Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

PDF Version Also Available for Download.

Description

The fluorinating and oxide scavenging ability of XeF/sub 6/ have been studied by bringing XeF/sub 6/ into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A/sup +/MOF/sub 5//sup -/ and A/sup +/M/sub 2/O/sub 2/F/sub 9//sup -/ (A = K or Cs, M = W or U) were converted to A/sup +/MF/sub 7//sup -/ by XeF/sub 6/, but the rhenium and osmium compounds, K/sup +/ReO/sub 2/F/sub 4//sup -/ and XeF/sub 5//sup +/OsO/sub 3/F/sub 3//sup -/, resisted interaction with XeF/sub 6/. Strong interactions between XeF/sub 2/ or KrF/sub 2/ and the ... continued below

Physical Description

Pages: 169

Creation Information

Yeh, S.M. November 1, 1984.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The fluorinating and oxide scavenging ability of XeF/sub 6/ have been studied by bringing XeF/sub 6/ into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A/sup +/MOF/sub 5//sup -/ and A/sup +/M/sub 2/O/sub 2/F/sub 9//sup -/ (A = K or Cs, M = W or U) were converted to A/sup +/MF/sub 7//sup -/ by XeF/sub 6/, but the rhenium and osmium compounds, K/sup +/ReO/sub 2/F/sub 4//sup -/ and XeF/sub 5//sup +/OsO/sub 3/F/sub 3//sup -/, resisted interaction with XeF/sub 6/. Strong interactions between XeF/sub 2/ or KrF/sub 2/ and the solvent have been observed for their solutions in anhydrous HF. Both XeF/sub 2/ and KrF/sub 2/ are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF/sup +/AuF/sub 6//sup -/ and Kr/sub 2/F/sub 3//sup +/AuF/sub 6//sup -/ in HF. The AuF/sub 6//sup -/ anions are slightly distorted from O/sub h/ symmetry. Kr/sub 2/F/sub 3//sup +/ cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, ..beta..-ReF/sub 6//sup +/SbF/sub 6//sup -/, a high-temperature rhombohedral form, ..cap alpha..-ReF/sub 6//sup +/SbF/sub 6//sup -/, and a ReF/sub 6//sup +/AuF/sub 6//sup -/ have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20/sup 0/C are best represented as ReF/sub 6//sup +/ReF/sub 7/MF/sub 6//sup -/MF/sub 5/. Thermochemical energy evaluations indicate that the ionization potential of ReF/sub 6/ is 261 kcal mole/sup -1/ and that the fluoride-ion affinity of ReF/sub 6//sup +/ is -214 kcal mole/sup -1/. This is more exothermal than the corresponding process for IF/sub 6//sup +/ (-208 kcal mole/sup -1/). In contrast, ReOF/sub 5/ is shown to be a better fluoro-base than IOF/sub 5/ and also is a better base than ReF/sub 7/. ReOF/sub 4//sup +/MF/sub 6//sup -/ (M = Sb, Au and As) salts are of higher thermal stability than their ReF/sub 6//sup +/MF/sub 6//sup -/ analogues.

Physical Description

Pages: 169

Notes

NTIS, PC A08/MF A01; 1.

Source

  • Other Information: Portions are illegible in microfiche products. Thesis

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE85005107
  • Report No.: LBL-13346
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/6155691 | External Link
  • Office of Scientific & Technical Information Report Number: 6155691
  • Archival Resource Key: ark:/67531/metadc1109623

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1984

Added to The UNT Digital Library

  • Feb. 22, 2018, 7:45 p.m.

Description Last Updated

  • April 24, 2018, 5:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yeh, S.M. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species, report, November 1, 1984; [Berkeley,] California. (digital.library.unt.edu/ark:/67531/metadc1109623/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.