LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

2013 St. 2 49-14

and well for the

10 - V 1 1989

THE WORKINGTED 3149

LA-UR -99-1903

DE89 014029

LA-UR--89-1903

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W 7405-ENG-36

TITLE COST PROJECTION FOR A SUPERCONDUCTING LINAC STRUCTURE

AUTHOR(S) Georg Schaffer, MP-14

SUBMITTED TO Accelerator Design Workshop Los Alamos National Laboratory February 20-25, 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy completeness or usefulness of any information, opparatus, product or process disclosed or represents that its use would not rotringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United State: Government or any agency thereof, the views and opmions of authors expressed herein do not necessarily state or reflect those of the v-mod States forcement or any agency thereof.

By a coptactor of Bostantolo computation on to an entry of the or solution on the test statement reports the entry of the test operation of Bostanton of the contract of the c

Construction for the state of the sale star dential to a second and and and a second to the basis of the sale star dential to a second and and and a second state of the sale star dential to a second second state of the sale star dential to a second se Second s Second se

in and a second se

DISTRUCTION AND A

COST PROJECTION FOR A SUPERCONDUCTING LINAC STRUCTURE

Georg Schaffer Los Alamos National Laboratory

Abstract

The increase of energy of the present 800 MeV proton linac at LAMPF to 1.6 or 2.2 GeV is of primary importance for the proposed future experimental program of this Laboratory. Layout and cost studies have been performed for a) normalconducting and b) superconducting accelerating structures. A more recent cost analysis for a superconducting structure is given in this report.

1 Reconsidering a Superconducting Structure

In March 1987, a special workshop at Los Alamos was organized to investigate the feasibility and cost of a superconducting extension of LAMPF (see Proceedings LA-UR-87-1160). At that time and as a conclusion, it was felt that the fabrication cost of superconducting cavities was prohibitively high.

Today, the rapid progress of the technique and the widening of applications justify a review of this option for LAMPF.

In particular, the limited available length on the mesa (not more than 500 m) calls for a high gradient structure.

A gradient of 5 MV₂ m is used in most of the known cases, at relatively low operating frequencies. For LAMPE, the cavity frequency to be considered would be 402.5 MHz, a value between the 350 MHz LEP and the 500 MHz DESY/HERA cavities.

Other relevant factors to be considered are

- Cavity losses (RF losses), heat conduction losses.
- The conversion factor for the cryosystem. This determines essentially the cost of energy consumption, which should be estimated for a 25-year operation period.
- Voltage/phase stability.

.

•

H. Lengeler's cost estimate of 300 kSF/m for the CERN structure has been taken as one of the main references for calculating the necessary capital investment for the structure. We added 20% installation cost and 35% contingency.

2 Information and Statements

Information and statements on the state of the technique (for high β beams).

Documents from the following Laboratories or authors were taken into account for the study:

- Los Aiamos Workshop, March 1987
- CEBAF Design Report
- CERN Reports (Lengeler, Stierlin)
- Wuppertal (H. Piel) Lectures
- DESY/HERA Reports (D. Proch, LAC 88)
- Test Reports on the CERN-LEP Structure
- KEK
- LANL (G. Lawrence, J. McGill)

3 Important Statements

- CEBAF 5 MeV/m, 1 GeV total (Rode, Phillips, Sundelip) CORNELL
- H. Piel. 400 MHz, Q. 3 + 10⁹ "conservative", calculate with conversion 400 500, rf losses at 5 MV/m = 20 watts/m. On heat conduction losses - lowest achieved at Darmstadt (1 watt/m).

On the CERN/LEP cryostat, ask <u>H. Lengler</u> for precise information on rf losses and heat conduction losses.

The rf losses of the 352 MHz 4 cell-unit are 30 watts. 4 pieces built, values measured.

For heat conduction consider rf input <u>coupler size</u>. The rf input power per meter, in our case, would be 35 ma \times 12 % duty = 4.2 ma average current, \times 5 MV/m = 21 kW/m. For a 1.5 m structure 7.5 MV \times 4.2 ma \approx 30 kW. This would be the same as for the CERN/LEP structure. <u>Conclusion</u>: = same design as at CERN.

Interatom considers the <u>CERN cryostat</u> the least expensive. Seamless connection tank/tank.

CERN tender opening for 32 structures, 4 cell, by Feb. 24.

3. CERN SPS LEP longterm test.

D. Boussard et al. (to be presented at the Chicago Conference) 4-cell 350 MHz Nb, installed August 1987 in SPS for test. Operation at 7 MV/m. Design field 5 MV/m, measured $Q=2...3 \times 10^9$. 4000 hours operation at 4.5 K.

- 4. <u>DESY</u> (D. Proch).
 500 MHz, HERA 5 MV/m, Q = 2 × 10⁹.
 rf losses 10 watts/cell, 30 cm/cell → 33 W/m.
 <u>Cost</u> 400 kDM/m active, without mounting, without cryotest. Cryoplant at HERA operates with conversion 300.
- 5. KEK

16 single resonators 500 MHz. 5.5 - 8.4 MV/m with tuners.

 LAMPF (G. Lawrence) rf loss estimate 20 Watts/m, the heat conduction loss should be about 20 Watts/m (for the CERN structure).

Cavity and Cryostat Design

A few examples (Figs. 1 to 4) should illustrate the various solutions applied at CEEN, CEBAE and DESY

4 Conclusion for Cost Projection

be order to establish cost spreadsheets and charts for a superconducting extension of LAMPF, most of the comments mentioned above were taken into account.

It was decided to:

- take RF losses of <u>20 Watt/m</u> at 5 MV/m
- take the heat conduction loss as 20 Watt/m
- take a <u>conversion</u> factor <u>500</u>
- take the structure cost of CERN and DESY
- follow CERN tender results (for confirmation or updating of the structure cost).

5 Results for 800 MeV and 600 MeV Extensions

Charts 1 and 2 show the dependence of

- Linac Equipment Cost
- 25 year lifetime cryo-cost and
- the total cost including 25 year rf power consumption cost.

For reasons of simplicity, these values were shown for only four different gradients, namely 1 MeV/m, 2 MeV/m, 5 MeV/m, and 10 MeV/m.

A few other values are contained in the corresponding Tables 1 and 2.

Not included in the estimates are internal personnel costs

800 MeV High-Duty-Factor Extension:

The necessary capital investment for the structure \sim including associated equipment — is 48 M\$, and about 13 M\$ for the rf power sources. These values apply for a gradient of 5 MeV/m.

We have based the capital investment for rf power amplifiers on the best known value of 0.5 M\$ per 1.2 MW module, which is valid for the current 805 MHz modules and should not change much for a 462.5 MHz frequency.

In fact, a promising candidate for rf power amplification at 400 MHz should be the klystrode (see separate progress report by M. B. Shrader)

600 MeV Low-Duty-Factor Extension:

We also show the cost of a subsequent linac section of 600 MeV, which would be of interest for injection into the AHF synchrotron. This section would operate with a relatively low duty factor. We have assumed a 1% duty cycle, and tentatively, a low rf efficiency.

The capital investment for the structure would be 36 M plus about 10 Ms for rf power amplifiers.

Lifetime Operating Cost:

In a normalconducting structure with modest beam current the lifetime operating cost is mainly determined by the copper loss in the structure. In comparison to this, the lifetime-cryo-cost for a superconducting structure can be expected to be much lower, typically by a factor 3 to 5. An even better result may be possible with improved cryo-systems (with conversion factors below 500). As to the ratio of rf lifetime power cost to cryo-cost, this ratio would be approximately 3:2 or 1:3, respectively, in our two examples.

Required Length of Buildings:

The structure length in the worksheets is active length. To include space required for focusing quadrupoles and other elements, the total length of the sections will increase by about 85%, based on a packing factor of 54%.

This would lead to about <u>300 m for the 800 MeV extension</u>, and about <u>225 m</u> for the 600 MeV extension.

6 Remarks on Implementation

Superconducting rf structures have so far been applied to CW electron and positron beams.

Application results for pulsed proton beams are not known (at least not to the author).

The excitation of rf cavities of extremely high Q values with high-current beam pulses needs particular attention.

In order to make a "low risk investment" with a "high risk technique" (if this qualification is justified), the following steps are recommended:

- tentative replacement of one or two 805 MHz linac sections by 402.5 MHz superconducting sections in the existing LAMPF linac;
- further steps only after beam tests and acceleration tests have been convincing;
- operation of <u>several superconducting sections with proper amplitude and phase</u> tolerances. For this, it will be necessary to carefully
 - 1. study transients
 - 2. study higher-order modes
 - 3. study feedback and feedforward.

The proper solution of these problems is mandatory and represents a big challenge for good rf engineers. A success would be an important step forward in accelerator technique.

7 Acknowledgment

The author has been stimulated by Arch Thiessen to undertake this study, and has profited very much from his suggestions and critics. Special thanks are also due to H. Piel, D. Proch, and G. Lawrence for valuable information.

Hi Duty F	actor Sup	erc Lina	Cost	Spreadshe	pet 2/15	189 ISC	·)	<u> </u>	
Hoadroom	1 1		0000	opredesite		100 100	ý		
Dena	1.1								
Pmax	1.2	MW						· • • • • • •	
Pavg	0.144	MW							
eff	0.5								
RF∞st	0.5	M\$/mod	ule	hrspyear	4000	hrs/yı	·		
Life	25	Years		kwh	0.05	\$/kW-	hr		
Str	0.3	M\$/met	er	Power	0.2	M\$/MWyear			
Zshunt	1000	GOhm/meter							
ďE	800	MeV		Loss	0.02	kW/m	at 5 MV	/m+20 V	V/m
ibeam	0.035	Amps		Conversio	500				
duty	0.12						Linac	Lifetime	
		Peak RF	RF	Struct.	Lifetim	ne	Equipm.	Cryo	
Grad	Length	Power	Cost	Cost	Power	Total1	Cost	Cost	Total2
(MeV/m)	(meters)	(MW)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)
1	800	28	12.8	240	33.6	286	252.8	46.82	333
2	400	28	12.8	120	33.6	166	132.8	26.97	193
5	160	28	12.8	4 8	33.6	94.4	60.83	20.75	115
10	80	28	12.8	24	33.6	70.4	36.83	28.16	98.6
1.6	500	28	12.8	150	33.6	196	162.8	31.57	228
3.2	250	28	12.8	7 5	32.6	121	87.83	21.48	143
8	100	28	12.8	30	33.6	76.4	42.83	24.53	101

.

			· · · · · · · · · · · · · · · · · · ·	And and a second se	and the second division of the second divisio	the second s	a sector of the	The second se	
Lo Duty F	actor Sur	perc. Lir	nac Co	st Spreadsh	eet 2/17/89	(Sc)			1
Headroom	1.1								
Pmax	1.2	MW							
Pavg	0.144	MW				l			
eff	0.2	['							1
RFcost	0.5	M\$/mo	dule	hrspyear	4000	hrs/y	r		1
Life	25	Years		kwh	0.05	\$/kW	- h r		1
Str	0.3	M\$/me	eter	Power	0.2	M\$/M	Nyear		
Zshunt	1000	GOhm/	meter						
Œ	600	MeV		Loss	0.02	kW/m	at 5 MV	//m+20 V	V/m
ibeam	0.035	Amps		Conversion	500				
duty	0.01						Linac	Lifetime	(
		Peak	RF	Struct.	Lifetime		Equipm.	Cryo	l
Grad	Length	Power	Cost	Cost	Power Cost	Total1	Cost	Cost	Total2
(MeV/m)	(meters	(MW)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)	(M\$)
1	600	21	9.63	180	5.25	195	189.6	35.11	230
2	300	21	9.63	90	5.25	105	99.63	20.22	125
5	120	21	9.63	36	5.25	50.9	45.63	15.56	66.4
10	60	21	9.63	18	5.25	32.9	27.63	21.12	54
									1
1.6	375	21	9.63	112.5	5.25	127	122.1	23.68	151
3.2	187.5	21	9.63	56.25	5.25	71.1	65.88	16.11	87.2
8	7 5	21	9.63	22.5	5.25	37.4	32.13	18.4	55.8

Table 2

350 MHz miobium cavity foreseen for the energy upgrade of LEP The whole unit has a length of 2.4 m.

(Piel 88)

Fig. 1

Fig. 2

(D. Proch 88)

Fig. 3

Fig. 4

-

:

(B. Lengeler, CERN 87)

•