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ABSTRACT

Nonrelativistic models of nuclear systems have provided important insight into nu-
clear physics. In future experiments, nuclear systems will be examined under extreme
conditions of density and temperature, and their response will be probed at momentum
and energy transfers larger than the nucleon mass. It is therefore essential to develop
reliable models that go beyond the traditional nonrelativistic many-body framework.
General properties of physics, such as quantum mechanics, Lorentz covariance, and mi-
croscopic causality, motivate the use of quantum field theories to describe the interact-
ing, relativistic, nuclear many-body system. Renormalizable models based on hadronic
degrees of freedom (quantumn hadrodynamics) are presented, and the assumptions un-
derlying this framework are discussed. Some applications and successes of quantum
hadrodynamics are described, with an emphasis on the new features arising from rela-
tivity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus
scattering, and the inclusion of zero-point vacuum corrections. Current issues and prob-
lems are also considered, such as the construction of improved approximations, the full
role of the quantum vacuum, and the relationship between quantum hadrodynamics
and quantum chromodynamics. We also speculate on future developments.
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INTRODUCTION AND MOTIVATION

The study of atomic nuclei plays an important rolc in the development of many-body
theories. Since early experimental probes of the nucleus were limited to energy scales
considerably less than the nucleon mass M =~ 939 MeV/c?, the nucleus was initially
described as a collection of nonrelativistic nucleons interacting through an instantaneous
two-body potential, with the dynamics given by the Schrédinger equation. In this
approach, the two-body potential is fit to the empirical properties of the deuteron
and low-energy nucleon-nucleon (NN) scattering, and one then attempts to predict
the properties of many-nucleon systems. This is a difficult problem, because the NN
potential is strong, short-ranged (R ~ 1fm), and has a very repulsive central core.
Nevertheless, over a period of many years and with the advent of more and more
powerful computers, reliable methods have been developed for solving the nonrelativistic
nuclear many-body problem. At present, essentially exact solutions exist for both the
three-nucleon system and for “nuclear matter,” the hypothetical uniform system with
equal numbers of neutrons and protons (N = Z) obtained by turning off the Coulomb
potential and letting the total number of baryons B = N + Z go to infinity. Similar
results for up to 8 (and possibly 16) nucleons should Se obtained in the near future.

On balance, these microscopic nonrelativistic calculations are reasonably successful.
With modern NN potentials, the *He system is underbound by ~ 0.8 MeV (about 10%),!
and the calculated rms charge radius is = 9% too large. The predicted energy/nucleon
of nuclear matter at equilibrium is close to the empirical value

(E/B) = M ~ -16 MeV , (1)

but the saturation density, which is related to the Fermi wavenumber kr through py =
BV = 2k}/37%, is too high, as the calculated value is ky & 1.5fm™!, while the empirical
result is kr &~ 1.3fm~!. In addition, some general features of nuclear structure are
qualitatively understood, for example, the importance of the Pauli principle in reducing
NN correlations, which justifies both the shell model and the single-rucleon optical
potential, and the interplay of single-particle and collective degrees of freedom, which
determines the shape of the nucleus. By adding a small, phenomenological, density-
dependent interaction to the free NN potential, one can quantitatively reproduce the
single-particle structure and charge and mass densities of a large number of nuclei.?
Furthermore, by using nuclear current operators constructed from the properties of free
nucleons, an accurate picture of weak and electromagnetic interactions in nuclei has
emerged. These successful results have stimulated the development of a diverse array
of nuclear models that can be applied to nuclear structure and reactions throughout
the periodic table.3

In spite of these successes, there are important reasons for developing a relativistic
description of nuclear systems. For example, the properties of neutron stars depend on
the neutron matter equation of state at densities up to an order of magnitude higher
than those observed in ordinary nuclei; nucleon velocities are certainly relativistic at
these densities. In addition, although the empirical low-energy NN scattering amplitude
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has conventionally been parametrized using Galilean invariants, a decomposition using
Lorentz invariants reveals surprising new features. In particular, the empirical Lorentz
scalar, vector, and pseudoscalar amplitudes are much larger than the amplitudes de-
duced from the nonrelativistic decomposition. These large amplitudes have important
consequences for the spin-, velocity-, and density-dependence of the NN interaction and
are at the heart of recent relativistic descriptions of nucleon-nucleus scattering that
reproduce spin observables in a very economical fashion.4™®

Furthermore, medium-energy accelerators that probe nuclei at distance scales less
than 1fm reveal that the conventional framework is inadequate for a complete under-
standing of ordinary nuclei. For example, experiments on the electrodisintegration of
the deuteron show unambiguously the presence of pion-exchange currents, which arise
when the incoming (virtual) photon couples to a pion being exchanged between two
nucleons. In addition, medium-energy pion-nucleus and proton-nucleus scattering in-
dicate the importance of baryon resonances, such as the A(1232), in nuclear reactions.
Thus both the dynamical nature of the NN interaction and the structure of the nucleon
itself become important at an energy scale of several hundred MeV. As supporting ev-
idence for this new dynamics, accurate microscopic meson-exchange models have been
constructed to describe the NN interaction. These contain several mesons, the most im-
portant of which are the »(0~,1), ¢(0%,0), w(1~,0), and p(1~,1), where the indicated
quantum numbers denote spin, parity, and isospin, together with both N and A degrees
of freedom. These meson-exchange models reproduce the large Lorentz-invariant scat-
tering amplitudes mentioned earlier. Nevertheless, if one adheres to a nonrelativistic
many-body description of nuclear structure, the new dynamical features can be incor-
porated into the conventional framework only by reducing them to an approximate form
that is appropriate for the Schrodinger equation.

In future experiments, a new generation of accelerators will allow us to study nuclei
at higher energies, at shorter distances, and with greater precision than ever before. For
example, proton-nucleus collisions will provide complete spin information on both the
projectile and the target, electron-nucleus scattering will sample distance scales down
to tenths of a Fermi, and ultra-relativistic heavy ion collisions may produce nuclear
densities of 10 times equilibriumn density at temperatures of 100 to 200 MeV. These
experiments will clearly involve physics that goes far beyond the Schrodinger equation,
such as relativistic motion of the nucleons, dynamical meson exchanges and baryon
resonances, modifications of hadron structure in the nucleus, and the dynamics of the
quantum vacuum, which may include the production of a quark-gluon plasma. The
challenge to theorists is to develop techniques that describe this new physics, while
maintaining the important general properties of quantum mechanics, covariance, elec-
tromagnetic gauge invariance, and microscopic causality.

Since quantum chromodynamics (QCD) of quarks and gluons appears to be the
fundamental theory of the strong interaction, it is natural to look to QCD as the means
to describe this new physics. While this may be desirable in principle, there are many
difficulties in practice, primarily because the QCD coupling is strong at distance scales
relevant for the vast majority of nuclear phenomena. Although significant progress has

2



been made in the last 10 years in performing strong-coupling lattice calculations, actual
QCD predictions at nuclear length scales with the precision of existing (and anticipated)
data are not presently available. This situation will probably persist for some time,
particularly with regard to many-nucleon systems. Even if it becomes possible to use
QCD to describe many-nucleon systems, this description is likely to be awkward, since

quarks cluster into hadrons at low energies, and hadrons (not quarks or gluons) are the
* degrees of freedom actually observed in experiments.

In contrast, a description based on hadronic degrees of freedom is attractive for
several reasons. First, these variables are the most efficient at normal densities and low
temperatures, and for describing particle absorption and emission. Moreover, hadronic
calculations can be calibrated by requiring that they reproduce empirical nuclear prop-
erties and scattering amplitudes; we can then extrapolate to the extreme situations
mentioned earlier. Finally, although hadronic models must ultimately fail when the
quark and gluon dynamics becomes essential, we must understand the limitations of
hadronic models to isolate and identify true signatures of subhadronic dynamics.

Our basic goal is therefore to formulate a consistent microscopic treatment of nu-
clear systems using hadronic (baryon and meson) degrees of freedom. Since the physical
phenomena of interest are relativistic and involve particle production and absorption,
the only known consistent framework for their description is relativistic quantum field
theory based on a local, Lorentz-invariant lagrangian density. We will refer to these
hadronic relativistic field theories as quantum hadrodynamics, or QHD.?” QHD is consis-
tent in the same sense as any other relativistic quantum field theory: the assumptions
about the relevant degrees of freedom, the form of the lagrangian, and the empirical
data that determine the parameters are made at the outset, and one then attempts to
extract concrete predictions from the implied formalism. In principle, these assumptions
permit the formulation of “conserving approximations”®? that maintain the important
general properties mentioned above. Calculations can ther: be compared to the data to
decide where QHD succeeds and where it fails.

We emphasize, however, that QHD still contains strong couplings, as does any treat-
ment of the nuclear many-body problem. It is therefore necessary to develop reliable
nonperturbative approximations, so that unambiguous comparisons between theory and
experiment can be made. The formulation of practical, reliable techniques for finite-
density calculations in strong-coupling relativistic quantum field theories is basically an
unsolved problem.!®'? The development of such tools in a hadronic field theory is not
oniy useful in its own right, but it may also provide insight into similar approaches for
QCD. Nuclear many-body theory has had such influence in other areas of physics in
the past.

We shall also require that QHD be a renormalizable theory. This means that
any QHD model can be characterized by a finite number of coupling constants and
masses.'3! Thus the model is self-contained, and calculations can be ca-ried out be-
yond the “tree level” without introducing additional parameters (such as vertex cutoffs)
determined solely by short-distance phenomena. This minimizes the sensitivity of cal-



culated results to short-distance input. The dynamical assumption underlying renor-
malizability is that the quantum vacuum and the internal structure of the hadrons can
be described in terms of hadronic degrees of freedom alone. This assumption must ulti-
mately break down, since at very short distances, hadrons are composed of quarks and
gluons. For QHD to be useful, nuclear observables of interest must not be dominated
by contributions from short distances, where QHD is inappropriate. This conjecture
must be tested, and its limitations uncovered, by performing detailed calculations in a
consistent relativistic framework.

There are alternative methods for describing hadronic and nuclear systems that go
beyond the Schrédinger equation. Several meson-exchange models of the NN inter-
action have been developed and applied to nuclear systems, both relativistically and
nonrelativistically.’®>!? These models focus primarily on the precise reproduction of the
two-nucleon data, and they contain many mesonic degrees of freedom and adjustable
parameters. These models are not renormalizable, and the number of parameters and
the form of the interactions are unconstrained, except by the desire to reproduce the
data. Typically, the treatment of the quantum vacuum is either incomplete or ne-
glected entirely,'® making it impossible to formulate conserving approximations. These
features make it difficult to distinguish between hadronic dynamics and dynamics that
arises from the underlying QCD degrees of freedom.

For these reasens, we will base our analysis on QHD as defined above, which pre-
sumably provides the correct description of many-baryon systems at large distances.
Renormalizability restricts the form of the QHD lagrangian and the number of param-
eters. In a sense, renormalizable QHD is a means of defining a purely hadronic theory.
By considering only a few hadronic degrees of freedom, we can study the role of meson
dynamics and relativity in nuclear systems as simply as possible. Moreover, we have
a self-contained model for studying the formal aspects of the relativistic many-body
problem with strong couplings. Nevertheless, QHD becomes increasingly comglicated
at short distances, where a hadronic description must ultimately break down. Hope-
fully, the general features discussed below will remain valid even if the constraint of
renormalizability at the hadronic level turns out to be too restrictive.

Due to limited space, this paper deals with only a fraction of the areas of current
interest in QHD. We focus first on the simple model QHD-I,'® which contains neutrons,
protons, and the isoscalar, Lorentz scalar and vector mesons ¢ and w. The development
is based on the relativistic mean-field and Hartree approximations, and their application
to both infinite nuclear matter and the ground states of atomic nuclei. We discuss soine
successes of this model, including the nuclear equation of state, the shell model, nucleon-
nucieus scattering, and the addition of zero-point vacuum corrections. We concentrate
on the new features that arise in a relativistic framework and emphasize the important
concepts of Lorentz covariance and self-consistency. In the second half of this work,
we consider QHD-11,202! the extension of QHD-I to include isovector 7 and o mesons.
QHD-I1 is based on the so-called linear o model,?>"2* which contains neutrons, protons,
pions, and neutral scalar mesons interacting in a chirally invariant fashion. We also
discuss extensions beyond the relativistic mean-field and Hartree approximations, as
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a means for constructing reliable calculational schemes, as well as recent efforts to
incorporate the full role of the quantum vacuum and relativistic pion dynamics in a
consistent fashion. At the end, we return to consider the relationship between QHD
and QCD and to speculate on future developments.

The reader is assumed to have a working knowledge of relativistic quantum field
theory, canonical quantization, and the use of path integrals at zero temperature. For
general background on relativistic field theory, the reader can turn to any of a number
of texts;®* a recent review exists for background on quantum hadrodynamics.”

ACCOMPLISHMENTS

A Simple Model

Quantum hadrodynamics as defined above is a general framework for the relativistic
nuclear many-body problem. The detailed dynamics must be specified by choosing a
particular renormalizable lagrangian density. To illustrate the relativistic formalism as
simply as possible, we consider a mode] called QHD-I, which contains fields for baryons

[11) = (z” )] and neutral scalar (¢) and vector (V*#) mesons.!®

The lagrangian density for this model is given by’ (A =c=1)

L = P[1,(i0* = g, V*) = (M = 9,8)|¥ + 1(8,60"6 — m3¢?)
- LiF, F* +1m¥V,V* 4 6L, (2)

where F#* = 9*V¥ — 3*V* and 6L contains counterterms. The parameters M, g,,
gv, m,, and m, are phenomenclogical constants that may be determined (in princi-
ple) from experimental measurements. This lagrangian resembles massive QED with
an additional scalar interaction, so the resulting relativistic quantum field theory is
renormalizable.3' The counterterms in 6L are used for renormalization.

The motivation for this model has evolved considerably since it was introduced.
As discussed in the Introduction, when the empirical nucleon-nucleon (NN) scattering
amplitude is described in a Lorentz-covariant fashion, it contains strong isoscalar scalar
and four-vector pieces,*® and the simplest way to reproduce these pieces is through the
exchange of neutral scalar and vector mesons. The neutral scalar a~1 vector components
are the most important for describing bulk nuclear properties, which is our main concern
here. Other Lorentz components of the NN interaction, in particular the terms arising
from pion exchange, average essentially to zero in spin-saturated nuclear matter and
may be incorporated as refinements to the present model. The important point is that
even in more refined models, the dynamics generated by scalar and vector mesons will
remain; thus it is important te first understand the consequences of these degrees of
freedom for relativistic descriptions of nuclear systems.

The field equations for this model follow from the Euler-Lagrange equations and



can be written as

(88" + m)¢ = g9V, (3)
8,F“* + m*V¥ = g, ¥v*y, (4)
(v (10, — gv Vi) = (M = ge@)]¥ = 0. (5)

(The counterterms have been suppressed.) Equation (3) is simply the Klein-Gordon
equation with a scalar source. Equation (4) looks like massive QED with the conserved
baryon current

B* = (ps, B) = ¥v*v, 0,B* =0 (6)

rather than the (conserved) electromagnetic current as source. Finally, eq. (5) is the
Dirac equation with scalar and vector fields introduced in a minimal fashion. These
field equations imply that the canonical energy-momentum tensor T is conserved
(8, T* = 9,T* = 0).

When quantized, eqgs. (3)-(5) become nonlinear quanturs field equations, whose exact
solutions are very complicated. In particular, they describe mesons and baryons that
are not point particles, but rather objects with intrinsic structure due to the implied
(virtual) meson and baryon-antibaryon loops. It is here that the dynamical input of
renormalizability is apparent, since we are assuming that this intrinsic structure (or at
least the long-range part of it) can be described using hadronic degrees of freedom. The
validity of this input and its limitations have yet to be tested consistently within the
framework of QHD, and we will return to this question later.

We also expect the coupling constants in egs. (3)-(5) to be large, so perturbative
solutions are not useful. Fortunately, there is an approximnate nonperturbative solution
that should become increasingly valid as the nuclear density increases. Consider a
system of B baryons in a large box of volume V at zero temperature. Assume that
we are in the rest frame of the matter, so that the baryon flux B = 0. As the baryon
density B/V increases, so do the source terms on the right-hand sides of eqs. (3) and
(4). When the sources are large, the meson field operators can be replaced by their
expectation values, which are classical fields:

¢— (@) =6, V¥ (V¥)=(W,0). (7)

For our stationary, uniform system, ¢, and V; are constants that are independent of
space and time, and since the matter is at rest, the classical three-vector field V = 0.

We emphasize the strategy involved in the preceding “mean-field” approximation.
First, the resulting mean-field theory (MFT) should give the correct solution to the field
equations in the high-density limit. More importantly, however, the MFT serves as a
starting point for calculating corrections within the framework of QHD, using Feynman
diagrams, path-integral methods, and so forth, as we will discuss later in this work.
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The Nuclear Matter Equation of State

When the meson fields in eq. (2) are approximated by the constant classical fields
of eq. (7), we arrive at the mean-field lagrangian density

Lyrr = E[i'Y“au - gvVovo — (M - gn¢o)]‘/’ - %m3¢3 + %m3V02 . (8)

(The counterterms have been suppressed.) The conserved baryon jour-current remains
as in eq. (6), and the canonical energy-momentum tensor becomes

Tikz = 197*0"% = Y(mlVg — migl)g" . (9)

As discussed by Freedman,® there is no need to symmetrize T#" if we consider only
uniform nuclear matter.

Since the meson fields are classical, only the fermion field must be quantized. The
Dirac field equation follows from Ly pr:

[9.0* = gv7%Vo — (M — g.¢,)]¥(t,x) =0, (10)

and since this equation is linear, it can be solved exactly. Note that the scalar £:!4 &0
shifts the baryon mass from M to M* = M — g,¢,, while the vector field Vo shifts the
energy spectrum. We look for normal-mode solutions with both positive and negative
energies, as is natural for the Dirac equation. These solutions can be used to define
quantum field operators ¥ and %! in the usual fashion, and by imposing the familiar
equal-time anticommutation relations, we can construct the baryon number operator
B = [d% ¥+°¢ and the four-momentum operators P# = (H P) = [d3% T°#, with the
results

— (0|H|0) = Hyupr + 6H , (11)
Hurs = 1 (k* + M*2)V3 (A} Ay, + B}, B,,) + 9. Vo B

- + 1(mid} —miVS)V, (12)

_§ [(k’ + M*)V2 _ (k2 4 Mz)m] : (13)

B= E.;(AL\ALX - B{,\By,), (14)

P= % k (A}, Ay, + BL,By,). (15)

Here the index A denotes both spin and isospin projections. The quantities Ak,\’ Bk,\’
Ay,, and B,, appearing in these expressions are creation and destruction operators
for (quasi)baryons and (quasi)antibaryons with shifted mass and energy, and B is the
baryon number operator, which clearly counts the number of baryons minus the number
of antibaryons. The correction term §H arises from placing the operators in Hysr in
“normal order” and represents the contribution to the energy from the filled Dirac sea,
where the baryon mass has been shifted by the uniform scalar field ¢,.” We will return
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later to discuss this “zero-point energy” correction; for now let us concentrate on the

MFT hamiltonian defined by eq. (12).

Since Hypr is diagonal, this model mean-field problem has been solved ezactly once
the meson fields are specified; their determination is discussed below. The solution
retains the essential features of QHD: relativistic covariance, explicit meson degrees
of freedom, and the incorporation of antiparticles. Furthermore, it yields a simple
solution to the field equations that should become increasingly valid as the baryon
density increases. Since B and P are also diagonal, the baryon number and total
momentum are constants of the motion, as are their corresponding densities pg and P,
since the volume is fixed.

For uniform nuclear matter, the ground state is obtained by filling energy levels
with spin-isospin degeneracy 4 up to the Fermi momentum ky. (The generalization to
finite temperature will be discussed at the end of this section.) The Fermi momentum
is related to the baryon density by

- k"a_ Y .3
PB—W/O h =3k, (16)

where the degeneracy factor v is 4 for symmetric (N = Z) matter and 2 for pure neutron
matter (Z = 0). The constant vector field V5 can be expressed in terms of conserved
quantities from the expectation value of the vector meson field equation (4):

v

W= FPB- (17)

v

The expressions for the energy density and pressure now take the simple forms’

PR A L YRR VAL / &% E*(k), (18)
2mi P2 T 32 (2 E
_ 9 . O had k?
P= e bh - (M M)’+-(2 ALY =T (19)

where E*(k) = (k? + M")‘/’. The first two terms in eqgs. (18) and (19) arise from the
classical meson fields. The final terms in these equations are those of a relativistic gas
of baryons of mass M*. These expressions give the nuclear matter equation of state at
zero temperaturs in parametric form: £(pg) and p(pg).

The constant scalar field ¢,, or equivalently the effective mass M*, can be determined
thermodynamically at the end of the calculation by minimizing £(M*) with respect to
M*. This produces the self-consistency condition

2 kg *
Mr=M- 2T [T ek M

m3 (21)3 E*(F)
2
—M-j;.ww M~ (20)

which also defines the scalar density p,. Equation (20) is equivalent to the MFT scalar
field equation for ¢,. Note that the scalar density is smaller than the baryon density
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[eq. (16)] due to the factor M*/E*(k), which is an effect of Lorentz contraction. Thus
the contribution of rapidly moving baryons to the scalar source is significantly reduced.
Most importantly, eq. (20) is a transcendental self-consistency equation for M* that
must be solved at each value of kz. This illustrates the nonperturbative nature of the
mean-field solution.

An examination of the analytic expression (18) for the energy density shows that
the system is unbound (£/ps > M) at either very low or very high densities.!® At
intermediate densities, the attractive scalar interaction will dominate if the coupling
constants are chosen properly. The system then saturates. Nuclear matter with an
equilibrium Fermi wavenumber k2 = 1.30 fm™! and an energy/nucleon (£/ps — M) =
—15.75 MeV is obtained if the couplings are chosen as(®)

2 2
Cl=g? (%) =3574, C!= 93(’:2) = 273.8. (21)

v

The nuclear compressibility in this approximation is 545 MeV. Note that only the ratios
of coupling constants to meson masses enter in eqs. (18), (19), and (20). The resulting
saturation curve is shown in fig. 1. In this approximation, the relativistic properties of
the scalar and vector fields are responsible for saturation; a Hartree-Fock variational
estimate built on the nonrelativistic (Yukawa) potential limit of the interaction shows
that such a system is unstable against collapse.

The solution of the self-consistency condition (20) for M* yields an effective mass
that is a decreasing function of the density, as illustrated in fig. 2. Evidently, M*/Af
becomes small at high density and is significantly less than unity at ordinary nuclear
densities. This is a consequence of the large scalar field g,#,, which is approximately
400 MeV and which produces a large attractive contribution to the energy/baryon.
There is also a large repulsive energy/baryon from the vector field g,V = 350 MeV.
Thus the Lorentz structure of the interaction leads to a new energy scale tn the problem,
and the small nuclear binding energy (=~ 16 MeV) arises from the cancellation between
the large scalar attraction and vector repulsion. As the nuclear density increases, the
scalar source p, becomes small relative to the vector source pp, and the attractive
forces saturate, producing the minimum in the binding curve. Clearly, because of the
sensitive cancellation involved near the equilibrium density, corrections to the MFT
must be calculated before the importance of this new saturation mechanism can be
assessed. Nevertheless, the Lorentz structure of the interaction provides an additional
saturation mechanism that is not present in the nonrelativistic potential limit, as this
limit ignores the distinction between p, and pp.

The corresponding curves for neutron matter obtained by setting ¥ = 2 are also
shown in figs. 1 and 2, and the equation of state (pressure vs. energy density) for
neutron matter at all densities is given in fig. 3. In this mean-field model, there is a
van der Waals (liquid-gas) phase transition, and the properties of the two phases are
deduced through a Maxwell construction. At high densities, the system approaches the

())The values C? = 267.1 and C? = 195.9 used in ref. 7 yiel k3 = 1.42 fm™!. This is set L1 in
table 1 below.



Energy/Nucleon (QHD-I)
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Figure 1: Saturation curve for nuclear matter. These results are calculated in

the relativistic mean-field theory with baryons and neutral scalar and vector
mesons (QHD-I). The coupling constants are chosen to fit the value and po-
sition of the minimum and are given in row L2 of table 1. The prediction for
nctiron matter (v = 2) is also shown.

MFT Effective Mass

1.0 (QHD-I)
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Figure 2: Efective mass M*/M as a function of density for nuclear (y = 4)

and neutron (54 = 2) matter based on fig. 1.
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Neutron Matter
Equation of State
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Figure 3: Predicted equation of state for neutron matter at all densities. The

dotted line represents the causal limit p = £. The density regime relevant for
neutron stars is also shown.

“causal limit” p = £ representing the stiffest possible equation of state. Thus we have
a simple, two-parameter model that is consistent with the equilibrium point of normal
nuclear matter and that allows for a covariant, causal extrapolation to any density.

The neutron matter equation of state shown in fig. 3 can be used in the Tolman-
Oppenheimer-Volkoff equation for the general-relativistic metric® to give the masses
of neutron stars as a function of the central density. This MFT gives a maximum
neutron star mass of ~ 2.6 solar masses; this is large enough to accommodate the
largest observed neutron stars, which contain roughly 1.5 solar masses. The density
at the center of the star is approximately six times larger than the central density in
05Pb, and the asymptotic approach of the equation of state to the causal limit is already
relevant in this regime. Moreover, although the low-density behavior of nuclear matter
is sensitive to the nearly exact cancellation between attractive scalar and repulsive
vector components, the stiff high-density equation of state is determined simply by the
Lorentz structure of the interaction; the scalar attraction saturates completely at high
densities, producing an essentiaily massless gas of baryons interacting through a strong
vector repulsion, which leads to a stiff equation of state.3* Note that the onset of the
asymptotic regime occurs at densities similar to those in the interiors of neutron stars.

Figite Nuclei

We now generalize the results of the preceding subsection to study atomic nuclei.
We continue to work in the mean-field approximation to QHD-I, but since the system
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now has finite spatial extent, these fields are spatially dependent. If we initially restrict
consideration to spherically symmetric nuclei, the meson fields depend only on the
radius, and since the baryon current is conserved, the spatial part of the vector field V
again vanishes.” Thus the mean-field QHD-I lagrangian of eq. (8) becomes

LO = P[i7,0% = gvroVo— (M — gud0) [0 = 1[(V )  +mIg2] + L{(V Vo)  + m3V], (22)

and the Dirac equation for the baryon field is

{i1.0" - gu10Vo(r) — [M — gudo(r)]}(2) = (23)
Appropriate values for the scalar and vector couplings (g, and g,) and masses (m, and
m,) will be given below.

Although the baryon field is still an operator, the meson fields are classical; hence
eq. (23) is linear, and we may again seek normal-mode solutions of the form ¥(z) =
¥(x) e~*Et, This leads to the eigenvalue equation

hp(x) = {—ia -V + g, Vo(r) + BIM = gudo(r)]}¥(x) = E9(x), (24)

which defines the single-particle Dirac hamiltonian h. Equation (24; has both positive-
and negative-energy solutions U(x) and V(x), which allow the field operators to be
constructed in the Schrodinger picture. The positive-energy spinors can be written as

i[Guee(r)/ 7] Bum )c
[ Faa(r) /7] ®em ]

where n is the principal quantum number, ®,,, is a spin-1/2 spherical harmonic:3®

Ua(X) = Uneme(X) = ( (25)

®m = z \lml%m,llzjm) Ve ,,.‘(Q) (26)
mem,
. k>0,
i=Iel=3 ‘—{ —(x+1), k<0, (27)
and (; is a two-component isospinor labeled by the isospin projection t. (We take t = 7
for protons and t = —1 for neutrons.) The phase choice in eq. (25) produces real bound-

state wave functions F and G for real potentials ¢, and V;, and the normalization is
given by

[ ar(1Ga(r)P + IFu(r)?) = 1, (28)
which ensures unit probability to find each nucleon somewhere in space.

The classical meson field equations follow from eq. (22) and resemble egs. (3) and (4)
restricted to static, spherically symmetric fields. With the general form for the spinors
in eq. (25), we can evaluate the nuclear densities, which serve as source terms in the
meson field equations. Assume that the nuclear ground state consists of filled shells
up to some value of n and «, which may be different for protons and neutrons; this is
appropriate for doubly magic nuclei. In addition, assume that all bilinear products of
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baryon operators are normal ordered, which removes contributions from the negative-
energy spinors V,(x). This amounts to neglecting the filled Dirac sea of baryons and
defines the mean-field approximation. The zero-point terms arising from V,(x) will be
included later.

With these assumptions, the local baryon (pp) and scalar (p,) densities become

f,f(:f)} S0 (7 )t = (B2 (Gl £ 1F0P), (29)

which holds for filled shells, as appropriate for spherically symmetric nuclei. The re-
maining quantum numbers are denoted by {a} = {a;m} = {n,x,t;m}. Notice that
since the shells are filled, the sources are spherically symmetric.

The sources produce the meson fields, which satisfy static Klein-Gordon equations:

d"' 2 d

ar? o(r) + rdar ¢o( ) - mfd)o(r) = —gups(T) (30)
SV + 2 di Vo(r) = miVa(r) = =gupa(r). G

The equations for the baryon wave functions follow upon substituting eq. (25) into eq.
(24), which produces

< Gulr) + 2 Gulr) = [Ea - 0Vo(r) + M = gubs(r)| F(r) =0, (32)
i Fu(r) = Z Fa(r) + [Ea = 9.Vo(r) = M + 9,6(r)] Ga(r) = 0. (33)

Thus the spherical nuclear ground state is described by coupled, ordinary differential
equations that may be solved by an iterative procedure, as discussed in ref. 36. They
contain all information about the static ground-state nucleus in this approximation.

The mean-field bamiltonian can be computed just as for infinite matter, and after
normal ordering, the ground-state energy is given by

E= [& {1[(v6. +misl] - 3[(VV) + mIVg]
+§UZ(X)[-M'V + B(M -g.¢o)+gvVo]Ua(X)}. (34)

Here the meson fields are functions of the radial coordinate, and o and 8 are the usual
Dirac matrices. Notice that if we interpret this expression as an energy functional
for the Dirac-Hartree ground state, extremization with respect to the meson fields
reproduces the field equations (30) and (31), with the densities from eq. (29). Moreover.
extremization with respect to the baryon wave functions U}(x), subject to the constraint

/d% UxU, =1 (35)
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for all occupied states (which is enforced by Lagrange multipliers E, ), leads to the Dirac
equation (24). This alternative derivation of the Dirac-Hartree equations from an en-
ergy functional is useful for extensions of the simple model discussed in this subsecticn.

Once the solutions to the Dirac-Hartree equations have been found, the ground-
state energy (34) can be computed by using the Dirac equation (24) to introduce the
eigenvalues E, and by partially integrating the meson terms to introduce the densities.
In the end, the total energy of the system is given by

FE = §E¢(2ja +1) - %/d%: [—g,qso(r)p.(r) + gvVo(r)pa(r)] . (36)

Before discussing the Dirac-Hartree solutions, let us generalize the equations to
include some additional degrees of freedom and couplings. Although the isoscalar meson
fields are the most important for describing general properties of nuclear matter, a

quantitative comparison with actual nuclei requires the introduction of some additional
dynamics.

For example, it is necessary to include the electromagnetic interaction to account for
the Coulomb repulsion between protons. Moreover, since hadronic interactions exhibit
an almost exact SU(2) isospin symmetry, the nucleons can couple to isovector mesons
in addition to the isoscalar (neutral) mesons of QHD-I. These isovector mesons, for
example the @ and p, come in three charge states (+, 0, —) and couple differently to
the proton and neutron. Thus they affect the nuclear symmetry energy, which arises
when there are unequal numbers of neutrons and protons.

The construction of a renormalizable lagrangian containing charged, massive vector
fields is somewhat complicated and is discussed at length in Abers and Lee;3” applica-
tions to the present model can be found in ref. 7. For our purposes, we require only
the classical contributions from these fields, and in this case, the lagrangian simplifies
considerably. In particular, since the nuclear ground state has well-defined charge, only
the neutral p meson field (denoted by by) enters, and since the ground state is assumed
to have well-defined parity and spherical symmetry, there is no classical = field. Thus
the mean-field lagrangian for this extended model, which is called QHD-II, is given by

LP = Y[i9,0* — gvr0Vo — 19,7080 — €3(1 + 73)¥0A0 — (M — g,0)]¥
- 1(V4o)? + mig}] + 3((VVo)? + miV)
+ 1V 40)? + 1[(Vbo)? + m2b3) . (37)

Here Aq is the Coulomb potential, e is the proton electromagnetic charge, g, is the
rho-nucleon coupling constant, and 7; are the usual isospin Pauli matrices. For now, all
of the boson fields are assumed to be functions of the radial cocrdinate only.

The Dirac-Hartree equations for this extended model can be derived just as before.
The Dirac equations for the baryon wave functions now contain by and Ao, and because
of the structure of the 73 matrix, by couples with opposite sign to protons and neutrons,
and Ag couples only to the protons. In addition to the source terms in eq. (29), which

14



Table 1:

Dirac-Hartree Parameter Sets

(All sets use M = 939 MeV and m, = m, = 783 MeV.)

Set P P g m, /M A
(MeV)

L1 9164 1362 3679 550. 0 0

L2 109.6 1904 6523 520 0 0

NLB 94.01 15848  73.00  510.  0.852 10

RHAO | 53.78 10258 83.30 456 0 0

sum over both proton and neutron occupied staies, the source term for the p meson
involves the difference between proton and neutron densities, while the Coulomb source
involves only protons. These different types of couplings ailow for a more accurate re-
production of real nuclei, where the proton and neutron wave functions are not identical.
The full set of equations are presented in ref. 7 and are used to compute the results
discussed below.

Spherical Nuclei. The solutions of the preceding equations depend on the parameters
dsy 9v, M., and g, (when the p meson is included). We take the experimental values
M = 939 MeV, m, = m, = 783 MeV, m, = 770 MeV, and €*/47 = a = 1/137.0
(which determines the Coulomb potential) as fixed. The free parameters are chosen
so that when the Dirac-Hartree equations are solved in the limit of infinite nuclear
matter, the empirical equilibrium density (p3 = 0.1484 fm™%), binding energy (15.75
MeV), and symmetry energy (35 MeV) are reproduced. The empirical equilibrium
density p? is determined here from the density in the interior of 2°®Pb and corresponds
to k2 = 1.3fm™!. We also fit the empirical rms charge radius of *°Ca (rm, = 3.482 fm),
which is determined primarily by m,. This procedure produces the parameters in the
row labeled L2 in table 1, which are taken from ref. 36. This parameter set yields the
same values for C? and C? as in eq. (21), so that M*/M = 0.541 and K =~ 545MeV at
nuclear matter equilibrium.

Once the parameters have been specified, the properties of all closed-shell nuclei
are determined in this approximation. For example, figs. 4, 5, and 6 show the Dirac-
Hartree charge densities of 60, “°Ca, and **®Pb compared with two nonrelativistic
calculations?3® and the empirical distributions determined from electron scattering.3**
The empirical proton charge form factor has been folded with the calculated “point
proton” density to determine the charge density. Similar results are obtained for other
closed-shell nuclei.?4? Evidently, the nonrelativistic and relativistic calculations agree
with the data at about the same level of accuracy.

In fig. 7, the predicted energy levels in ®®Pb are compared with experimental val-
ues derived from neighboring nuclei.*>** The relativistic calculations clearly reveal a
shell structure. This arises from the spin-orbit interaction that occurs naturally when
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a Dirac particle moves in large classical scalar and vector fields.4**" Note that whereas
9s®, and g,V tend to cancel in the central potential that determines saturation, they
add constructively in the spin-orbit potential. We emphasize that no parameters are
adjusted specifically to produce the spin-orbit interaction, as is usually the case in non-
relativistic calculations. Thus, with a minimal number of phenomenological parameters
determined from bulk nuclear properties, one derives the ezistence of the nuclecr shell
model.

There are several attractive features in this relativistic model of nuclear structure.
First, the calculation of the nuclear ground state is self-consistent. The scalar and
vector fields follow directly from the scalar and baryon densities, which are in turn
determined by the solutions to the Dirac equation (24) in the classical fields. Second,
only four adjustable parameters specify the properties of all closed-shell nuclei in this
approximation. Finally, this relativistic shell model is simply one piece of a consistent
many-body framework based on QHD. One can therefore systematically investigate
corrections to the nuclear ground state, such as those arising from the filled Dirac sea
of negative-energy states, as we describe below.

Deformed Nuclei. To study the systematics of this relativistic model of nuclear
structure, we extend the preceding equations to deal with deformed, axially symmetric
nuclei. This allows us to calculate not only the ground states of nuclei with fully closed
shells, but also those for even-even nuclei between closed shells. We will concentrate here
on nuclei with 12 < B < 40, which includes the 1p and 2s-1d shells.*® The restriction
to azimuthal and reflection-symmetric deformations is reasonable for light, even-even
nuclei.

These assumed symmetries of the ground state, together with the assumption of
well-defined parity, imply that the nonvanishing meson fields are the same ones that
appear in spherical nuclei.*® Thus the Dirac-Hartree equations are essentially the same
as those written earlier, except that all fields now depend on both a radial and an
angular coordinate [for example, ¢,(r,8)], and all the differential equations become
partial differential equations. The source densities are still computed as in eq. (29),
but they now depend on r and 6. There are several methods for solving the resulting
set of coupled partial differential equations, and the interested reader is directed to the
literature for a discussion.®®-32 The equilibrium deformation is obtained by choosing the
occupied single-particle states to minimize the energy.

In fig. 8, we show the results of Furnstahl, Price, and Walker for quadrupole moments
in the 2s-1d shell.’? The parameter sets used are listed as L2 and NLB in table 1; the
latter includes scalar-meson self-couplings of the form

A
V(9) = 56>+ ;o' (38)

in the model lagrangian. (These new couplings allow for some “fine tuning” of the bulk
nuclear properties.) Both of these sets produce nuclear saturation at k2 = 1.30{m™!
with a binding energy of 15.75 MeV and a symmetry energy of 35 MeV, and they
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parameter sets L2 (stars) and NLB (circles) taken from table 1. The results
shown by squares and diamonds follow from similar parameter sets given in
ref. 52. Moments derived from experimental measurements of B(E?2) values
(x) are taken from Leander and Larsson.®3

also generate the correct rms radius for “°Ca, just as for the spherical calculations
in the preceding subsection. Nevertheless, these two sets produce slightly different
values of M* in nuclear matter (M*/M = 0.54 for L2 and M*/M = 0.61 for NLB),
which is sufficient to produce different results for the deformation of nuclei with closed
subshells. (The deformation depends sensitively on the level density near the Fermi
surface, which is determined essentially by the inverse of M*.) Observe that set L2
predicts spherical shapes for 2C, 28Si, and 32S, in contradiction to experiment. In
contrast, the small modifications afforded by the couplings x and A in set NLB lead to
excellent agreement with the experimental moments, particularly the systematic trends
and the oscillation between oblate and prolate shapes around B = 32, while leaving
the results for spherical nuclei essentially unchanged. Thus the successful description
of spherical nuclei in this relativistic model can be extended to reproduce the observed
systematics of light deformed nuclei with the same parameters. Finally, the relativistic
results are very similar to those obtained from nonrelativistic Skyrme-Hartree-Fock
calculations® that also use an interaction fitted to nuclear properties.

Nucleon-Nucleus Scattering

The scattering of medium-energy nucleons from nuclei can provide information about
both nuclear structure and the nucleon-nucleon (NN) interaction. Since the NN inter-
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action has complex spin, isospin, momentum, and density dependence, nucleon-nucleus
scattering exhibits a wide variety of phenomena. As a starting point for describing these
phenomena, we use the Dirac-Hartree description of the nucleus, together with the Rel-
ativistic Impulse Approximation (RIA), which assumes that the interaction between the
projectile and target nucleons has essentially the same form as the interaction between
two nucleons in free space. This interaction is used to produce a nucleon-nucleus optical
potential that incorporates the leading term in a multiple-scattering series.

Although the simple QHD models discussed above are useful for studying the average
properties of the nuclear interaction, they are less useful for describing the detailed
quantitative features (such as spin dependence) of the full NN scattering amplitude.
These quantitative features are important for any reasonable description of the nucleon-
nucleus scattering observables. The RIA allows us to combine the empirical free-space
scattering amplitude with a relativistic calculation of the nuclear ground state.

The RIA as originally formulated*® involves two basic procedures. First, the ex-
perimental NN scattering amplitude is represented by a particular set of five Lorentz
covariant functions®® that multiply the so-called “Fermi invariant” Dirac matrices. The
Lorentz covariant functions are then folded with the Dirac-Hartree target densities to
produce a first-order optical potential for use in the Dirac equation for the projectile.
We briefly summarize the formalism and then compare observables computed in the RIA
with experimental data and with nonrelativistic impulse approximation calculations.

The constraints of Lorentz covariance, parity conservation, isospin invariance, and
that free nucleons are on their mass shell imply that the invariant NN scattering operator
F can be written in terms of five complex functions for pp scattering and five for pn
scattering. In the original RIA, F was taken as’

s P T
F=F"+ .7-“’»,(0)7“)“ +F 5'7(0)7(1) + F ol 00 + fA'7(o)7(o)7m'7(x)“ ) (39)

where the subscripts (0) and (1) refer to the incident and struck nucleons, respectively.
Each amplitude FZ is a complex function of the Lorentz invariants t (four-momentum
transfer squared) and s (total four-momentum squared), or equivalently, of the mo-
mentum transfer ¢ and incident energy E. It is found empirically that the amplitudes
FS, FY, and FPS are much larger than any amplitudes obtained in a nonrelativistic
decomposition, which uses Galilean-invariant operators.

The RIA optical potential Uypi(g, E) is defined as

47r:p

Uopi(9,E) = =22

(¥ }: e VXM F(q, E;n)|¥), (40)
where F is the scattering operator of eq. (39), p is the magnitude of the projectile
three-momentum in the nucleon-nucleus cm frame (where the scattering observables
will be calculated), |¥) is the A-particle nuclear ground state, and the sum runs over all
nucleons in the target. F is a function of the momentum transfer ¢ and collision energy

E, which we take to be the cm energy for a stationary target nucleon and incident
proton at the laboratory energy; this amounts to neglecting nuclear recoil.
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With these simplifications, the Dirac optical potential is local, and only diagonal
nuclear densities are needed. For a spin-zero nucleus, the only nonzero densities are the
baryon and scalar densities of eq. (29), plus a tensor term computed by inserting o
between the spinors in eq. (29). Thus the optical potential takes the form

Uspe = US + 4°UY = 2ia - 7UT (41)

where UL = UE(r; E) for each component. The tensor contribution UT is small and
will be neglected in what follows. The RIA optical potential then has only scalar aud
vector contributions, and the Dirac equation for the projectile has precisely the same
form as eq. (24), with UV replacing g,V, and U® replacing (—g,4):

hio(x) = {-—ia .V 4+ UY(E) + B[M + US(r; E)] }uo(x) = Elp(x). (42)

In practice, one includes in U the Coulomb potential computed from the empirical
nuclear charge density; other electromagnetic contributions arising from the proton

anomalous magnetic moment are of similar size to the tensor term UT and are neglected
here.

For proton scattering from a spin-zero target, three relevant observables may be
defined in terms of the proton-nucleus scattering amplitude T(8) = g(6) + h(8) o - n.
These are the differential cross section o, the polarization (or analyzing power) P, and
the spin-rotation function Q:

o= lgI’ + A7, (43)
P = 2Re(gh*)/(igl* + |R]?), (44)
Q = 2Im{gh*)/(lg* + |R[*). (45)

In fig. 9, RIA results for proton scattering from “°Ca are shown as solid curves.
The target densities are taken from the results for spherical nuclei discussed above,
with no further adjustment of parameters. The RIA results are compared with non-
relativistic impulse approximation calculations (dashed curves) carried out in the con-
ventional Kerman-McManus--Thaler formalism.* Evidently, the RIA calculations agree
remarkably well with the data. Moreover, although more sophisticated nonrelativistic
calculations give better agreement with the data, the relativistic results are superior,
particularly for the spin observables, when the impulse approximation is used for both.

The spin dynamics is inherent in the relativistic formalism and arises naturally
from the large Lorentz scalar and vector potentials in the Dirac equation (42). This
is precisely the same spin dynamics that produces the observed spin-orbit splittings
in the bound single-particle levels. Thus the relativistic Hartree calculations provide a
mintmal unifying theoretical basis for both the nuclear shell model and medium-energy
proton-nucleus scattering—two essential aspects of nuclear physics.
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Nuclear Excited S

We now turn to the calculation of nuclear response functions and the properties of
nuclear excited states, as described in the random-phase approximation (RPA) built
on the MFT ground state. These excitations arise from the consistent linear response
of the ground state, in which the nucleons move coherently in varying classical meson
fields that are in turn determined by oscillatory nuclear sources. Many studies of the
relativistic nuclear response have been carried out for both infinite matter and finite nu-
clei, beginning with the pioueering work of Chin,*” and here we will focus on two issues.
The first is the importance of consistency, which implies that the particle-hole interac-
tion in the excited states must be the same (and use the same parameter values) as the
interaction in the ground state. This is important for producing a reasonable excita-
tion spectrum when the underlying interaction involves a sensitive cancellation between
large attractive and repulsive components. Second, we will see that the relativistic re-
sponse involves not only the familiar positive-energy particle-hole configurations, but
also configurations that mix positive- and negative-energy states. These new configura-
tions are crucial for the conservation of the electromagnetic current and the separation
of the “spurious” J™ = 1~ state. This emphasizes that the Dirac single-particle basis is
complete only when both positive- and negative-energy states are included.

The calculation of the linear response is basically the same as in nonrelativistic
many-body theory.*® The principal idea is to compute the particle-hole (polarization)
propagator and to extract the collective excitation energies and transition amplitudes
from the poles and residues of this propagator. Several methods have been developed
and applied to finite nuclei.®®! Existing results are restricted primarily to isoscalar
excitations, because fitting the bulk nuclear properties constrains only the isoscalar
particle-hole interaction significantly and because the isovector response depends crit-
ically on pion dvnamics, with the associated complexity that we discuss later. An
excellent discussion of the role of consistency is contained in the work of Dawson and
Furnstahl,®® whose results we quote here.

In fig. 10 the low-lying, negative-parity, isoscalar states in '*0 are compared to
several empirical levels that might be reasonably described as particle-hole excitations.
(Only the lowest state of each J is shown.) The first column shows the unperturbed
excitation energy with the spectrum determined from the ground-state calculation us-
ing the parameter set L2 in table 1. The second column contains the RPA spectrum
when only positive-energy particle-hole configurations are allowed, and the third col-
umn gives the spectrum when negative-energy states are also included. Notice that
the full RPA results agree favorably with the empirical values in the fourth column,
which is a nontrivial result because of the large cancellations between scalar and vector
contributions. Moreover, it is clear that the negative-energy states play an important
role in determining the RPA spectrum, particularly for the spurious 1~ state. Lorentz
covariance implies that in a consistent RPA calculation, this state should appear at zero
excitation energy, which occurs only when the full Dirac basis is maintained.

Figure 11, taken from a calculation by Furnstahl,®? shows the relativistic RPA result
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for the ratio of the transition charge density to the longitudinal current density for
a particular transition in '®*0. The results are plotted as function of the number of
configurations, and if the electroma~netic current is conserved, the ratio should be unity.
The dotted curve includes only the positive-energy configurations, and the current is
evidently not conserved. In contrast, the dashed curve gives the result of the full RPA
calculation, ircluding the negative-energy states. The conclusion from this figure is that
it is essential to include all states in the Dirac basis to maintain the conse-vation of the
current.

The Rcle of the Quantum Vacuum

We have thus far studied the consequences of the mean-field hamiltonian of eq. (12)
and its generalization to finite nuclei. Let us now return to infinite nuclear matter
and include the contribution from §H in eq. (13), which defines the relativistic Hartree
approximation or RHA. (This is also often called the one-loop approximation.) These
contributions are an integral part of a fully relativistic description of nuclear structure,
and as we have just seen, it is impossible to construct a meaningful nuclear response
or consistent nuclear currents without including the negative-energy states. Thus, al-
though the MFT ground state is covariant, causal, and internally consistent by itself,
it is hard to justify the omission of the negative-energy contributions.

An inspection of §H reveals that, even with the indicated vacuum subtraction, the
sum still diverges. Since the model QHD-I is renormalizable, however, the sum can be
rendered finite by including counterterms in the lagrangian (8). These counierterms also
appear in the hamiltonian, and they can be grouped with § H, resulting in a correction
to the energy density of the form

4
A - __Z [ kz M*Z 1/2 _ (k2 + M? 1/2] Z _n n (46)

!
n=1 n:

The counterterms appear as a quartic polynomial in ¢,, and the (infinite) coeflicients
an are determined by specifying appropriate renormalization conditions on the energy.
Following refs. 57 and 7, we will choose the counterterms to cancel the first four powers of
¢, appearing in the expansion of the infinite sum over energies. Although this procedure
is not unique, it has the virtue of minimizing the many-body forces arising from this
vacuum correction, and it is easy to verify that only the first four terms in this expansion
produce divergent results. The divergences can be defined by converting the sum to an
integral and then regularizing dimensionally.53

After removing the divergences with the counterterms, the remaining terms are
finite, and one finds

AEMY) = - :?{M*‘ In(M*/M) + M3(M = M*) - %M?(M — M)
+33§M(M ~ M) - fg(M-M')‘}. (47)

25



e |
ENERGY/NUCLEON !
20t !
|
| i
K14
I [}
|
|° - .HA/ 'l'
2 |
E A I
3 I/
. /)
S R / . kg (im™)
Ev ~ ‘\\~ ,/ HF [ 4
N Sw~fs
-1 /
-0} MFT
NT3S
.20+

Figure 12:  Energy/nucleon in nuclear matter. The mean-field theory (MFT) re-
sults are shown as a solid line. The relativistic Hartree approximation (RHA),
which includes the one-loop vacuum correction, produces the long-dashed line,
while the short-dashed line is from a relativistic Hartree-Fock calculation (dis-

cussed below). All results are computed with parameter set L1 in table 1.

Just as in the MFT, M* = M —g,4, is determined at each ps by minimization, which
produces the one-loop (RHA) self-consistency condition [compare eq. (20)]

* _23_7 kpa M _g_:__!_{ *3 1 AA*
M= 2 (2”)3/0 Pk gy o (M I M)

- M¥M* = M) - -;- M(M* = M) - %1_ (M- My} (49)

Note that ‘he solution to this equation contains all orders in the coupling g,.
Although AE has historically been calied the “vacuum fluctuation correction,” this
appellation is somewhat unfortunate, since it does not involve any fluctuations. More
precisely, A€ is the finite shift in the baryon zero-point energy that occurs at finite
density, and is analogous to the “Casimir energy” that arises in quantum electrody-
namics. We emphasize that the zero-point (one-loop) vacuum correction is insensitive
to the short-distance structure of the baryons, as it arises solely from the change in the
baryon mass in the presence of the uniform scalar field 0.9
To discuss the size of the one-loop vacuum correction, we can compare predicted
quantities using a fized set of parameters determined from the empirical saturation

(6)In additicn, this correction cannot be calculated in nonrenormalizable meson-baryon models that
are regularized by inserting ad hoc form factors at the meson-baryon vertices, since the uniform scalar
field involves only zero-momentum-transfer components of the interaction between baryons, and the

..... PR N SRR Sy ' N
usual form factors have no effect on these contributions.
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properties of nuclear matter io the MFT. (Alternatively, one could compare results
after determining a separate set of RHA parameters that reproduce nuclear matter sat-
uration.) Figure 12 shows the energy/nucleon for the MFT and RHA approximations.
Observe that the equilibrium Fermi wavenumber k? shifts by roughly 0.25 fm-!, and
the binding energy decreases by about 10 MeV when the one-loop vacuum correction is
included. Although the latter is small on the scale of the large scalar and vector fields,
the modification to the binding energy is significant, reflecting the sensitive cancellation
between the attractive and repulsive components in the potential energy. The one-loop
vacuum corrections are a direct consequence of the relativistic treatment of the nuclear
many-body problem and are absent in a nonrelativistic approach.

In a finite nucleus, the zero-point corrections to the Dirac-Hartree hamiltonian (and
the resulting energy functional) arise in just the same way as in eq. (13). The sum over
the negative-energy eigenvalues [which augments eq. (36)] must now be computed using
the spectrum of eq. (24), and both bound and continuum states are to be included. Since
the eigenvalues cannot be determined in closed form due to the spatial dependence of the
meson fields, the calculation is considerably more complicated than for nuclear matter.
Nevertheless, the corrections have been computed essentially exactly, by starting with
a local-density approximation® and then by systematically adding corrections from
gradients of the meson fields.55%°

If the model parameters are adjusted from their previous values to reproduce the
desired nuclear matter properties!?) when the zero-point corrections are added to the
infinite nuclear matter energy density, the resulting parameters®® are given in the row
labeled RHAOQ in table 1. The nuclear matter compressibility decreases to K ~ 452
MeV, and the baryon effective mass at equilibrium is M*/M =~ 0.73. How do the ad-
ditional zero-point corrections change the systematic description of nuclear properties?
Since the nuclear compressibility is still rather high, the calculated nuclei remain slightly
underbound and the surface thicknesses are too small.?® The increased M* leads to a
slightly more compressed spectrum of states near the Fermi surface (in heavy nuclei)
and a smaller spin-orbit force. Thus, although predicted nuclear deformations still fol-
low the correct systematics,’? the spin-orbit splittings are too small by about 50%.5
The shell oscillations in the nuclear interior are essentially unchanged. The derivative
contributions to the local-density approximation are not negligible, but they generate
only small changes in nuclear properties once the parameters are re-fitted to the stan-
dard input data. We conclude, therefore, that although the zero-point corrections give
non-negligible corrections to the simple mean-field results, they do not improve the
nuclear systematics.

The Relationship Between QHD and QCD

There is by now overwhelming evidence that hadrons are themselves composed of

(4)We enforce equilibrium at k, = 1.30fm=! with a binding energy of 15.75 MeV and a symmetry
energy of 35 MeV. The scalar mass is again chosen to reproduce the observed rms radius of 4°Ca.
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quarks and gluons. It is also widely beiieved that the quark-gluon dynamics is de-
scribed by the nonabelian gauge theory of quantum chromodynamics. A discussion of
the QCD lagrangian is beyond the scope of this talk, but this theory is presented in
several texts (see, for example, Huang™ or Rivers”!), and a brief introduction is given in
ref. 7. Quantitative QCD predictions at length scales relevant for hadronic and nuclear
phenomena (which would specify precisely the relationship between QCD and QHD)
are exceedingly difficult and are currently being pursued at the forefront of relativistic
many-body theory. Here we will simply illustrate a simple model calculation of the
phase diagram for nuclear matter, where the hadronic phase is described by the MFT
of QHD-I, and the quark-gluon phase is described by QCD. This model contains a
first-order transition between the hadronic and quark-gluon phases. Although there are
some indications from recent QCD lattice simulations that there is no first-order phase
transition at zero density for two quark flavors,”® the nature of the transition at finite
density is unknown. Thus a simple two-phase model may still provide a reasonable first
approximation to the nuclear equation of state at all temperatures and finite densities.

Our previous discussion of the hadronic equation of state was restricted to zero
temperature. The extension to finite temperature is straightforward in the MFT, since
the hamiltonian is diagonal and the mean-field thermodynamic potential 2 can be
calculated exactly.(®) The results for the scalar density, baryon density, energy density,
and pressure are given by’

pe = (2—;)—3 / d% Ef’(;)(m +7), (49)
(2—")—3/d3k(n,,-m), (50)
2 2
£= 25"1;3,,: ;"}(M M*)? + (21)3 /d%E'(k)(m +7), (51)
2 2
p= 2‘;’;,p. M= M+ 5 s [ s m), (62

where the baryon and antibaryon distribution functions are

1 1

nk(T, V) 1 n e[E"(k)—V]/T 3 -ﬁk(Ta V) = 1 + e[E'(k)'H/]/T 9

(33)

and the reduced chemical potential is v = p — g, V5. (We set Boltzmann’s constant

ks = 1.) The nuclear matter equation of state at all densities and temperatures for this
hadronic MFT model (QHD-I) is shown in fig. 13.

Figure 14 shows the self-consistent nucleon mass obtained my minimizing eq. (51)
with respect to M*. The striking feature is the sudden decrease of the nucleon mass
well below T = M. Thus, at high temperature (as at high density), the baryons are
essentially massless.

(¢)We neglect the zero-point corrections from the Dirac sea in this section (see refs. 32 and 73), as
well as thermal contributions from the massive isoscalar mesons
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Nuclear Matter EOS (QHD-1 MFT)
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Figure 13:

Nuclear matter equation of state on isotherms. The dashed line
represents the causal limit, and the shaded area shows the region of phase sepa-
ration, as determined by a Maxwell construction. The solid curves are labeled
by the temperature, in MeV, and the critical temperature is approximately
18.3 MeV. Here the parameter set L2 is used
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Self-consistent nucleon mass as a function of temperature at zero
baryon density. The value of M*/M is 0.5 for T =~ 186 MeV and T = 222 MeV
in nuclear and neutron matter, respectively. Parameter set L2 is used
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For the quark phase, we use a simple model based on QCD and its properties of
asymptotic freedom and confinement. Asymptotic freedom implies that when all of
the momenta in a process are large, the renormalized coupling constant for that process
becomes small, while confinement reflects the empirical fact that free quarks and gluons
are never observed in the laboratory. We limit ourselves to the “nuclear domain,” where
only u and d quarks are important, and these quarks are assumed to be massless. Since
the quark-gluon phase will be relevant only at extremely high temperatures or densities,
where the particles have large momenta, we neglect interactions between the quarks
except for a constant, positive energy/volume in the vacuum (E/V)u. = b, which
models the confinement dynamics. This constant can be interpreted as the energy
needed to create a bubble or bag in the vacuum, in which the noninteracting quarks
and gluons are confined.

With this model, the QCD equation of siate takes the simple form™
p=3(E-4b) (54)

for both nuclear and neutron matter at all densities and iemperatures. The “bag pa-
rameter” b determines the density of the hadron-quark phase transition, and since it
represents a bulk property of nuclear systems, it may be different from values determined
from the static properties of hadrons. The parameter b is constrained by requiring that
at zero temperature and nuclear equilibrium density, the favored phase is the hadronic
phase. Here we use b = 131.2 Me\//fm3, taken from ref. 7, where it is shown that this
value is consistent with the above requirement.

Figure 15 shows the resulting curves for this two-phase model of nuclear matter. The
hadronic segments are determined from egs. (51) and (52), together with the couplings
and masses from row L2 in table 1. The quark-gluon curve is calculated from eq. (54),
and Gibbs’ criteria for phase equilibrium (u; = g3, p1 = p2, T = constant) are used
to deduce the region of phase coexistence arising from the first-order transition. The
complete phase diagram of nuclear matter is described by a one-parameter model, which
allows for a simple correlation of phenomena occurring in very different regimes of the
thermodynamic variables. Note that at high enough baryon density or temperature,
one c¢lways produces the quark-gluon phase with an equation of state given by eq. (54).

Although this model is very simple, it has several nontrivial features. First, it
is based on a completely relativistic calculation of the nuclear matter phase diagram
and phase transition. Second, the statistical mechanics has been done exactly at all
temperatures and densities. Third, the QHD model of the hadronic phase successfully
describes many bulk properties of nuclear matter and finite nuclei. Fourth, the QCD
phase obeys asymptotic freedom.

Finally, the mcdel can be improved by systematically including additional mesonic
degrees of freedom (such as thermally excited pions) and by going beyond the mean-
field approximation for the hadronic phase. Interactions can also be included in the
quark-gluon phase to cal-ulate the corrections to the asymptotically free equation of
state. At vanishing density, these corrections can be computed using the techniques of
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Equation of State Isotherms
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Figure 15:  Equation of state isotherms for nuclear matter for the indicated val-

ues of the temperature. Phase equilibrium exists along the horizontal segments,
which are determined by a Maxwell construction. The left-hand endpoints of
the higher-temperature curves correspond to zero baryon density.

lattice gauge theory, as summarized by Gottlieb.”? Lattice calculations, however, are
not currently practical at finite density, although alternative nonperturbative techniques
have been developed for hot QCD.75:7¢

EXTENSIONS AND ISSUES

We have seen that the mean-field approximation to QHD gives a concise and highly
successful nuclear phenomenology. In QHD, however, one can in principle go beyond the
MFT, calculate to arbitrary accuracy, and then compare with experiment. In practice
this program is extremely difficult, since QHD is a strong-coupling relativistic quan-
tum field theory.(Y) Nevertheless, the Feynman rules for the Green’s functions are well
defined. Thus, just as in nonrelativistic many-body theory, one can use intuition to
sum selected infinite sets of diagrams, determine the renormalized coupling constants
by refitting nuclear matter properties, and then see whether the MFT results are stable
under the inclusion of these additional contributions, while investigating new physical
phenomena. Many such applications are discussed in ref. 7, where the historical de-
velopment is presented. This 1986 volume is updated in ref. 77. It is impossible to
review all that material and to give an exhaustive list of recent references here. We
shall instead present some selected results of extensions beyond the MFT and discuss

(/)Indeed, a theory that is not asymptotically free.
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some of the issues raised by this work.

All of the extensions we discuss involve loop corrections to the MFT of one sort or
another. In the MFT, the baryon Green's function can be written as’

G(k) = (k™ + MY g + B ke — 7 NoCks — kD

= Gp(k) + Gp(k), (55)

where k** = (k° — g,Vp, k) is the kinetic four-momentum® and E*(k) = vk? + M2
The first term Gg(k) is the Feynman propagator for a baryon of mass M*, and the sec-
ond term is the contribution arising from baryons already present at finite density; this
latter contribution reproduces the MFT results. In discussing the following extensions,
we shall frequently distinguish between results obtained with the full baryon propaga-
tor G(k) and with just the second, or “density-dependent,” contribution Gp(k). Since
the three- and four-momenta are constrained in Gp(k), loop integrals over this second
term give well-defined, finite results that are direct analogues of the terms arising in
nonrelativistic many-body theory.

jvistic Hart

Relativistic Hartree theory is obtained by self-consistently summing the tadpole
graphs in the baryon self-energy. Retention of Gp in the tadpoles gives rise to the MFT,
while the full G with appropriate counterterms 6£ produces the RHA, as discussed in
the previous section. A characteristic result of QHD-I is that the Lorentz scalar and
vector self-energies are very large; these contributions cancel in the binding energy but
add in the spin-orbit interaction. Hartree-Fock (HF) theory is obtained by including the
meson emission and reabsorption (“exchange”) graphs in the baryon proper self-energy.
A calculation of these graphs™ with Gp for nuclear matter and the coupling constants
L1 from table 1 produces the results shown in figs. 12 and 16. Some conclusions from
this work are as follows:

1. These HF calculations give exchange terms that are the direct relativistic gen-
eralization of those arising when Slater determinants are used to find the best
single-particle wave functions in nonrelativistic many-body theory.

2. Once the large scalar and vector self-energies have been established in relativistic
Hartree theory, the inclusion of the exchange terms does not qualitatively alter
the results.

3. The MFT is thus stable under the inclusion of the exchange contributions. In fact,
after refitting to the equilibrium nuclear matter properties, the binding energy
curves in relativistic Hartree and Hartree-Fock are almost indistinguishable.”

($)Note that in closed-loop integrals, such as those involved in computing the ground-state energy, a
simple shift of integration variables allows one to eliminate the dependence on g, V.
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Figure 16: Nuclear matter equation of state at zero temperature.” The curves

are labeled as in fig. 12.

4. The HF equation of state approaches that of the MFT at high baryon density.

5. The fully self-consistent Hartree-Fock theory that retains the complete G(k) and
meson retardation is complicated;” it has not yet been successfully solved.

Relativistic Brueckner-Bethe-Gold

In nonrelativistic nuclear many-body theory, the two-nucleon potential V is strong
and singular; it has a hard core at short distances. It is therefore necessary to solve for
the correlated two-nucleon wave function in the medium. This Bethe-Goldstone wave
function vanishes at the core radius and heals to the unperturbed wave function at large
distances.(*) The product V4 is thus well defined and leads to a finite energy shift. In
QHD-I, however, the interaction is integrable, so that results are sensible even at the
mean-field level. The saturation of nuclear matter arises at this level from the saturation
of the scalar attraction with increasing density. This scalar attraction is equivalent to
an infinite series of velocity-dependent interactions in the nonrelativistic language. It
is of interest to see if the MFT results are stable with respect to the inclusion of two-
body correlations; in diagrammatic terminology, this amounts to summing the ladder
diagrams for the baryon proper self-energy. Several relativistic calculations of this type

(A)The vanishing wave function at short distance implies an insensitivity to what is going on inside
the hard-core radius. This insensitivity is responsible for much of the success of nonrelativistic nuclear
physics.
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have been carried out for nuclear matter.832 Some observations, conclusions, and issues
are as follows:®

1. The box diagram that forms the fundamental unit of the ladder sum involves a
loop integration.

2. There are many possible reductions of the relativistic, four-dimensional Bethe-
Salpeter equation in the medium to a unitary, three-dimensional integral equation
that can be identified as the relativistic extension of the Bethe-Goldstone equa-
tion. Numerical results for the binding energy are sensitive to the reduction used.

3. Even after this reduction, calculated results are sensitive to the high-momentum
part of the loop integrals, implying important contributions from baryon transi-
tions to states lying well above the Fermi surface. Phenomenological form factors
significantly reduce this sensitivity.

4. Since M" enters in both the positive- and negative-frequency Dirac spinors, the
binding energy of nuclear matter is sensitive to the self-consistency condition. At
present, it is not known how to construct a self-consistency condition that leads
to a conserving approximation when relativistic ladder diagrams are included.

5. Although the shifts in the binding energy of nuclear matter are large, the MFT is
again stable with respect to the inclusion of two-baryon correlations on the scale
of the large scalar and vector self-energies of the MFT.

6. The equation of state of nuclear matter again becomes the MFT result at high
baryon density.

7. For free NN scattering, the corresponding calculation in QHD-I gives results in
qualitative agreernent with observation, but the charged isovector # and p mesons
must be included to achieve a quantitative description.%:8?

8. The fully relativistic Bethe-Salpeter equation in nuclear matter remains to be
investigated.

9. In view of the above issues, a quantitative calculation of the binding energy of
nuclear matter in QHD is not possible at this stage of the development.

Relativistic Random-Phase Approximation (RRPA)

The sum of fermion ring diagrams gives the correct high-density limit for the cor-
relation energy in the electron gas, where the Coulomb interaction is e2/q®.!") One
might hope that the corresponding sum of baryon ring diagrams gives the correct high-
density correlation energy in QHD-I, when the dimensionless meson masses m?/k}

() For the present purposes, the sum of rings is equivalent to the random-phase approximation (RPA).
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become small. The sum of the ring diagrams for nuclear matter in QHD-I was first
investigated by Chin.®” Applications to the spectra of finite nuclei were initiated by
Furnstahl,®®® and there has been a great deal of recent activity in this area.84-91.60 We
shall refer to the calculation of the rings that keeps only terms with at least one factor
of Gp as the RPA; this calculation includes loops at least linear in the density and is
the direct relativistic extension of the RPA in nonrelativistic many-body theory. The
calculation that also includes the modification of the strong vacuum polarization in the
nuclear medium due to the shift M — M* will be called RRPA. Some results of this
work and issues raised by it are the following:

1. The scalar and vector propagators mix in nuclear matter. Chin showed that at
high density, vector meson exchange dominates in QHD-1. The excitation spec-
trum of nuclear matter in the RPA is that of zero sound, and the sound velocity ¢,
approaches the speed of light from below as the baryon density gets large (¢, — 1~
as kg — o0). This implies that signals in the medium cannot propagate faster
than the speed of light, in accord with special relativity. There are other branches
in the excitation spectrum corresponding to meson propagation.

2. In nuclear matter in the RRPA, poles appear in the polarization propagator at
zero frequency go = 0 and finite wavenumber |q| # 0; the value of this wavenumber
is a few times the nucleon mass in QHD-1.57:84-8691 Gy ch poles imply an instability
of the system against density fluctuations of the corresponding wavelength. There
are several possible interpretations of these results:

(a) The RRPA for the propagators is inadequate.

(b) Vertex modifications are important. (Phenomenological form factors affect
the numerical results significantly.®4)

(c) The composite structure of the baryon must be taken into account before
one reaches distance scales where these poles develop.

(d) The instability is real.

3. The polarization propagator governs the linear response of the system. The calcu-
lated isoscalar linear response in QHD-I leads to a reduction of the Coulomb sum
rule.5-%0.% There is roughly a 15% reduction in the RPA and an additional 15%
reduction in the RRPA .87 The observed experimental reduction of the Coulomb
sum rule is one of the outstanding unsolved problems in traditional nonrelativistic
nuclear physics.

4. In finite nuclei, it is essential to admix negative-frequency baryon components
into the wave functions to bring the spurious (17, 0) state down to zero frequency;,
to maintain current conservation, and to produce nuclear isoscalar magnetic mo-
ments that agree with the Schmidt lines.’!92

5. The RRPA calculation involves loop integrations and strong vacuum polariza-
tion. Physical effects come from the modification of these processes in the nuclear
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medium. The calculation of hadronic contributions to strong vacuum polarization
is a central problem in QHD. More generally, at some distance scale, this vacuum
polarization should be calculated in terms of quarks and gluons.

The Quantum Vacuum

One goal in QHD is to systematically calculate the vacuum-loop corrections to the
MFT. The one-loop correction from G produces the RHA, and we have seen that
the MFT is stable against the one-loop vacuum contributions. A path-integral repre-
sentation of the generating functional shows that the loop expansion is in h, with the
one-loop contribution the first quantum correction about the classical path of station-
ary action. One might hope that the two-loop correction would be the next term in a
converging expansion. The calculation of the two-loop contribution to the properties
of nuclear matter is nontrivial; it is carried out for QHD-I in ref. 12. (See also refs. 77
and 93.) The basic conclusion from this analysis is the following: although formally
an expansion in k, the parameters characterizing the loop contributions to the prop-
erties of nuclear matter are: (i) dimensionless coupling constants (g3/4rhc, g2/47hc?),
(i) lengths (k/myc,h/m,c,h/Mc,1/k;), and (iii) energies (myc?,m,c?, Mc?, hicks). The
loop expansion is essentially an expansion in the dimensionless coupling constants,
which are large in QHD. The quantum corrections are correspondingly large, the series
is not converging, and the MFT is not stable against this perturbative loop ezpansion.
Clearly, an alternative procedure must be found to systematlcally and reliably calculate
vacuum corrections to the MFT results in QHD.

The computation of hadronic contributions to vacuum polarization is a central issue
in QHD, and more generally, in all of physics. There are indeed hadronic contributions
to vacuum polarization; for example, a spectral analysis of the strong-interaction contri-
bution to electromagnetic vacuum polarization shows that the spectral weight function
starts at 4m?2:0)

%5 (q) = (quq0 — ¢ 9,)1(¢%) ,

1 = p(a?)
(g?) = - / do? . 56
(@) =3 fos 57— 2 (56)
In the complex ¢? plane, I1(¢?) is an analytic function with a branch cut running along
the real axis from 4m2 to co. The discontinuity across that cut for 4m2? < ¢ < 9Im?
comes from the electroproduction of two real pions. Thus the low-mass singularities
of propagator and vertex functions are most efficiently expressed in terms of hadronic
variables.

The contribution of two pions to vacuum polarization at all ¢? can be calculated in
QHD-II; it will be well defined and finite. (Vertex modifications will exist in QHD-II

(I)Pions are included in QHD-II; we use this as the simplest example for the present discussion.
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and can also be included.) The result will not be meaningful if the dominant contribu-
tion to the loop integration comes from very high momenta and short distances, since
there a QHD description is clearly wrong.(*) In this instance, one must invoke quarks,
gluons, and QCD. At short-enough distances, one can use perturbative QCD. On the
other hand, at low momenta and long distances, for example, in the low-mass part
of the spectral function, QCD is a strong-coupling theory and the effective degrees of
freedom are the hadrons, in this case, two pions. Hopefully, once vertex corrections are
included, QHD has the possibility of describing the low-lying hadronic contributions to
the spectral weight function and vacuum polarization.

The Vertex

As mentioned earlier, vector meson exchange dominates at high baryon density
in QHD-I, where the vector meson is coupled to the conserved baryon current. Mi-
lana®™ observes that in a theory with vector coupling, the vertex form factor is a de-
creasing function of ¢?. This implies a decreased sensitivity to the high-momentum
or short-distance contributions to loop integrals and would provide a favorable situa-
tion for QHD. It is essential to include vertex corrections in QHD to determine its full
implications.!) The fully off-shell vertex is complicated in any field theory. Reference
94 is the only vertex study in QHD of which the present authors are aware.

Pions and Chiral Symmetry

The relativistic neutral scalar and vector fields are the most important for determin-
ing the bulk properties of nuclear systems. Nevertheless, the lightest and most accessible
meson is the pion, whose interactions with nucleons and nuclei have been extensively
studied at the meson factories. It is therefore impossible to formulate a complete and
quantitative hadronic theory without including pionic degrees of freedom.

Pion interactions are constrained by the observed, nearly exact, SU(2) isospin sym-
metry. In addition, the soft-pion theorems, the partial conservation of the axial current
(PCAC) in weak interactions, and the theory of QCD indicate that pion dynamics is
also constrained by chiral symmetry, which enlarges the symmetry group from SU(2)
to SU(2), x SU(2)r. Here “L™ and “R" denote left- and right-handed isospin rotations,
respectively. A thorough discussion of chiral symmetry is beyond the scope of this
talk, but we note that this symmetry has important consequences for the way mesons
interact with themselves, as we will discuss shortly.

Pions can be included in a chiral-invariant manner using the linear ¢ model.??-?4 This
model contains a pseudoscalar coupling between pions and nucleons and an auxiliary
scalar field o to implement the chiral symmetry.(™) Weinberg’s transformation®® can

(!YMoreover, for large o2 in eq. (56), the two-pion intermediate state by itself is inadequate.
(DThese vertex corrections reflect the internal hadron structure present in QHD. _
(m)The presence of an isoscalar vector field V* coupled to the baryon current with minimal coupling

37



then be used to transform to a pseudovector (derivative) #N coupling multiplied by an
infinite series of nonlinear pion terms. There are two advantages to this transformation:
first, the decoupling of pions as ¢, — 0 is now explicit (as are the soft-pion theorems),
and second, the new pseudovector coupling constant is

me \?
f==gg(2M) ~10. (57)

This is much smaller thar the pseudoscalar coupling constant g2/4r ~ 14.4.

In the limit that the chiral o mass m, — oo, the auxiliary scalar field decouples,
and what remains for the pions and baryons is the nonlinear o model of Weinberg.%®
For any finite value of m,, however. the theory is renormalizable, and it can be used to
calculate nuclear pion processes.?!%

Nevertheless, there is a serious problem here.” Suppose the auxiliary scalar field o in
the chiral-invariant linear o model is identified with the low-mass scalar field ¢ in QHD-
I. Then the nonlinear meson couplings (¢°, ¢4, #?7?) that remain after spontaneous
symmetry breaking are so strong that they preclude a successful MFT of nuclear matter
and finite nuclei.®”?! Equivalently, nonlinear many-body forces are implied that are
difficult to reconcile with what is known about nuclear physics.

A possible resolution of this problem is that the chiral ¢ mass m, is very large,
reducing the effects of the nonlinear couplings, and that the low-mass scalar field ¢ in
QHD-I is generated dynamically through the couplings of the chiral ¢ and the pions.
In ref. 98, the process * + # — 7 + = is investigated within the framework of the ¢
model with a high mass . The chiral-invariant Born ampliitude is unitarized, and the
resulting phase shift in the (0*,0) channel is shown in fig. 17. One observes a broad,
low-mass, near-resonant amplitude in this channel, even though the chiral o has a large
mass.

When this model #x scattering amplitude is included in the two-pion-exchange part
of the NN interaction (see fig. 18), the result is a dynamically generated, broad, low-
mass (=~ 600 MeV) peak that resembles the exchange of a light scalar meson. This peak
arises even when the chiral scalar field has a large mass (m, = 10 GeV). It is further
demonstrated in ref. 98, within the framework of the linear ¢ model, that this (0*,0)
channel leads to the observed intermediate-range attraction in the NN force.

The evident role of the low-mass scalar meson channel tn nuclear physics can there-
fore be understood within the framework of chiral symmetry. The importance of the
resulting scalar-isoscalar mean field and optical potential in producing a successful nu-
clear phenomenology was illustrated in the preceding section. Note, however, that the
representation of this effective hadronic degree of freedom through the ¢ field in the
local relativistic quantum field theory of QHD-I is a much more sweeping assumption.

For the pion-nucleon interaction, one is left with the nonlinear ¢ model of Weinberg:
derivative couplings to baryons multiplied by {1 + (f/m,)?®?]~'. In the end, one has
a chirally invariant theory including pions that reoroduces the soft-pion theorems, that

affects none of these arguments.
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produces a low-mass effective scalar meson dynamically, and that is renormalizable for
any large but finite m,.

The p can be included in this renormalizable theory by starting with a nonabelian
Yang-Mills theory based on isospin and then using spontaneous symmetry breaking and
the Higgs mechanism to generate the p mass, as in the standard mode! of electroweak

interactions. The resulting theory QHD-II, with o, w, ®, and p mesons, is discussed
more fully in ref. 7.

Hadronic Degrees of Freedom

The essential phenomenological {eatures of the low-energy 7N interaction are that
low-momentum pions interact weakly with nucleons (they decouple as ¢, — 0) and
that the interaction is dominated by the first pion-nucleon resonance, the A(1232).
This resonance represents the first excited state of the baryon, with (J*,T) = (%+, %)
It is essential to have this degree of freedom in the theory, or the results will look nothing
like nuclear physics. It is impossible to put a field with these quantum numbers into a
simple renormalizable lagrangian. Thus the hope is that this degree of freedom, as with
the low-mass scalar field, is again produced dynamically within the model. Fortunately,

as has been shown in ref. 99, this is indeed the case.

In ref. 99, the sum of 7N ladder diagrams with nucleon exchange is investigated
within the framework of the chiral +N theory discussed above. Partial-wave dispersion
relations are used, the one-baryon-exchange mechanism is input as the driving term, and
the resulting integral equations are solved with the N/D method. This is a relativistic
extension of nonrelativistic Chew-Low theory. As with Chew-Low, a resonance is found
in the (%+, 2) channel.

The box diagram in the ladder sum involves a loop integral, which is finite and
well defined in this renormalizabiz theory. Nevertheless, the loop integration involves
significant contributions from high momenta or short distances, and thus the position
of the resonance is sensitive to the approximations made; the width is much less so.()
It is clear, however, that the first excited state of the nucleon, the A(1232) with (§+, %),
which is the dominant feature of low-energy pion-nucleus interactions, can be generated

dynamically in QHD.

Other baryon properties arise through different loop integrals in QHD. For example,
the vertex diagram consisting of the emission of a pion, its interaction with the virtual
electromagnetic field, and its reabsorption by ihe nucleon contributes to the nucleon's
anomalous magnetic moment. The two-pion contribution gives the low-mass, or long-
distance, part of the spectral weight function for the anomalous magnetic form factor

Fi(q%):

Fi(¢?) = l/:" ) 4 (58)

m? 0‘2—(]2

(")Vertex corrections will again modify this sensitivity to the high-momentum behavior.
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Assume that the two-pion contribution arising from this vertex diagram dominates the
spectral weight function everywhere. One then gets a semi-quantitative account of tlie
isovector anomalous magnetic moment and its mean square radius.”°)

A few comments are relevant here:

1. The dynamical model of ref. 99 allows for the investigation of many interesting
questions concerning the behavior of the A in the many-body nuclear system,
for example, its binding energy in nuclear matter, its optical potential, and the
modification of its electroweak properties in the nuclear medium.

2. The production of effective degrees of freedom through dynamical means in QHD,
as for the low-mass scalar field with (0%, 0) and the first excited state of the baryon
with (3%, 32), while gratifying, also raises serious issues:

(a) When does one stop? It is apparently necessary to investigate all possible
hadronic channels for resonant behavior; there will be many such resonances.

(b) Which of these resonances must be included as dynamical input in the gen-
eration of others?(?)

(c) And, a more serious question, which of these hadrons are to be included
through local fields in a QHD lagrangian density?

(d) It is only a hope that one can get a self-contained dynamical description
of nuclear physics in the low-energy hadronic sector with a few judiciously
chosen hadronic degrees of freedom and a local, relativistic, renormalizable
quantum field theory based on these degrees of freedom. It may be an im-
possible goal.

3. In principle, QCD gives a complete description of the nucleon and all its excited
states. In the simple quark model, the nucleon moment arises from the quark
spins, and the first excited state arises from a spin-isospin-flip transition of a
quark. Nevertheless, even within QCD, some part of the internal properties of the
baryon and its excited states, particularly at large distances, must be equivalent
to the strong interaction of hadrons discussed above.

The Relationship Between QHD and QCD

There is now considerable evidence that quantum chromodynamics (QCD), based
on quarks and gluons as the underlying degrees of freedom, is the theory of the strong
interaction. The colored quarks and gluons are confined to the interior of the hadrons
by the strong nonlinear gluon couplings in QCD. At low momenta or large distances,

(°)The isoscalar anomalous moment vanishes in this approximation; experimentally it is indeed very
small.

(P)This is reminiscent of the bootstrap theory of hadronic structure; all hadronic resonances were to
be viewed as arising dynamically from the interactions of these same hadrons.
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the renormalized coupling constant is large, and QCD is a strong-coupling field theory;
in this domain, the cbserved degrees of freedom are the hadrons. At large momenta,
or short distances, QCD is asymptotically free, which implies that the renormalized
coupling constant is small; here one can do perturbation theory with free quarks and
gluons.

What is the relationship of QHD, the subject of this paper, and the underlying
theory of QCD? There are several possibilities:

1. There is an approximate radius R in the hadron outside of which one can use QHD
to describe the strong-interaction structure and inside of which one can use quarks
and (asymptotically free) QCD. This is the basis of bag models of hadrons.'®

2. One can attempt a similar separation in momentum space. The contribution of
the nearby (low-mass) singularities in the spectral representations can be com-
puted from hadronic processes, and the distant contributions can be computed
from asymptotically free QCD. The two contributions can then be joined in some
manner. This is the basic concept of QCD sum rules.!®

3. One can assume two models for two different phases of nuclear matter: a bar-
yon/meson phase described by QHD, and a quark/gluon phase described by
(asymptotically free) QCD. The two descriptions can be connected with the ther-
modynamic conditions for phase equilibrium, as discussed earlier in this paper.
The investigation of the phase diagram of nuclear matter with the Relativistic
Heavy lon Collider (RHIC) is a top priority for nuclear physics.

More generally, it is probable that at low energies and large distances, QCD can be
represented by an effective field theory formulated in terms of a few hadronic degrees
of freedom. This has indeed been shown to hold in the large-color limit of QCD. In
QED, LePage has shown how to construct such a low-energy, large-distance effective
field theory.!°? The couping constants in the effective lagrangian are computed from the
short-distance behavior of the full, renormalized theory of QED. All possible couplings
must be included in the low-energy effective lagrangian. which is then to be used at the
“tree level” (that is, without considering loop integrals).

The underlying assumption of QHD is that of a local, relativistic quantum field
theory formulated in terms of baryons and the lightest mesons (o,w, 7, p). It is assumed
that the theory is renormalizable, and one then attempts to extract predictions for long-
range phenomena by computing both tree-level diagrams and renormalized quantum
loop corrections. In the end, it may turn out that this assumption is unwarranted, and
that the only meaningful interpretation of QHD is as an effective theory, to be used at
the tree (or one-loop) level. The limitation to renormalizable couplings may then be
too restrictive. Nevertheless, the phenomenological success of the MFT of QHD-I in
the nuclear domain implies that whatever the effective field theory for low-energy, large-
distance QCD, it must be dominated by linear, tsoscalar, scalar and vector interactions.
Recent calculations based on QCD sum rules indicate that this may indeed be true

1aaaTCTe LT Vi ul,
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as they find evidence for large (several hundred MeV) contributions to the scalar and
vector parts of the baryon self-energy in nuclear matter.!%

SUMMARY AND OUTLOOK

This paper is concerned with the theory of relativistic, interacting, nuclear many-
body systems (baryon number B > 1). The only consistent theoretical framework for
describing such systems is relativistic quantum field theory based on a local lagrangian
density. As in nonrelativistic many-body theory, Feynman rules for the Green’s func-
tions allow one to calculate physical observables.

In this work we argue that the most efficient degrees of freedom for extrapolating
away from the observed properties of nuclei are the hadrons: baryons and mesons. We
require that the theory be renormalizable (quantum hadrodynamics); this defines a self-
consistent, purely hadronic theory and severely constrains the form of the interaction.
We focus on simple models: QHD-I, which contains neutrons, protons and the isoscalar,
Lorentz scalar and vector (o,w) mesons; and QHD-II, the extension to include the
isovector ® and p mesons based on the linear sigma model.

The development starts with the relativistic mean-field (MFT) and Hartree approx-
imations to QHD-I, and their application to both infinite nuclear matter and atomic
nuclei. The principal new feature of the relativistic theory is that the baryon self-energy
contains large Lorentz scalar and vector pieces, whose effects cancel in the binding en-
ergy but add in the spin-orbit interaction. We present some successes of the model,
including the nuclear equation of state, the shell model, nucleon-nucleus scattering,
and the addition of zero-point vacuum corrections.

We then discuss extensions to include quantum-loop processes, such as the contri-
bution of two-nucleon correlations to the ground-state energy, the relativistic random-
phase approximation for nuclear excitations, and two-loop contributions to the correla-
tion energy. We discuss under what situations the MFT is stable against the inclusion
of these effects (that is, when the MFT results are qualitatively unchanged) and when
it is not. We also exami.e issues raised by the role of the quantum vacuum in QHD.

Pions are included within the framework of the chiral-invariant sigma model with
spontaneously broken chiral symmetry (QHD-II). It is argued that the scalar field of
QHD-I is to be associated with the low-mass dynamical enhancement in the (0*,0)
channel produced by the strong pion couplings, and not with the chiral scalar field,
which may in fact be very massive. It is also shown that the first excited state of the
nucleon, the A(1232), which plays such an important role in intermediate-energy nuclear
physics, arises dynamically in QHD-II through the summation of nucleon exchange
graphs—the relativistic extension of Chew-Low theory.

There is now convincing evidence that quantum chromodynamics based on quarks
and gluons as the underlying degrees of freedom is the actual theory of the strong inter-
action; however, the derivation of nuclear structure from the strong-coupling, nonlinear.
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confining QCD lagrangian is far in the future.() We discuss the relationship between
QHD and QCD. Possibilities include: an approximate separation in coordinate space
for hadrons, with an exterior region where one uses QHD and an interior region where
QCD is used; a separation in momentum space, where QHD is used for nearby singu-
larities and QCD for those far away (QCD sum rules); and an interpretation in terms
of two models for two distinct phases of nuclear matter.

More generally, it is probable that at low energies and large distances, QCD can be
represented by an effective field theory formulated in terms of a few hadronic degrees of
freedom. All possible couplings must be included in the low-energy effective lagrangian,
which is then to be used at tree level. The underlying assumption of QHD is that of
a local relativistic theory formulated in terms of baryons and the lightest mesons. The
theory is assumed to be renormalizable, and one then attempts to extract predictions
for long-range phenomena by computing both tree-level diagrams and renormalized
quantum loop corrections. In the end, it may turn out that this assumption is untenable,
and that the only meaningful interpretation of QHD is as an effective theory, to be used
at the tree or one-loop level. The limitation to renormalizable couplings may then be
too restrictive. Nevertheless, the phenomenological success of the MFT of QHD-I in
the nuclear domain implies that whatever the effective field theory for low-energy, large-
distance QCD, it must be dominated by linear, isoscalar, scalar and vector interactions.

What is the outlook? Future work will focus on problems such as:

e The investigation of meson propagation and the behavior of the dynamically in-
duced hadronic resonances in nuclear matter.

e The theoretical search for other dynamically induced resonances.

o The study of the modification of nucleon properties in the nuclear medium. This
includes the study of the nucleon-meson vertex functions in QHD.

¢ The continued attempt to solve QHD-II, including o, w, =, and p, as a strong-
coupling field theory.

o The demonstration that QCD leads to large isoscalar, Lorentz scalar and vector
interactions between baryons. (There is already some evidence from QCD sum
rules that this is the case.)

e A continued effort to describe the internal structure of hadrons and the phase tran-
sition to the quark-gluon plasma through strong-coupling, lattice-gauge-theory
simulations of QCD.

o Experimental studies of the behavior of nuclear systems under extreme conditions,
which challenge our understanding of the nucleus, through new facilities such as
the Continuous Electron Beam Accelerator Facility (CEBAF) and the Relativistic
Heavy Ion Collider (RHIC).

()In this regard, contemplate deriving superconductivity or superfluidity directly from the lagrangian

of guantum electrodynamucs.
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