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ABSTRACT 

The electronic excitation cross sections leading to H_Cv") molecules are 

discussed. The effect of shortening the length of the first chamber of a tandem 

configuration for the purpose of reducing the atomic concentration is shown to 

enhance the extracted current density. 

Since the Grenoble Meeting in 1985 the analysis of the negative-ion 

hydrogen discharge has been directed both toward identifying those system 

parameters necessary for optimum negative ion extraction and toward clarifying 

the atomic density component of operating discharges. At Livermore and 

Berkeley these efforts have been centered on the tandem system shown 

schematically in Fig. 1. Three principal sources of vibrational excitation are 

illustrated in this schematic. The excitation by fast electrons is believed to 

be the dominant mechanism in the high density region and this process is the 

focus of our discussion. 

In Fig. 2 is shown the vibrational population distribution for increasing 

values of the first chamber electron density, n. At low densities, 

*This work was performed under the auspices of the U.S. Department of Energy by 

the Lawrence Livermore National Laboratory under contract No. W-TIOS-ENG-IS. 
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n « 10 el. cm , the populations of the individual levels in the active 

portion of the spectrum are only a small fraction of a percent but are 

increasing with increasing density. As the electron density increases above 
11 1 ̂  1 il *~̂  P 

10 toward 10 -10 el. cm however, an asymptotic distribution is achieved. 

At these higher densities the populations of the excited levels become 

sufficiently large that their subsequent electron collisional excitation can 

contribute to the overall E-V process. A schematic of this process is 

illustrated in Fig. 3 for the v" = 10 level. The calculation of cross sections 

for this excitation process 

e(f) * H 2(v") - e(f') + H 2(v") , 

is summarized in Fig. 1. 

For initial levels _v" > 0 the effective excitation cross sections are 

found to be enhanced over that of the ground state, \r" » 0. These are shown in 

Fig. 5 for the special case v" =• v_". The effect on the vibrational population 

enhancement for the conditions of Fig. 2 are illustrated in Fig. 6 and expressed 

as a percentage enhancement, 6, for each level v". At this relatively low gas 
14 -3 density, N_ = 10 mol. cm , the v" = 10 enhancement approaches S = 20? for the 

13 It -3 asymptotic density n = 10 -10 el. cm . Taking the v" = 10 level as a 

representative case, the population enhancement is shown as a function of gas 

density and atom density in the next figure, Fig. 7. At higher gas and atom 

densities higher electron densities are required to approach the asymptote. 

The percentage enhancement, A, of the negative ion current density vs molecular 

density is shown in Fig. 8. 
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The two principal sources of atom production by electron collisions are 

illustrated in Fig. 9. Generation via the repulsive ^ state leads to atoms 

with mean energies near 5 eV. About 20-30? of the initial excitation of the 

B ^2 state decays to the continuum of the X state. The resulting atomic flux 

from this latter dissociation channel has quite low energy, near 0.2 eV. The 

smaller velocity of these colder atoms incre'ases their concentration, and their 

density becomes an important fraction of the total atomic density. 
+ The higher singlet states lying above the B,C states but below the H. 

ionization limit contribute approximately 30? to the total singlet excitation of 

the H_(v") levels and hence to their collisional destruction. At low electron 

densities the subsequent radiative decay of these states will contribute' to the 

ultimate H 2(v") population, but at higher densities their collisional excitation 

and ionization will occur prior to radiative decay. In Fig. 11 the radiative 

decay and collisional excitation times are compared for selected states. The 

radiative decay for the B,C states is sufficiently rapid to offset excitation 

toward the ionization limit, but for the higher states the radiative decay is 

less competitive and the possibility for repopulation of the H_(v") is lost. 
-2 At Grenoble an optimum current density of approximately 60 mA cm was 

calculated for the system of Fig. 1. At this time no information was available 

for the relative atomic concentration, and a ratio N./N_ =• 10* was assumed. 

This N-/N 2 ratio is a critical parameter; for a smaller ratio, N./N- • 1?, the 
2 current density increases threefold. At the Brookhaven Conference this last 

3 year a system analysis for a high electron density system concluded that the 

N../N2 ratio was nearer 30?. For such a large ratio the current density is 

considerably depleted. The situation is summarized in Fig. 12. The principal 

atom-attenuation reactions are shown in Fig. 13. 
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To gain a perspective on the problem we show in Fig. 14 a schematic of a 

cylindrical tandem system and indicate the mean free paths, X(v") and M H ) , for 

the H^(v") and the H atoms, respectively. Both these species are generated 

throughout the first chamber but only those H2(v") generated within a centimeter 

of the filter have mean free path long enough to contribute to the negative ion 

formation in the second chamber. The H atoms generated throughout the volume 

contribute to the depletion of the system perforuance. 

The atomic density can be reduced substantially by considering the tandem 

slab geometry of Fig. 15. Here the thickness, t. , of the first chamber slab is 

chosen to be comparable to the mean free path A(H_). If in addition the thermal 

plasma of the first slab is suppressed so that the species in the first enamber 

consist only of e(f), H,i H, and H 2(v"), the atomic density ratio can be reduced 

to approximately N./N, » 1J. 

The performance of the tandem slab geometry is compared with that of the 

cylindrical geometry in Fig. 16. The optimum current densities available are 

now quite large and allow one to consider reducing the gas density below 

3 * 10 mol. cm . In Fig. 17 is shown the tandem-slab system performance with 

the gas density constrained to successively lower values but with the electron 

densities optimized at each gas density. The second chamber density is varied 
13 -3 near 10 el. cm to insure a maximum at one centimeter. 
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Hiskes, Lietzke - Figure 1 
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Vibrational population distribution .B 
Scale length, R = 10 cm 
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Hiskes, Lietzke - Figure 3 

High energy electron collisionai 
excitation of H 2 (v") ,1 
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Cross section for excitation of level v" 
from initial level v" 

equals 
Cross section for excitation of levels v' 

of singlet states B, C from level v" 
times 

Probability of radiative decay from v' to v" 

• Excitation of v' = a(X-B, C) P(X, v"; B, C, v') 

• Probability of radiative decay from v' to v" 

= A (v', v'O 
]JT [A (v'; discrete v") + A (v'; continuum v")l 



Hiskes, Lietzke - Figure 5 
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Vibrational population enhancement 
vs vibrational level Ll! 
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Population enhancement of the v" = 10 level M 
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Negative ion enhancement vs molecular density .11 

Scale length R = 10 cm 
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High energy electron collisional excitation of H 9 (v") II 

15 

<1) 

O ) 

I 10 
4) 

!s? 
"•S3 
C 
a> 

* - > o a. 

vV' i 1 1 1 
\ \ 

^ ~~ 

-i K^^ ^ ^ 

1 \ s * ^ 
^ - — 

^£l__- — 
T1 1 1 H+H(5eV) 

\ ' " 
\ l l l 
ftJI 
iirNv 
INI ^ 

H+H (0.2 eV) 

INI • • f c ^ E ^ ^ " ^ INI 
^*-*""v" = 10 

i 

< i e 
I I I 

1.0 2.0 
Internuclear distance, A 



High energy electron collisional excitation of H (v") .11 
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Comparison of collisional excitation and deduction 

Radiative decay times: 

x(B \ , v') = 0.5 -> 1.7x 10"9 sec 
x (C 1 n u , v') = 0.8 -> 1.0 x 10"9 sec 
x(B , , 1 E u , . . . ) = 1 -2x10 8 sec 

Coliisionai excitation times: 

At n = 10 1 3 electrons cm"3 

x fB 1S , C 1 n u ) = 1/na v s 3 x 1G"7 sec 
x(B" 1 £ u , . . . ) = 2x10- 8sec 

m 



Optimized tandem system, Grenoble, 1985 .II 
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Atomic destruction processes 

• H + H2{v")->H + H2{v'<v") 

• H + H 2(v")->H + H + H 

• H + H-->H2(v") + e 

.11 



Perspective of active regions of a tandem discharge 
Scale length R = 10 cm 
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Tandem slab geometry .11 
Chamber 1 

No Losses in Chamber 1 
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Comparison of cylindrical and tandem 
slab geometries .11 
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Tandem slab geometry is 
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