Shallow land burial technology: humid

PDF Version Also Available for Download.

Description

Applying engineered modifications to present shallow land burial (SLB) practices is one method of ensuring safe operation and improving overall disposal-site performance. Two such engineered modifications, trench lining and grouting, are being demonstrated and evaluated at the Oak Ridge National Laboratory (ORNL) Engineered Test Facility (ETF), using nine 28-m/sup 3/ experimental trenches containing compacted low-level waste (LLW). Concurrent to this field demonstration experiment, two finite-element hydrologic models have been developed to model water movement and solute transport at a waste disposal site. This paper covers progress made in these two areas during FY 1984. Though the economic analysis of the … continued below

Physical Description

20 pages

Creation Information

Davis, E. C. & Yeh, G. T. January 1, 1984.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Applying engineered modifications to present shallow land burial (SLB) practices is one method of ensuring safe operation and improving overall disposal-site performance. Two such engineered modifications, trench lining and grouting, are being demonstrated and evaluated at the Oak Ridge National Laboratory (ORNL) Engineered Test Facility (ETF), using nine 28-m/sup 3/ experimental trenches containing compacted low-level waste (LLW). Concurrent to this field demonstration experiment, two finite-element hydrologic models have been developed to model water movement and solute transport at a waste disposal site. This paper covers progress made in these two areas during FY 1984. Though the economic analysis of the two trench treatments favored Hypalon lining (lining costs were 33% lower at this demonstration scale), results of field experiments examining waste hydrologic isolation favored the cement-bentonite grout treatment. Data from water pump-out and water pump-in tests, combined with observed intratrench water-level fluctuations, suggest that the original goal of constructing watertight liners in three experimental trenches was not achieved. In addition, trench-cover subsidence of approx. 2% of the total trench depth has been measured over two of the three lined trenches but has not occurred over any of the three grouted or three control (untreated) trenches. The evaluation of the two trench treatments is continuing. However, results indicate that the cement-bentonite treatment, implemented at a cost of $160/m/sup 3/ of grout, provides a degree of waste isolation not afforded by the lined and control trenches and should be considered for use at SLB sites with water-related problems. 11 references, 6 figures, 2 tables.

Physical Description

20 pages

Notes

NTIS, PC A02/MF A01.

Source

  • 6. annual Low-Level Waste Management Program participants' information meeting, Denver, CO, USA, 11 Sep 1984

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85004432
  • Report No.: CONF-8409115-18
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 6068154
  • Archival Resource Key: ark:/67531/metadc1105820

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1984

Added to The UNT Digital Library

  • Feb. 22, 2018, 7:45 p.m.

Description Last Updated

  • May 6, 2021, 3:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Davis, E. C. & Yeh, G. T. Shallow land burial technology: humid, article, January 1, 1984; Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc1105820/: accessed April 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen