STATISTICAL ANALYSIS OF FLUORIMETER OPERATION

By

Larry B. Cutlip
Systems Analysis Department
Technical Services Division

January 22, 1991
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Available to DOE and DOE Contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS/626-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
DISTRIBUTION

PORTS

Jack Crawford
Larry Cutlip
Chuck Harley
Dave Netzer
Dick Shelton
Wayne Spetnagel
Carol Vanmeter
Randy Waugh
Carl Willis
Central Files (2)
Technical Library
Technical Review (3)
SUMMARY

Acceptance criteria for uranium check standards used to verify fluorimeter calibration have been developed. This work was done in response to Tiger Team finding QA/BMP-5, item 4. Data used as input to these calculations is retained in the Tiger Team closeout file, located in the Technical Service Division managers office.

INTRODUCTION

Tiger Team finding QA/BMP-5, item 4 stated "Inadequate radiological measurement QA/QC practices" were being applied in reference to the fluorimeter being used by the Environmental and Industrial Hygiene Analysis Department. This instrument is used to measure uranium fluorescence in urine, water, soil/sediment, waste, air and biota samples either directly or after ion exchange separation or solvent extraction separation. The fluorimeter is a high sensitivity, reflection type instrument under which a dried sample solution residue is fused in a flux. The material is solidified in a platinum fusion dish and fluorescence due to uranium activity is measured under ultraviolet light.

The Tiger Team concern was primarily directed at implementation of QA/QC practices to verify that the fluorimeter is statistically "in control" and that interpolation between standard points does not introduce unnecessary errors; i.e., the system operates in a linear manner. Control charts have been developed for each of the uranium standards and each method of sample preparation. In addition to verification of data within control limits, calculation of correlation coefficients will be required to determine if the fluorimeter meets accepted statistical standards for linearity.

DISCUSSION

X-bar and range charts have been developed for water, urine and extraction standard samples and are presented as Appendix A. These charts show that the fluorimeter is statistically in control, however, there does appear to be a bias in each case on the high end of the operating range. Based on the calculations made for the charts, the following control limits have been established for extractions, urine and water.
Table 1
Control Limits for Extraction

<table>
<thead>
<tr>
<th>Standard (ngU)</th>
<th>Lower</th>
<th>Upper</th>
<th>Calculated Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.746</td>
<td>1.24</td>
<td>0.993</td>
</tr>
<tr>
<td>2.0</td>
<td>1.65</td>
<td>2.24</td>
<td>1.94</td>
</tr>
<tr>
<td>100</td>
<td>87.7</td>
<td>114</td>
<td>101</td>
</tr>
<tr>
<td>200</td>
<td>182</td>
<td>227</td>
<td>205</td>
</tr>
<tr>
<td>400</td>
<td>369</td>
<td>423</td>
<td>396</td>
</tr>
<tr>
<td>800</td>
<td>695</td>
<td>828</td>
<td>761</td>
</tr>
</tbody>
</table>

Table 2
Control Limits for Urine

<table>
<thead>
<tr>
<th>Standard (ngU)</th>
<th>Lower</th>
<th>Upper</th>
<th>Calculated Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.262</td>
<td>0.631</td>
<td>0.447</td>
</tr>
<tr>
<td>1.0</td>
<td>0.712</td>
<td>1.28</td>
<td>0.997</td>
</tr>
<tr>
<td>2.0</td>
<td>1.58</td>
<td>2.30</td>
<td>1.94</td>
</tr>
<tr>
<td>4.0</td>
<td>3.40</td>
<td>4.53</td>
<td>3.96</td>
</tr>
<tr>
<td>8.0</td>
<td>7.08</td>
<td>8.52</td>
<td>7.80</td>
</tr>
</tbody>
</table>

Table 3
Control Limits for Water

<table>
<thead>
<tr>
<th>Standard (ngU)</th>
<th>Lower</th>
<th>Upper</th>
<th>Calculated Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.290</td>
<td>0.661</td>
<td>0.476</td>
</tr>
<tr>
<td>40</td>
<td>35.1</td>
<td>45.8</td>
<td>40.4</td>
</tr>
<tr>
<td>200</td>
<td>167</td>
<td>226</td>
<td>197</td>
</tr>
<tr>
<td>800</td>
<td>716</td>
<td>931</td>
<td>823</td>
</tr>
</tbody>
</table>

A minimum statistically adequate sample size of 30 randomly sampled data pairs has been used in each case with the exception of the 400 ngU and 800 ngU standards in the extraction data. Until enough data has been gathered to develop the control charts for these cases, control limits of +/- 20% of the standard value should be used. These charts have been developed using a 99% confidence interval. As a result, only one measurement of a sample standard may fall outside the control limits. A second measurement outside of the control limits is indicative of instrument malfunction.

Following verification of fluorimeter control, a regression analysis is required to verify instrument linearity. The minimum
required correlation coefficient (also at a 99% confidence level) can be determined from the following table.1,2

\begin{table}[h]
\centering
\caption{Minimum Correlation Coefficients}
\begin{tabular}{ccc}
\hline
Number of Points & Constituents & Correlation Coefficient \\
\hline
8 & 3 Standards and Blank & 0.798 \\
10 & 4 Standards and Blank & 0.735 \\
12 & 5 Standards and Blank & 0.684 \\
14 & 6 Standards and Blank & 0.641 \\
\hline
\end{tabular}
\end{table}

The control limits which have been established require that duplicate analyses be made on all standards and blanks.
CONCLUSIONS

X-bar and range charts have been developed for fluorimeter operation. These charts show that the instrument is statistically "in control". An apparent bias in high end operation has been detected in each mode of operation.

Not enough data is available to develop statistically meaningful control charts for the 400 ngU and 800 ngU extractions.

RECOMMENDATIONS

1. The control limits which have been established in this document should be used to determine the functionality of the fluorimeter.

2. Only one analysis on a standard sample may fall outside the established control limits. If a second sample is beyond the limits, it is indicative of instrument malfunction.

3. A regression analysis should be made each time new standard samples are analyzed. The minimum acceptable correlation coefficient (as a function of the number of standards) is presented in Table 4.

4. New control charts should be developed for 400 ngU and 800 ngU extractions when enough data is available. Until that time, the control limit should be assumed to be +/- 20% of the standard sample value.
REFERENCES

APPENDIX A

CONTROL CHARTS FOR EXTRACTIONS, URINE AND WATER
X-Bar Chart for Fluorimeter Extraction - 400 ngU Standard

Uranium (ng)

Sample Number

Range Chart for Fluorimeter Extraction - 400 ngU Standard

Uranium (ng)

Sample Number

X-Bar Chart for Fluorimeter Extraction - 800 ngU Standard

Uranium (ng)

Sample Number

Range Chart for Fluorimeter Extraction - 800 ngU Standard

Uranium (ng)

Sample Number