SOLID WASTE PROJECTION MODEL:
MODEL VERSION 1.0
TECHNICAL REFERENCE MANUAL

Wilkins
Croz ‘

. Buska
0uderkirk(a)

no<x
mrerr

November 1990

Prepared for ‘
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

(a) Boeing Computer Services Richland,
Richland, Washington.

DISTRIBUTION GF

PNL~--7489

DE91 005215

EXECUTIVE SUMMARY

The Solid Waste Projection Model (SWPM) system is an analytical tool dev-
eloped by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company
(WHC). The SWPM system provides a modeling and analysis environment that sup-
ports decisions in the process of evaluating various solid waste management
alternatives.

~ This document, one of a series describing the SWPM system, contains
detailed information regarding the software utilized in developing Version 1.0
of the modeling unit of SWPM. This document is intended for use by expe-
rienced software engineers and supborts programming, code maintenance, and
model enhancement.

Those interested in using SWPM should refer to the SWPM Model User’s
Guide. This document is available from either the PNL project manager
(D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson,
509-373-2796).

EXECUTIVE SUMMARY

1.0
2.0

3.0

4.0

INTRODUCTION . . v v v vt v e et e v et e e v e e e e e s
SWPM USER INTERFACEo v o oo o e e e
2.1 USER INTERFACE DATA STRUCTURES« .« v v v v v v
2.2 USER INTERFACE FUNCTION DESCRIPTIONS C i e e e e e e e e
2.2.1 Main Program Module: UIMAIN.C
2.2.2 Window Procedure Module: UIWIN.C
2.2.3 Dialog Procedure Module: UIDLG.C ,
2.2.4 Process Control Module: UISPAWN.C ;
2.2.5 File Input/Output Module: UIFILEIO.C ‘.
2.2.6 Consistency Check Module: UICHECKS.C .
2.2.7 Data Manipulation Module: UIDATMAN.C
2.2.8 Utility Procedures Module: UIUTIL.C
2.2.9 Menu Resource Module: UISWPM.RC
2.2.10 Dialog Box Resource Module: UIDLG.DLG
2.2.11 Icon Resource Module: UISWPM.ICO
PROJECTION FILE INTERFACE e e e e e e e e e e e e e e
3.1 PFI OVERVIEW o v v v vt vt e e e e
3.1.1 Processing Narrative e e e e e e e e
3.1.2 Data Flow Y s s s s s e s s s s s sa s e e e
3.2 FUNCTION DESCRIPTIONS v v v v v v v v v v e o o
3.2.1 Projection File Loading
3.2.2 Projection File Writing
SOLID WASTE PROJECTION MODEL « . v v v v v v v v .

CONTENTS

ooooooooooooooooooooooooo

S W W W W W W W

4.1 SWPM OVERVIEW . « v v v v vt e en s L
4.1.1 Processing Narrative e e e e
4.1.2 Data FIOW + v v oo e e

4.2 FUNCTION DESCRIPTIONS . . . & & & o v v i v v v v o s o o s
4.2.1 Main Program v v 0 v 0 e e e e e e e e e

14.2.2 General Methods« v v v v e e
8.2.3 COMPONENTS File « . v v v oo e e e et

4.3 MODELS . . v o v o et e e e e e e e e e e e e e
4.3.1 SMC (SWP Model Control) . . o v v v v v v v vt .
4.3.2 REPORT WRITER v o v v v v v v v v v v

4.4 SWPM DATA DICTIONARY « v ¢ v v ¢« v « o S 4.10

N A T T - T - D - T T

O N OO Q@ & s NN

5.0 OUTPUT REPORT WRITER «» « v v v v e o e et e e et e e e 5.1
5.1 ORW OVERVIEW . « v v v v o e e e e e et e e e e e 5.1

5.2 FUNCTION DESCRIPTIONS . & o © v v v v v v e e e et e v e 5.1
5.2.1 MAIN PROGRAM (REPORT.ADL) . . .« . v o v v v v v . . 5.3

5.2.2 TABLE GENERATION (TABLE.ALG) 5.4

5.2.3 SELECTING DATA FOR TABLES (LINE.ALG) 5.4

5.2.4 LOADING PRINTER CONTROL FILE (LOAD_PCF.FUN) 5.4

5.2.5 LOADING THE RESULT FILE (LOAD DAT.FUN) 5.4

5.2.6 ORW UTILITY FUNCTIONS (UTILITY.FUN) 5.5

5.2.7 OUTPUTTING TABLE HEADERS (HEADER.FUN) 5.5

5.3 FILES USED BY ORW « « « o v v v e e et e e e oo e 5.5

6.0 SHPM FILES « v v o e e e e e e e 6.1
6.1 REFERENCE PROJECTION FILE (RPF) . . o « v v v o v v v v . 6.2

6.2 REFERENCE PROJECTION SUMMARY (RPS) « 6.6

6.3 INCREMENTAL PROJECTION FILE (IPF) I 6.6

vi

O 0O N o - .

A o O O O O OO O Oy O O

11
A2
.13
14

INCREMENTAL PROJECTION SUMMARY (IPS) e 6.7

SWPM CONTROL (SMC) o v v v v e e e e e e e e e e e e 6.8
DATA DICTIONARY (DD) e e 6.10
RESULT FILE (RSL) v v v v v v e v e e e e e e e e 6.10
PRINTER CONTROL FILE (PCF) . . . e .61l
PRINTER CONTROL DATA FILE (PCD) . + + v « v « 613
CASE LOG FILE (CAS) '« v v v v v v v v e e e e e e e o . 6.14
USERNAME/PASSWORK FILE (UPF) . . v v v v v v v v v v . 615
REPORT FILE (REP) v v vttt e e o 6.16
REDIRECTED STANDARD OUTPUT FILE (OUT) 6.16
DIRECTORY STRUCTURE . . « » v v v v v v v v v v v v v o oo 6.16

vii

L= S S TR ~SR ~S

FIGURES

The Waste Management System Representation

The SWPM System
Data Flow e e e e
Waste Generator

Treatment Operation .o

Object Class Hierarchy . .

OvervieW of the ORW Data File

Reference Projection Tree

ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo

ooooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooooo

viii

P Y S ; R - -~ ~S X
NN WW N WN

1.0 INTRODUCTION

The Solid Waste Projection Model (SWPM) system is an analysis tool devel-
oped by Pacific Northwest Laboratory (PNL) for the Solid Waste Technslogy Sec-
tion of Westinghouse Hanford Company to address complex waste management
issues. The SWPM system provides the ability to develop projections of solid
waste volumes and characteristics and evaluate alternative waste treatment and
disposal strategies.

A generic representation of the system modeled by SWPM is shown in Fig-
ure 1.1. Waste is received from waste generating facilities and is distrib-
uted to various operations. Operations are defined as either "treatments" or
"disposals" and are Tinked to other operations to represent a given waste man-
agement‘scheme. Each operation has an associated storage option to track
waste volumes that arrive in excess of defined capacity.

Tne SWPM system, shown in Figure 1.2, consists of three modules: the
database, the user interface, and the model. The user interface controls
access to the data libraries and operation of the model with a system of pull-
down menus. The model consists of the aligorithms to calculate treatment,
storage, and disposal (TSD) volumes and costs, and the output report writer
(ORW), which formats model results into readable reports. The model is

First Operation Final Operation
(Treatment) (Disposal)
Storége ‘ Storage

Waste —»| |
Receipts _L Final
(from Waste — » — Operation " Operation
Generating _; (Disposal)
Facilities) -

To
Parallel
Operations

FIGURE 1.1. The Waste Management System Representation

1.1

|
Wast | Reference '
aste ' .
Volume —p=| | -‘I Lil%ata :
ra
Forecasts SwPM | y SWPM |Case : gnalysls
| User |——pm| Model == Output
_ Database | Intertace | Data , Reports
TSD » | [Incremental |
Characterizations. :)\ Data I
| Library |
I |
Data

FIGURE 1.2. The SWPM System

supported by a database, which is used to store and maintain waste volume
projections, as well as the description of the TSD operations and facilities.
This data is transferred to the model via the specially formatted electronic
Reference Data Library (RDL).

This SWPM Technical Reference Magual discusses the files and directory
structure of the user interface, the projection file interface (PFI), the
model, and the ORW. Together these packages comprise SWPM Version 1.0. Five
additional documents complete the set of documentation that provide instruc-
tions in the use, maintenance, and application of the total SWPM system:

o System Overview - provides an overview of the SWPM system and an
assessment of potential applications

o Database Users Guide - provides instructions for data entry, main-
tenance, and reporting

o Model User’s Guide - providés instructions for model operation and
execution

o Database Technical Reference Manual - describes database software,
utilities, and structure

e System Administration Manual - provides instructions for long-term
system administration and maintenance.

1.2

Copies of these documents or any further information may be obtained from the
PNL project manager (D. L. Stiles, 509-376-4154) or from the WHC program

" monitor (B. C. Anderson, 509-373-2796).

1.3

2.0 SWPM_USER INTERFACE

The key to operating SWPM is the graphical user interface, implemented in
- 0S/2 Presentation Manager (PM), which accesses the RDL and guides the user
through the selection of case-specific data sets. Once this case has been
specified, a SWPM run may be initiated from the user interface. After comple-
tion of a SWPM run, the user interface also prompts the user to select from
among several standard output tables, reporting SWPM results in a standard
format. This chapter provides a detailed description of the operations.
performed by the user interface and the codes and routines which execute these
operations.

2.1 USER INTERFACE DATA STRUCTURES

The C-language header file UI_LOAD.H defines the data structures that are
commor to the SWPM User Interface and the PFI routines that read and write
SWPM data files. These data structures form the mechanism of communication
between the user and SWPM data files.

The constants listed below define the maximum nUmber of SWPM data objects
that the user interface will accept in each entity list. These values are
currently defined as:

s MAXGEN Maximum number of waste generators; 400 objects.
e MAXCLASS ~ Maximum number of waste classes; 30 waste classes.
o MAXOPTYP ‘Maximum number of generic operation types; 200 objects.

o MAXOP Maximum number of waste class-specific operations; set
to be 2(MAXOPTYP*MAXCLASS) + 5.

e MAXYEAR Maximum number of years a scenar1o can run; 50 years.

. MAXGROUP Maximum number of groups to which an object may belong;
' 20 groups.

o MAXGROUPALL Maximum number of different group names for all
objects; set to be 4(MAXGROUP).

e MAXSC Maximum number of generic scenario names; 100 names.

2.1

o MAXPS Maximum number of object-specific sceﬁario names; set
to be (MAXOP + MAXGEN).

o MAXNAM Maximum number of characters in an object’s name;
31 characters.

o MAXCOM Maximum number of characters in a single comment field;
255 characters.
While these constants define the limits of the user interface, the model is
more constrained. The total number of elements defined in a given 1ist (waste
generators, operations, etc.) may not exceed 255 for the model. Further, the
total number of operations, plus waste generators, plus waste classes, may not
exceed 900 elements. '

- The object data structures used by the SWPM are described in the follow-
ing listing. '

typedef struct SC { Define the SC (Scenariu) object.

char *name Scenario name. May be used with waste
generators and operations.

BOOL perm TRUE if this scenario name was loaded from a
library; FALSE if the user created it during
this session.

} SC.

typedef struct WC { Define the WC (Waste Class) object (an array of these
objects will serve to enumerate waste classes selected
by the uscr.)

char *name Name of waste class (e.g., "RH_TRU")

int ngroups The number of different waste class groups to
which this waste class belongs

char *group[MAXGROUP] The name of each waste class group to which
this waste class belongs.

BOOL perm TRUE if this waste class was loaded from a
Tibrary; FALSE if the user created it during
the current session.

BOOL selected TRUE if the user has selected this waste
class for use in the current session.

2.2 ’

BOOL

BOOL
yWe.

write me

disabled

typedef struct OT (

char

BOOL

BOOL

BOOL

BOOL

BOOL

} OT.

*name
is_disposal

perm

selected

write_me

disabled

typedef struct WG

char

thar

char *distr_comment

*name

*desc

[MAXCLASS]

char

*proj_comment

[MAXCLASS]

int

int

startyear

nyears

TRUE if this waste c1a§s is to be written to
the Incremental Projection File (IPF).

TRUE if user has disabled this waste class.

Define the OT (Operation Type) object.

Name of operation type (e.g.,
"SIZE_REDUCTION")

TRUE if the operation type is a disposa]
FALSE if it is a treatment.

TRUE if this operation type’s name was loaded
from a 1ibrary; FALSE if the user created it
during the current session.

TRUE if the user has selected this operation
type for use in the current session.

TRUE if this operation type should be wrltten
to the IPF.

TRUE if the user has disabled this operation
type.

Define the WG (Waste Generator) object.

Name of waste generator (e.g., "WHC_313").
General comment for this waste generator.
A comment about the distribution of each
waste class generated by this waste
generator.

A comment about the projected volume of each
waste class generated by this waste

~generator.

Year in which this waste generator starts
operation.

Number of years this waste generator
operates.

2.3

BOOL

class[MAXCLASS]

float volume
[MAXCLASS ;MAXYEAR]

float distr[MAXOP]

int
char

BOOL

BOOL

char

char

int
int
BOOL
BOOL

} WG.

typedef struct OP {

ngroups
*group [MAXGROUP]

perm

selected

*sc_selected

*sc_parent

parent_index
child_index
write_me

disabled

For each waste class, TRUE if the waste class
is produced by this waste generator.

The projected volume of each waste class
generated by this waste generator by year.

The distribution fraction for each waste-
class-specific operation on the output of
this waste generator.

The number of different waste generator
groups to which this waste generator belongs.

The name of each waste generator group to
which this waste generator belongs.

TRUL if this waste generator’s infyrmation
exists in a library; FALSE if the user
created it during the current session.

. TRUE if the user has selected this waste

generator for use in the current session.

Name of scenario selected for this waste
generator for this case. Consists of an SC
name appended to the name of this waste
generator. ‘

Scenario name of the parent of the above
scenario. NULL if the above scenario is a
root and, therefore, has no parent.

Index of this Waste Generator’s parent. Use
-1 if this waste generator has no parent.

Index of this waste generator’s child. Use
-1 if this waste generator has no child.

TRUE if this waste generator should be
written to the IPF.

TRUE if the user has disabled this waste
generator.

Define the OP (Operation) object. (An Operation is

either a treatment or a disposal. Also, "Operation"
implies "waste-class-specific operation," which is a
concatenation of "general-operation type" and "waste

class.

2.4

char
char
char

char

char
char

int
int
float
BOOL

float

float
float

float

int
char

BOOL

BOOL

*name
*optype
*wstclass

*desc

*capac_comment
*distr_comment

startyear
nyears
capacity[MAXYEAR]

is_disposal

distr[MAXCP]

ratio
store_rate

treat_rate

ngroups
*group [MAXGROUP]

perm

selected

Name of waste-class-specific operation (e.g.,
"SIZE_REDUCTION_TRU_RH").

Name of general treatment or disposal type
(e.g., "SIZZ_REDUCTION").

Name of waste class this operation handles
(e.g., "RH_TRU").

General comment for this operation.

Comment describing the capacity of this
operation.

Comment describing the distribution for this
operation.

Year in which this operation begins.
Number of years this operation lasts.
Capacity of this operation by year.

TRUE if the operation is a d1sposa1 FALSE if
it is a treatment.

The distribution fraction for each operation
performed on the output of this treatment
operation.

The volume adjustment factor for waste going
through this treatment operation.

Cost of storage per unit volume at ihis
operation.

Cost of this operation per unit volume.

The number of different treatment or disposal
groups to which this operation belongs.

The name of each treatment or disposal group
to which this operation belongs.

TRUE if this operation’s name was loaded from
a library; FALSE if the user created it
during this session.

TRUE if the user has selected this operation

for use in the current session.

2.5

char
char

int
int
BOOL
BOOL

} OP.

*sc_selected
*sc_parent

parent_index
child_index
write_me

disabled

Name of scenario selected for this operation
for this case. Consists of an SC name
appended to the name of this operation.

Scenario name of the parent of the above
scenario. MNULL if the above scenario is a
root and, therefore, has no parent.

Index of this operation’s parent. Use -1 if
this operation has no parent.

Index of this operation’s child. Use -1 if
this operation has no child.

TRUE if this operation should be written to
the IPF.

"TRUE if the user has disabled this

operation.

typedef struct CASE { Define the CASE Object. This object holds the
information that is written to the header of each
".cas" file. ‘

char
char
char
char

char

char

char

char

char

char

name [MAXNAM]
basename[MAXNAM]
comment [MAXCOM]
author {MAXNAM]
baseauthor[MAXNAM]

datafile[MAXCOM]
sumryfile[MAXCOM]

incdatafile[MAXCOM]
incsumryfile[MAXCOM]

datadict[MAXCOM]

Name of the case.

Name of the case’s parent (if any).
Comment describing the case.

Person who created the case.

Person who created the case’s parent (if
any).

Name of Reference Projection File for the
case (RPF).

Name of Reference Projection Summary file for
the case (RPS).

Name of IPF for the case.

Name of Incremental Projection Summary file
for the case (IPS).

Name of Data Dictionary File for case.

2.6

char result[MAXCOM] Name of Result File where the case’s output

is written. |
int firstyear First year covered by the case.
int lastyear Last year covered by the case.
BOOL modified TRUE if this case has been modified in a way

that is different from its parent.

-} CATE.

2.2 USER INTERFACE FUNCTION DESCRIPTIONS

The SWPM User Interface is an 0S/2 Presentation Manager (PM) application
composed of numerous data structures and procedural function descriptions.
The functions are implemented in Microsoft C Version 5.1 and Presentation
Manager Resource Compiler (RC) languages, and are packaged in eight C-language
modules, two RC modules and one Icon module.

2.2.1 Main Program Module: UIMAIN.C

~As with a1l C programs, execution begins with function "main," which is
the only function defined in UIMAIN.C. This function implements standard PM
boilerplate ‘o register two window classes, create two frame windows (one
being a child of the other), and invoke the standard PM event loop. It also
starts a timer that’s used to check the status of ADL, which runs SWPM and the
ORW.

2.2.2 Window Procedure Module: UIWIN.C

This module contains the two PM window procedures that service events
generated when the user interacts with the two main windows of the applica-
tion. These routines are both standard PM client window procedures; their
structure is defined and described in the Microsoft 0S/2 programmer’s ref-
erence documentation. The menu structure for these windows is defined in the
Resource Compiler source file UISWPM.RC, described later in this report.

LevellWndProc

This routine responds to user selections from the top-level menus,
including the hierarchy under the "Setup/Run" and "Exit" action-bar items.

2.7

For most of the menu chrices, this routine uses PM function WinD1gBox to
display a dialog box for the user to interact with. When the user selects the
"Edit" menu item, this routine activates its child window, which is serviced
by Level2WndProc. In response to the "Run" and "Generate Reports" menu items,
the routine uses "run_adl" to create a subprocess to run ADL to run SWPM or
REPORT (the ORW). The routine also manages the enabling and disabling of menu -
items in its frame window to guide the user through the logical succession of
steps in a SWPM session. ‘ ‘

The important actions that this routine performs in response to each menu
selection by the user are summarized below:

Menu Item Processing by LevellWndProc

Sign On Invoke SignonDlgProc to get and validate
username/password. Quit if not valid.

Create New Case Invoke "filename" to solicit new case name, then
' library name (i.e., RPF/RPS/IPF/IPS filename), then
data dictionary (DD) name. Then invoke "load_summary"
to fill case header and load the RPS/IPS files
specified.

Use C1d Case Invoke "filename" to solicit old case name, then
"readcase_header" to get the library file names. Then
invoke "readcase" to read the entire case log file and
preselect the objects indicated therein.

Preselect Invoke PreselectDlgProc.

Load | Invoke "pre Toad check," then "loadpfi," then
"post_load_check."

Edit , Use PM routine WinSetWindowPos to activate the child
window, thereby enabling Level-2 menu functions
serviced by Level2WndProc.

Run Invoke "write_case_files" and "writesmc" to create and
update the necessary files, to save the current case,
and to run SWPMOD. Then invoke "run_adl" to spawn a
subprocess to run ADL, which runs SWPM asynchronously
with respect to the User Interface application.

Report Content Invoke ContentDIgProc.

2.8

Menu Item

Report Order

Report Generate

Report Print

Stop Model
Stop Report

Status

Exit

Level2WndProc

Processing by LevellWndProc

Invoke OrderDl1gProc, which uses WinDlgBox’s ‘
"CreateParams" parameter o determine which of eight
object types to present to the user for ordering.

Invoke "filename" to solicit the name of the RSL file
from which the user wishes to generate reports. Then
invoke "writepcf" to create a new print control file.
Then invoke "run_adl" to spawn a subprocess to run
ADL, which runs REPORT asynchronously with respect to
the User Interface application.

Invoke "filename" to solicit the name of the REP file
for which the user wishes a hardcopy. Then invoke
"do_command" to execute ORWLASER.CMD, which sends the
specified file to the Taser printer.

Invoke "ki11_adl1" to stop the instance of ADL that is
running SWPMOD. - ‘

Invoke "kill_ad1" to stop the instance of ADL that is
running REPORT. ,

Build a string that describes the current status of
the subprocesses (if any) that are running ADL and use
PM routine WinMessageBox to display it.

Give the user a chance to change his/her mind if ADL
is running. Then ask the user if changes are to be
saved and, if so, invoke "write_case_files." Invoke
"redirect_output" to restore the standard output
stream, and post a message to cause this window
procedure to quit.

This routine responds to user selections from the Level-2 menus, which
comprise the functions that allow the user to edit SWPMOD input data. Action-
bar items serviced by this routine include "Waste Generator," "Operation,"
"Waste Class," "Case Description," and "Close." In response to selections
from these items, the routine uses WinD1gBox or WinLoadDlg to pop up modal or
modeless dialog boxes, respectively, with which the user interacts to edit

SWPMOD input data.

When the user selects "Close," the routine sends itself a

2.9

message to deactivate the level 2 window. Level2WndProc also manages the
enabling and disabling of its own menu items to guide the user through the

data editing process.

The important actions that this routine performs in response to each
menu selection by the user are summarized below:

Menu Item

WG

WG

WG

WG

WG

WG

op

op

Select

Proj/Dist

General Comment

Dist. Comment
Proj. Comment

Groupings

Select

Capacity/Dist

Processing by lLevel2WndProc

Invoke SelectDl1gProc to solicit a waste generator and
its waste class from the user.

Invoke "select_child_wg" to access the child
(editable) version of the currently selected waste
generator object, creating one if necessary. (This is
done when the user is about to modify an object’s
data.) Then use PM routine WinLoadDlg to invoke
modeless dialog procedure WGPDD1gProc, which interacts
zith the user to edit projection and distribution

ata.

Invoke "select_child_wg," then invoke CommentDlgProc.
(CommentD1gProc is general-purpose; the specific type
of comment being edited is passed to it in WinDlgBox’s
"CreateParams" parameter.)

Invoke "select child_wg," then CommentDlgProc.
Invoke "select_child_wg," then CommentDlgProc.

Invoke "select_child wg," then GroupDlgProc.
(GroupD1gProc, 1like CommentDlgProc, is general-
purpose.)

Invoke SelectD1gProc to solicit an operation from the
user. ‘

Invoke "select child op" to access the child
(editable) version of the currently selected Operation
object, creating one if necessary. (This is done when
the user is about to modify an object’s data.) Then
use PM routine WinLoadDlg to invoke 'nodeless dialog
procedure OPCDDIgProc, which interacts with the user
to edit capacity and, in the case of Treatment
Operations, distribution data.

Menu Item ' Processing by Level2WndProc

OP General Comment Invoke "select_child_op," then invoke CommentDIgProc.
(CommentDIgProc is general-purpose; the specific type
of comment being edited is passed to it in WinDlgBox’s
"CreateParams" parameter.)

OP Dist. Comment Invoke "select _child_op," then CommentD1gProc.

OP Capac. Comment Invoke "select_child_op," then'CommentD1gPr6c.

oP Groupiﬁgs Invoke "select _child_op," then GroupDigProc.
(GroupD1gProc, 1ike CommentDlgProc, is general-
purpose.)

WG Select Invoke SelectDlgProc to solicit a waste class from the
user.

WC Groupings Invoke GroupDlgProc.

Describe Case If the user has modified the case and has not provided

a new name yet, invoke "filename" to solicit a new
case name. Then invoke CaseDigProc to solicit case
info, and then "writecase" to create a new case log
(.CAS) file.

Close Send this window a message telling it to close itself.

2.2.3 Dialoq Procedure Module: UIDLG.C

This module contains all of the PM dialog procedures that produce dialog
windows as child windows of level 1 or level 2 windows described above, and
service events generated when the user interacts with these windows. It is in
response to events from dialog windows that the SWPM User Interface performs
most of its activity; therefore, the routines defined in this module are
responsible for most of the work done by the User Interface application. Each
of the routines contained in this module are standard PM dialog procedures;
their structure is defined and described in the Microsoft 0S/2 programmer’s
documentation. The dialog windows that these procedures support are defined
in the module UIDLG.DLG, which is created and maintained interactively with
the Microsoft 0S/2 Presentation Manager Dialog Box Editor.

ContentDlgProc

This dialog procedure displays the contents of the file SWPM.PCD in a
Tist box (see Chapter 6.0, SWPM FILES) and allows the user to pick one or more
output report tab]es‘from the 1ist. The choices are stored internally and
~will be used to create a new version of SWPM.PCF when the user selects the
"Generate Reports" function.

OrderDlgProc

This dialog brocedure displays two 1ist boxes. The left-hand 1list box
contains a list of all object classes that can be printed by the ORW; the
right-hand 1list box is initially empty. The user is allowed to select items
from the left-hand 1ist box. As the items are selected, they are displayed on
the right in the order selected. Selecting items from the right-hand 1ist box
deletes them from that box. By so manipulating the contents of the two Tist
boxes, the user can build up in the right-hand Tist box a Tist of objects in
any desired order. This order is stored internally for later output to
SWPM.PCF for use by the ORW.

ScenarioDlgProc

This dialog procedure is used during the preselection process (when the
user picks the "Preselect" menu item) as well as during the data editing proc-
ess. It displays a 1ist box and a related entry field, and allows the user to
specify a general scenario name by selecting from the 1ist box or typing into
the entry field. The user is also allowed to delete a scenario name under
certain conditions.

NewWGD1gProc

This dialog procedure allovis the user to create a new waste generator
object. It displays an entry field for the user to enter a new waste genera-
tor name, and a list box filled with waste classes. From the Tist box, the
user specifies the waste classes that the new waste generator produces.

NewOPD1gProc

This dialog procedure allows the user to create a new treatment or dis-
posal operation object. It displays two list boxes, one filled with names of

2.12

existing operation Types and the other filled with waste classes. An entry
field is also provided for the user to enter the name of an entire1y new
operation type. The user can create a new operation by picking an existing
cperation type from the Teft-hand 1ist box and matching it with a waste class
from the right-hand 1ist box, or a new operation type can be entered. Radio
buttons are provided to indicate whether the new operation type is a treatment
or a disposal. This new operation type can then be matched with a waste
class.

CaseDlgProc

This dialog procedure displays comments about the current case’s parent
case (if any) and allows the user to enter a new comment about the current
case. The period of time covered by the case can also be specified.

PasswordDlgProc

This dialog procedure, invoked from SignonDlgProc, displays a prompt for
the user to enter his/her password.

SignonDlgProc

This dialog procedure queries the user for the username, then invokes
PasswordDigProc to obtain the user’s password, which it validates against the
file SWPM.UPF. If SWPM.UPF indicates that the user is privileged, this fact
is noted for subsequent use.

PreselectDlgProc

This dialog procedure allows the user to preselect, from three dialog
boxes, the waste classes, waste generators and operations that are to be
loaded from the RPF/IPF for subsequent editing and/or processing by SWPM. The
Tist boxes are filled from the contents of the currently-specified summary
files (RPS/IPS). This procedure invokes ScenarioDIgProc to solicit waste
generator and operation scenario names from which to Took up the data in the
RPF/IPF at Tload time. Push buttons allow the user to select/deselect all
items in any of the three 1ist boxes. |

SelectDlgProc

This dialog procedure is used during editing of data for weste genera-
tors, operations and waste classes. Its purpose is to allow the user to
select the specific object to edit. It is a general-purpose routine, and one
of its parameters specifies what type of object is to be selected. Depending
on the object type, the routine displays one or two Tist boxes; two are dis-
played for waste generators since the user must not only pick a waste genera-
tor but also one of the waste classes it produces. When selecting waste
generators or operations, the user is also given the option, via a push
button, of creating a new object of the corresponding type. In these cases,
this routine invokes NewWGDIgProc or NewOPDIgProc, as appropriate.

CommentDlgProc

This dialog procedure is used during the editing process to display the
comment history of SWPM data objects and to allow the user to enter new
comments. This single, general-purpose procedure handles the following types
of comments:

o+ Waste Generator (General)

o Waste Generator (Projection)

o Waste Generator (Distribution)

e Treatment & Disposal Operation (General)
e Treatment & Disposal Operation (Capacity)
¢ Treatment Operation (Distribution)

e MWaste Class (General).

As with other general-purpose dialog procedures, one of this routine’s
parameters, which is passed to it via WinDlgBox’s "CreateParams" parameter,
specifies which of these types of comments should be displayed and solicited.

GroupDlgProc

This dialog procedure (another general-purpose dialog procedure) uses
two 1ist boxes, an entry field, and several push buttons to é]]ow the user to
create and rearrange groups of SWPM objects. This procedure can handle groups

2.14

of waste generators, treatment and disposal operations, and waste classes, as
well as groups that combine these objects.

DD1gProc

This modeless dialog procedure implements the main editing window for
waste generator data. It is implemcnted as a modeless dialog to permit the
user to view and enter comments without dismissing it. It presents the user
with a 1ist box and an entry field for viewing and editing projection data by
year. Two 1ist boxes and an entry field are provided for viewing and editing
distribution data. A push button is provided to allow the user to create a
new treatment or disposal operation without dismissing this window.

Q0PCDD1gProc

This modeless dialog procedure implements the main editing window for
treatment and disposal operation data. It is implemented as a modeless dialog
to permit the user to view and enter comments without dismissing it. It
presents the user with a Tist box and an entry field for viewing and editing
treatment and disposal capacity data by year. Two list boxes and an entry
field are provided for viewing and editing treatment distribution data; these
are disabled when a disposal is being edited. Three entry fields allow edit-
ing of storage cost, treatment/disposal cost, and (for treatments only)
throughput volume ratio. A pushbutton is provided to allow the user to create
a new treatment or disposal operation without dismissing this window.

FilenameDlgProc

This dialog procedure, used to support the "filename" procedure in mod-
ule UIFILEIO.C, uses a 1ist box and an entry field to prompt the user for an
existing or new file name with a given filetype.

2.2.4 Process Control Module: UISPAWN.C

The procedures in this module create and manage subprocesses that run
ADL programs asynchronous to the SWPM User Interface application.

REDIRECT _OUTPUT

This routine redirects standard output to the specified file, or to the
actual standard output stream if the specified file is NULL.

2.15

RUN_ADL | |
This routine creates a subprpcess that runs ADL with the specified ADL
source file, which in turn will rizad the specified Model Control File.

ADL STAILUS

This routine obtains the current status of the subprocesses that run ADL
with SWPM. and REPORT and returns this information to its caller.

KILL_ADL

This routine uses DosKillProcess to abolish the subprocess that is
running ADL with the specified program, either SWPMOD or REPORT.

2.2.5 Eile Input/Output Module: UIFILEIO.C

This module contains procedures that handle file input and output for
the User Interface. For a description of the files it handles (see Chap-

ter 6.0, SWPM FILES).
LOAD_SUMMARY

This routine reads the RPS (.RPS) and IPS (.IPS) files and creates SWPM
data objects (waste classes, operation types, waste generators, operations and
scenario names) from the summary information contained in these files.

LOADPF

This routine loads information into the SWPM data objects created by
LOAD_SUMMARY. LOAD_PFI is activated by selection of the Load function from
the Setup/Run menu. It calls PFI routines to accomplish this. After informa-
tion is loaded, LOADPFI builds a 1ist of group names from the grouping
information in the waste generator and operation data objects.

W PC

This routine creates a printer control file, "SWPM.PCF."
W SMC

This routine Creates a Model Control (.SMC) file.

READCASE _HEADER

This routine reads the header of a Case description save (.CAS) file
into the case header data structure.

READCASE

This routine reads a .CAS file header, then reads the body of the .CAS
file and creates the SWPM data structures. While doing this, the routine
checks for inconsistencies between the data being read from the .CAS file and
the .RPS and .IPS files read previously during the session. As each
inconsistency is discovered, the user is given a chance to fix it or abort the
reading process. (These inconsistencies will be created if .RPS and/or .IPS
files are modified independently of the User Interface.)

WRITECASE

This routine creates a new .CAS file.

WRITEPFI

This routine calls PFI_WRITE to write SWPM data objects flagaed
"write_me" to the IPF.

WRITE CAS ES

This routine calls WRITECASE and WRITEPFI, effectively saving the case
and preparing the IPF for a SWPM run. If the user has not yet given the
current case a name, a name must be supplied at this time. If the case has
not yet been described, this routine invokes CaseDigProc to force the user to
supply a description.

2.2.6 Consistency Check Module: UICHECKS.C

The procedures in this module check SWPM input data for consistency
before and after data loading, and also check the syntax of the user’s
entries.

2.17

SYNTAX

This routine ensures that the string provided adheres to the rules for
the name of a SWPM data object: it must be less than 32 characters in length;
it must begin with a letter; and it must be composed of letters, numbers and
underscores (no spaces).

PRE_LOAD_CHECK

This routine, invoked prior to loading information from the RPF/IPF,
ensures that the user has preselected at least one waste generator, waste
class, and operation.

POST LOAD_CHECK

This routine, invoked after loading information from the RPF/IPF,
performs a consistency check on the loaded data. It checks each waste genera-
tor preselected by the user to ensure that at least one of its waste classes
was preselected. For each waste generator that fails the test, the user can
eliminate the waste generator from the case or abort and start over.

2.2.7 Data Manipulation Module: UIDATMAN.C

The procedures in this module are called by higher-level procedures to
manipulate data stored in SWPM data structures.

CLEARALL

This routine initializes all SWPM User Interface data structures.

MAKE_SC

This routine creates from the supplied string an instance of a
"scenario" data object, which is a general scenario name that can be appended
to a waste generator or and operation name to form a specific scenario name.

DESTROY_SC

This routine destroys an instance of a scenario data object. ("Destroy-
ing" a SWPM data object means freeing its storage and nulling any pointers to
it in other SWPM data objects.)

MAKE_WC

This routine creates an instance of a waste class data object; the sup-
piied string becomes the object’s name.

MAKE_WG

This routine creates an instance of a waste generator data object; the
supplied string becomes the object’s name.

DESTROY WG
This routine destroys an instance of a waste generator data object.
MAKE_OT

This routine creates an instance of an operation type data object from
the supplied string and the boolean "Treatment/Disposal" indicator.

DESTROY_OT
This routine destroys an instance of an operation type data object.
MAKE_OP

This routine creates an instance of an operation data object from the
operation type and waste class supplied as indices to preexisting component
data objects.

DESTROY_OP

This routine destroys the instance of an operation data object specified
by indices to its components.

SELECT CHILD WG

This routine opens the current waste generator data object, as identi-
fied by a global variable set when the user selects a waste generator, for
editing by the user. "Opening" means accessing the "child" version of a Waste
Generator instance, creating a new one if necessary.

SELECT _CHILD OP

This routine opens the current operation data object, as identified by a
global variable set when the user selects an operation, for editing by the

2.19

user. "Opening" means accessing the "child" version of an operation instance,
and creating a new one, if necessary.

SAVE _WG_VALUES

This routine saves the contents of the specified wasté gencrator data
object in a global waste generator save area.

RESTORE_WG_VALUES

This routine restores the contents of the global waste generator save
area to the specified waste generator data object. (The save/restore
routines... this one and the next three to be described, are used during the
editing process fo facilitate a "Cancel" function.)

SAVE_OP_VALUES

This routine saves the contents of the specifiéd operation data object
in a global operation save area.

RESTORE_OP_VALUES

This routine restores the contents of the global operation save area to
the specified operation data object.

LONKUP

This routine returns to its caller the index of the specified SWPM data
object of the specified type.

UPDATE_WCLIST

This routine updates the waste class list box in the "Preselect" dialog
box with the current waste class names and selections.

UPDATE_WGLIST

This routine updates the waste generator list box in the "Preselect"
dialog box with the current waste generator names and selections.

UPDATE _OPLIST

This routine updates the operations 1ist box in the "Preselect" dialog
box with the current operation names and selections.

2.20

2.2.8 Utility Procedures Module: UIUTIL.C

This module contains low-level utility routines called by higher-level

routines in the SWPM User Interface application.

MAKETITLEBAR

This routine constructs a string for use in the title bar of the top-

level window, from the SWPM User Interface version identifier and the current
case name. ‘

bar.

bar.

ENABLEMENU

This routine enables the specified item in the specified menu action

DISABLEMENU

This routine disables the specified item in the specified menu action

UPPER

This routine converts the supplied string te upper case.

DO_COMMAND

This routine performs the 0S/2 command contained in the supplied string.

DTB

This routine removes trailing spaces and control characters from the

supplied string.

ALLOCSTR

This routine allocates dynamic storage for the supplied string, copies

the string into it, and returns a pointer to the new string.

GoodBeep

This routine causes the computer to emit a tone sequence implying

"success."

2.21

BadBeep

This routine causes the computer to emit a tone sequence implying
"failure."

CareBeep

This routine causes the computer to emit a tone sequence implying "be
careful." ‘

NOTE

This routine invokes "BadBeep" and displays the supplied string in a
message box and waits for the user’s acknowledgment.

TIMEDATE
This routine keturns the current time and date as a string.

2.2.9 Menu Resource Module: UISWPM.RC

This Microsoft 0S/2 Presentation Manager Resource Compiler source file
defines the menu structure for both of the SWPM User Interfacg windows. The
contents of this file are given below: ‘

/* uiswpm.rc */
*

/* B] /

/* Resource source file for the SWPM User Interface Application.. */
/* Defines the menu structure fur the Level 1 and 2 windows.. */
/* Includes resource source file created by Dialog Box Editor */

#include <os2.h>
#include "uiswpm.h"
rcinclude uidlg.dlg

POINTER ID_RESOURCE_1000 uiswpm. ico
MENU ID_RESOURCE_1000
gUBMENU "Setup/Run, " IDM_SETUP_RUN
?UBMENU "Initialize," IDM_INITIALIZE

2.22

MENUITEM "Sign On,"
MENUITEM "Create New Case,"
MENUITEM "Use 01d Case,"

}

MENUITEM "Preselect,"
MENUITEM "Load,"
MENUITEM "Edit,"
MENUITEM "Run,"
SUBMENU "Report,"

MENUITEM "Content,"
SUBMENU "Order, "

MENUITEM "Waste Generators,"

IDM_ORDER_WG, ,MIA DISABLED

MENUITEM "Waste Classes,"

IDM_ORDER_WC, ,MIA DISABLED

MENUITEM "Treatments,"
IDM_ORDER_TRT, ,MIA_DISABLED

MENUITEM "Disposals,"
IDM_ORDER _DP, ,MIA DISABLED

IDM_SIGNON
IDM_NEWCASE, ,MIA_DISABLED
IDM_OLDCASE, ,MIA_DISABLED

IDM_PRESELECT, ,MIA_DISABLED
1DM_LOAD, , MIA DISABLED
IDM_EDIT, ,MIA_DISABLED
IDM_RUN, ,MIA_DISABLED

IDM REPORT

IDM_CONTENT
IDM_ORDER

MENUITEM "Waste Generator Groups,"

IDM_ORDER_GG, ,MIA_DISABLED

MENUITEM "Waste Class Groups,"

IDM_ORDER_GC, ,MIA_DISABLED

MENUITEM "Treatment Groups,"

IDM_CRDER_GT, ,MIA_DISABLED

MENUITEM "Disposal Groups,"

IDM_ORDER_GD, ,MIA_DISABLED

)
MENUITEM "Generate,"
MENUITEM "Print,"

)
. SUBMENU "Stop,"
| MENUITEM "Stop Model,"

IDM GENERATE,,MIA DISABLED
IDM_PRINT, ,MIA_DISABLED

IDM_STOP
IDM_STOPMOD, ,MIA_DISABLED

MENUITEM "Stop Report Generator," IDM_STOPREP,,MIA DISABLED

)
MENUITEM "Status,"

)
MENUITEM "Exit,"
)

POINTER ID_RESOURCE_2000 uiswpm.ico

MENU
{
SUBMENU "Waste Generator,"
{
MENUITEM "Select,"

MENUITEM "Projection/Distribution,"”

2.23

IDM_STATUS

IDM_EXIT

ID_RESOURCE_2000
IDM_WG

IDM_WG_SEL
IDM WG PD, ,MIA_DISABLED

MENUITEM "General Comment," IDM_WG_GCOM, ,MIA_DISABLED

MENUITEM "Distribution Comment," IDM_WG_| DCOM,,MIA_DISABLED
MENUITEM "Projection Comment," IDM_WG_PCOM, ,MIA_DISABLED
?ENUITEM "Groupings," IDM_WG_ GROUP,,MIA DISABLED
SUBMENU "Operation," IDM_oP
{ .
MENUITEM "Select," IDM_OP_SEL
MENUITEM "Capac1ty/Distribution/Cost/Ratio,“IDM 0P _CD,,MIA DISABLED
MENUITEM "General Comment," IDM_OP_GCOM, ,MIA_DTSABLED
MENUITEM "Distribution Comment," IDM_OP | DCOM,,MIA _DISABLED
MENUITEM "Capacity Comment," IDM_OP_CCOM, ,MIA_DISABLED
MENUITEM "Groupings," IDM_OP_GROUP, ,MIA_DISABLED
)
SUBMENU "Waste Class," IDM_WC
{
MENUITEM "Select," IDM_WC_SEL
?ENUITEM "Groupings," IDM_WC_GROUP, ,MIA | DISABLED
MENUITEM "Case Description," IDM_CASE
MENUITEM "Close," ' IDM_CLOSE

)

2.2.10 Dialog Box Resource Module: UIDLG.DLG

This Microsoft 0S/2 Presentation Manager Resource Compiler source file
defines all of the SWPM User Interface dialog boxes. It is created and
maintained by the Microsoft 0S/2 Presentation Manager Dialog Box Editor, which
uses the corresponding binary and header files UIDLG.RES and UIDLG.H. None of
these files should be touched by anything other than the Dialog Box Editor; to
violate this rule is to court disaster.

2.2.11 Icon Resource Module: UISWPM.ICO

This module is a binary file that defines the 32-by-32 pixel PM icon for
the SWPM system. It is created and maintained by the Microsoft 0S/2
Presentation Manager Icon Editor.

2.24

3.0 PROJECTION FILE INTERFACE

This chapter describes the projection file interface (PFI), which pro-
vides a 1ink between the User Interface and the data library. The library
includes several data files labeled .RPF, .RPS, .IPF, and .IPS. The PFI is
written in C and is used as subroutine calls from the User Interface. The
User Interface calls the PFI to load data from the .RPF and .IPF files into
the User Interface data structures. When the user has finished editing the
data, the User Interface calls the PFI to update the incrementall projection
and summary files.

3.1 PFI OVERVIEW

The PFI is effectively divided into two pieces, the portion that Toads
data into the User Interface structures and the portion that writes the data
from the User Interface structures into the incremental data Tibrary.

The PFI uses the SCANNER and LOADDATA modules that were written as part
of the ADL engine. In the load phase, it calls the LOADDATA medule and
"intercepts" the values that are normally stored in ADL data structures and
stores them in the User Interface data structures instead. During the write
phase, the PFI uses the SCANNER to read the existing incremental files and
echoes the data through to the updated incremental files along with the extra
information contained in the User Interface data structures.

3.1.1 Processing Narrative

The general flow of the load phase is: (

o Create the 1list of macros (of the form "NAME=NAME") using the given
list and the summary files. These macros are given to the SCANNER
so that it will read only the desired data from the projection
files. A description of the #IFDEF structure used in the data files
is described in the SWPM FILES section of this document.

o Call the LOADDATA module.

o Whenever LOADDATA finds a data value, it calls PFI_STORE_VAL, which
loads the data in the User Interface data structures.

e Free up necessary memory.

3.1

The flow of the write phase is:

o Get Tist of new objects to declare (for the header section of the
data file).

o Update the IPS.

o If the IPF already exists, get the 1ist of objects (waste classes,
waste generators, and operations) from its header section.

o Merge the Tist of objects from the existing incremental file with
the new objects in the User Interface data structures.

e Write the merged 1ists of objects to the header section of the new
incremental file.

e If the old 1ncrémenta1 file exists, copy its declaration section to
the new incremental file.

e Add the necessary new declarations to the new incremental file.

e If the old incremental file exists, copy its data seétion to the new
incremental file.

e Add the necessary new data statements to the new incremental file.
o Free up necessary memory.

3.1.2 Data Flow

When the User Interface loads data, PFI_LOAD PROJECTION is called, and
the PFI reads the RPS and RPF files and the IPF and IPS files if they exist.
The User Interface then loads the data sent to it from LOADDATA into the User
Interface data structures.

When the user has finished editing data, the User Interface calls
PFI_WRITE and the PFI updates the IPF and IPS files. If those files do not
exist, they are created. Figure 3.1 illustrates the data flow involved.

3.2 FUNCTION DESCRIPTIONS

Because the PFI uses the LOADDATA module from ADL (and, thus, the
SCANNER, BUFFER, SYMTBL, and some PARSER routines), the PFI module is under
the configuration management of the ADL code. Also, it uses several of the
"include" (*.h) files from the ADL code but has its own specific "include"

3.2

RPF IPF RPS IPS

— =

LOADDATA Project
Module i Flle
from ADL Interface
Load Write
Data Data

User Interface
Data
Structures

FIGURE 3.1. Data Flow

file (PFI.H) which defines some internal data structures. Each of the rou-
tines in the PFI 1s in a separate file and has associated unit tests according
to ADL Configuration Management. The routine names start with "PFI_" followed
by a name describing the routine. The following sections give a description
of the primary routines in the PFI module. Some of the auxiliary routines
that perform tasks such as freeing memory and parsing sections of the summary
files are not described.

3.2.1 Projection File Loading

The portion of the PFI that loads the data files is composed of only a
few PFI routines. The LOADDATA modules from ADL do the bulk of the work.

PEI_LOAD_PROJECTIO

This routine is called to initiate the loading of a projection file. It
initializes the SCANNER module for LOADDATA, loads the :TREE section from the
given summary file, and calls LOADDATA to process the projection file.
PFI_LLOAD PROJECTION is called once for each projection file; these currently
include the RPF and the IPF.

3.3

PFI_GET_MACROS

This routine reads the summary file, which describes the projection file,
and creates the Tist of macros from the :TREE section in the summary file and
the scenario 1ist. The macros 1ist is used to initialize the SCANNER so that
it will read only the required data from the projection file. See the section
in this document that describes the file formats. This routine puts the
- scenario 1ist, which was passed in to PFI_LOAD_PROJECTION, in the macros 1ist
and adds all the scenarios’ "ancestors" read from the summary file(s).

PEI_STORE_VAL .

PFI_STORE_VAL is the routine that "intercepts" the data calls out of the
LOADDATA module from the LDU_SENDDATA routine. Each piece of data sent from
the LOADDATA module includes the frame name, slot name, data type, and data
value. PFI_STORE_VAL interprets the name of the frame to determine if the
data is for a waste generator or an operation. The correct User Interface
data structure is then located, and the value is stored.

3.2.2 Projection File Writing

The User Interface allows the user to modify data as well as view it, and
once user has completed the process, the User Interface calls PFI_WRITE to
save the updated values in the IPF and the IPS.

When the PFI updates the IPS file, all it has to do is open the file and
append and write the necessary data. Updating the IPF file is more difficult.
The PFI must add the new declarations to the existing HEADER section of the
IPF file, copy the existing DATA section, and then append the new data to the
bottom of the file. These actions are accomplished by reading the old IPF
file, writing to a temporary file, and then renaming the temporary file when
the operation is done. The majority of the PFI routines are devoted to
performing this seemingly simple task.

PFI_WRITE

This routine is the driver for updating the IPF and IPS files. It writes
some of the headers and calls the necessary routines.

3.4

PFI_WRITE is application specific, and it creates the projection file in
a very strict format so that it knows the order of the declaration section
when items must be appended to it.

PEI_WRITE_SUMMARY

This routine updates the incremental summary fil2a. It traverses the
incremental information 1ist and writes pertinent information to the file.

PFI_ADD_DECL

This routine adds all new object information to the declaration 1ists.
These 1ists are used by PFI_WRITE to create the header section of the IPF.
Every piece of data that the user has added or modified is put into the IPF as
a data statement. For the data statement to be valid, the header section must
1ist the object and its indices (if it is an array). This routine saves all
the array index information.

PFI_GET_LISTS

PFI_GET_LISTS reads the first part of the header section of the existing
IPF and saves the information in the 1ists and ranges that are used in the
object declarations.

PFI_MERGE

PFI_MERGE adds the nonredundant values (from User Interface data struc-
tures) to the 1ists containing the information from the existing projection
file.

PEI_WRITE_LIST

PFI_WRITE_LIST writes the contents of a 1ist to a file. It is a general
purpose routine that does some formatting of the Tist. It is used for writing
the 1ists of waste generators, operations, and waste classes in the declara-
tion (HEADER) section of the projection file.

PFI_COPY_DECL

This routine copies the declarations from the existing projection file to
the new file.

3.5

PFI_NEW_DECL

PF1_NEW_DECL creates declarations for all variables in the declaration
list. These are the objects that were added by the user through the User
Interface and were not a]readygin the existing projection file.

PFI GET INDICES

This routine takes an object as an argument and determines the index
names associated with it. Thesia index names are used in both the header and
data section of the projection file. For example, the WG_DIST_F array is

dimensioned by waste class and operation so PFI_GET_INDICES returns pointers
to the strings "WC" and "OPERAT[ON" if it gets "WG_DIST_F" as an argument.

PFI COPY DATA i

PF1_COPY_DATA copies the existing IPF’s data section to the new projec-
tion file.

PFI_NEW DATA
PFI_NEW DATA adds the new portion of the data section to the new projec-

tion file, and includes any data that the user modifies or adds through the
User Interface.

3.6

4.0 SOLID WASTE PROJECTION MODEL

The SWPM is the code that calculates the volumes of wastes through opera-
tions (treatments and disposals) based on data from the Reference Projection
Libraries and the Incremental Projection Libraries. These Tibraries contain
projected volumes of wastes from waste generators by year, distribution frac-
tions by waste classes to operations, volume adjustment factors for opera-
tions, and distribution fractions from operations to other operations, and
other relevant information.

The SWPM produces a "result" file containing the results of the model’s
calculations as well as other information carried through from the projection
1ibraries. The result file is used by the ORW to generate desirec reports.

The SWPM is written in ADL, a proprietary programming language developed
at PNL specifically for modeling physical systems. ADL can be run from the
0S/2 prompt, but is generally expected to be run from the SWPM User Interface.

4.1 SWPM OVERVIEW

The general idea of the modei is to read a control file that defines what
waste generators and operations are included in a case and create "instances"
of those waste generators and operations. Waste generators are instances of
the WASTE_GEN class, and operations (treatments and disposals) are instances
of the OPERATION class. Data (volumes, capacities, etc.) are then read into
the objects, each of which represents a treatment or disposal. Finally, all
values are calculated over the given years. After the calculations are done,
the values are printed to the result file along with some information that is
echoed through from the input data files, (e.g., comments).

4.1.1 Processing Narrative

The general flow of the model is as follows. At the prompt for the SWPM
Model Control file (SMC):

e Load the model classes.

e Process the SMC and dynamically create the necessary objects.

4.1

e After loading the projection libraries, enter the sources and sinks
‘ for each operation class. .

e Fill the INVENTORY, PROCESSED, TREAT COST, STOR_COST, and AMNT_RECVD
arrays by querying each of the operations at each year.

o Print out the result file.
4.1.2 Data Flow

The objects in the OPERATION class are the key to the model. Each one
represents a disposal or treatment, and is "smart enough" to know how to cal-
culate all the necessary volumes for a year. Objects assume, though, that all
‘the volumes for the previous year were already calculated. Members of the
WASTE_GEN class have very few associated methods and are used mainly for stor-
ing data from the projection libraries. Figures 4.1 and 4.2 represent an
object from the WASTE_GEN and OPERATION classes, respectively.

Figure 4.3 represents the model if it were given three waste generators
(PNL, PUREX, and HWVP), which are objects of the WASTE_GEN class; four treat-
ment operations (COMP, INCIN, SEG, and VR); and two disposaT operations (DISP1
and DISP2), which are objects of the OPERATION class. The solid Tines
indicate subclass relationships, and the textured lines indicate member rela-
tionships (instances).

4.2 FUNCTION DESCRIPTIONS

In the SWPM, the functions are grouped together in classes (frames)
except for the main program and some general purpose routines. Each class is
defined in a separate file, which has a .h extension and a name corresponding
to the frame name. Version 1.1 of 0S/2 allows file names to have only

1(1a)
Waste

Generator }<1 b)

| ;nc)

FIGURE 4.1. Waste Generator

4.2

(1n) ———p| Storage (5)
(2n) =——= processing

(3)

Before —

Process e (21

(4)

n=a,b,orc

(1n) - The output from a waste generator, which is also
the input into storage before process.

(2n) - The output from a treatment process, which is

distributed into storage before the next process.

(3) - The volume coming into storage from the previous

time unit. :

(4) - The volume going into storage for the next time unit.

This is the year end inventory in the storage for

this operation.

(5) - The volume going through the process. This has a
capacity limit associated with it.

FIGURE 4.2. Treatment Operation

Components

WASTE_GEN

sssss

rrcrpanaa

Operations

b

o>

lr o 2 4

PUREX

HWVP COMP INCIN

SEG VR

FIGURE 4.3. Object Class Hierarchy

4.3

8 characters; thus, the file nameé are not always the same as the frame names.
Variables specific to each frame are declared at the top of each file and have
descriptions with them (see the following Tisting).

FRAME NAME PC_FILE NAME VAX FILE NAME

Main Program : SWPM.ADL SWPM.ADL
General Routines METHOD.H METHOD.h
COMPONENTS | CMPNENTS.H COMPONENTS. h
SMC SMC .H ' SMC .H

MODELS MODELS.H MODELS .H
REPORT_WRITER REPWRIT.H REPORT_WRITER.H

4.2.1 Maiﬁ Program

The file SWPM.ADL contains the main program that drives the model. The
actions described below occur when SWPM.ADL is run.

o Prompt for SMC fileload.
e The MODELS, COMPONENTS, SMC, and REPORT_WRITERS classes/files.
o Call the LOAD SMCF in the MODEL_SMC class.
e Invoke the INIT_MODEL method.
e Exit if errors have occurred.
e Invoke the FILL_ARRAYS method.
o Invoke the REPORT_WRITER method.
4.2.2 General Methods

Several general purpose routines are included in the file METHOD.H. Some
of these are attached to slots within operation and waste generator instances,
and some are included as functions within those instances.

4.4

COMMENT_PUTDEM

This method is attached as a put-demon to all the nonarray comment
objects. It appends all comments assigned to a particular variable, thus
keeping the full history.

ARR_COMMENT_PUTDEM

This is the same as COMMENT PUTDEM, but is attached to array commenf
objects.

'UPCASE_PUTDEM

This put-demon is attached to string objects that require having strings
in upper case letters.

ACTIVATE OP GETDEM

This method is attached to the TRT_PROCESSED slot in operation instances.
When the value of TRT_PROCESSED is requested, this demon checks to see if the
operation has been activated (values calculated) for the current year, and if
" not, it activates the processing of the operation.” ACTIVATE_OP_GETDEM also
checks for recursion through operations and prints the traceback path if it is
attempting to recurse. Because ACTIVATE OP GETDEM is attached only to one
slot (for the purpose of saving memory), that slot must be queried before any
others, such as TRT_AMNT_RECVD, TRT_STOR_COST, TRT_TREAT_COST, etc.

RESET

The RESET method is used to reset an operation to prepare it for the cur-
rent year processing by setting appropriate operation variables to ZERO.

PROCESS OPERATION

PROCESS_OPERATION is the primary calculational method used in the SWPM.
It is placed as a function in each operation instance and calculates the
values for the variables in that instance. Before this method is invoked for
any operation, the RESET method must be called for each of the operations.

PRINT LIST
PRINT_LIST prints an ADL list to a given logical unit.

4.5

IS_INT

IS_INT checks a string to see if it contains only digits (i.e. if it is a
valid integer). ‘

4.2.3 COMPONENTS File

The COMPONENTS file is the super-class of WASTE_GEN and OPERATION. It
has some function slots that are inherited by the subclasses (see Figure 4.3).

NEWMEMBER and NEWSUBCLASS

These methods create a member and a subclass of the owning (COMPONENTS)
class, respectively. They check for the existence of the new frame before
making it a member or subclass. If the frame already exists, a warning mes-
sage is printed; this is against the possibility of some operation or waste
generator instance having the same name as a variable or existing frame in the
SWPM code.

EILL_ARRAYS

The FILL_ARRAYS method in the components class fills all the global
volume/cost arrays by querying each of the operations during each year. It is

an own slot so that it is not inherited by the subclasses and members of the
COMPONENTS class.

4.3 MODELS

The MODELS class contains the code used to construct the model that is
described in the data flow section.

MK_COMPONENTS

This method in the MODELS class creates the components (the OPERATION and
WASTE_GEN frames) for the model. It also puts the PROCESS_OPERATION method in
the OPERATION frame as a member slot so that it will be inherited by all |
operation instances.

MK_MODEL Method

MK _MODEL creates the instances of the components in the model and is
invoked after the data dicticnary is loaded. It also creates the waste

4.6

generator slots in each frame that are dynamically dimensioned by 1ists and
attaches appropriate demons to the slots.

INIT_MODEL Method

The INIT_MODEL method uses the data from the projection files to initial-
ize all necessary slots in the WASTE_GEN and COMPONENT operations instances.
This involves "telling" each of the instances where it receives and sends
data. It also checks for distribution fractions that do not sum to 1 and
makes sure that waste generators do not send waste from the wrong waste class
to an operation.

PRINT_FLOW

The PRINT_FLOW routine lists each Operatioh with the operations and waste
generators that supply it and the operations that it supplies.

POST_DATADICT

After the SMC class loads the data dictionary, this routine is invoked
and attaches the UPCASE_PUTDEM to necessary objects.

4.3.1 SMC (SWP Model Control)

The SMC class is used to read and process the SMC file. The SMC class
includes a method used to parse each of the record types in the SMC file and a-
routine to process each of the records. For example the DATAFILE card has the
corresponding routines PARSE_DATAFILE_CARD and‘PROCESS_DATAFILE_CARD. For a
full description of the cards, see the SWPM Requirements Specification Doc-
ument. The SMC class invokes the necessary methods to build the model and
makes the calls to load the data. The slots in this class are all "own" slots
because this class does not have any members or subclasses.

The general flow in the SMC class is as follows:
e Parse all of the cards.

e Process waste generator cards. This involves concatenating all the
waste generators into the global 1ist ALL WG and storing the waste
classes for each waste generator in a list. (The 1ists of waste
categories become the WG_WC slot in each waste generator instance,
and the WG _VOL array is declared using that Tist.)

4.7

o Process the TREATMENT cards. This entails concatenating all the
operations into the global 1ist TREATMENT.

o Create the global 1ist COMP_LIST, which is a concatenation of
ALL_WG, TREATMENT, and CATEGORY.

o Process the YEARS card. This involves creating the global range
YEARS.

e Process the SUMRYFILE cards.

o Process the PROJECTIONS cards. This entails concatenating all the
projection names as macros (name=name) in the 1ist MODEL:MACROS.

o Invoke the MK_COMPONENTS method.

o Process the DATADICT cards.

o Invoke the MK_MODEL method.

o Process the DATAFILE cards.

o Check card counts (i.e., make sure enough cards were provided).
The following methods are included in the SMC class.
LOAD_SMCF

This is the controlling routine for the SMC c1a§s. It makes all the
necessary calls to load the model control file.

CHECK_CARD_COUNTS

Check to make sure enough cards of each type were specified.
GET_CARDS |

Read all the cards from the SMC file and store them in the appropriate
arrays.

ADD_CARD
Add a card to the CARDS array.
PARSE _CARD

This routine checks the name of a card and calls the appropriate parse
card routine.

4.8

PARSE_name_CARD

Parse each "name" card, where name is one of the card types. Each of
these routines stores the necessary data from the card so that it can be proc-
essed when needed.

PRINT_SUMMARY

Print the number of each type of card read from the control file.
PRINT_CARDS

Print the cards read from the control file.

GET_STRING

This routine fetches consecutive fields from a card.
PROCESS_name_CARD

Process each "name" card, where name is one of the card types. This
involves creating the years range given by the YEARS card, loading data files,
etc.

CREATE_PROJECTION MACROS

Create all the macros of the form "NAME=NAME" where NAME is the name of a
scenario in the path starting from a name given in a projection card to the
root of the tree defined in the :TREE section of the summary files. The
macros define the sections of the data files (RPF and IPF) that are to be
read.

4.3.2 REPORT WRITER

The report writer class produces the result file after processing is
finished in the model. Each type of record in the result file has a corre-
sponding routine that writes the record. For example, PRINT DP_RECORDS prints
the disposal operation records (DP,) in the result file. The driver for this
class, PRINT_RESULT_FILE, calls each of the print routines, which are
self-explanatory.

4.9

4.4 SWPM DATA DICTIONARY

The "global" objects used in SWPM include general variables that are
needed throughout the code, such as YEAR, and variables included in the opera-

tion and waste generator objects.

In the following 1ist, variables marked

with an asterisk (*) are those that have values supplied by the input data
files (RPF and IPF).

The variables that do not belong to any specific frame are described in
the following listing. ‘

TYPE

STRING

LIST
INT

INT
LIST
LIST
LIST

LIST
LIST

STRING

NAME

*LIB_COMMENT

LIB_COMMENT_LIST
*COST_UNITS

*VOL_UNITS
CATEGORY
TREATMENT
ALL_WG

COMP_LIST

ABBREV_TYPE

*ABBREV
[COMP_LIST,
ABBREV_TYPE]

DESCRIPTION

General comment for projection libraries.
It has the COMMENT_PUTDEM method attached.

List for storing the LIB_COMMENT strings.
Value defining the cost units used in all
cost calculations. This version of the
model assumes that all units are consis-
tent, so this is used only for reporting.
Units of volume.

List of categories given in the SMCF.
List of all treatments given in the SMCF.

List of all waste generators given in the
SMCF .

Comprehensive Tist including all waste
generators, waste classes, and treatments
included in the SMCF.

List used for declaring the abbreviation
types. The contents of this 1ist are
RANK, SHORTNAME, AND LONGNAME.

Contains the rank, short name, and long
name for all names in the analysis.

RANGE

REAL
REAL

REAL

REAL

© REAL

NAME

~ YEARS

INVENTORY
[TREATMENT, YEARS]

PROCESSED
AMT_RECVD
[TREATMENT,
ALL_WG, YEARS]

TREAT_COST
[TREATMENT, YEARS]

STOR_COST
[TREATMENT, YEARS]

DESCRIPTION

Range from the first year in the analysis
to last year. This must be all possible
years, The report writer can control
which years are reported.

In¥entory at each operation at each time
unit.

Amount processed at each operation at each
year,

Amount received at each operation from
each waste generator at each year.
Cost of treatment at each operation for

each year.

Cost of storage at each operation for each
year.,

Each waste generator instance in the model contains the following var-

jables.

input data files.

TYPE
REAL

REAL

LIST

STRING

Again, those marked with asterisks have values supplied through the

NAME (WASTE_GEN:>) DESCRIPTION

*WG_VOL[CATEGORY,YEARS] The projected volume of waste

for each waste generator by year
by waste class by waste
generator.,

*WG_DIST_F[CATEGORY,TREATMENT] The distribution fraction for

each waste generator by waste
class by treatment.

WG_WC List of waste classes given in
the SMC for each waste
generator.

*WG_DIST _COM[CATEGORY] The comment for waste generator

distributions by waste class.
The COMMENT PUTDEM method is
attached to this object.

4.11

—TYPE
LIST

STRING

LIST

STRING

STRING

LIST

NAME (WASTE GEN:>)

DESCRIPTION

WG_DIST_COM_LIST
[CATEGORY]

*WG_DESCRIPTION

WG_DESCRIPTION_LIST

*WG_CLASS_OF

*WG_CATEGORY_COM[CATEGORY]

List for storing the actual
distribution comments.

The general comment for each
waste generator. The
COMMENT PUTDEM method is-
attached to it.

List for storing the actual
waste generator description
comments.

"List" of groups to which each
waste generator belongs. It is
not used in the model but is
carried through from the data
file for the report writer.

The comment for each for each
waste class within each waste
generator,

WG_CATEGORY_COM_LIST[CATEGORY] List for storing the actual

[CATEGORY]

waste-class comments.

Each operation instance in the model has the following variables. Those
marked with an asterisk have values supplied by the input data files.

TYPE
REAL

STRING

STRING

REAL

NAME (OPERATION:>)

DESCRIPTION

*TRT_CAPACITY[YEARS]
*TRT_WSTCAT

*TRT_CLASS_OF

*TRT_RATIO

Capacity of each operation by
year.

Name of the waste class which
this operation handles.

"List" of classes to which each
operation belongs. It is not
used in the model but is carried
through from the data file for
the report writer.

Volume adjustment factor for
waste going through each
operation.

—TYPE
REAL

REAL

STRING

LIST

LOGICAL

STRING

LIST

REAL

STRING

LIST

LIST

LIST

MAME (OPERATION:>)

DESCRIPTION

*TRT_STOR_RATE
*TRT_TREAT_RATE

*TRT_DESCRIPTION

TRT_DESCRIPTION_LIST

*TRT_IS_DISPOSAL

*TRT_CAP_COM

TRT_CAP_COM_LIST

TRT_DIST_F[TREATMENT]

TRT_DIST_COM_LIST
TRT_FROM_WG

TRT_FROM_OPR

4.13

Cost of storage per unit volume
at each operation.

Cost of treatment per unit volume
at each operation.

General comment for each opera-
tion. The COMMENT _PUTDEM method
is attached to this object.

List for storing the actual
descriptions.

Indicates if an operation is a
treatment or a disposal. The
default value 1s false unless
told otherwise at the member
level in the projection file.

Comment describing the capacity
at each operation. The
COMMENT_PUTDEM method 1s attached
to this object.

List for storing the actual
capacity comments.

The distribution fraction for
each operation to other treat-
ments or disposal operations.
This is zero for operations that
are disposals.

Comment describing the distrib-
ution for each operation.

List for storing the actual
distribution comments.

List of waste generators which
contribute to each operation.

List of treatment operations
which contribute to each
operation.

LIST

REAL

REAL

REAL

LOGICAL

LOGICAL

REAL

REAL

NAME (OPERATION:>)

DESCRIPTION

TRT_T0_OPR

TRT_AMNT RECVD[ALL_W&]

TRT_INVENTORY

TRT_PROCESSED

TRT_ACTIVE

TRT_FINISHED

TRT_STOR_COST

TRT_TREAT_COST

List of operations which each
operation distributes to (this
can be taken directly from the
TRT_DIST_F array.

Volume received from each waste
generator,

Total volume in storage for each
operation. This 1s the source
for the actual throughput for
each treatment or disposal.

Volume of waste processed by each
operation during the current
year. This value is always less
or equal the TRT_CAPACITY[yr].

True if the operation is active.
This 1s used to trap attempts to
have recursion through a
treatment.

True if the values for the opera-
tion have been calculated for the
year.

Total cost of storage for the
current year.

Total cost of treatment for the
current year.

L1 . " T

5.0 QUTPUT REPORT WRITER

This chapter describes the structure and functions of the ORW, which was

developed to provide standard reports of results generated by the SWPM model.
The ORW is implemented using ADL, with support from the ADL intrinsic function
"ARRAY_TOTAL."

5.1 ORW OVERVIEW

The processing flow of the ORW software is the following:

The SWPM User Interface invokes ORW by executing the ADL translater
with the main ORW program (report.adl).

The PCF 1s loaded.

The results from the SWPM are loaded, and ADL objects needed by ORW
are created.

Each of the reports 1isted in the PCF is created and written to the
report file.

Tae regort is sent to the printer if a printer device is given in
the PCF.

The data inputs to ORW are results generated by the model and a printer

control file describing the tables to generate. Other inputs to ORW are in
the form of control or configuration files. The "OUTPUT REPORT WRITER
FUNCTION" processes these inputs and outputs a report file and an optional
dump file containing ORW debug information. Figure 5.1 provides and overview
of the ORW data flow.

5.2

FUNCTION DESCRIPTIONS
The ORW 1s composed of ADL functions and data files. The following table

summarizes the files used by ORW. Included with each file is a short
description of its contents. '

5.1

1a | Result File Table Description File | 2a

ib| PCF ' Table Algorithms | 2b

ia-
1b -
2a-

2b -

2c -

2d-

4a -

4b -
5a -

5b -

Array Functions | 2c

et Tomplates | 2d

OUTPUT REPORT WRITER FUNCTION 3
Table Generator (Report .adl)

4a ARRAY_TOTAL Intrinsic
4b ORW Intrinsic

1 | |

Report File |5a Dump Files | 5b

The results from the SWPM run. The data in the result file is used
to create tables.

The PCF specifies the tables to generate, where to write the report file,
the source of model results, and the data to use in generated tables.

The table description file is used to specify how tables are generated.
Table algorithms written in ADL that set up table data for each table.

Array functions are used to process rows and columns of data for each
table. The array functions may compute aggregates or percentages
given the specification for a table.

Template files provide format rules for tables created by ORW. The format
of report pages and tables can be described with template files.

The "OUTPUT REPORT WRITER FUNCTION" (or report.adl) is an ADL
main program which prompts for a printer control fiile (PCF). After receiving
a PCF the report writer function generates each of the tables listed in the
PCF.

The ARRAY_TOTAL intrinsic is used by report.adi to insert column or row
totals into a data matrix for a table. ARRAY_TOTAL additionally updates
or creates a list of row and column labels for the table.

The ORW intrinsic is used by report.adl to create tempiates for the
formating of tables and report pages.

The report file is created by report.adl from data in the result file. The file
contains all tables specified in the PCF.

An optional output file created to trace the ADL portions of ORW.

FIGURE 5.1. Overview of the ORW Data File

5.2

FILENAME _ DESCRIPTION

REPORT.ADL ‘Contains the main ORW program written in ADL.

TABLE.ALG The table generation algorithm used by ORW to create
tables for SWPM.

LINE.ALG Algorithms used by table algorithms for the processing
, : of rows of table data.

LOAD_PCF . FUN ADL code that reads the PCF.
LOAD_DAT.FUN ADL code which reads the result file.

UTILITY.FUN ADL utility functions used to manipulate ADL lists.

HEADER FUN Outputs a standard header for tables generated for
SWPM.

ERROR. FUN Contains routines used to trace the ADL portion of
ORW.

TBL_DESC.DAT The data file containing the description for all
tables generated for SWPM.

ALL.PCF A printer control file used to generate all the
possible SWPM tables.

The following sections describe each of the above functions in detail.

5.2.1 MAIN PROGRAM (REPORT.ADL)

The main ADL program (report.adl) prompts for a PCF and then generates

all the reports listed in the PCF. The following actions occur when
report.adl is used.

Prompt for a printer control file (PCF). In the case of SWPM the
user interface provides a PCF (SWPM.PCF) when ORW is invoked.

Load the PCF into the ORW data structures.

Load the results of the a SWPM model run. The name of the result
file is specified in the PCF.

Create and output all tables Tisted in the PCF. The ADL intrinsic

function ARRAY_TOTAL is used to calculate row and column totals;
while intrinsic ORW is used to format tabies.

5.3

. Output the tables to a printer if a printer device is given in the
PCF.

5.2.2 TABLE GENERATION (TABLE.ALG)

Table generation includes the formatting of data comprising a table and
the building of row and column 1lists that are used for row/column headings.
Tables are generated for each table that the user selects (iterative calls to
the TBO function from report.adl). The functions of the ADL function TBO are
described below.

o Build the row and column heading 1ists specified by "ROW_n," or

"COL_n" in TBL_DESC.dat (table descr1pt10n file) for the table that
is being created.

o For each row heading built above, call a line algorithm (line.alg)
that selects row data for the table.

e For each column heading, output the row built above to a data
matrix.

e Return the data matrix (the data for the table) and the row and
column headings to report.adl.

5.2.3 SELECTING DATA FOR TABLES (LINE.ALG)

The Tine.alg routines select data for each row in the table. Each row
returned by routines in 1ine.alg are return to the TBO function, which builds
a complete table of data (See LINE.ALG).

5.2.4 LOADING PRINTcR CONTROL FILE (LOAD_PCF.FUN)

This function is called from report.adl to read the PCF. Data in the PCF
is used in controlling which reports are generated.

5.2.5 LOADING THE RESULT FILE (LOAD_DAT.FUN)

The result file is loaded by functions in LOAD DAT.FUN. These functions
build Tists of operations, WG (waste generators), WC (waste classes), and

others which are used as a basis for the contents in table rows and columns
(See LOAD_DAT.FUN).

5.2.6 ORW UTILITY FUNCTIONS (UTILITY.FUN)

This is a general purpose ADL routines used by ORW. Routines included in
UTILITY.FUN are used to create text Tists for routine TBO().

5.2.7 OQUTPUTTING TABLE HEADERS (HEADER.FUN

The header routine is called from report.adl when "Header" is encountered
in a table 1ist (i.e., contained in the PCF). The header is printed at the
top of each report. It includes the following.

e Case description (includes case name, and author)

e Model run date and report date

e A1l input files used by the model

e WASTE GENERATORS used by the modelTREATMENTS used by the model

o DISPOSAL OPTIONS

e SWPM INPUT DECK (name of the input deck used for this SWPM run).

5.3 EILES USED BY ORW

The ORW uses the printer contro] file (PCF), discussed in Chapter 6;0,
and the Table Description File (TBL_DESC.DAT) to produce formatted reports.

The table description file contains three association lists containing
the information required to create the table/report, and a 1ist containing the
title information for the table. The first 1ist contains the instructions
required to calculate the numeric data and labels for the array. The second
1ist is an association 1ist containing the information regarding totals, sub-
totals, and stripping of null rows/columns from the array. The third 1ist
contains an association list of information needed to format the table for
printing.

5.5

TEXT_LIST

TITLE_n_m = "string" where

example
ARRAY LIST

FUNC = "string" where
example

ROW_n = "string" :

COL_n = "string" where
example

ALG_n = "Tevel,alg_name" where

examples

CTITLE 172

"n" is the title Tabel.

"m" is the subtitle Tabel.

"string" is the text to be inserted in
the title.
TITLE 1 1 = "Table 1.1a "
"Aggregate Receipts"

"string" is the name of the main
function used to calculate the table
contents.

FUNC = "TBO";

"n" is the class level for the row
label.

"string" is the data type assigned to
the level or a list of Tabels.

ROW 1 = "WG";
ROW 2 = "PH2,ENGNR,OPERT,DECOM";
COLT1 = "YEAR".

"n" is a number used to make the label
unique.

"level" is the level to apply the
algorithm, this may be a type, a
label, or the word "ALL".

"alg name" is the name of an algorithm
included in the run.

ALG_1 = "ALL,REF_FUNC";
ALG 2 = "ENGNR,ENGNR COST";
ALG 3 = "WG,RECEIPT WG".

The table description field, which is loaded by the GET CMD function, is used
to describe how each table is generated.

The GET_CMD function reads the table description file saving control
information about each table. The table control information includes the

table’s heading, row/column heading (for each row or column level), the ADL

5.6

array that contains the data for the table, the 1ine algorithm to use for
selecting table rows, and the row or column totals to generate.

5.7

the

Ul

SWPM

ORW

PFI

This chapter exp]ainsvthé function of the files used in the SWPM software
to communicate between model modules and to load input data transferred from
database. The following extensions specify the file type.

SWPM
RPF
IPF
RPS
IPS
SMC
RSL
PCF
CAS
DD
REP
UPF
PCD
ouT

O r— O O+

O —

6.0 SWPM FILES

Reference Projection File
Incremental Projection File
Reference Projection Summary
Incremental Projection Summary
Model Control File for SWPM
Result File produced by SWPM

Print Control File

Case description save file for User Interface (UI)

Data Dictionary
Final reports |
Username/Password File

Print Control Data File

Redirected Standard Output File.

RPF IPF RPS IPS SMC RSL

PCF CAS DD REP UPF PCD OUT
X | X X X X
X X | X

X | X X | X X X

X

X X

X
X X | X | X
X X

6.1

6.1 REFERENCE PROJECTION FILE (RPF)

The source of all original knowledge for the SWPM comes from this file.
It is produced by the SWPM database and contains all the values used by the
model, such as waste volumes, distribution fractions, storage costs, etc. The
file must be a valid ADL data file.

The order of the data statements is critical because all the data are
Toaded at the member frame level. Through judicious use of the #ifdef
directive, ’inheritance’ is implemented. If the macro portion (scenario name)
of an #ifdef statement has been defined, the data statement within the #ifdef
directive is read and overloads any previous data. Thus, each scenario
provides a delta to the existing data, and any object can have its information
provided in different paths (tree structure) through #ifdef statements.

For example, the PNL waste generator may consist of a user projection
followed by several incremental pieces of data. This "tree" can have several
branches in it as is illustrated in Figure 6.1.

An analyst may decide to use any one of the "boxes" as the starting point
for the PNL waste generator. If the analyst picks PNL_ALT1, the order of the
data loading must be PNL_UP, PNL_MOD1, PNL_ALT1. The parent/child
relationship information is contained in the :TREE section of the RPS file.

PNL_UP
PNL_MODH1
|
|
PNL_ALTH1 PNL_MOD2
L
|
PNL_89REF PNL_ALT2

FIGURE 6.1. Reference Projection Tree

6.2

The key to using this solution is the RPF. The RPF must provide the
information for each entity in a top-down fashion and surround each item with
the scanner directives #IFDEF and #ENDIF. For example, the situation
described in Figure 6.1 would be represented in the RPF with the following
statements.

#1FDEF PNL_UP
| data from the PNL_UP projection
PNL:WG_VOL[...
PNL:WG_DESCRIPTION = " ...

#ENDIF

#1FDEF PNL_MOD1 ‘
| data from the PNL_MOD1 projection
PNL:WG_VOL[...
PNL:WG_DESCRIPTION = " ...

#ENDIF

#I1FDEF PNL_ALT1
| data from the PNL_ALT1 projection
PNL:WG_VOL[...
PNL:WG_DESCRIPTION = " ...

#ENDIF
#IFDEF PNL_MOD2
| data from the PNL_MOD2 projection

#ENDIF
#1FDEF PNL_89REF
| data from the PNL_89REF projection

#ENDIF
#IFDEF PNL_ALT2
| data from the PNL_ALT2 projection

JENDIF

The order of multiple planning does not matter as long as any path from
the root of the tree (PNL_UP) to any leaf (PNL_ALT1, PNL_89REF, or PNL_ALT2)
is in descending order. Thus, the #IFDEF section for PNL_ALT1 could have come
any place after its position as given above.

The following "template" file gives the format of the projection file.

6.3

HEADER

| declare the ranges, and 1ists for loaddata
ALL NG = (ng, Wgz, »on)’
TREATMENT = (operationl, operation2, ...);
CATEGORY = (wasteclassl, wasteclass2, ...);
COMP_LIST = (ALL_WG, TREATMENT CATEGORY) 3
abbrev_type = (RANK SHORTNAME , LONGNAME) 3

 years = start..end;

| declare the abbreviation array. It is used to give the rank, the short
name, and the long name of each name used in the analysis.
STRING ABBREV[COMP_LIST,abbrev_type];

| declare the library comment, though it 1s not currently used.
STRING LIB_COMMENT;

| the units of cost and volume must be consistent throughout the file.
The COST_UNITS and VOL_UNITS indicate the magnitude of each cost and
volume. Tf COST UNITS s 1, then it implies that all costs are given
in doliars. If VOL UNITS is 1000, then 1t implies that all volumes are
given in thousands of cubic feet.
INT COST_UNITS;
INT VOL_UNITS;

| Declare the waste generator information objects.

REAL wgl:WG_VOL[CATEGORY,years];
REAL wg2 WG VOL[CATEGORY,years],

REAL wgl:WG_DIST F[CATEGORY TREATMENT] 3
REAL Wg2:WG_DIST_F[CATEGORY, TREATMENT];

STRING wgl:WG_DIST_COM[CATEGORY];
STRING wgl:WG_DIST_COM[CATEGORY];

STRING wgl:WG_DESCRIPTION;
STRING wg2:WG_DESCRIPTION;

STRING wgl:WG_CLASS_OF;
STRING wg2:WG_CLASS_OF;

STRING wgl:WG_CATEGORY_COM[CATEGORY];
STRING wg2:WG_CATEGORY_COM[CATEGORY];

6.4

| declare the treatment information objects

|define which waste category this treatment handles
STRING trtl:TRT_WSTCAT;
STRING trt2:TRT_WSTCAT;

STRING trtl:TRT_CLASS_OF;
STRING trt2:TRT CLASS OF;

REAL trtl:TRT_RATIO;

| the cost/unit of the implied "storage before treatment" for this
treatment
REAL trtl:TRT_STOR_RATE;

STRING trtl:TRT DESCRIPTION;
REAL trt1:TRT_CAPACITY[years];
| declare capacity comment

STRING trtl:TRT_CAP_COM;

| cost on treatment throughput per unit of waste
REAL trtl:TRT_TREAT_RATE;

REAL trt1:TRT DIST F[TREATMENT];
STRING trtl1:TRT DIST_COM;

| Declare the logical for telling 1f a treatment is a disposal.
INT trt1:TRT_IS_DISPOSAL;

END_HEADER

DATA

| The data section will be normal ADL data file statements with #ifdef
directives around the data.
END_DATA

6.5

6.2 REFERENCE PROJECTION SUMMARY (RPS)

This file 1s a summary of the RPF; it contains 1ists of the objects and
associated scenarios that are in the RPF. The different sections of the sum-
mary file are delimited by a keyword preceded by a colon. The sections do not
have to appear in any specific order and may be repeated. They consist of the
following. |

o :TREE Each record in this section is of the form: scenariol
[,scenario2], where scenariol is a child of scenario2.

o :CLASSES E?ch record in this section gives the name of a waste
class.

o :SCENARIO This section gives all waste generator, operation, and
treatment objects and their associated scenarios. Each
record is of the form: TYPE, object name, scenario
name, "short description," where TYPE is one of WG, OP,
or TRT to indicate if the object name is a waste
generator, operation, or treatment, respectively.

o :OPTYPE This section Tists the names of available operation
types. These types are concatenated with waste class
names to create operation names.

6.3 INCREMENTAL PROJECTION FILE (IPF)

The IPF file contains "changes" to the data stored in the RPF and new
data, When the user modifies existing data or creates new obJects through the
User Interface, that data are stored in the IPF. It follows essentially the
same format as the RPF except for some #mode statements, which guide the PFI
in updating the file.

The purpose of the dual #mode statements is to allow the PFI to know when
to write out a mode statement when copying the existing data section to the
new IPF. The scanner does not signify when a #mode statement is scanned;
therefore, the PFI must be told when one 1s scanned through the dual
statements.

The header section of the IPF is always 1n the same order so that the PFI
can read it easier. The order is as follows.

6.6

6.4

HEADER

OPERATION = #11st of operations);

WC = (11st o

waste classes);

WG = (Tist of waste generators);

YEARS = Towyr..highyr;

COMP_LIST = (OPERATION,WC,WG);
ABBREV_TYPE = (RANK, SHORTNAME, LONGNAME) ;

object declarations
END_HEADER

The data section contains the dual #mode statements. When the PFI ini-
tializes the SCANNER module, 1t defines the macro PFI_MODE. Thus, when the
scanner returns the token "PFI_MARKER" to the PFI, the PFI knows that it is in
the middle of one of the dual #mode statements and can reproduce it when copy-
ing the existing data section to the updated file. When the LOADDATA module
is reading the IPF, it does not have PFI_MODE defined and sees only thu data
statements following defined scenario names (i.e., they act exactly like the
#ifdef statements in the RPF).
as follows.

DATA
#MODE PFI_MODE
PFI_MARKER scenariol
#MODE PFI_MODE, scenariol
data statements ...

#MODE PFI_MODE
PFI_MARKER scenario2
#MODE PFI_MODE, scenario2
data statements ...

#MODE LOADDATA, PFI_MODE
END_DATA

The format of the data section of the IPF is

INCREMENTAL _PROJECTION SUMMARY (IPS)
The IPS file summarizes the IPF. Its format is the same as the RPS.

6.7

6.5 SWPM CONTROL (SMC)

This file specifies options and files that are to be used in an analysis,
including the file names of the data dictionary and data files. Also, a
result file can be specified, otherwise the results are written to standard
output. The SMC file is not an "ADL" file; it 1s read by ADL code and, thus,
does not support the usual directives such as #DEFINE, #IFDEF, #MODE, etc.
Each field in a record is delimited by a comma. The following records are
supported.

o DATAFILE file-spec [,LOGSKIP]
o SUMRYFILE file-spec
o DATADICT file-spec
o RESULT file-spec

|

The DATAFILE record gives the name of a RPF or an 1PF, and the LOGSKIP
option causes messages to be issued when data is skipped. The DATADICT record
specifies a data dictionary to Toad. The SUMRYFILE contains a "tree" section
describing the scenario tree for all waste generators and operations. Any
number of DATAFILE, DATADICT, and SUMRYFILE records can be specified and will
be Toaded in the order given. The RESULT record gives the name of the file to
write the final values to. This is the file that the Report Writer Task will
use to generate output tables.

Options that are supported in the SMC are name of person specifying run,
Case ID, and comment for the run, waste generators, waste classes, operations,
and associated projections (scenario names). These are:

o AUTHOR "name of pevson"

o CASEID "alphanumeric name"

o CASECOMMENT "single 1ine comment describing case"

¢ YEARS first_year_of analysis, last_year of analysis

o WG "waste generator" [, "waste class," "waste class," ...]

o TREATMENT "operation," "operation," ...

6.8

e PROJECTIONS "projection name," “projectioh name," ...

Because a record is, by definition, a single line of input, each group or
Tist of items must be on a single line. If it does not fit, it can be
continued on a second record/line by using the same key word (this applies to
records that support a 1ist of items such as the TREATMENT record).

The PROJECTIONS record gives all projections (scenarios) for a case,
including those for waste generators and operations. The SWPM uses the
SUMRYFILEs to get the tree structure of those projections. An SMC file might
Took 1ike the following.

! comments are supported with a ! in the first co]umn

! SAMPLE SMC

AUTHOR, John J. Johnson

CASEID, CASE 5

CASECOMMENT “Describe the case here. You get only one line.
I define the time period to report on

YEARS, 1992, 2005

! specify data dictionary

DATADICT, e:\swpm\dd\swpmé6.dd

! specify Reference Projection file and its summary file
DATAFILE, e:\swpm\baselib\swpmé.rpf

SUMRYFILE, e:\swpm\baselib\swpm6.rps

! specify Incremental Projection file to change some data in Reference
! Projection file and specify its summary file
DATAFILE, swpmé.ipf, logskip

SUMRYFILE, swpmé,ips

| the result file

RESULT, testcase.rsl

PROJECTIONS, be_up, be modl, 1b_up, whc_2345 up, ...

! specify the waste generators with appropr1ate waste classes
WG, AMES, CH LLW LOW

PROJECTIONS “AMES_FD89

WG, ARGONNE, CH LLMW _LOW, CH LLW LOW, CH TRU

WG, ARGONNE, CH_TRUM, RH_LLMW LOW, RH LLW_INT

WG, ARGONNE, RH LLW LON “RH_TRU

PROJECTIONS, ARGONNE FD89 ‘

| specify the operations with their projections
TREATMENT, ASH IMMOB CH LLMW_LOW

PROJECTIONS ASH_IMMOB CH LLMW_LOW_PRELIM

TREATMENT, CAN RH_LLW GTCH

PROJECTIONS CAN_RH_LLW _GTCH_PRELIM

6.9

6.6 DATA DICTIONARY (DD)

The data dictionary‘f11e is used for declaring the global and frame var-

- iables used in the ADL SWPM. The file must be a valid data dictionary file as
described in the ADL User’s Guide. Variables declared in the SWPM data dic-
tionary include global variables such as COST_UNITS, VOL_UNITS, INVENTORY,
STOR_COST, etc. Also included are variables for the operation (TRT_) and
waste generator (WG_) frames.

Because the irdices of some variables are not known until run time, those
are not declared in the data dictionary file. These include some of the waste
generator frame variables that are dimensioned by waste class (WG_VOL,
WG_DIST F, WG DIST COM, WG _DIST COM_LIST, WG_CATEGORY COM, and
WG_CATEGORY_COM_LIST).

6.7 RESULT FILE (RSL)

When the SWPM runs, it produces a result file containing all the per-
tinent data from the case. The ORW uses this as its data file for producing
reports.

To keep the resu]t file somewhat compact, each record is written in a
~shorthand notation. The record begins with a short code followed by the data.
Some of the records; which have values by year, cover several lines. The
following record types are produced.

e TDI Time and date.

e TD2 ADL and SWPM version information.

e CI Case ID. This should be a short identifier.

e VU Volume units. This is echoed through from the RPF.

e CU Cost units. This is also echoed through from the RPF.
e H Mapping of operation to the waste class it handles.

e DP Disposal operation with rank, shortname, longname, and list of
classes to which the treatment belongs.

e TR Treatment operation with rank, shortname, longname, and list of
classes to which the disposal belongs.

6.10

o WC
¢ AR
o TIT
o TC
o I

o DW
o DT
o 0OV
o« CS
o CT
o C

o F

o MF

Waste generator with rank, shortname, Tongname, and list of
classes to which a waste generator or treatment belongs.

Waste class with rank, shortname, and longname.

Amount of waste received at each treatment from each waste
generator at each time unit.

Volume throughput for each treatment at each time unit.
Capacityvof each treatment at each time unit.

Inventory at each treatment’s storage at end of cach time unit.
Distribution values for waste generators.

Distribution values for treatments.

Operation values. This includes unit cost for storage, unit
cost for processing, and the process volume change (applicable
only for treatment operations).

Cost of storage in front of each treatment at each time unit.
Cost of treatment at each treatment at each time unit.
Comments. These include the comments from 1ibraries, waste
generator descriptions, distribution descriptions, etc. The
comment portion will be enclosed in double quotes. Put-demons
on the comment variables used in the model will concatenate
successive comments for the same variable together with a line
feed between each one.

File names (with date) of all files used in the analysis.

Echo of records from the SMC file.

6.8 PRINTER CONTROL FILE (PCF)

The PCF is loaded from the routine LOAD_PCF (LOAD_PCF.FUN). It is
created from the User Interface when the user selects the desired tables. The
PCF is used to command the report writer to generate a set of reports. The
main report program "report.adl" prompts for the PCF filename. A1l PCF file
records have the following format:

IDENT =

where:

VALUE

IDENT is the data identifier or tag for the data. Another way to
look at it as the name of an association.

VALUE is the data "associated" with ident, or the value of the
association. ’

For example "Date=11:00:00 11/19/1989."

The following INDENT types (or record types) are supported in the PCF.

"Date="

"Resf="

" Repf= n

"Tids="

" Ptyp= "
" PdeV= n

"Lids="

Time and Date of request values have the form HH: MM SS
MM/DD/YYYY. For example "Date = 10:22:33 11//19/1989".

Path and File Name of result file. The filename (or value)
must conform the filename and pathname conventions supported
by the host operating system. For example:
"Resf=d:\orw\test.pcf".

Path and File Name of report output file. The filename (or
value) must conform to the filename and pathname conventions
supported by the host operating system. For example:
"Repf=d:\orw\test.rep".

Table Identifier for the list of tables to be generated.
Multiple tables can be 1isted either by using Tids multiple
times or by listing tables, separated by commas, with one
Tids. For example: "Tids=1.la," "Tids=1.2a" or "Tids=l.la,
1.2a". NOTE: A header can be printed by including a
"Tids=Header" record when a header is appropriate.

The printer type.
Print Device.

Label identifier used to specify the valid values for each
object used in a report. Only values specified in Lids
records are used in reports. For example: "Lids=WG/AMES_LAB
PNL" defines that the only valid WG (waste generators) in a
report dre AMES LAB and PNL. Data associated with other waste
generators is not printed. Lids is also used to control the
order of data in tables. In the last example AMES_LAB data
would be printed before PNL data.

A11 of the above record types can be in the PCF, and may be in any order.
Other identifiers are not allowed. An example PCF follows.

6.12

Date = 10:22:33 07/11/1989

File = d:\swpm\report\myreport.dat
Tids = 1.1a .

Tids = 1.2c

Tids = 6.1a

ptyp = HPlaserjet

pdev= Tptl -

1ids = WG\PNL, AMES LAB

6.9 PRINTER CONTROL DATA FILE (PCD)

The contents of this file (SWPM.PCD) are displayed for the user by the
User Interface to allow the user to select the tables to be produced by the

" ORW. The

user’s selections are used to create a new version of SWPM.PCF.

contents of SWPM.PCD are as follows:

Header prints all comment and run information

la
.1b
Jdc
.2a
.2b

PO | e el
[S—1
1]

PEEPAPPLEPT WWLWWW W W
(o8]
o

Receipt by waste generators and waste classes (vol)

Receipt by waste generator categories and waste classes (vol)
Receipt by waste classes (vol)

Receipt by waste classes and waste generators (vol)

Receipt by waste class categories and waste generators (vol)

Storage volume by treatment (vol)

Storage volume by treatment category and treatment (vol)
Cost of storage by treatment (%)

Cost of storage by treatment category and treatment ($)
Annual incremental storage volume by treatment (vol)

Annual incremental storage volume by treatment category and
treatment (vol)

Treatment throughput volume by treatment (vol)

Ireatment throughput volume by treatment category and treatment
vol)

Cost of treatment ($)

Cost of treatment by category and treatment ($)

Treatment utilization by treatment (%)

Treatment utilization by category and treatment (%)

Storage volume by disposal option (vol)
Storage volume by category and disposal option (vol)
Cost of storage by disposal option (§)
Cost of storage by category and disposal option (%)

h
;..-I
2

The

4.3a Incremental change in storage before dispbsa] (vol): by disposal
option

.3b Incremental change in storage before disposal (vol): by d1sposa1
category and option

rs

.la Disposal volume (vol): by disposal option

.1b Disposal volume (vol): by disposal category and option
.2a Cost of disposal ($): by disposal option

.2b Cost of disposal ($): by disposal category and option

.la Waste distribution fractions (%): by waste class and waste
generators

.1b Waste distribution fractions (%): by treatment/ disposal option

.2a Operation description table

.2b Operation capacities summary (vol)

oy YO0 A CTOTOTOT

6.10 QASE'LOG FILE (CAS)

~The User Interface maintains all necessary information to recreate a SWPM
run in a CAS file unique to that case. The CAS file contains a header whose
records define general case information, such as the case’s name, author, name
of the case’s parent case, and the RPF, RPS, IPF, IPS and DD files used by the
case. Following the header is a sequence of records that define the SWPM data
objects that the user preselected for the case. Waste classes, waste genera-
tors, treatments, and disposals are defined on WC, WG, TRT and DP records,
respectively. These records include the name of the object and the name of
the scenario that defined it for the subject case. Thus, the CAS file
contains all information necessary to reload a case’s data from the RPF and
IPF files. A short sample of a CAS file is shown below:

ID = SWPM User Interface -- Version 1.0 (01/17/90)
VERNTEST
VERN_NEW
desc

vern crow
vern crow
05.RPF
05.RPS
05.IPF
05.1IPS
SWPM.DD
VERNTEST.RSL
1990

2020

6.14

WC, CH_HAZ

WC, CH LLMW_GTCH
WC, CHLLMW HIGH
WC, CH LLMW_INT
WC, CH LLMW_LOW
WC, CH LLW GTCH
WC, CHTLLW HIGH
WC, CHTLLWINT
WC, CH LLW_LOW

WG, WHC 221T, WHC_221T FD89

WG, WHC 308, WHC 308 FD89

WG, WHC TWRT, WHC TWRT FD89

WG, BECHTEL, BECHTEL VERN TEST

TRT, BIOLOGICAL CH_TRU, BIOLOGICAL CH_TRU_PRELIM

DP, BOX_CH_LLW_INT, BOX CH_LLW_INT_PRELIM ‘

DP, BOX CH_LLW_LOW, BOX CH_LLW_LOW_VERN_NEW

TRT, COMB_COMP_CH_LLW_INT, COMB_COMP_CH LLW_INT_PRELIM
DP, DRUM_CH_HAZ, DRUM_CH_HAZ_PRELIM

DP, DRUM_CH_LLMW_LOW, DRUM_CH_LLMW_LOW _PRELIM

DP, DRUM CH_LLW_LOW, DRUM_CH [LW LOW_PRELIM

DP, DRUM_CH_TRU; DRUM_CH_TRU PRELIM

DP, DUMP_TRUCK_ CH_LLW LOW, DUMP_TRUCK CH_LLW_LOW_PRELIM
TRT, METAL_GTH CH TRU; METAL GTH_CH TRU PRELTM
TRT, METAL_LTH CH HAZ, METAL LTH CH HAZ_PRELIM

TRT, METAL_LTH CH_LLW_INT, METAL LTH_CH_LLW_INT PRELIM
TRT, METAL_LTH CH_LLW_LOW, METAL LTH_CH_LLW_LOW_PRELIM
TRT, METAL_LTH CH TRU, METAL_LTH_CH_TRU_PRELIM

DP, OTHER_Z_CH_LLW_INT, OTHER 2 CH LLW_INT PRELIM

DP, BOX_CH_TRU, BOX_CH_TRU_VERN_TEST

6.11 USERNAME/PASSWORK FILE (UPF)

The file SWPM.UPF contains the 1ist of users authorized to use the SWPM
User Interface. It includes their passwords and an indication of their
status. A short sample UPF follows:

Joe Doaks,passl
Polly Privileged,pass2,priv

In the above example, the second user will receive special treatment when
logged in to the SWPM User Interface.

6.15

6.12 REPORT FILE (REP)

REP files are produced by the ORW in a format suitable for printing. The:
User Interface facilitates printing these files on an HP Laserjet printer by
invoking the command procedure ORWLASER.CMD in response to the user’s selec-
tion of the "Print" menu item.

6.13 REDIRECTED STANDARD OQUTPUT FILE (OUT)

The User Interface redirects standard output to ADLSTD.OUT so that stan-
dard messages from the PFI routines, the SWPM, and the ORW will be caught in a
file for post-mortem analysis. Normally under PM, standard output is
discarded.

6.14 DIRECTORY STRUCTURE

When reading and writing files, SWPM expects a specific set of direc-
tories to exist. These directories also must match a defined structure. The
following Tist shows all of the required hard disk directories, which contain
the electronic files composing the SWPM system:

E:\ADL\ADL.EXE The ADL Interpreter, an 0S/2 Protected Mode program
E:\ADL\SWPMOD.ADL The source code of the SWPM model
E:\ADL\REPORT.ADL The source code of the Report Generator
E:\ADL\MODELS.H Source code included by the SWPM model
E:\ADL\CMPNENTS.H Source code included by the SWPM model
E:\ADL\REPWRIT.H Source code included by the SWPM model
E:\ADL\SMC.H Source code included by the SWPM model
E:\ADL\METHOD.H Source code included by the SWPM model

E:\ADL\EPU MSG.DAT Control file used by ADL.EXE

E:\ADL\ADLDECOD.DAT Control file used by ADL.EXE

E:\ORW Directory full of Report Generator support files
E:\WHC\SWPM.EXE The User Interface, an 0S/2 Protected Mode program
E:\WHC\ORWLASER.CMD Laser printer command file for the User Interface
E: \WHC\SWPMPCF .DAT Data file used by the User Interface

E: \WHC\SWPM.UPF Username and password file for the User Interface

6.16

In addition, the E:\WHC director contains any SWPM input and output files for
test and production cases (e.g., *.DD, *.RPF, *.RPS, *,IPF, * IPS),

6.17

[T

