TITLE: NEUTRAL BEAM INJECTION FOR A PROTON STORAGE RING

AUTHOR(S): Daniel W. Hudgings

SUBMITTED TO: Particle Accelerator Conference, San Francisco, CA, March 12-14, 1979

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
NEUTRAL BEAM INJECTION FOR A PROTON STORAGE RING

Daniel W. Hudgings
Los Alamos Scientific Laboratory, Los Alamos, NM 87545

Abstract

The spallation neutron source at the Los Alamos Scientific Laboratory is to be upgraded with the addition of a high current Proton Storage Ring (PSR). This paper describes a novel charge changing injection technique that substantially simplifies the ring design. The method consists of converting the 800-MeV negative hydrogen (H⁻) ion beam from the LAMPF line to a 100% neutral hydrogen (H⁰) beam having an acceptable emittance and drifting it directly onto the proton closed orbit in the ring. The neutralization is accomplished by electric field dissociation of the H⁺ ions.

Introduction

The existing Weapons Neutron Research Facility (WNR) at the Los Alamos Laboratory uses the 800-MeV proton beam from the LAMPF line to produce neutrons by spallation reactions in heavy metal targets. Because time of flight methods are used to determine the neutron energies, short intense proton beam pulses are required. Although the average beam current from the LAMPF line is more than adequate, the duty factor and peak current are not ideal for this application.

The Proton Storage Ring¹, which has recently been approved as a major upgrade for the WNR facility, radically improves this situation. It converts the LAMPF pulse structure into one that is optimised for driving the pulsed neutron source. Basically the PSR accumulates beam intensities from LAMPF for up to 500 µs and then delivers it to the neutron production target in very intense 1 ns long bunches at high frequency (for fast neutron measurements) or 270 ns bunches at low frequency (for thermal neutron experiments). In both bunch modes the PSR will provide neutron pulse peak intensities unmatched by any other laboratory source in the U.S.

Charge Changing Injection

The key to attaining such very high pulse intensities in the PSR is multturn charge accumulation while preserving a reasonable stored beam emittance. By "multturn," we mean several hundred to several thousand continuously injected turns. Conventional proton synchrotrons are loaded by injection from linacs or smaller synchrotrons, stacking the beam bunches in transverse (betatron) phase space or at different energies on successive turns. The number of turns that can be stacked in this fashion is small and is limited by growth of the transverse beam dimensions. This limitation is fundamental and arises from the fact that the stored beam phase space density (brightness) cannot exceed that of the injected beam. Liouville's theorem in statistical physics states that in reversible processes like these the hydrodynamic derivative of the physical distribution function is zero. The six-dimensional phase space density described by the distribution function cannot change.

A straightforward way to circumvent Liouville's restriction is to use an irreversible injection scheme. Charge changing injection of protons, first demonstrated at Novosibirsk² and now in routine use in the booster synchrotrons at ANL and FNAL, accomplishes this by injecting an H⁺ beam near the normal closed orbit and stripping off the electrons in a thin foil. The conversion of H⁻ ions to protons is an irreversible process and Liouville's constraints therefore do not apply. In fact, protons can be continuously injected into the same phase space and the beam brightness increased to very high levels in comparison with that of the injected beam. The phase-space densities that can be reached are limited only by space-charge considerations (tune shifts) and scattering in the foil, which is a relatively weak process. Charge changing injection is essential to the high current performance goals of the PSR, and also for those of the Spallation Neutron Source at the Rutherford Laboratory (UK) and the proposed EPS II neutron source at ANL. The brightness of the stored beam must be increased as it is accumulated if the ring apertures are to be kept reasonable and if beam dimensions in the extraction transport system are not to be too large.

Figure 1 is a schematic representation of the charge exchange injection scheme originally proposed for the PSR. The LAMPF H⁻ beam is converted to neutral H⁰ in a 10-mm-thick distorted closed orbit in a straight section of the PSR lattice by magnet D. Magnets C and E each have integrated field length half that of D and have opposite polarity. A thin stripping foil near the exit plane of magnet D converts the H⁺ ions to protons.

At ANL and FNAL the injection energy of the H⁺ ions is relatively low. In contrast, the PSR injection energy is 800 MeV. This beam has a high magnetic rigidity (Bp = 4.88 T-m); furthermore, the H⁻ ions must be transported to the injection point in 0.4 T fields to avoid electric field stripping to neutral hydrogen. To maintain 10-fold symmetry in the PSR lattice the length of straight section available for beam injection is restricted to about four meters. The field in magnet D must be held below 0.4 T, and the incoming beam must clear the focusing quadruple in the injection section. These requirements are difficult to meet in the available space. This scheme furthermore requires a distortion of the normal closed orbit during the injection cycle. The performance requirements of the pulsed magnets needed for this orbit "bump" are severe, 8-KJ stored energy switched at 120 Hz. In addition, these magnets break the symmetry of the lattice and may introduce resonance stopbands which would be absent in a lattice with exact 10-fold symmetry.

Neutral Hydrogen Injection

Most complications in the H⁺ charge changing injection method can be avoided by using neutral hydrogen injection, as illustrated in Fig. 2. The 800-MeV H⁺ ion beam from LAMPF is first converted to neutral hydrogen in stripper A and then drifts through bend magnet B and quadrupole Q₁ onto the undistorted closed orbit in the straight section. The H⁰ beam is then converted to protons by a stripping foil and becomes part of the stored circulating beam. To minimise stored beam interaction with the foil it can be rotated away from its injection position by a spinning disk arrangement such as that formerly used at ANL in the Booster 1 synchrotron. Programmed steering magnets located in the injection line upstream from the H⁺ ion stripper will allow the neutral beam to be "painted" across the stripping foil. This technique
increases the emittance of the stored beam, thereby
reducing the incoherent space-charge-induced tune
shift for a given number of stored protons.

At low energies, H^0 beams are conventionally
formed from H^- ions by stripping in a gas channel.
Unfortunately, the cross sections at 800 MeV for con-
version of H^- to H^0 and H^0 to H^+ are such that
the maximum equilibrium fraction of H^0 is only about
half the incident H^- beam, the remaining 50% being
divided about equally between H^- and H^+. For PSR
injection conditions, this conversion efficiency is
much \sim small. Beam losses would be on the order of
50$\%$.

Field Dissociation of H^- Ions

Negative hydrogen ions decay to H^0 in strong
electric fields by Stark effect removal of the weakly
bound second electron. Measurements of the decay rate
were made by Stinson et al. as a part of the TRUPH
design effort. They found that if the decay rate was
described as $\frac{1}{\tau} \propto \frac{E}{A_1} \exp \left(-\frac{A_2}{E}\right)$, where
E is the electric field, then $A_1 = 9.6 \times 10^{-6}$
V/m and $A_2 = 4.256 \times 10^{-9}$ V/m. Electric fields to
provide significant stripping rates are very high
($>10^8 \text{ V/m}$). However, such fields are readily ob-
tained in the center-of-mass frame of 800-MeV H^-
ions by applying a transverse magnetic field of
>0.4 T. The laboratory frame. Figure 3 plots the path length required for an 800-MeV H^- ion beam
to decay to $1/e$ of its initial intensity as a function of
the applied magnetic field. The data of Stinson
et al. on which this calculation is based corre-
spond to relatively long lifetimes. The PSR magnetic
stripper will have to operate in a region of much
shorter lifetimes (10^{-10} s rather than 10^{-5} s) and
much higher fields. To determine high field lifetimes
more accurately than can be expected from an extrapo-
alation of the data in Fig. 3, an experiment to measure
stripping rates in 15-20 kG fields is being prepared.

The stripping rate in a practical magnetic field can
be calculated using the results of Stinson et al. In the ion rest frame $E = \gamma \epsilon E_i$
where γ is the component of magnetic field transverse to the beam
in the laboratory frame. It is convenient to express
the ion lifetime as a distance $s_0 = \gamma v_0 = \gamma s_0$. Thus

$$s_0(s) = \left(\frac{A_1}{B}\right) \exp \left(\frac{A_2}{s_0} \gamma \epsilon E_i \left(\gamma \epsilon s\right)\right)$$

where s is the longitudinal coordinate of the ion tra-
go
y.

If $f(s)$ is the fraction of the H^- beam which has
not been stripped ($f(\text{source}) = 1$), then
$$df(s)/ds = f(s)/s_0(s)$$

and

$$f(s) = \exp \left[-\int_{\text{source}}^{\text{target}} \frac{ds'}{s_0(s')} \right]$$

(2)

This can be integrated numerically to find $f(s)$ and
$df(s)/ds$, the local rate of neutral beam production.

Figures 4 is a plot of these functions for an optimized
but practically realizable transverse magnetic field
$B(s)$, shown in Fig. 6. To minimize the angular disper-
sion inherent in the stripping process, it is desirable
to produce as steep a field gradient as possible. It
is apparent from the figures that essentially all of
the stripping occurs in a path length interval of
10-5 mm, where the magnetic field rises from 0.9 to 1.75
T. The integral of the bending angle ϕ over the
bending width of the $f(s)/ds$ profile is a measure of
the angular spread of the neutral beam produced by the
stripping process. For the given field profile this is
about one milliradian. A larger magnetic field gradient
dB/ds near $B = 1.5$ T would give a smaller angular
dispersion, as would a higher peak field.

The emittance increase of the circulating beam in
the PSR that arises from the neutral injection process
can be minimized by four procedures:

1. using the highest practical field gradient in
 the stripping magnet;
2. placing the stripping magnet as close to the
 stripping foil as is practical;
3. designing the injection transport line to lo-
 cate a beam waist at the stripping magnet in
 the plane transverse to the magnetic field
direction (in the dispersion plane); and
4. using as thin a stripping foil as is practical.

The second of these points follows from the fact
that the neutral beam cannot be focussed. The third
point, strictly true only if the magnetic and foil
stripers are close together, arises from the fact that
emittance growth during neutralization is caused by an
accompanying fractional increase in beam angular spread
relative to the initial angular spread. The purpose of
using a thin foil for the $\text{H}^-->\text{H}^+$ process is to mini-
imize small-angle Coulomb scattering.

Halbach has suggested a magnet design for the $\text{H}^-\rightarrow\text{H}^0$
stripper, which is shown in section 'n Fig.
5. The H^- beam first drifts through a (reversed)
magnetic field of 0.5 T between the pole faces AA',
where no significant stripping occurs. It then masses
through a region between pole faces AA' and CC' and
then between pole faces CC' where the magnetic field
reaches 1.75T. Most of the stripping occurs in the
high gradient region near 1.75T. A magnetic field pro-
file for this magnet obtained by conformal mapping is
shown in Fig. 6. The advantage of this design is that
the field gradient is greater than that attainable by
magnet CC' alone or by CC' passively field
clamped.

Conclusions

Neutral beam charge changing injection appears to be
a simple method of circumventing the Liouville theo-
rem, avoiding many of the engineering complications of
the older, direct H^- stripping method. Additionally,
it does not require the use of magnets to distort the
normal closed orbit, which necessarily break the lat-
tice symmetry. Although the application of this method
in the PSR is made particularly attractive by the high
injection beam energy, modern wiggler magnet technology
permits using it at lower injection energies. The an-
gular spread induced in the beam would then be that
cause by a single period of the wiggler field.

References

1. R. K. Cooper and G. P. Lawrence, Proceedings of the
 1977 Particle Accelerator Conference, Trans IEEE
 Conference on High Energy Accelerators (Frascati,
3. G. M. Stinson et al., Nucl. Instr. and Meth. 74,
4. K. Halbach, Lawrence Berkeley Laboratory, Berkeley,
 CA, private communication (1979).
Fig. 1. Conventional charge changing injection for the PSR. Components are described in text.

Fig. 2. Two step charge changing injection for the PSR. Components are described in text.

Fig. 3. Logarithm of mean stripping length S_o (in meters) as function of transverse magnetic field B (in Tesla) for 800 MeV H ions.

Fig. 4. Fraction $F(s)$ of unstripped 800 MeV H ions and local charge stripping rate $-dF/ds$ (scaled by factor of 3.3 mm) as function of position for magnetic field of Fig. 6.

Fig. 5. Magnet design suggested by K. Halbach to produce field of Fig. 6.

Fig. 6. Magnetic field of magnet of Fig. 5, obtained by conformal mapping.