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DIFFERENTIAL FORM OF THE COLLISION INTEGRAL 
FOR A RELATIVIST1C PLASMA 

Bastiaan J. Braams and Charles F. F. Karney 

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544. 

Abstract 
The differentia) formulation of the Landau-Fokker-Planck collision integral is 
developed for the case of relativistic electromagnetic interactions. 

Kinetic theory is founded upon the Boltzmann equation, which is a conservation 
equation for the phase-space distribution function of each species in an ensemble of 
interacting particles. For the case of Coulomb interactions, Landau 1 expressed the 
collision term in the Fokker-Planck form. This mixed integro-differential representation 
was extended to relativistic electromagnetic interactions by Beliaev and Budker. 2 For 
the nonrelativistic case, it was shown by Rosenbluth et a] , 3 and by Trubnikov 4 that 
the integrals appearing in the collision term can be expressed in terms of the solution 
of a pair of differentia] equations. The present work extends that formulation to the 
relativistic collision integral. 

For advanced-fuel fusion reactors temperatures on the order of 100 keV are required 
and a fully relativistic treatment of collisions is necessary, Even, in present-day fusion 
experiments there can be a substantial component of relativistic electrons; although 
the majority of collisions may be accurately described in the nonrelativistic limit, it is 
advantageous to have a unified formulation of the collision operator. Relativistic kinetic 
theory also finds application in astrophysics. The differential form of the collision term 
involves only some simple elliptic differential equations, and is therefore much preferable 
to the integral form for computational work. Furthermore, the differential form is 
amenable to analytical treatment by employing an expansion in spherical harmonics; 
we apply it at the end of this letter to calculate the scattering and slowing down of fast 
particles in a relativistic, equilibrium background plasma. 

According to Landau, 1 the collision term that occurs on the right-hand side of the 
Boltzmann equation for species a and describes the effect of collisions with species b 
may be written in the Fokker-Planck form, 

Cab = jjj^ • (D„i, • -Q-2- - Tabfa), (1) 

in which the coefficients D a 4 and F„j are defined by 

2 2 J* 

0 a 4 ( u ) = ^ r 4 ] o g A o b /< / (u ,u ' ) / * (uVi i \ (2a) • 

p-<"'--ii |6s k , 8 A-'/(^" ( u' u' )) A (° V u'- w 
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Here, /„ and /„ are the distribution functions for the two species, u is the ratio of 
momentum to species mass, qa and gj are the species charge, m^ and m\, are the species 
mass, eo is the vacuum dielectric permittivity, and logA,,;, is the Coulomb logarithm. 
The kernel U is specified below. The purpose of this letter is to present a differential 
formulation for the integral transforms that occur in Eqs. (2). To avoid unnecessary 
clutter we discard the factor that depends only on the species properties, drop the 
species subscript, and consider the transforms 

D{U) = S / U(U' U ' ) / ( U , ) d V ' ( 3 a ) 

F ( U ) = ~k J{£j ' U ( U ' U , ) ) / ( U V V - (3b) 
For guidance, let us recall briefly the nonrelativistic theory. 3 ' 4 In that case the 

momentum-to-mass ratios u and u' reduce to the velocities v and v' , and the collision 
kernel is the one given by Landau, 1 U = ( | s | 2 / - ss) / js] 3 , where s = v - v ' . It may be 
seen that U = d2\s\/dvdv and {d/dv') • U = -2d\s\~l!dv. To obtain the differential 
formulation, these representations are inserted into Eqs. (3), and the differentiation 
with respect to v is moved outside the integration over v ' . Defining the potentials 
A(v) = - ( l / 8 i r ) / | s | / d V a n d 5 ( v ) = - ( 1 / 4 T T ) / [*{-*• f&v', we haveD = -d2h/dvdv 
and F = -dgjdv. Furthermore, from A„|s| = 2[s|~' and A „ | s | _ 1 = —47r6(s) it follows 
that h and g obey the equations &vh = g and A„g = / . (A„ denotes the Laplacian 
with respect to the variable v.) These equations provide the differential formulation of 
the collision term in the nonrelativistic case. 

The Landau collision kernel was obtained in a semi-relativistic fashion, assuming 
Coulomb collisions and relativistic particle kinematics. It is a good approximation to 
the fully relativistic kernel given below provided that ]v.v'| <S. c 2 , which is true when 
one of the colliding particles is nonrelativistic. However, the reduction of the collision 
integral to the differential form of Rosenbluth and Trubnikov relies on the stronger 
assumptions |v | 2 <C c 2 and |v ' | 2 <£ c 2 , and is therefore entirely nonrelativistic. A 
relativistically correct treatment of the Landau kernel was given by Franz. 5 That work 
relies on an expansion of the collision operator in spherical harmonics, but the result 
can easily be modified to provide a differential formulation for the collision term that is 
exactly equivalent to the Landau collision integral. We shall not pursue that approach 
here, but turn now to the differential formulation based on the fully relativistic collision 
kernel. 

The collision kernel for relativistic electromagnetic interactions was calculated by 
Beliaev and Budker. 2 , 6 They obtained the expression 

u < u < u ' ) = (JrSyiT* (^ 2 - *)' - U ' J - u V + ^ u u ' + u ' u))> ( 4 a ) 
in which 7 = y/1 + |u| z, 7' = y/l + |u' | 2, and r — 77' — u.u'. (We set c = 1 in this 
part of the paper.) One finds 

• ^ - < > ( u , U ' ) = ^ ^ u - u ' ) . (4b) 

2 



Notice that r is the relativistic correction factor for the relative velocity between the two 
particles (i.e., for the velocity of one particle in the rest frame of the other). Conversely, 
this relative velocity is given by T - 1 ( T 2 — l ) 1 / 2 . 

In developing a differential formulation for the collision term based on the Beliaev 
and Budker kernel, it is helpful to work in terms of relativistically covariant quantities. 
The expression 77' U is equal to the space part of a four-tensor W that depends on the 
four-vectors u = (7, u) and u' — (7', u ' ) , 

tf^Ku') = /_ 1 ) 3 / 2 ( ( r 2 - l )s° ' - « V - «"V> + r(w'u" + «"'«')) , (5a) 

where g'} is the metric tensor, with signature —1-++. (r = — uju'1 is clearly a four-
scalar.) The tensor W is symmetric (W* = W1'), symmetric in u and u', satisfies 
W^UJ = 0, and satisfies Wj = 2r2(r2 - 1)~^2. Likewise -fy'^d/du') • U is the space 
part of the four-vector V, where 

If the relativistic differential formulation is to parallel most closely the nonrela-
tivistic formulation, then one should find a representation of the fonn W' = tC'ip 
and V1 = -20*1?, where ip and ip are four-scalars depending on u and u', and W ' 
and -Qz are covariant differential operators acting on the variable u. In the nonrela-
tivistic limit, ip should reduce to |v — v ' | and ip should reduce to |v — v ' | _ 1 . It should 
be possible to transform ii and y> to a delta function by a sequence of second-order 
differential operators. The potentials would be defined as k = — (l/87r) f(-4if/y')d?-u! 
and g = ~(l/47r) J(<pf/f')(Pu'; these expressions define four-scalars (see the discus
sion in Lifshit2 and Pitaevski 6). The differential equations satisfied by h and g follow 
immediately from those satisfied by ij> and ip. Finally, D is obtained as the space part 
of — f~ 1 H' i h and F as the space part of ~f-1Qig. In fact, it will turn out that the 
relativistic formulation has to be somewhat more complicated, but not fundamentally 
different from the outline just sketched. 

The restriction that a function of the four-vectors u and u' should be a four-scalar is 
a severe one. The expressions v? and u12 are constants (= —1), and thus any four-scalar 
that is formed from u and u' must be a function of r = —u.u' alone. 

The form of the differential operators W' and G1 is restricted because these should 
be interior operators on the surface u z = — 1 in four-space. In addition, it is required 
that W ; = W' and UiHxj = 0. Under those restrictions it is found that the most general 
form of H?i and ff\ up to a multiplicative constant, is 7ilix — £ , J ' x + a ( 5 i j + « ' « ' ) * 
and Q'x = ^X + PuTX- Here, a and 0 are arbitrary constants, and 

&x = C*tt + »'«*)<*" + ̂ )Sh + <*« + ^ J > ~ ^ , (&) 
Ki

X=(gik + uiu")^. (6b) 
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Assuming that x >s a function of r alone, we obtain 

and X?x = {dx/dr)(ru' — u 1 1 ) . One is thereby led to the representations 

W** = [ £ y + (ffij + « V ) ] V r a - 1 

- [ £ " - (s"> + u 'V) ] (r cosh" ' r - yjv' - l ) , (7a) 

V = -2/C*'(r(r 2 - l ) " 1 ' ' 2 - cosh - ' r ) . (7b) 

The spatial part of JC J , X is Lx and that of Kl% ~>s ^X where 

K x = 1 - ' ^ , (8b) 

v = u / 7 , and d/d\ = ~/(l + uu) • djdxx-
The above representations for W and V are only suitable for constructing a dif

ferential formulation of the collision term if the functions that occur on the right-hand 
sides can be reduced to delta functions by some sequence of differential operators. For 
that purpose the contraction L — C\ is needed; in terms of the three-space variables it 
is 

If x is a function of r alone, then L\ — (^ 2 - ])(d?x/dr2) + 3r{dx/dr) away from r = 1; 
at r = 1 (or u = u ') there may be a singularity. Specifically, it 5s found that 

L(r(r* - I)'1'2) = -4iry6(u - u ' ) , 

[L + l ] ( ( r 4 - l ) " 1 ^ ) = -47r 7 5(u - « ') . 

The explicit form of the differential representation of Eqs. (3) based on the Beliaev 
and Budker collision kerne) 2 follows: The potentials are 

h0 = - ( 1 /4* ) j(r2~ l ) - ^ 2 / ( u ' ) / 7 ' < i 3 u ' , (10a) 

Aj = -(l /8»r) J y/r*-l!{xt)HiPu; (10b) 

h2 = - ( 1 / 3 2 T T ) /"(rcosh- ' r - \ / r 2 - l ) / (u ' ) /«y '<iV, (10c) 

ff0 = -{l/4*)Jr(r2 - l)-"2f(u')/i d3vl, (10d) 

ffl = - ( l /8 i r ) f cosher f(u')/y' d3u'. (lOe) 



These potentials satisfy the differential equations 

[L-3}h,=k0, 9 0 J' (11) 
[L-3}h2 = hu

 L S 1 = S ° -

Finally we may write D and F as 

D(u) = —f'l[L + / + uu]hi + 4 7 _ 1 [ t - / - u u ] h 2 l (12a) 
F(u) = -7'1K{g0-2g1). (12b) 

Equations (10-12) together with the definitions, Eqs. (8-9), provide the differential 
formulation in the relativistic case. 

In order to proceed further analytically, it is useful to decompose the distribution 
function and the potentials in spherical harmonics, e.g., 

oo re 

f(u,9,4) = Y* Y, / ™ . ( « ) * r ( « * 0 ) e x p ( « n # (13) 
n=0 m = —re 

Here u •=• |u[ (different from the convention used earlier), 9 is the polar angle, and $ is 
the azimuthal angle. The equation [£, — a]g = / is equivalent to the system of separated 
equations [Ln - a\gnm = fnmt where 

i*. - * - o+- 2 )S+1 2 --+»•)£- ("-^+<•>• <"i 
After the change of variable x = s i n h _ 1 u and the change of unknown z ~ ( s in l ix) _ n y, 
then the equation [L„ — a]y = w transforms to [Z)n — a2]z = (sinha:)~ nuj, where 
a? = a -f 1 and 

[Vn - a2]z = ~ + 2(n + l ) ( w t h a s ) ^ + ((n + J ) 2 - a7)z. (15) 

The solution to the homogeneous equation [7}n — a.2]z = 0 is required in order to con
struct a Green's function for the problem. To obtain this solution we note the following 
recurrence: If z n _ 1 | a solves [B n _i — a?]z = 0, then z„,a = [sumx)~l(d/dx)zn-iia solves 
[D r. — a2)z = 0. Furthermore, for n — — 1 the homogeneous equation is trivial to solve, 
giving 2 - i , a = Ciexp(ax) + C ? exp(-aa;) (for a ^ 0), and z_i,o = C\X + C2, where Ci 
and C2 are integration constants. However, the recurrence breaks down in the case that 
a is an integer. If a = n, then zn-i,a = 1 solves [Dn-i — ar]z = 0, and differentiation 
produces the null solution to (2?„ 
from the general solution to [Vn — n2]z = 0, which is 

•Zn.B — I m n h a r ) - 2 * - 1 ^ , -f C 2 /"Vsinh a:') 2 n<te'). 
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The integral that occurs here can be expressed in closed form. 
The Green's function allows us to reduce the separated ordinary differential equa

tions to quadrature. An important special application for these results is in the treat
ment of collisions off an equilibrium background distribution. Assuming that f\, is a 
stationary Maxwellian with density n<. and temperature T4 and that the energy of the 
colliding particles greatly exceeds T&, we obtain 

n - r * L ^ / \ _ * £ J & - > \ 

K2\u2 i1*?) ' K2 a 2

7

2 c 2 J ' 
n -r 1 [ 

2v 

and Fu = —(Tnav/Tj,)Duu. (The other components of 0 and F vanish.) Here we have 
put the expressions for D and F into dimensional form as in Eqs. (2), Kn is the nth-order 
Bessel function of the second kind, the argument for the Bessel functions is t rue 2 /% , 
Ufb = Tb/mb, and r„j = n^ql logAa6/(47rEJ;m;|). The errors are exponentially small 
in u/uth. 

To conclude, we have presented a differential formulation for the Beliaev and 
Budlcer2 relativistic collision integral. This permits the rapid numerical evaluation of 
the collision integral. The decomposition into spherical harmonics allows the collision 
operator to be expressed in terms of one-dimensional integrals for simple background 
distributions. This is useful in carrying out analytical work. It also provides a conve
nient method for calculating the boundary conditions for the potentials. 

We are grateful to N.J. Fisch for several enlightening discussions. This work was 
supported by DoE contract DE-AC02-76-CHO-3073. 
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