TITLE: AN INNOVATIVE SPIN PRECESSOR FOR INTERMEDIATE ENERGY PROTONS

AUTHOR: Earl W. Hoffman

SUBMITTED TO: 1979 Particle Accelerator Conference, Accelerator Engineering and Technology, March 12-14, 1979, Sheraton-Palace Hotel, San Francisco, California.
AN INNOVATIVE SPIN PRECESSOR FOR INTERMEDIATE ENERGY PROTONS*

Earl W. Hoffmann

Abstract

A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H^- to H^+ to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF.

Introduction

The problem of arbitrary re-orientation of the polarization vector of a polarized beam has the well-known "Wien filter" or "electrostatic separator" as a practical solution at low energies. The "Siberian Snake" has been proposed for use at very high energies. A novel method developed at LAMPF and described elsewhere in these proceedings utilizes the large magnetic moment of the electron in the neutral ion H^0. The methods previously used at intermediate energies have not been capable of arbitrary re-orientation. Particular orientations have been achieved using movable magnets and by deflecting the beam to a new trajectory.

For 400-800 MeV protons, the Wien filter requires excessive electric fields and the "Siberian Snake" requires numerous magnets and large apertures. The method utilizing precession of H^- has the disadvantage that only one-half of an 800 MeV H^- beam can be stripped to H^0 with conventional foil strippers.

The spin precessor described here uses conversion of H^- to H^+ to achieve an undeflected, achromatic beam of protons with polarization vector orientation which is independent of the H^+ polarization direction. Solenoids and dipoles are used in the conventional way to achieve precession about the longitudinal and vertical directions. The device takes advantage of the high relative speed of the polarization vector relative to the velocity vector for H^- ions in transverse magnetic fields to minimize the required horizontal dipole apertures. Conversion of H^- to H^+ is the crucial feature which allows a net precession of the spin vector while bending in one plane with no net deflection of the beam.

Spin Precessor Design

The spin precessor consists of 2 solenoids, 3 dipoles, a thin foil electron-stripper and beam position monitoring diagnostics. The order of the elements is shown schematically in Fig. 1 and a typical trajectory is shown in Fig. 2. For clarity, the second dipole is shown as two separate elements.

The angle of precession, ψ, of the proton spin about parallel momentum (P) and magnetic field (B), vectors is

$$\psi = \frac{e}{pc} \left(\frac{1}{2} \right) / B d\alpha$$

(Gaussian units)

where e is the proton electric charge. The g-factor is defined for a particle of spin s and magnetic moment μ by $g = \mu / \mu_N$, where μ_N is the nuclear magnetic moment. Because of the inverse dependence on the momentum, 90° precession is limited to momenta below ~13 GeV/c for practical solenoids. A field integral of 2.7 $T\cdot m$ is required for 90° precession at 800 MeV.

The precession of the proton spin in a magnetic field B_z which is transverse to the spin vector and to the direction of motion is given by the well-known expression

$$\theta_R = \gamma g \left(\frac{L}{2} - 1 \right) e / m c^2 B_d z \left(\frac{L}{2} \right)$$

(Gaussian units)

where θ_R is the change in the angle of the spin vector relative to the direction of motion due to a bend of B_d.

Writing this expression as

$$\theta_R = \gamma g \left(\frac{L}{2} - 1 \right) e / m c^2 B_d z \left(\frac{L}{2} \right)$$

shows that the precession is essentially independent of energy for relativistic particles. A field integral of 2.3 $T\cdot m$ provides 90° precession for 800 MeV protons.

The H^- ion (in the ground state) exhibits the magnetic moment of the proton but opposite charge. Generalizing the derivation of Hagedorn, the expression for H^+ of mass M and charge Q is

$$\theta_R = \gamma g [\left(\frac{L}{2} \right) - 1]$$

where $m(e)$ is the mass (charge) of the proton. Since the charges for H^+ and H^- are opposite and the masses are nearly equal, θ_R is ~2.1 times larger for H^+ than for H^- and is opposite in sign relative to the bend angle. This increased polarization rotation is used to reduce the aperture required for the spin precessor and the sign reversal is used to restore the original trajectory.

Fig. 1 - Diagram of the elements of the spin precessor. Solenoids are indicated by S and dipoles by D. D2a and D2b may be a single dipole D2. ST is the stripping foil which removes the two electrons from H^0.

Fig. 2 - Schematic of the bends required to produce a polarization precession of ϕ in the horizontal plane.

*Supported by the U.S. Department of Energy.
+Los Alamos Scientific Laboratory, Los Alamos, NM, 87545
The transport is symmetrical about the midplane to produce first order achromaticity and zero net deflection. The first bend of angle θ and the second bend of $-\theta$ are used to process the polarization vector to the required orientation. The second two bends are used to restore the original trajectory with no net change in the polarization vector. Note that the second and third bends can be incorporated in a single dipole magnet to conserve length.

For this device the total precession angle, ϕ, of the polarization vector is related to the first bend angle, θ, by

$$\phi = -\gamma(\theta) \left(1 - \frac{e\lambda}{B_0} \right) = -\gamma \theta.$$

A total magnetic field integral of only 1.5 Tm for the first two bends (2a) produces a precession of 90° for an 800 MeV proton.

Successful operation requires that H^+ be converted to H^0 between the first two dipoles. In Fig. 1 and Fig. 2, ST indicates a thin foil which removes the two electrons from H^- with 100% efficiency. The foil must be sufficiently thin to avoid undesirable emittance growth due to multiple coulomb scattering.

Integrating HALPCs placed between the first two dipoles, between the last two dipoles and after the last dipole will allow setting of the bend angles to better than 1 milliradian. This corresponds to an uncertainty in the polarization direction of less than 10 milliradians. The polarization will be measured downstream of the spin processor by a pair of polarimeters which measure u- and d- asymmetries simultaneously. Orientation of the polarization vector to within 2 milliradians of any desired direction is expected to be achievable.

Example

To illustrate the use of this device, consider an incident beam of 800 MeV protons with polarization vector in the horizontal plane and 38.4° from the desired direction ($\phi = 38.4^\circ$ in Fig. 2). To obtain a vertically polarized beam at the end of the spin processor; the first solenoid is de-energized, the first dipole bends H^0 by 3.71° and the second bend H^0 by -3.71°. At this point, the polarization and velocity vectors are perpendicular to each other. The third and fourth bends are equal and opposite to restore the beam to its original trajectory without changing the polarization orientation. This results in a polarization orientation 90° relative to the direction of motion and in the horizontal plane. The second solenoid is used to rotate the polarization vector to a vertical orientation.

Summary

For its useful energy range, this spin precessor produces an undeflected, undispersed proton beam of arbitrary polarization orientation if an H^+ polarized beam is the initial beam. The device is tunable over a range of energies and polarization orientations which is limited only by the magnet fields and apertures available.

For high energy beams, the magnetic stripping of the H^- in the first dipole and in the radial field components at the ends of the solenoids may become a problem since the electric field in the rest frame of the beam particle depends linearly on $e\lambda$. At 800 MeV, the dipole strength is limited to ≈ 5 kG to keep the stripping process at negligible levels.

References