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INTRODUCTION

Helium is unique among the elements in that it remains liquid even at T=0 due to
its light mass and weak attractive interactions. Consequently, the zero point motion
is very large and the atomic wavefunctions of the helium atoms have a large overlap.
This leads to many interesting properties in the liquid that depend on the quantum
mechanical statistics of the particles. For example, the superfluid properties of liguid
“He are a consequence of the Bose statistics obeyed by “He atoms. Alternately, the
Ferm® liquid behavior and the low temperature superfluid phase of liquid 3He are 2
direct consequence of the Fermi statistics obeyed by ®He atoms.

Liquid *He has been extensively studied due to its unique properties and we
shall concentrate on it in this review. The liquid does not form, at atmospheric
pressure, until nearly 4 XK, illustrating the weakness of the attractive interactions.
The properties of the liquid at high temperature, near liquification, are similar to
conventional liquids. However, as the temperature is lowered a transition from the
high temperature phase { Helium 1) to a new phase ( Helium II ) occurs at =~ 2.2
K. This transition is marked by a sharp feature in the specific heat — the famous A
transition — and by 2 change in the thermal and mass transport properties. In this
new phase the liquid appears to develop a component that flows without viscosity
and has infinite thermal conductivity — the superfiuid — and the phase is ofien called
-~ the superfluid phase. Phenomenologically, this new phase can be described by the

‘two-fluid’ model, where the liquid is composed of two interpenetrating liquids, a
superfluid component that approaches unity at T=0 and a normal component that
is responsible for dissipation.
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The appearance of the superfluid phase, with its uniqua macroscopic properties,
and the success of the ‘two-fluid’ model in describing the transport properties are
intimately linked to the Bose statistics obeyed by ‘He atoms. London! first sug-
gested that the underlying microscopic cause for the spectacular macroscopic effacts
observed in the superfluid phase was due to the appearance of a Bose condensate, a
macroscopit occupation of a single quantum state. Since this insightful suggestion
there has been extensive theoretical work and the idea of a Bose condensate, or a
broken Bose symmetry, has remained central to our understanding of the superfiuid
phase.

The most direct siznature of the Bose condensate is in the single particle mo-
mentum distribution n(p). In the normal liquid the momentum distribution has a
broad Gaussian shape, as predicted for classical systems, with a width dstermined by
the quantum zero point motion. In the superfluid phase a new feature appears, the
Bose condensate. The condensate appears as a §-function singularity in n(p) with an
intensity proportional to ng, the condensate fraction.

There has been extensive experimental work attempting to verify the existence of
the condensate. Hohenberg and Platzman? originally suggested that inelastic neutron
scattering at high momentum transfers Q, where the Impulse Approximation IA can
be used to directly relate the observed scattering to n{p), could provide a means of
directly observing the condensate. There is now a long history of attempts to directly
verify the existence of the Bose condensate.® Unfortunately, despite many years of
experimental work, a direct observation of the condensate has still not occurred.

Most of the previous experimental studies aimed at determining the momen-
tum distribution have been cacried out at reactor based iieutron sources.5=12 These
meastrements, due to the thermal spectrum of neutrons available from reactors, are
limited to Q’s below 10-12 A3, although through some herculean efforts? there have
been measurements at somewhat larger Q’s. Unfortunately, at these Q’s deviations
from the Impulse Approximation are quite apparent and have prevented a diract ob-
servation of the condensate. Even when approximate methods are used to correct
for these deviations, significant differences between the theoretical predictions for the
momentum distribution and the experimental results exist.

In this review we will not 2ttempt to comprehensively cover the great body of past
work in this area., Tils has been very throughly and ably covered in several recent
review articles.l®:34: Instead, we will cozcentrate on recent experimental studies
that utilize the large fux of high energy neutrons available at spallation neutron
sources. These sources, which have become available only recently, have made it
possible to make detailed measurements at large enough momentum transfers that
the conditions for the Impulse Approximation are approximately satisfied. While
deviations from the IA are still present at these higher Q's, they are more amenable
to theoretical treatment and detailed predictions are available. Thus, even though no
distinct condensate peak is observed, for the first time excellent agreement with the
theoretical predictions for a(p) can be obtained.

REVIEW

e begin with a brief review of the current theoretical studies of the momentum
distribution in liquid “He. Complete and detailed descriptions of the theoretical work

are presented elsewhere in these proceedings.!®:16:17:1% Therefore, we shall limit our
discussion to the most recent examples.

Liquid helium provides a very challenging system for theoretical studies. The
aitractive part of the helium potentizl is quite weak, as evidenced by the stability of
the liquid even at T=0. This leads to a large overlap of the atomic wavefunctions
which make quantum statistics an important factor in determining the properties
of the ground state. However, while the zttractive interactions are quite small the
hard core repulsion between atoms is very large. This makes liquid helium a very
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strongly interacting system, in some sense even more strongly interacting than nu-
clear matter.}3 Therefore, it has been extremely difficult to develop a comprehensive
microscopic theory of the dense liquid phase using perturbative techniques.!® Some
specific results can be obtained using analytic techniques. For example, 2 major
success of these theories is the prediction of the relationship?® between the broken
Bose symmetry that characterizes the ground state when a condensate is present and
the superfluid properties. In general, though, it has not been possible to develop a
comprehensive microscopic theory of the ground or excited states of the liquid.

In view of the difficulty associated with analytic theories, the most detailed and
comprehensive results for n(p) have come from numerical calculations. Variational*®
and Greens Function Monte Carlo (GFMC)!8 techniques have been applied exten-
sively to calculating the properties of the ground state at T=0. These first principles
calculations, using realistic potentials, have obtained good agreement with several
measured properties for the ground state of the liquid, such as the total energy and
static structure of the liquid.

The most prominent feature in the ground state n(p) is the appearance of a
condensate, 2 § function singularity at p = 0. Fig. 1 shows two recent calculations of
n(p) in the ground sate, using GFMC?! and variational®® techniques. Both calcula-
tions show a condensate & function (not visible in the variational calculation). The
intensity in this § function, which is known as the condensate fraction ng, is = 9 %
of the total intensity.

0.150

0.125

0.100

~—0.075

0.050

0.025

‘r’ltl]‘r!l‘r]\llllrllxlill!‘l!lTl

0.000 S

|
S

p (A7)

Fig. 1 Theoretical calculations of the momentum distribution. The
ground state momentum distributions have been calcuated us-
ing GFMC?! (solid) and variational®? (dotted) techniques. The
momentum distribution in the normal liquid (dashed) has been
calculated using PIMC?3 techniques.



In 2 non-interacting gas, where the wavefunctions of the particles are free particle
states and p is a ‘gocd’ quantum number, ng is just the fraction of atoms in the zero
momentum state. This is not true in the liquid where the interactions modify the
states so that they are no longer free particle states and p is no longer a ‘good’
quantum number. Every particle in the liquid now participates in the condensate
and it is not appropriate to speak of a particular fraction of the atoms occupying
the condensate, or p = 0 state. In the interacting liquid, the appearance of the
condensate signals the development of off-diagonal long range order (ODLRO) at the
one-particle level.?*:25 The condensate fraction is the magnitude of the microscopic
order parameter for this phase.

The remainder of the momentum distzibution, excluding the condensate § func-
tion, is known as the uncondensed momentum distribution and exhibits several in-
teresting features. At small p, which corresponds to long range interactions among
the atoms, the effects of statistics are the dominant factor. For example, singular
behavior28:27 due to the coupling of the condensate to long wavelength collective ex-
citations (phonons) appears. This singular behavior can be obtained exactly at small
p where the phonons are well defined and goes as 1/p® in the ballistic regime and
1/p in the hydrodynamic regime. The variational n(p) in Fig. 1 explicitly shows this
behavior at small p. It is not present in the GFMC results, although this is presum-
ably due to the relatively small size of the samples used in the numerical calculations.
Alternately, the large p behavior of n(p) is determined primarily by the short range
repulsive interaction between atoms and the statistics play little role.

The great majority of the numerical studies of the liquid have concentrated on the
ground state due to the intrinsic limitations of the GFMC and variational approaches.
However, Path Integral Monte Carlo (PIMC)!? methods have recently been applied
to study the liquid properties at finite temperatures. These calculations yield similar
results to the ground state calculations at low temperatures i.e. 2 condensate fraction
of approximately 9 %. However, they have the distinct advantage that they can
provide results at finite temperature. For example, the condensate fraction can be
obtained as a function of temperature where 2 rapid increase of ng is observed upon
entering the superfluid with very little variation with temperature thereafter.

The momentum distribution may also be calculated in the normal liquid us-
ing PIMC. For example, Fig. 1 shows n{p) at 3.33 K, well above the superfluid
transition.?® The momentum distribution is broad and featureless with a nearly Gaus-
sian form, the familiar classical result. The width of the momentura distribution is
determined by the quantum zero point motion of the liquid and is much larger than
the width expected for classical particles. However, aside from this the shape of

the momentum distribution in the normal liguid shows little effect due to quantum
statistics.

DEEP INELASTIC NEUTRON SCATTERING

Inelastic neutron scattering at large momentum transfer Q provides the most
direct means to obtain information on n(p). In this limit, the scattering is due to
single atoms and the final state of the scattering particle is assumed to be a free
particle state. This is the well known Impulse Approximation {IA) and the observed
* scattering is proportional!® to the Compton profile

“+co
JIA(Y)=4P1‘_‘_2 /m pn(p)dp (31)

where p is the density. The scattering in the IA does not depend on the energy and
momeatum transfer separately, but only through the scaling variable

Y=(M/Q) (v —w,) (z.2)
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where w and Q are the energy and momentum transfer of the scattered neutron, M
is the mass and w, = Q2/2M' is the recoil energy of the scattering atom.

In principle, the observed scattering at high @ provides direct information on
n(p). However, in practice the momentum and energy transfers currently attainable
are not sufficient to reach the IA limit. Deviations from the IA, due to interactions
of the scattering particle with its neighbors, can significantly effect the scattering.
These deviations are known as final state effects (FSE) since they modify the ideal
plane wave final state of the scattering particle necessary for the application of the
IA.

Final state efects have been the subject of several theoretical studies?:?%—4!
and considerable controversy over both the form and the importance of FSE exists.
Elsewhere in these proceedings4? we present a detailed comparison of several theories
for FSE in liquid helium. The comparison is limited to large Q’s where the qualitative
behavior is described by the IA. We find that, while several theories provide 2 good
description of FSE in the normal liquid, most do not accurately describe FSE in
the superfluid phase. However, we do find that one of the available theories seems
%o provide a good description of FSE in both the normal and superfluid phases.
This theory, which is due to Silver, represents FSE as a convolution of a final state
broadening function with the IA result for J(Y). We shall use this theory later in
comparisons of the theoretical predictions with the experimental results.

Ignoring, for the moment, the complications of FSE measurements of J (Y) cen
be used to directly determine n(p). For example, if n(p) is Gaussian then J(Y) is
also a Gaussian with the same second moment. Furthermore, the condensate, which
appears as the thres-dimensional delta function in n(p), is a one dimensional delta
function in J(¥).
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Fig. 2 lustration of the relationship of n(p) and J(¥). a) shows the
J(Y) corresponding to the two ground state n(p)’s in Fig. 1.
Both czlculations have a condensate fraction of 9 %. However, the
variational calculation (solid) shows the predicted 1/p singular
behavior. This is lacking in the GFMC (dotted) result. b) shows
the effect of instrumerital resolution and ¥SE on the J(Y') shown
in &). The small differences between the predicted scattering for
the two diferent calculations is now almost entirerly gone.



While there is a direct relationship between J(Y') and n(p), it is important to
note that it is not a one-to-one correspondence. Features that are prominent in the
momexntum distribution may not be prominent in J(Y'). To illustrate this consider the
two recent calculations of the ground state n(p) discussed earlier and shown in Fig.
1. Both calcnlatlons predict a condensate fraction, which appears as a delta function
with ng=9.2 % . Both calculations also predict quite similar behavior at intermediate
and large p. However, they differ markedly at small p. The variational calculation
exhibits singular behavior due to coupling of long wavelength density fluctuations to
the condensate which are not present in the GFMC result, presumably due to finite
size effects in the calculation.

While n(p) for these two calculations is quite different, the corresponding J74(Y),
shown in Fig. 2a, is remarkably similar. The singular behavior, which is the dominant
feature in the variational n(p) at small p, is quite small in J(Y). When FSE and
instrumental broadening are taken into actount the (now small) differences between
the predicted scattering for the two calculations all but disappear, as shown in Fig.
2b. The predictions of the two very different n(p)’s are now nearly indistinguish-
able! In principle, the differences between the two different n(p)’s we began with are
still present in Fig. 2b. In practice, a measurement of the scattering wm.ld need
fantastically good statistical accuracy to ever hope to observe these differences.

This insensitivity to the details at small p is a direct consequence of the IA. The
Compton profile, which is proportional to the measured scattering, is the momentum
distribution in the direction of the momentum transfer, with the longitudinal com-
ponents averaged over. Since this is the integral of pn(p) features at small p, such
as singular behavior, will be suppressed due to the p in the integrand. Alternately,
features at large p will be enhanced, for exactly the same reason.

To further illustrate this point, consider the problem of extracting the momen-
tum distribution from the observed scattering. The momentum distribution may be
directly obtained form the observed scattering by inverting eq (3.1), which gives

nlp) = - 2 (33)

agzin neglecting the effects of instrumental resolution and FSE broadening. However,
any experimental measurement will still be affected by the statistical uncertainty of
the measurements. These statistical unceriainties will translate into uncertainties in
the inferred n(p), although the relative magnitude of the uncertainties will not be the
same throughout the spectrum.

To illustrate the effects of statistics, consider the Gaussian J{¥'}, obtained from
a Gausslan n(p), shown in Fig. 3a. Statistical noise, corresponding to a statistical
accuracy of 3 % at the peak center, has been added. This is characteristic of the
statistical accuracy obtained in typical neutron scattering studies. The momentum
distribution is obtained from J(Y) using eq (3.3), which requires a differentiation
followed by a division by p. Fig. 3b shows the momentum distribution obtained from -
the datz in Fig. 3a using 2 simple point by point differentiation procedure.

The most striking feature of the inferred momentum distribution is the increase
- in the statistical noise near p = 0, due to the division by p. This is the same effect
observed previously when cor51der1n°' the shape of J(Y) due to different n(p)’s. Even
large differences in n(p) at small p may only cause small changes in J(Y). Thus, the
statistical noise present in J(¥') allows a whole family of n’p) s that are consistent

with the observed data. This is reflected by the large errors in the inferred n(p) near
p=0.

Admittedly, this has been an'extreme example of the efiects of inverting J(¥) to

obtein n(p). Better (smoother) results can certainly be obtained by smoothing the
data or using a more sophisticated differentiation procedure, but at the expense of
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biasing the resulis. This example does, however, dramatically illustrate the difficulty
in extracting the momenturm distribution from the observed scatiering.
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Fig. 3 2) J{Y) obtained from a Gaussian n(p) with statistical noise
corresponding to 3 % at the peak added. b) n(p) extracted from
the scattering in 2) using eq 3.3 using a simple point-by-pont
differentiation. The errors are obtained from the statistical errors
shown in 2).

In view of the difficulties in extracting n(p) from the experimental results, we
find it more appropriate to work directly with J(Y). Theoretical predictions can
be compared to the experimental data using the 14, taking into account FSE and
instrumental resolution. Working with J(Y'), as opposed to n(p), has the distinct
advantage that the statistical errors on the data provide a direct measure of the
“goodness-of-fit’ between the theory and experiment.

COMPARISON TO THEORY

Most previous measurements of liquid helium aimed at extracting information on

n(p) have been carried out using reactor based instruments®~2? where the maximum
momentum transfers obtainable, with reasonable resolution, are on the order of 5-15
A~1, Unfortunately, deviations from the IA predicticns, such 2s asymmetry in the
peak and oscillations in the width as Q is varied, can still be quite significant at
these @’s. In additicn, accurate theoretical descriptions of FSE, particularly in the
superfluid, are lacking at these low @’s.

In this review we will concentrate on recent measurements carried out using
spallation neutron sources. These sources, with their high flux in the epithermal
region, allow measurements at much larger Q’s with relative resolutions comparable
to the lower Q measurements at reactors. The higher Q’s have the advantage that
the scattering is consistent with the predictions of the IA. In addition, FSE are more
amenable to theoretical treatment at these hizher Q’s.

To illustrate the results obiainable at spallation sources we will discuss re-

cent measurements using the high resolution PHOENIX spectrometer at the Intense
Pulsed Neutron Source, Argonne National Laboratory. Fig. 4 shows the measured
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scattering at a Q of 23 A%, converted to J(Y), at 4.2 X, in the normal liquid. The
instrumental and final state broadening are also shown in Fig. 4 for reference. The
instrumental resolution has been calculated using a Monte Carlo simulation of the
instrument*® and has been verified using measurements of low density helium gas.
The final state broadening has been calculated by Silver for the Q used in these mea-

ments and is discussed in detail elsewhere.®® The instrumental and final state
%%ggd:g'u?g have similar widths and are both much less than the intrinsic width of
the observed scattering. An accurate knowledge of these effects is essential if we hope
to extract information on the underlying momentum distribution.
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Fig. 4 The observed scattering, converted to J(Y), at a Q of 23 A1
and a temperature of 4.2 K. The calculated instrumental resolu-
tion (solid line) and final state broadening (dashed line) are also
shown.

The scattering showa in Fig. 4 is in qualitative agreement with the predictions
of the JA. It is centered at and symmetric about Y = 0. In addition, measurements4
at a variety of @’s have shown that the shape of J(Y) is independent of Q@ above

approximately 15 A1, Thus, at least at this qualitative level the scattering is well
described by the IA.

Fig. 5 shows the observed scattering at 3.5 K, in the normal liquid well above the
- superfluid transition, and 0.35 K, well below the superfluid transition. The scattering

in both the normal liquid and the superfluid phase is broad and featureless. In the
normal liquid, J(Y') is nearly Gaussian, the classical result. In the superfluid, the
scattering becomes visibly more peaked near Y = 0, but no distinct condensate peak
is observed. This is consistent with the presence of a condensate pezk broadened
by instrumental resolution and FSE. However, due to the finite statistical accuracy
of the results it is also consistent with a wide variety of momentum distributions,
some which do not contain a condensate. Therefore, while the increase in scattering
intensity at small Y is indicative of a condensate, it does not provide any direct
evidence for a condensate fraction.



1(Y)

1(Y)

i

i / ]
05 — Ny I T=0.02K DAta —

I ) ' !

i i «——— OFMC-1AGRLY) ]

- ’ -
0.4 [~ —~ — GFMC-IA —
0.3 :—- ;

r i ]
02 - jj _

X # X ]

| _;r §%‘ ]
0.1 }— 3 . —

- 2 m

: 3 S ]

[ lﬁés e ]
0.0 ,.,f:nﬁ:‘x L SN —

13 -l ! 3 l 3 ] 1. ] L 1 1 1 1 J L] 1 1 1 =

-4 -2 0 2 4

[ 2 & + I ] T [] T l T 4 T [} l T ¥ T ¥
0.5 I T=3.5K Data

T

—

—— PIMC-1A®R(Y)

G.4 ~ — PIMC-IA

IR I
R,
| 'Mﬂ‘*‘
my»-r*f’
P I ST ST I

0.2 J}: 4:& ,
I _AI %
0.1 r" . _;G'
. = 5
| = =
X = %
0.0 P AT oo
- I3 s s 1 ' 3 L 2 LN l k4 1 1 ] ' 1 1 1 1 =
-4 -2 0 2

[}
Y (A7)
The measured scattering in the normal liquid phase at 3.5 K
(2) and the superfluid phase at 0.35 K (b) of liquid 4He. The
dashed curves are the theoretical predictions for n(p) transformed
to J(Y) and convoluted with instrumental resolution. PIMC
calculations3 at 3.33 K have been used for comparison with the
normal liquid and are in excellent agreement with the experimen-
tal results. GFMC calculations?! have been used for comparison
with the superfiid and large discrepancies exist near Y = 0. The
solid curves are again the theoretical predictions, but including
the FSE broadening®® shown in Fig. 4. The agreement between

theory and experiment is now excellent in both the normal and
superfluid phases.



The theoretical calculations of n(p) may be compared with the experimental
results, providing a direct test of the calculations. The dashed line in Fig. 5a
shows the theoretical prediction for J;4(Y) in the normal liquid using the PIMC
calculations?3:%5 of n(p). The theoretical n(p) has been converted to J(Y') using the
IA and broadened by the instrumental resolution. The agreement between the theo-
retical pradication and the experiment is excellent. In this case, direct application of
the 14, using the theoretical n(p), provides an excellent description of the scattering
in the normal liquid. FSE have little effect on the observed scattering in the normal
liquid at these @’s.

The dashed line in Fig. 5b shows a similar comparison of the GFMC
calculations?! to the scattering in the superfiuid. The agreement between the theo-
retical and experimental results is quite poor, particularly in the region of the peak
center, where the condensate has the largest contribution. Based on this comparison,
which has neglected FSE, we would conclude that the condensate fraction, if present
at all, would have a much smaller value than the theoretical predictions.

Final state effects may be included by convoluting the theoretical predictions
with the broadening function shown in Fig. 4. The solid lines in Fig. 5a and 5b are
obtained when FSE are included. The predicted scattering in the normal liquid is
changed very little by the inclusion of FSE. Certainly within the statistical accuracy
of the measurement there is no observable change when FSE are included. Since,
based on the f* sum rule, FSE do not change the second moment of the scattering
they have little effect on the broad, nearly Gaussian J(Y') in the normal liquid.

The change is much more dramatic in the superfiuid phase where the momen-
tum distribution has a sharp feature, the condensate. While FSE have little effect
on the broad component of the scatiering, as observed in the normal liguid, they sig-
nificantly broaden the contribution from the condensate. Taking FSE into account,
the agreement between theory and experiment is now excellent! For the first time ab
initio calculations of n{p) in the superfiuid are in good agreement with experiment.
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Fig. 6 Sensativity of the observed scattering to the magnitude of the

condensate fraction at 0.35 K. GFMC calculations?! have been
used for the uncondensed component a narrow Gaussian to rep-

resent the condensate.” The best agreement is obtained for ng=10
% (central line). The two limiting values, ng = 8 and 12 % are
the lower and upper lines, respectively.
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An important point regarding the fi-
nal state corrections is in order here. The
final state broadening prediction of Sil-

ver, as shown in Fig. 4, has a narrow
central peak and negative tails at high
Y. The negative tails are essential if the
broadening function is to satisfy the sec-
ond moment sum rule. Thus, fina] state
effects will not only broaden the conden-
sate peak, they will also shift intensity
around throughout the entire spectrum.
For the particular FS broadening function
used here, the negative tails will cause o
depletion of the scattering at intermediate
Y when a condensate is present.

In view of the discussion in the pre-
vious section regarding the relationship
between J(Y) and n(p) it is appropri-
ate to examine how sensitive the observed
scattering is to the theoretical n(p). In-
evitebly there is a finite statistical ac-
curacy attached to the experimental re-
sults and a whole range of different n(p)’s
may give equally good agresment with the
data. If the statistical accuracy of the re-
sults is high then only 2 limited range of
n(p)’s, all with very simiiar shapes, will
be consistent with the data. Alternately,
if the statistical accuracy is poor then the
experimental results will only place very
weak constraints on the underlying shape

of n(p).

To illustrate this, consider the scat-
tering in the superfiuid phase shown in
Fig. 5b. The theoretical n(p) contains a
very sharp feature, the condensate § func-
tion. By replacing the condensate § func-

tion with a2 Gaussian of variable width and
amplitude we can obtain some measure of

the sensitivity to this particular feature.
The best agreement is obtained when the
width of the Gaussian is less than 0.05

~! and ng is 10%, in agreement with the
theoretical prediction for the condensate.
Significant deviations are observed when
the width is greater than 0.2 A~! and ng
is less than 8% or greater than 12%, as
shown in Fig. 6. For this particular model
for the uncondensed n(p) provided by the
.. GFMC calculation we find that there is

indeed a condensate with np = 10 + 2 %.
However, we also point out that changing
the shape of the uncondensed n(p) could

have an effect on the value for the conden-
sate fraction.
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Observed scattering at tem-
peratures of 0.35, 1.0, 1.5, 1.8,
2.0, 2.3, 2.8, 3.5, and 4.2 K.
The solid lings are the theo-
retical predictions with instru-
mental resolution and FSE in-
cluded. GFMC calcylations®?
are used for comparison with
the 0.35 K results. PIMC
caleu]ations?® are used for the
remainder of the temperatures.
No calculations are available
for comparison with the 2.0
and 4.2 K measurements.



In a similar fashion, the sensitivity to the expected small p singular behavior
in n(p) can be examined. The GFMC results, which give excellent agreement with
the observed scattering, do mot contain the expected singular contribution. The
variational n(p) discussed previously explicitly includes this behavior. However, a
comparison of the observed scattering with the predictions of the variational calcu-
lation yields essentially the same results as for the GFMC calculation (see Fig. 2).
This is not very surprising since the weak singular behavior at small p is suppressed
when n(p) is transformed to J(Y') as discussed earlier. Thus, the predicted small p
singular behavior makes little contribution to the observed scattering and, with the
experimental techaiques now available, will be difficult, if not impossible, to observe.

Thus, the experimental results in the superfluid provide a clear indication of a
narrow component in n(p) containing approximately 8-10 % of the intensity, which s
very suggestive of the condensate. Unfortunate'y, due to the finite statistical error in-
herent in any experiment, they can not definitely prove the existence of a condensate,
which is formally a é-function. Some other singular behavior, and not a condensate,
could be responsible for the increase in the scatiering at small p observed in the su-
perfluid. However, as seen in the comparison with the variational n(p), this would
have to be a very singular behavior, much more so than the 1/p singularity, to obtain
agreement with the experimental results. Thus, while the experimental results can
not rule out a ground stax= :2{p) which does not contain a condensate, they do provide
strong evidence for a very narrow feature containing 105-2% of the total area. The
excellent agreement with the theoretical predictions suggests that this very narrow

Qo™

feature is indesd the Bose condensate first predicted by London.!

To complete the comparison with the theoretical calculations, Fig. 7T shows
measurements of the scattering from liquid helium at several temperatures between
0.35 K and 4.2 K. The solid lines in Fig. 7 are the theoretical predictions. The
GFMC calculations?®! are used for comparison with the 0.35 K results, while the PIMC
calculations4S are used, where available, at temperatures above 1 K. The agreement
is excellent over the entire temperature range! Theory and experiment appear to

have converged for the momentum distribution in liquid 4He at low deasities.
EXTRACTION OF THE CONDENSATE FRACTION

Dus to its importance in understanding the superfluid phase, considerable em-
phasis has been placed on determining the condensate fraction.’—12:46—48 However,
a direct determination of the condensate fraction has been frustrated by the failure to
observe a distinct condensate peak. In addiiion, previous comparisons between the
observed scattering and the theorstical predictions were not in agreement, and no
value for the condenszte could be inferred based on the theories. Therefore, alternate
techniques to extract a value for the condensate fraction were developed. These all, in
one form or another, involved modeling the momentum distribution in the superfiuid
to extract a value for the condensate fraction. A wide range of values for ng ( 2-17
% ) were obtained, depending on the particular model used. One central feature of
2ll these models was that they implicitly assumed the condensate exists. Therefore,
taking the pessimistic point of view, all the measurements can also be viewed as
consistent with some increase in n{p) at small p, but with no condensate.4?

Dvue to the great emphasis that has been placed cn extracting a value for ng,
as oppcsed to the overall shape of n(p), we will examine this in detzil. We will not
attempi to review all the previous attempts to extract a value for the condensate
fraction. Instead, we will examine one of these, due to Sears et al*®, which has been
used in most recent measurements aimed at extracting the condensate.®:1%:44,46 Using
this technique, values for the condensate fraction of ~ 10-13 % , when extrapolated
to T=0, were originally obtained. These results were in resonable agreement with
theoretical prediciions. Recently, however, Grifin®® pointed out that one of the
central assumptions, regarding the changes induced in the uncondensed component of
the momentum distribution, was incorrect. When the correct form for these changss
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is used, the inferred values of ng are 4-5 % , considerably below the theoretical
estimates.

Rather than review the previous measurements, over which there is some con-
troversy, we will illustrate the basic ideas of this procedure by applyxnv it to the
measurements discussed earlier. We begin with the model for n(p) in the superfluid
phase. The momentum distribution may be written in the form

n(5,T) = no(T)8(p) + (1 = no(T))n" (5, 7) (5.1)

where §3(p) represents the condensate, no(T) is the condensate fraction, and n*(p, T)
is the uncondensed component of the momentum distribution. The observed scatter-
ing in the superfluid phase, except near Y = 0, is quite similar to the scattering in the
normal liquid. This suggests that the momentum distribution for the uncondensed
component in the superfluid may be written in the form

w(0.T) =B T) + [odstn (5, T) ) s

[94]
N
~—

where n(p,T) is the normalized momentum distribution in the normel liquid and
6r*(p, T) represents changes in the uncondensed n(p) below T.

In the absence of FSE and instrumental resolution, measurement of J(Y') would
provide a direct observation of the condensate. However, in the presence of these
effects the condensate §-function will be broadened. In practice, the broadening is

sufficiently large the condensate peak is no longer resolved from the uncondensed
component.

While, no distinct condensate peak is observed, the effects of the co1densa1'°
will still be present in the observed scattering. In general they will appear ! ‘as an
increase in the scatiering near p = 0, rather than a distinct pea‘( The condénsate

fraction may then be exiracted from the observed scattering in the superfluid under
two assumptions. They are:

s The entire contribution of the condensate peak occurs within some ¢mall region
around Y = 0. .

e The changes in the uncondensed momentum distribution can be accounted for
using theoretlcal calculations.

From the first assumption the scattering due to the condensate will only con-

tzibute in the region around ¥ = 0. In terms of n(p), the total intensity in a region
within p. of the origin is

e(T,p.) = /0 i n(T,p) dp . (5.3)

Sin%f;l I.lhis region, by assumption, contains the entire contribution of the condensate
we

pu. olT,p.) — T s Pe .
nO(-‘:Pc) = ( P ) a( l\' P ) (o.‘.)
1—o(Th,pe) +v
where )
= 6n*(p,T) 47p’dp (5.5)
0

Thus, knowing the form of ¢n*(p) in the region within p., which is where the modsling
of n{p) enters, we can directly obtain the condensate fraction.

_ One of the central assumptxons in the derivation of (5.4) is that the entire con-
tribution of the condensate is confined to the region around the origin. Instrumenial
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resolution, which broadens the condensate peak, certainly satisfies this requirement.
However, FSE are a different matter. As shown in the last section, they not only
broaden the peak but they shift intensity from one part of the spectrum to another.
This certainly violates the assumption above that the condensate contribution is still
localized around the origin.

Final state effects must, at least in part, be taken into zccount if we hope to
determine ng. The most important feature of FSE to account for is the shifting of
intensity caused by the final state broadening. This may be accomplished by decon-
voluting the final state broadening function used earlier from the observed scattering.
While, due to the statistical noise in the results, this will not entirely remove FSE it
should at least account for the major effects.

Rather than attempt a numerical deconvolution, a difficult and unstable pro-
cedure with statistically noisy data, we have found it convenient to represeni the
scattering by a functional form and then fit this form, convoluted with instrumental
resolution and FSE, to the observed scattering. A model consisting of two Gaussians,
with variable amplitudes and widths and a center fixed at Y = 0, provides sufficient
freedom to fit the daia in the normal and superfluid phases. This model has the
advantage that certain physical constraints, such as symmetry, positivity, etc, are
implicitly included in the results of the deconvolution.

The results of deconvoluting FSE and instrumental broadening from the observed
scattering ars shown in Fig. 8. At high temperatures, nea~ 4K, the scattering is nearly
Gaussian. However, as the temperature is lowered toward T the scattering becomes
more peaked near Y = 0, even in the ncrmal liquid. A large increase in the scattering
intensity at small Y is observed at T\. 1:e scattering in the superfiuid becomes much
more peaked, indicating the presence of a c.ndensate.

T1 T T P T SN B T I T 7T Ok ) TITI1Ul T+ 1 TIT T TTT1 1-0
o [ " : N |
0.50 LFlg 2 - F Fig. b <N
0.95 é__ _E E 2 Qaussian ? ’
b . }- -
x ~ f—— 0.8
J(Y) o000 1 & b E
E T<T 3
-0.25 - _}; —04
N / 2
-0.50 ly/ —o.z
-0.75 L. 3 llLLlLL\I‘ll!ll!L —00

-4 -2 0 2 4 0 05 1 '1.5 2 2.5
° rA—l
Y (A7Y Yo (A7)

Fig. 8 Observed scattering of Fig. 7 with Fig. 9 Intezrated scattering from 0 to p.

instrumental resolution and FSE using the scattering shown in Fig &.

effects removed as described in the The gap between the results above

text. ‘ and below the superfluid transiticn
is indicative of the formation of a
condensate.
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While the sharp increase in the scattering intensity at small p in the superfluid
is consistent with the presence of a condensate, again no § function appears in the
deconvolutions in the superfluid phase. However, these same results were in excellent
agreement with the theoretical predictions containing a condensate. Thus, the lack
of a distinct condensate peak in the results is a direct consequence of the statistical
noise present in the data. In fact, due to the statistical noise in the data, a whole
series of n(p)’s are consistent with the results, including those with é functions as
show earlier (Fig. 5b). Thus we take the width of the narrow component in the fits,

which is ~ 0.6 A~!, as indicative of the statistical smearing of the condensate peak.

In previous measurements at lower @’s, FSE are quite significant and the JA is
not even qualitatively satisfied. No detailed theories for FSE are available at thrse
lower @’s and approximate techniques such as symmetrization and averaging over
different Q’s have been used to remove the deviations from the IA.%:1%:46 However,
as we show elsewhere in these proceedings,** these procedures do not properly account
for the shifting of intensity by FSE. Therefore, the increase in scattering at p can not
be uniquely identified with the contribution from the condensate, violating one of the
central assumptions used.

The integrated intensity, @, mey be obtained directly from the results in Fig. 8
using a simple integration by parts of (5.3). Fig. 9 shows o(p.,T) versus p. and T
in both the normal and superduid phases. The most prominent feature is the gap
between the curves for the normal and superfluid between 0.5 and 1.5 A~l. The
appearance of this gap is a dramatic signal of the formation of the Bose condensate
and the size of the gap 1s proportional to the condensate fraction.

Changes in the uncondensed n(p) due to the presence of the condensate also
contribute to the scattering at small p and must be taken into account if ng is to
b2 determined. These cannot be experimentally separated from the condensate con-
ribution and we must make recourse to the theoretical predictions for the small p
behavior. The main condensate induced change, at small p, is the singular behav-
ior introduced by fluctuations in the condensate coupling to long wavelength density
fluctuations (phonons). The form for the small p singular behavior?8:27:50 s

mkgT 1 kzT
$n(p, T) = o~ = p< -2
(21r)3h2pn, p* tic (5.6)
_ me 1 < ksT )
2(27)38p p P= The

where p is the density, n, is the superfiuid fraction, and ¢ is the velocity of sound.
Grifiin®° has pointed out that the crossover between these two regimes takes place at
small p (kgT/hc is only .1 A7 at 2 K) so that the contribution of the 1/p? term is
negligible. Therefore, in the phonon region (p <~ 0.7 A=) where this result should
be valid, « is then 0.83n9p>. In addition, Grifin® has attempted to exiend this result

beyond the phonon region using the measured dispersion relation, assuming the 1/p
singular behavior is still valid.

The condensate fraction can be obtained directly from the results in Fig. 9 using
- the theoretical predictions for the condensate induced changes. Fig. 10 shows the

condensate fraction, using Griffin's®® calculation of 4 as a function of p.. Ideally,
if instrumental resolution and FSE were absent and if én*{p,T) were correct, the

cgnden:sate fraction would be a constant, independent of p.. The experimental results
differ significantly from this expectation.

The inferred ng start ai zero when p. = 0, increase to 2 maximum value in
the range of 0.6 to 0.8 A~!, and then decreases again to zero. The behavior near
Pc = 0 is not surprising since there is no § function singularity in the two Gaussian
fits that would give a rapid rise at p = 0. The width of 0.6 A~ is just the statistical
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broadening associated with the condensate peak in the deconvolutions. We would not
expect the results to be valid for p. less than this value. The decrease at large p, is
also not surprising since the scattering in the normal and superfluid phase is almost
identical in this region.

0.10 B 1 T [ [] l l i T ‘I l 0 T l'n l T 1 T 1 A
- .

0.08 |- —— T=0.35 K —
N — T=1.0 K ]

0.06 |- - T=15K
IlO A U T T=1.8 K N
0.04 :'._' IIlOIT=2.0 K .._:
N i

0.02 — . —
_ ' ]

[l ’ [ N T L | S T B W ]

0.00 Lt —
0 1 2 3 4

Fig. 10 Inferred values of the condensate fraction at temperatures of (.35,
1.0, 1.5,1.8, and 2.0 K. The curves are described in the text.
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Fig. 12 Maximum of the inferred ng versus temperature (heavy dots).
Also shown are the GFMC (cross) 2nd PIMC (diamonds) results.

The curve is a fit to the data with a critical exponent of 6 as
described in the text.
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There is a further limitation on the values of p. appropriate for the extraction
of ng. The theoretical correction for the condensate induced changes « is only valid
within the phonon region, which extends to ~ 0.8 A~l. Above this region, the
behavior of the condensate induced corrections have only been extrapolated. Thus,
above ~ 0.8 A~! the model for the condensate induced changes is suspect.

This is precisely the region where the broad maximum in the inferred condensate
occurs. Thus, we use the peak values for ng as a function of p. as representative of
the condensate fraction in the liquid. These values are shown in Fig. 11. At low
temperatures, the inferred ng is ~ 10 % , in good agreement with the GFMC and
variational results. In addition, the inferred nq, shows a slow decrease with increasing
temperature followed by a rapid drop at the superfluid transition, consistent with the
rapid depletion near the superfluid transition predicted by PIMC studies.

Finally, we note that most previous atiempts to extract the condensate?® a dif-
ferent form for the small p changes in n(p) has been used. This lead to values of the
condensate on the order of 10-13 % =at T=0, in reasonable agreement with thecry.
However, Griffin®® pointed out that this form was based on an incorrect combination
of the two limiting behaviors shown above. When the correct form for the small p
singular behavior is used values of 4-5 % at T=0 are obtained.

The temperature dependence of the condensate fraction has often been charac-
terized by fitting to a form such as

no(T) = na(0){1 — (T/Tx)°] (5.7)
where ng(0) is the limiting value of the condensate fraction at T+) and « is a critical
exponent. Past measurements have fcund a on the order of 3.6, indicating a fairly
weak temperature dependence. However, these values were based on the incorrect
form of the small p behavior of the condensate induced changes. The solid curve in
fig. 12 is a fit to the results here and gives ng = 8.0% and « = 6. The larger value of
reflects a much sharper temperature dependence than previously reported. Ascan be

seen in the figure, the condensate exhibits little temperature dependence until quite
near T and then drops quite rapidly.

In summary, il appears that resonable values for the condensate fraction in ihe
superfluid phase can be extracted using techniques such as these. However, it is es-
sential that both FSE broadening be properly taken into account and that a good
theoretical model for the condensate induced changzes be available. The values ob-
tained for ng will be valid only to the extent that both these conditions are satisfed.

CONCLUSIONS

We have now reached a stage where there is excellent agreement between the
theoretical results and the experimental observations for all aspects of the momen-
tum distribution in liquid “He. In particular, the agreement between theory and
experiment setiles the long-standing question regarding the magnitude, and even the
presence, of a Bose condensate in the superfiuid. The experimental results provide
convincing evidence for 2 Bese condensate containing 10 % of the atoms.

This recent convergence of theory and experiment has come about through sev-

_ eral simultaneous advances. Theoretically, the availability of more powerful compu-
tational techniques and facilities for the calculation of n(p) has lead to very accurate
theoretical predictions. In addition, the development of accurate theoretical predic-
tions for the FSE broadening, particularly in the superfiuid, has allowed ab initio
comparisons of the theoretical and experimental results. Experimentally, the devel-

opment of spallation sources has allowed us to obtain high quality results with good
statistical accuracy.

A better understanding of the strengths and weakness’s of DINS as applied to

determinatijons of n(p) in quantum systems has also evolved. For example, the in-
sensitivity of the observed scaitering to some of the singular behavior in n(p) is now
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understood. We have tried to convey an appreciation of where the measurements
can provide a definite test of theories and where they are not sensitive to particular
details.

Unfortunately, the original goal for much of the work in liquid helium, a direct
observation of the condensate fraction, has not come to pass. In view of our current
understanding of FSE in helium, it is unlikely that this goal will ever be reached
in deep inelastic neutron scattering experiments. While the current experimental
results do not definitively prove the existence of a condensate, they do provide such
overwhelming evidence that we can now consider the problem, for the bulk liquid at
least, solved.

We would like to acknowledge useful discussions with R.N. Silver, H.R. Glyde,
D.L. Price, C.K. Loong, P.A. Whitlock, and R.M. Panoff. This work was supported
by the National Science Foundation under grant DMR-8704288 and by OBES/DMS
support of the Intense Pulsed Neutron Source at Argonne National Laboratory under
DOE grant W-31-108-ENG-38.
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