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ABSTRACT 

Lubrication theory is used to study the permeability of rough-walled rock fractures. 

Two idealized models of a fracture, in which the roughness follows a sinusoidal or a 

sawtooth variation, are studied in detail. The results are similar to those found previ

ously from numerical analysis of fractures with random aperture distributions, in that 

the ratio of the hydraulic apenure depends mainly on the mean and the standard devia

tion of the apenure distribution. Higher-order approximations to the Navier-Stokes 

equations are then studied, and it is concluded that the validity of the lubrication 

approximation requires the fracture walls to be smooth over lengths on the order of 

one standard deviation of the apenure. 
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INTRODUCTION 

The flow of a fluid between the rough surfaces of a rock fracture is very complex, 

due to the tortuous paths followed by the fluid particles. Exact analytical modeling of 

these flows is made difficult by the irregular geometry of rock fracture surfaces, while 

full three-dimensional numerical simulations of these flows are as yet still impractical. 

To overcome the difficulties of working with the three-dimensional Navier-Stokes 

equations, the simpler Reynolds lubrication equation has sometimes been used to 

model flow in fractures.1,2 This paper focuses on two aspects of lubrication theory. 

First, lubrication theory is applied to two simplified aperture profiles, sinusoidal and 

"sawtooth", and analytical expressions are found for the permeabilities. These results 

are then compared with numerical results obtained by solving the lubrication equation 

for fractures with "random" surfaces.2,3 Secondly, the validity of the lubrication equa

tions for modeling flow in rough fractures is studied by examining higher-order pertur

bation solutions, as well as numerical solutions, to the Navier-Stokes equations for 

flow in fractures with sinusoidally-varying apertures. 

LUBRICATION THEORY MODEL 

The flow of a Newtonian fluid through a rock fracture is governed by the Navier-

Stokes equations of fluid mechanics.4,5 These are a set of three coupled, nonlinear par

tial differential equations, and only for very simplified cases can they be solved analyt

ically. One such case is that of flow under a uniform pressure gradient in the channel 

between two parallel, smooth surfaces. For this problem only one component of the 

velocity vector is nonzero, and the equations simplify greatly. The result is the well-

known parabolic velocity profile, with the volumetric flow rate per unit width perpen

dicular to the direction of flow given by Q = d3AP/12|iL, (the so-called "cubic law"), 

in which d is the aperture of the channel, (I is the dynamic viscosity of the fluid, and 

AP/L is the magnitude of the pressure gradient.6 If the aperture is not constant along 
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the channel, the equations cannot be solved analytically, and one must resort to 

approximate methods of some sort. 

Under certain geometric and kinematic conditions which usually are assumed to 

hold for rock fractures, the Navier-Stokes equations can be reduced (locally) to the 

simpler Reynolds equation. One requirement for the Reynolds equation to be valid is 

that viscous forces dominate the inertial forces. A quantitative statement of this cri

terion is that the "reduced Reynolds number", Re*, be very small, i.e.,4 

Re* = —f1 « 1, (1) 
HA 

where p is the fluid density, U is the average velocity along the fracture, dm is the 

mean aperture, and A is some characteristic length of the fracture in the direction of 

the flow. There are also geometric conditions which specify that, in some sense, the 

aperture does not change too abruptly; these geometric conditions will be examined 

more closely below. If these dynamical and geometric conditions hold, the flow can be 

described by the Reynolds equation: 

d3(x,y)f 
• # 

d'(x,y)f 

where (x,y) are orthogonal coordinates in the plane of the fracture, and d(x,y) is the 

local aperture of the fracture. Eq. (2) is a single, linear partial differential equation 

that describes the pressure field in the fracture plane. The volumetric flow of liquid is 

then related to the pressure by 
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3 = ^ M l V p . ( 3 ) 

Milne-Thomson7 derived the Reynolds equation from the Navier-Stokes equations 

through an order-of-magnitude analysis to allow the elimination of certain terms. 

Walsh1 derived (2) by merely assuming that the cubic law holds locally at each point 

in the fracture, and then invoicing the principle of conservation of mass. Since the 

conditions under which eq. (2) is valid usually hold for the flow of lubricants that are 

used to reduce friction and wear in moving machinery pans, this is sometimes known 

as the lubrication approximation. 

EFFECT OF APERTURE VARIATIONS 

Brown2 ,8 solved eq. (2) numerically for a fracture with a randomly-generated frac

tal aperture distribution, and plotted the fracture permeability as a function of the ratio 

of the mean aperture dn, to its standard deviation O. The permeability was quantified 

in terms of the hydraulic aperture d h, which is that value of d that would allow the 

flow rate to exactly satisfy the cubic law. The permeability was found to decrease as 

the standard deviation of the aperture increased (for fixed mean aperture), and was also 

found to be insensitive to the fractal dimension of the fracture surface. These results 

are remarkably similar to those of Patir and Cheng,3 who performed a similar analysis 

of lubrication flow between surfaces whose profiles obeyed a Gaussian distribution 

with linearly-decreasing auto-correlation functions. Fig. 1 shows the normalized per

meabilities, in the form of (di/d,,,)3, computed by Brown8 for a surface fractal dimen

sion of D = 2.5, along with the calculations of Patir and Cheng.3 Each one of Brown's 

data points represents the mean of ten different realizations. The solid curve, which 

was found by Patir and Cheng to provide a reasonable fit to their numerical results, 

can be expressed by 
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= l -0 .90e - ° - 5 6 a - " ' . (4) 

The similarity between the results of Brown8 and Patir and Cheng3 suggests some 

universal (approximate) validity of the correlation (4) between the dimensionless 

parameters d^a^ and dn/o that is otherwise independent of the statistics of the aper 

ture distribution. (The results found by Brown8 for different fractal dimensions very 

nearly coincided. The data shown in Fig. 1 were for the case in which "conservation 

of volume" was imposed on the fracture during its deformation. The details of this 

constraint are not relevant to the present discussion, since its imposition had little 

influence on the calculated permeability.) In order to lend further support to this 

hypothesis, we will study the Reynolds equation for a fracture geometry that is simple 

enough to allow analytical treatment, but which still captures some of the characteris

tics of "rough-walled" fractures. To accomplish this, we first restrict eq. (2) to one 

dimension. Although this is an approximation, note that the flow will always be 

locally one-dimensional on a small enough scale; furthermore, the two-dimensional 

character of the flow field will be accounted for by an averaging procedure. If the x 

axis is chosen so as to coincide with the macroscopic pressure gradient, then the one-

dimensional version of (2) is simply 

dx 
c%)f 

dx (5) 

A single integration of (5) yields 

d 3(x)i£ = C , (6) 
dx 
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where C is a constant of integration. Comparison of (3) and (6) shows that the con

stant of integration is merely 12(iQ, where Q is the volumetric flow rate. A second 

integration yields 

P 2 - P , = 12uQj dx 
xJ, d3(x) 

(7) 

This result expresses the pressure drop between two points X[ and x 2 in terms of a cer

tain integral of the aperture function d(x). If (7) is expressed in terms of the hydraulic 

aperture dh, the result is 

o ^ AP • A 
Q = 1^T' w n e r e d - : f dx 

x', d3(x) 
(8) 

and L = x 2 -X[. Using brackets to denote the "mean value", (8) can be expressed9 as 

d h=<d~ 3>~ 1 / 3. It is worth noting that although (8) was derived as a solution of the 

approximate Reynolds equation, it can also be derived 1 0 - 1 1 as a rigorous "first approxi

mation" to the full Navier-Stokes equations. 

SINUSOIDAL APERTURE VARIATION MODEL 

One of the simplest aperture profile functions that captures some of the geometri

cal properties of a "rough-walled" fracture is a constant aperture fracture with a 

sinusoidal perturbation (Fig. 2): 

d(x) = d J l + 8sin(2jixA)] , (9) 
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where d,,, is the mean aperture, 8 is the magnitude of the "roughness", and X is the 

wavelength of the aperture oscillations. For now, we imagine that all cross-sections 

parallel to the plane of Fig. 2 are identical. If the flow is in the direction transverse to 

the aperture oscillations (i.e., the x direction), then the hydraulic aperture can be found 

by considering (8) over one period of the oscillation: 

d -3 _ J_ f dx ( 1 Q ) 

h >• od^(l + 8sin27tx/X)3 

A simple change of variables, (, = 2nx/k, reduces (10) to 

^ i U a + c W ' < U ) 

which shows that, within the framework of the lubrication approximation, the 

wavelength of the roughness does not affect the hydraulic aperture. (The wavelength 

does enter into higher-order approximations to the Navier-Stokes equations, as might 

be expected.11) Evaluation of (11) gives12 

h - d m 1 + ^ / 2 ) • 0 2 > 

The above one-dimensional model assumes, in a sense, that the resistances due to 

each aperture element are in series, since the flow through each element is the same. 

If each aperture d is thought of as having a resistance proportional to d"3, then (7) 

corresponds to all of the resistances being placed in series. The other "extreme" 
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assumption would be that all of the resistances are in parallel. This would correspond 

to flow perpendicular to the plane of Fig. 2, and would be equivalent to an hydraulic 

aperture given by djj = <d3>, i.e.,13 

dh

3 = -Md3(x)dx 
A o 

= ^ - J d 3 ( i + 5sin03dC 
2lt J

0 

= d^[l+(38 2 /2)] . (13) 

Note that while (12) shows that d h < d m for flow transverse to the roughness, (13) indi

cates that d h > d m for flow parallel to the roughness. 

It is known from network theory14 that the assumption that all of the resistors in a 

random resistor network are in series (or parallel) provides lower (or upper) bounds 

respectively to the actual effective conductivity. In our problem, we know that at 

some points the fluid will be flowing parallel to the aperture oscillations, while in 

some cases it will be flowing transverse to the oscillations. One simple way to arrive 

at an estimate of the effective conductivity of a "random mixture" of these two cases 

is to use the geometric mean of the conductivities given by (12) and (13): 



1 , i [ l + (3S 2/2)]q-8 2) ! i / 2 
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: 1/2 

• ^ 7+gta) J • ( 1 4 b ) 

A somewhat more sophisticated estimation of the effective conductivity can be found 

by appealing to the upper and lower bounds that were derived by Hashin and Shtrik-

man 1 5 for the effective conductivity of a random mixture consisting of two "com

ponents" with different conductivities. These bounds are known to be closer together 

than the above-mentioned series and parallel bounds. For a 50-50 mixture of elements 

with conductivities Cl and G 2, where G!<G 2, the Hashin-Shtrikman bounds on the 

overall conductivity are 

3Gi(G2-G!) 3G2(G2-G!) 
Gi + ' ' ' < G < G 2 / ' „ . (15) 

1 5G! + G 2

 z 5G 2+G, 

Aside from the factor of l/12n, which is common to all terms, the hydraulic conduc

tance is equivalent to the cube of the hydraulic aperture, i.e., G=d^/12jl. Hence the 

bounds (15) can be applied to djj, with (12) and (13) used for G] and G 2. The 

geometric mean of these two bounds will provide an estimate of the effective conduc

tance that has an narrower possible margin of error than the geometric mean of the 

series and parallel bounds, given by (14). 

In order to compare our semi-analytical results with those of Brown8 or Patir ana 

Cheng,3 we also need an expression for the standard deviation of the height distribu

tion, a. Since d-d™ = dm8sin(2nx/X), 

I" 2 

i 2 " 
a = ^ J < ^ 8 2 s i n 2 ^ =d r o&W2. (16) 
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Hence 8 = "^oVd,,, for the sinusoidal profile shown in Fig. 2, and using this fact we 

can plot the geometric mean from expression (14), and the mean of the Hashin-

Shtrikman bounds from (15), alongside the results of Brown8 and Patir and Cheng.3 

This is done in Fig. 3, where it is seen that all of the results are qualitatively similar, 

showing appreciable divergence only for small values of d^/a (i.e., very rough sur

faces). The simple geometric mean of the series and parallel conductivities yields 

almost the same result as the geometric mean of the Hashin-Shtrikman upper and 

lower bounds. (This lends further credence to the use of the geometric mean to esti

mate effective permeabilities. In the somewhat different context of two-dimensional 

porous formations with stochastic permeability distributions, Dagan16 showed that the 

geometric mean often yields an accurate estimate of the effective permeability). Each 

of these means matches the curve of Patir and Cheng3 closely for d^la > 3, but fall 

below this curve for smaller values of d^o. The data of Brown8 fall close to the 

curve of Patir and Cheng,3 although these data approach the asymptotic value of 

dh/d I I 1= 1 more slowly as i^<s -» <*>. 

Fig. 4 shows the geometric mean of the series and parallel bounds for the 

sinusoidal model, compared with the upper and lower values of each set of ten realiza

tions considered by Brown at each value of d^/a. This geometric mean generally lies 

within the range of values found by Brown; it falls near the upper range for large 

values of d^/o, and towards the lower range for small values of d^o". For small 

values of d r a/o, which is to say relatively rough surfaces, the sinusoidal model per

meabilities drop off more rapidly than do the mean values found by either Brown8 or 

Patir and Cheng.3 This is easily understood because, for example, as 8 - » 1 , the 

"series" conductivity goes to zero, and so both sets of lower bounds upon which the 

"geometric means" are based will vanish. Since dp/a =V2/8, this occurs at 

dn/G = 1.414. In reality, of course, the flow would simply flow around any local point 

of contact between the two faces of the fracture, and the hydraulic conductivity would 
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not drop to zero. This possibility is not entirely accounted for by the avenging 

methods that we have used to find the overall effective permeability. 

It is worthwhile to investigate to what extent additional i-oughness with higher spa

tial frequencies alters the analytical results This can be done by using a profile that 

contains 'wo sinusoidal components (see Fig. jr. 

d(x) ^djnTl + 8,sin(2itxA1) + ^sinaicx/^)] . (17) 

In this case an analytical evaluation of <d3>, <d~3>, and a is not practical, but can be 

easily carried out numerically. In general, the results show that the addition of this 

"smaller scale roughness" has only a minor effect on the relationship between dj/dp, 

and d^o". As an example, consider the addition of a roughness component with a 

wavelength of one-half of the dominant wavelength, i.e., X-jA^ = 2. A reasonable 

value for the amplitude of this component can Iw found by the following considera

tions. The power spectral density of a rock surface is usually of a form that can be 

expressed as 

80.) = constant x X3-5 ~ D , (18) 

where 2<D<3 is the fractal dimension of the surface. Most rock surfaces seem to 

have fractal dimensions that lie between 2 and 2.5, since fractal dimensions near 3 

correspond to an extreme degree of roughness, for which nearby apertures are com

pletely uncorrelated.18 Using a value of D = 2.5, as in those results of Brown8 plotted 

on Fig. 3, we see that 5 is proportional to X, and so reasonable values for 82 can be 

found by setting 52/81 = 0.50. Note that the purpose of this calculation is merely to 

find values of 62 that can be used as a meaningful example, and is not intended to be 
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"exact" in any way. Fig. 6 shows the geometric mean of the series and parallel con

ductances for this model, compared with the results foi 52 = 0. The addition of a 

higher-frequency roughness component is seen to have little effect on the d^d,,, vs. 

dn/o" relationship. We have tested this result by adding further roughness components 

of smaller wavelength, and this conclusion seems to hold in general. 

In order to further estimate the sensitivity of the analytical result (14b) to the 

shape of the aperture profile, a similar analysis has been carried out for a fracture with 

a "sawtooth" profile, such as that used by Elsworth and Goodman.19 The extreme 

case, as far as irregularity of the aperture distribution is concerned, is when one face of 

the fracture is displaced from the other by one-half of a wavelength (see Fig. 11 of 

Elsworth and Goodman19). Within a "unit cell" consisting of one-half a wavelength, 

the aperture can be expressed as d(x) = d ^ + (d m „-d m i n )x/L. The various statistical 

parameters can readily be found to be dm = (dma-dmin)l2, o = (d m „-d m i l l )/2V3, 

<d3> = d£ + SdjnO2, and <d~3>_ 1 = (d£ - id1?!^. The geometric mean of the series 

and parallel conductances, which in general is is given by (14a), takes the form 

dh

3[sawtooth] = d^j [l -9(a/d m ) 4 ] [l ^ ( a / d j 2 ] (19) 

This is a different relationship between dh/dn, and o/dn, than was predicted for the 

sinusoidal profile. However, when plotted as in Fig. 3, (19) lies very close to (14b); in 

fact, the two expressions agree exacdy to "first order": (d^d,,,)3 = l - l ^o /d , , , ) 2 . 

Within the context of our analytical model, therefore, the dependence of the normal

ized permeability on the single parameter oVd,,, appears to be somewhat insensitive to 

shape. 
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The results discussed above, and shown in Figs. 3 and 6, lead us to conclude that 

within the context of the lubrication approximation there is a strong correlation 

between the parameters dh/d,„ and d^O", with the additional statistical details of the 

surface roughness profile providing only a small perturbation on this relationship. The 

fact that our quasi-analytical results are similar to the numerical results found by Patir 

and Cheng3 and Brown8 lends support to this conjecture. However, all of these ana

lyses are predicated on the use of the lubrication approximation to reduce the full 

Navier-Stokes equations to the Reynolds equation. We now carry out some analysis 

aimed at estimating the errors incurred by using the lubrication approximation, and at 

delineating those ranges of the fracture roughness parameters that will allow this 

approximation to be used. 

HIGHER-ORDER CORRECTIONS 

One of the assumptions needed to justify the reduction of the Navier-Stokes equa

tions to the Reynolds equation is that the velocity gradients in the plane of the fracture 

are much smaller than the velocity gradient in the direction perpendicular to the frac

ture plane. Brown2 correctly states that this is in some sense equivalent to the condi

tion (in the present notation) that oA.<c 1; this can be understood by noting that rapid 

changes in the aperture will necessitate rapid variations in the in-plane velocity, in 

order to maintain conservation of mass. Interestingly enough, this condition imposes 

no restrictions on the ratio c/dn,; relatively large values of vj are permissable, as long 

as the variation in aperture occurs slowly in the x or y directions. Brown2 examined 

the velocity gradients that he computed numerically, and found that the condition on 

their magnitudes was not always satisfied. In fact, he concluded that the fracture walls 

would have to be smooth on length scales on the order of 500-5000 urn, which will 

not always be the case for real fractures.18 (Note that Fig. 3 implies that a fracture can 

be considered "hydraulically" smooth if the amplitude of any roughness is less than 
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about 0.1dm). Furthermore, Brown's analysis does not quantify the errors that are 

incurred by use of the lubrication approximation for fractures with "rapidly-varying" 

apertures. 

Strict "error estimates" for the lubrication theory approximation to the Navier-

Stokes equations are difficult to derive. A more tractable approach is to focus on a 

specific geometry such as that shown in Fig. 2, and examine the solutions to higher-

order approximations to the Navier-Stokes equations. In this way we can find the 

range of values for the parameter a/X for which the lubrication approximation is 

"valid". This will provide us with a rough rule-of-thumb that should apply to more 

general fracture aperture profiles. 

Hasegawa and Izuchi11 performed a perturbation analysis of the problem of flow 

between a smooth wall and a wall with sinusoidal roughness. Although this geometry 

is slightly different from that shown in Fig. 2, it can still serve to demonstrate th; 

influence of the effects of roughness, wavelength, etc., on permeability. Their results 

can be put into a form in which the small perturbation parameters are alX and Re, the 

Reynolds number. We will set Re=0 in their expansions, and concentrate on the 

effect of a/X. Note that these authors fixed the pressure gradient along the channel, 

and found perturbation expansions for the volumetric flow rate; their results are there

fore more readily usable, for our purposes, than the related results of Van Dyke,2 0 who 

considered a fixed flow rate, and found expressions for the stream function. 

When translated into the present notation, the second-order expansion found by 

Hasegawa and Izuchi" can be expressed as (see their eqs. (25) and (27), and Fig. 1) 

^ l + ( 8 2 / 2 ) 
, 67t 2(l-S 2)5 4 

10[l + (82/2)] 
d ™ 2 

(20) 
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Comparison of (20) and (12) shows that the second term in brackets in (20) is the 

correction due to nonzero values of c/X. At first sight it might appear that, due to the 

l/X2 dependence, the correction term could easily be very large if X were small 

enough. However, the amplitude of the roughness usually drops off rapidly with 

increasing spatial frequency. For example, (18) implies that as X decreases, 8 also 

decreases, because 8=constant x Xs. As indicated above, realistic values of s lie 

between 1 and 1.5 (corresponding to surface fractal dimensions between 2 and 2.5). 

Hence we see that if X is small, 8 will necessarily be small also, and the correction 

term will remain bounded. For example, consider the "worst case", s = l , for which 

5=CX. The correction term in (20) then scales as X4/X2=X2, and will therefore be 

very small for small spatial wavelengths. This is analogous to the fact, well-known to 

fluid-flow engineers, that for laminar flow in a pipe, small-scale roughness has no 

effect on the hydraulic resistance. This insensitivity of laminar pipe flow to small-

scale roughness is illustrated in the "Moody-Nikuradse" charts,4 in which the "fric

tion factor" is plotted against the Reynolds number. The curves corresponding to 

different values of the "relative roughness" do not diverge until the turbulent (high 

Reynolds number) regime. 

The most stringent condition that we can derive by requiring the correction term to 

be small is actually found by considering the longest wavelength roughness. We first 

use (16) to replace d,,, with V2o/8, and note that, over the range of definition of 8, 

which is 0<8<1, the maximum value of the term that multiplies (a/X)2 is 2.39. 

Therefore, if we want to restrict the relative magnitude of the correction term to 10% 

of the value predicted by lubrication theory, we must have 2.39(a/X)2<0.10, which 

implies X>5o. This condition is much less restrictive than the condition that was 

postulated by Brown,2 which was X>50o\ If we agree that the aperture of a fracture 

such as shown in Fig. 2 can be considered nearly constant over lengths not greater 

than about V10, say, this new criterion can (very roughly) be viewed as requiring the 
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surfaces to be nearly constant over lengths on the order of a. Further evidence sup

porting this conclusion can be found in the work of Pozrikidis,21 who used a 

boundary-integral method to study the same problem that Hasegawa and Izuchi11 

analyzed by perturbation methods. Although Pozrikidis did not solve for the flow rate, 

he did show that as long as X>5c, the streamlines will adjust to the curvature of the 

wall, and no eddies will be generated within the sinusoidal bumps. Since the existence 

of such eddies would caust a breakdown of the quasi-one-dimensional lubrication 

assumption, the results of Pozrikidis corroborate our conclusion that the lubrication 

assumption will not become invalid as long as X > 5a. 

SUMMARY AND CONCLUSIONS 

The lubrication approximation has been used to study the permeability of rough-

walled rock fractures. A major purpose of this study was to develop an understanding 

of how the hydraulic aperture depends on the statistics of the aperture distribution. 

When the various apenure elements are in series, the effective hydraulic aperture is 

given by d h = <d" 3>" 1 / 3 < d m e a n , while if they are arranged in parallel, 

d h - <d 3 > 1 / 3 > d,,,^. Since the assumption of series (or parallel) resistances vastly 

underestimates (or overestimates) the actual effective conductance,14 a further averag

ing of these two values is needed. This can be achieved using either the geometric 

mean of the series and parallel conductances, or the geometric mean of the (narrower) 

Hashin-Shrrikman bounds; both methods provide similar estimates of the effective 

hydraulic aperture. 

For fractures whose apertures vary sinusoidally (or in a sawtooth manner), analyti

cal expressions were found for <d3>, and <d"3>, in terms of d,,, = <d>, and the stan

dard deviation of the aperture, o, which is equal to V ^ d - d j V The motivation for 

analyzing these models was that they permit analytical treatment, while still capturing 

some of the qualities of "roughness". For these models, the predicted hydraulic 
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aperture is always less than the mean aperture, by an amount that increases with 

increasing roughness. In fact, the resulting relationships between d j , ^ and oVd,,, are 

very similar to that found numerically by Brown8 and Patir and Cheng,3 who studied 

fractures with highly irregular roughness profiles. Our analytical expression for d h for 

the sinusoidal model fell within the spread of values found by Brown in his various 

stochastic realizations. 

An attempt was also made to estimate the conditions under which the lubrication 

approximation would be valid in treating flow through fractures. Although this 

approximation has been frequently used, quantitative estimates of its accuracy have not 

been available. By examining the higher-order solutions to the Navier-Stokes equa

tions for flow through a sinusoidally-varying channel developed by Hasegawa and Izu-

chi,1 1 we have been able to make some comments regarding this question. Deviations 

from the permeability predicted under the lubrication approximation seem to become 

appreciable only when the spatial wavelength of the dominant roughness component 

becomes on the order of (or smaller than) the amplitude of that roughness. This 

implies that the condition hypothesized by Brown,2 which was that the fracture should 

be of nearly constant aperture over distances of at least 50o\ was in fact too conserva

tive, if our conclusion is correct, then the use of the lubrication approximation would 

be justified for many real fractures, and the more difficult Navier-Stokes analysis could 

be avoided. 
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FIGURE CAPTIONS 

Figure 1. Plot showing the effect of roughness on permeability. The hydraulic aper

ture is dh, the mean aperture is d,,,, and the standard deviation of the aperture is a. 

The curve labelled "Patir and Cheng" is from (4), which was fit by them to their 

numerical results, while the data points labelled "Brown" each represent the mean of 

ten different realizations of surfaces with fractal dimensions of 2.5. 

Figure 2. Fracture with a sinusoidal variation in aperture, d,,, is the mean aperture, 8 

is the (relative) amplitude of the aperture variation, and X is the wavelength of the 

aperture variation. 

Figure 3. Normalized permeability of a fracture as a function of the standard deviation 

of the roughness. Two different averaging methods, using the series/parallel bounds 

and the Hashin-Shtrikman bounds, have been used for the sinusoidal model. 

Figure 4. Normalized permeability of a fracture as a function of the standard deviation 

of the roughness. The geometric mean of the series and parallel bounds for the 

sinusoidal model is compared to the range of values computed by Brown [2] for a 

fractal dimension of 2.5. 

Figure 5. Fracture whose aperture variation contains two sinusoidal components, as 

represented by (17), with ^1X2=2, 81/82=2. 

Figure 6. Comparison of the permeabilities of fractures with one or two sinusoidal 

components in their aperture variation (see Figures 1 and 5), according to the 

geometric mean of the series and parallel values. The ratio Xy/c^ is varied, while 

maintaining X1fk2 = 2 and 81/82=2. 
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Figure 1. Plot showing the effect of roughness on permeability. The hydraulic aper

ture is dh, the mean aperture is d,„, and the standard deviation of the aperture is a. 

The curve labelled "Patir and Cheng" is from (4), which was fit by them to then-

numerical results, while the data points labelled "Brov/n" each represent the mean of 

ten different realizations of surfaces with fractal dimensions of 2.5. 
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Figure 2. Fracture with a sinusoidal variation in aperture. d,„ is the mean aperture, 8 

is the (relative) amplitude of the aperture variation, and \ is the wavelength of the 

aperture variation. 
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Figure 3. Normalized permeability of a fracture as a function of the standard deviation 

of the roughness. Two different averaging methods, using the series/parallel bounds 

and the Hashin-Shtrikman bounds, have been used for the sinusoidal model. 
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Figure 4. Normalized permeability of a fracture as a function of the standard deviation 

of the roughness. The geometric mean of the series and parallel bounds for the 

sinusoidal model is compared to the range of values computed by Brown [2] for a 

fractal dimension of 2.5. 
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Figure 5. Fracture whose aperture variation contains two sinusoidal components, as 

represented by (17), with \1/\2=2, 6]/52=2. 
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Figure 6. Comparison of the permeabilities of fractures with one or two sinusoidal 

components in their aperture variation (see Figures 1 and 5), according to the 

geometric mean of the series and parallel values. The ratio .̂j/d,,, is varied, while 

maintaining X^I^—2 and 8j/S2=2. 


