Transuranic chemical species in groundwater. Final report

PDF Version Also Available for Download.

Description

For the past several years, staff at Pacific Northwest Laboratory (PNL) have been studying the mobility of actinides, primarily plutonium, in the groundwater of a low-level disposal site. This research has provided valuable insights into the behavior of plutonium in the groundwater. Based on the analytical data and geochemical modeling, it appears that the plutonium that enters the trench, primarily in the higher oxidation states, Pu(V,VI), is rapidly reduced as the water migrates through the highly reducing sediments of the trench and is removed from the water by adsorption of the reduced plutonium, Pu(III,IV), onto the sediments. The Pu(V,VI) also ... continued below

Creation Information

Cowan, C.E.; Jenne, E.A.; Robertson, D.E.; Nelson, D.M. & Abel, K.H. February 1, 1985.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

For the past several years, staff at Pacific Northwest Laboratory (PNL) have been studying the mobility of actinides, primarily plutonium, in the groundwater of a low-level disposal site. This research has provided valuable insights into the behavior of plutonium in the groundwater. Based on the analytical data and geochemical modeling, it appears that the plutonium that enters the trench, primarily in the higher oxidation states, Pu(V,VI), is rapidly reduced as the water migrates through the highly reducing sediments of the trench and is removed from the water by adsorption of the reduced plutonium, Pu(III,IV), onto the sediments. The Pu(V,VI) also appears to be reduced in the groundwater, although not as rapidly as in the trench sediments, and removed by adsorption. Because of the redox reduction that occurs during the migration of the groundwater, the system is not at redox equilibrium. Based on the discrepancies between the calculated and analytically determined redox distribution and charge-form speciation, the thermodynamic data bases for plutonium appear either to be missing or to contain incorrect thermodynamic data for several aqueous plutonium species, including the carbonate and organic complexes of plutonium. Further research is required to determine the kinetics of plutonium oxidation/reduction reactions in natural groundwater systems and to determine thermodynamic data for carbonate and organic complexes of plutonium. 52 references, 1 figure, 6 tables.

Notes

NTIS, PC A04/MF A01; 1.

Source

  • Other Information: Portions are illegible in microfiche products. Original copy available until stock is exhausted

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE85007387
  • Report No.: PNL-5263
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/6088822 | External Link
  • Office of Scientific & Technical Information Report Number: 6088822
  • Archival Resource Key: ark:/67531/metadc1108196

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1985

Added to The UNT Digital Library

  • Feb. 22, 2018, 7:45 p.m.

Description Last Updated

  • April 19, 2018, 8:13 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cowan, C.E.; Jenne, E.A.; Robertson, D.E.; Nelson, D.M. & Abel, K.H. Transuranic chemical species in groundwater. Final report, report, February 1, 1985; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc1108196/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.