to an antibaryon. These states may subsequeatly emit pions. Gficha schomeway proposed by Bigat to lead to a siresble baryonic decay rate for the Binieions, Ain old afgumentit applied originally to byperon decays, used The' V-A current-current atructure to conclude that the baryon-to-baryon matrix fements obey a $\Delta \mathrm{J}=1 / 2$ rule. The same argument may be applied here. The udipari is in a statesaymetric in (ffavor) \times (color). If embedded directly in a baryon tit must be in a color 3^{4} and if an isospin singlet state. This implies that
 pair wras created by the weak interactiona in a color 6 atate. One of the quarks cmits a gluon, which subsequently radiates the q9 pair to make a baryon. In this case the $\Delta f=1 / 2$ rule would not apply. Some arguments ${ }^{12}$ seem to indicate that the firat mechanism, in which the ud pair is directly embedded in a baryon with no color and spin filp, should prevall. A teat of this mechanism is the absence of Δ in contrait to the existence of $\bar{\Delta}$ in the decays of B mesons containing a 6 (and not b) quark.

At thin point I wish to make iworemarks In passing about the model-dependence of $\boldsymbol{R}_{i, 2}$ discussed in Section 4, It is atraightforwerd to show ${ }^{\mathbf{2}}$ that if $\boldsymbol{B}^{\boldsymbol{-}} \rightarrow$ $N / N \pi$ is dominated by NE, with $\Delta I=1 / 2$, then $R_{i}^{\text {om }}=3 / 4$. This should be compared with the value of $1 / 3$ obtained in a statistical isospin model and explains the relatively jarge range of values in the first of Eqs. (11). This model does not enhance $R_{2}^{\text {abs }}$. Purthermore, the $N \boldsymbol{Z} \Delta J=1 / 2$ scheme leads to ${ }^{2}$

$$
\begin{equation*}
\Gamma\left(B^{-} \rightarrow N N_{\pi}\right)=2 \Gamma\left(B^{0} \rightarrow N \Gamma \pi\right) \tag{16}
\end{equation*}
$$

whichillustrates the pasitility that decays of $B^{-\quad}$ and B^{0} to a given multiplicity may not occur at the same rade.

6. Conclusions.

Our analysis of the ARGUS data leads to $\left|V_{u b} / V_{a t}\right|=0.25 \pm 0.10$ and we feel quite confident with $\left.\mid W_{L} / Y_{c b}\right] \geq 0.08$, similar to ARGUS' own estimate' of 0.07 . A more precise value can be obtained by further experimental studies which may Lelp specify the shape of the multiplicity distribution. Measurements of $B^{0} \rightarrow \boldsymbol{p} \boldsymbol{p}_{\text {, }}$ $B^{+} \rightarrow \operatorname{pp}^{-\pi^{+}} \pi^{+} \pi^{--}$ar oltaining uselul bounds far these modes beyond the existing one may serve such a goal. Detection of neutrals may reduce lise uncertainty discussed in Section 4. An allernative way to approach the problem, which is casier to atudy theorctically, is to search for n corresponding clarmful baryonic decay mode such as $B \rightarrow \Lambda_{s} \bar{j} \pi^{+}$. Signal-1o barkground ratio is experted th be worse than in the chnmoless modes, since one is looking for the decay products of Λ_{c}, but the expected rates are not hopelassly small. Finally, as we have illustrated in our discussion of $\Delta I=1 / 2$ enhancement, baryonic deray modes of B mesons offer an interesting field for studies of the dynamics of nouleptonic weak decays,

Acknowledgements:

I would jike to thank Jon Rosner for a very enjoyable collaburation. I wish to express my gratitude to the members of the SLAC theory group for their kind Lospitality. This work was supported in part by the U.S. - Israel Binatione! Science Poundation (BSF), Jerusalem, Ebracl.

REFERENCES

1. W. Schmidt Parzefall (ARGUS Collaboration), Rapporteur's Talk at 1987 International Symporium on Lepton and Photon Interactione at High Enefgien, Hamburg, July 27-31, 1987, to be publialed in the Proceedings; D. MacFarlape, at this meeting; gee also discuscion by K. Berkelman, at this saeeting:
2. Thila tally in based on work done in collaboration with J. L. Mosner. For further detaila and a mora broad diseussion which includes otlier related topici, Bee M. Gronau and J. L. Domer, University of Chicago report, EFI 87-61, Augut 1987.
3. Mi S. Alam et al (CLEO Collaboration), Phys. Rev. Leth. 59, 22 (1987); W. Schmidt-Parzefall (ARGUS Collaboration), Ref. 1.
4. I use phase-space factora from B. Giltelman and S. Stone, Cornell Univeraity report CLNS:87/81, June 1987.
5. S. J. Behrends et al (CLEO Collaboration), Phys. Rev. Lett. 59, 407 (1987). This limit is madel-dependent.
6. E. Fermi, Prog. Theor. Phyb. $\mathbf{S}, \mathbf{5 7 0}$ (1950); B. W. Lee, C. Quigg and J. L. Rosner, Phys. Rev, D15, 157 (1977).
7. M. K. Gallerd, B. W. Lee and J. L. Rosner, Rev, Mod. Phya. 4Z, 277 (1975); C. Quigg and J. Rosner, Pbys. Rev, D17, 239 (1978).
B. See Refs, 10,11 in Ref. 2.
8. M. K. Gaillard and.B. W. Lee, Phys, Rev. Lett. 33, 108 (1974); G. Altarelli and L. Majani, Phys. Lelt. 59B, 351 (1974); F. J. Gilman, SLAC-PUI-4352,

June 1987, invited talks given at the Charm Physics Symposium, Beijing, China, June 1987.
10. 1. J. Bigi, Phyg. Lelt. 1063, 510 (1981).
11. See eg. J. C. Pati and C. H. Woo, Plys. Rev, D3, 2920 (1971).
19. B. Slech, Phys. Rev. Difis, 975 (1987).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Slates Government. Neither the Uniled States Government nor uny agency thereof, nor any of their employees, makes any warrably, express or implied, or assumes uny legal liability or responsibility for the accuracy, completencss, or usefulness of any information, apparalus, product, or process disclosed, or represents that its use would not infringe privately owned righls. Ruference herein to any specific commercial product, process, or service by trade name, irademurk, manuracturer, or otherwise does not necessarily conslitute or imply its endorsement, recommendation, or favoring by the Uniled Slates Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily stale or reflect hose of the United Statea Government or any agency thereol.

[^0]: - Work mapperted by the Dapertaioat of Emeryy, eoneract DE-ACOS-76SFOOS15.
 †Perrananat edtruat Physici Departmest, Tecknion, Haifh, Imal.
 Presented at the International Symposium on the Production and Decay of Heavy Flavora, Sienford, CA. September 1-5, 1987

