Uu';k; o DS

[~
NUREG/CR-4640
PNL-B784 .2

D

Handbook of Software
Quality Assurance Techniques
~ Applicable to the Nuclear Industry

Prepared by J. L. Bryant, N. P. Wilburn

Paciflc Northwest Labaratory
Qperated by
Battelle Mernarial Institute

Preparad for
U.S. Nuclear Regulatory
Commission

NOTICE

This report wat prapared 35 an account of wark sponsored by an agency of the Linited States
Government. Neither the United States Goverament nor any agency thereod, or any of thair
employees, Makes vy warranty, expresed or mphed, of stsumws any legal labilicy of re-
spongibality for 3oy thard pary’'s use, or the résults of such use, of any information, apparatus,
product or process disclared in Tes report, of represents that it use by such thurd party would
nat infrivage privitaly cwned rights

NOTICE
Avallabuhity of Asference Matenials Cived in NRC Pubhicatians
Muost docurments cited in MRC publicatony wall be availakle from one of the fallowing sources

1 The NRLC Publc Docurent Hoom, 1717 H Strest, W w
Washington, DC 206585

2 The Superintendent of Documents U 5 Gevernmant Printing Office, Post Office BEox 37082,
Washington, DG 20013-7082

3 The Navgonal Techmcal Information Service, Sprangfradd, Va 22151

Akhough the hsting that follows represents the maponity of document s cited i MR pubhcations
1T % net wtended 1o b exhalustive

Referenced documents available for inspaction and copying for a fee from the NRC Public Qocu
ment Aoom include NRC correspandence and internal NRC memoranda, NRT Ofhce of Inspechion
and Enforcement bulletins, ciwrculars, informaton notices, nspection and nvestigation notices,
Licenses Event Reports, vendar reports and correspondence, Commussian papers, and appiicant and
Licerier documents and correpondence

The fallowing docurnents n the MUREG series are avalable for purchase from the GPO Sales
Program formal NRC staff and contractor reports, NRG sponaored conference procssdings, and
NAGC booklews and brochures Also avanlable are Regulatory Gudes, NRC reguiatens i the Cede of
Federai Regulatrons, and Nuclesr Ragulatory Sommission fsuances

Documents avadlable fram the MNational Technical Informacon Service include NUAES senes
reparts and techrical raports praparsd by other federal agencies and reports preparsd by tha Aromag
Energy Commissian, forerunnar agency to the Naclear Reguiatory Commssion

Documents avarlsble trom pubhc and specal wwchrucal bbraries include all opan literature tems,
such ad bodks, poumal and penodical srtiedet, and transactions Feoacs' Repster nonces, faderal and
state [eqslatian, and congressiona) reparts can usually be obtamed from thase hbrares

Documents such as theses disterpanng, forsgn reports and translations, and nen NRC conference
pracesgings aré avalable for purchase from the organization sponsonng the publication cited

Single copes of NAC draft repors are avarlable free, 1o the sxxent of supply, wpon whitten
request to the Division of Information Support Services, Distribunon Sectian, U.5. Nuclear
Requiatory Commusston, Washingten, GG 20855,

Copes of industry codes and standards used in 3 substantve manner 10 the NRC regulatory process
ars maintamed 3t tha NAC Library, 7920 Norfolk Svsnue, Bethesda, Maryland, and are available
there for reference os# by the public Codes and standards are wsually copyrighted and may bs
purchased from the orginatng orgamzation or, o they are Americon Nanonal Standards, from the
Amencan National Standards Instiiute 1430 Broadway, New York, NY 10018

NUREG/CR-4640
PNL-5784

Handbook of Software
Quality Assurance Techniques
Applicable to the Nuclear Industry

Manuscrpt Complated: Jure 1987
Data Published: August 1987

Prepared by
J. L. Bryant, M. P. Wilbum

Pacific Morthwest Laboratory
Richlard, WA 93362

Prepared for

Division of Licensee Performance and Quality Evaluation
Office of Nuclear Raactor Ragulation

U.S5. Nuclear Regulatory Commission

Washington, DC 20655

NRC FIN P2002

ABSTRACT

Pacific Northwest Laboratory is conducting a research project to recommend
good engineering practices in the application of 10 CFR 50, Appendix B require-
ments to assure quality in the development and use of computer software for the
design and operation of nuclear power plants for NRC and industry. This hand-
ook defines the content of a software quality assurance program by enumerating
the techniques applicable, Definitions, descriptians, and references whare
further information may be obtained are provided far each topic.

114

PREFACE

This publication has bsen prepared to provide general recommendations for
software quality assurance (SQA) programs, It is intended to be used by the
commercial nuclear power industry as an aid for structuring SQA programs and
assessing the adequacy of existing software practices including 1ts development

and use.

This handbook describes a framework and overall approach for an 5QA pro-
gram as applied to software systems alone as distinct from other systems such
a5 associated plant hardware or the man-machinge interface. It recommends a set
of toptcs to be addressed and describes some methods and references some tools
that can be used to implement and evaluate such a program. It is not intended
to supplant standards and does not prescribe specific procedures. The user of
the handbook can tailor the infgrmation prasented to fit the individual needs
af the process under cansideratian.

SUMMARY

Computer software has become an ine¢reasingly important part of the design
and operation of systems that perform complex and critical functions, including
nuclear power plants, The growing role of software in supporting nuclear plant
design and operation emphas{izes the need for software integrity. Pacific
Horthwest Laboratory {PNL) 1s assisting the U.5. Nuclear Regulatory Commission
{NRC) 1n identifying areas where reconmendations are needed on how to control
the development and use of software in nuclear power plants,

Software development and management practices that are necessary compo-
nents of software quality assurance {SQA} programs are enumerated and discussed
in this report. These practices are derived from the review and compilation of
many sources: industry standards of S50A, current literature, established 3QA
programs, and experience with software development efforts. Checklists for
specific areas, such as documentation, are provided where possible.

The principal conclusions drawn from this study are the following:

e Hhile similarities exist between SOQA and QA typically applied to the
installation and use of equipment in nuclear power plants, hereaftar,
"hardware QA," a hardware QA program cannot be directly applizd to
software, Rather, hardware QA principles must be modified to fit the
special needs of software QA.

e Use of the SQA techniques described in this report will yield good
quality software. It has been shown that gquality cannot be tested
into software after development is complete; it must be incerporated
inte the design and construction processes,

e The majority of software currentiy in use was not orjginally designed
and constructed using all the systematic methods described in this
repart. This does not imply that all such software is of inferior
quality. However, specific techniques described im this document can
be applied to software currently being implemented toc assure that the
future use of such software is controlled and technically correct.
For example, planning, documenting, and carrying out adequate testing
of software systems could define and demonstrate Specific cases and
parameter ranges in which the software performs satisfactorily.

e Adoptfon of a complete and systematic SQA program is imperative for
oroductng reliable and maintainable software. The application of
specific techniques for software already developed and used cannot
fully replace such an overall program.

s To adequately implement an S5QA program, the 508 function must be
staffed with technically competent personnel cognfzant of software
engineering technigues. [t is imperative, too, that upper management
be firmly committed to SQA.

vii

CONTENTS

ABSTRﬂCT E RS FEE IS A A PN AR owow ok b om ok ek ok ko kR kR TR

PREFACE [EE T AR RN RN NN RN NN NN NN NN RN K [IER R EEE NN RN N NRN NN

SUHMART *a m 4 vE TS FE N FEEEF S PR A 4wk RA R R FA LS EFFE R kbR ad

2.0

3.0

INTRODUCTION .. ,vurrnncnnrnessrrrrrenansaracasannnnnnne aerrrrrey
1.1 NEED FOR SOFTWARE QUALITY ASSURANCEiveecransrarerrnases
l.é SCOPE ,..... T Siesiererrirrans
1.3 REPORT CONTENTS ,,uuesuvucuansrsnrussasaaanarsnsnsanararsaes
OVERVIEW OF SOFTWARE QUALLTY ASSURANCE .uuiviviivimemosnanrans .e
2.1 DESCRIPTION OF SOFTWARE QUALITY ASSURANCE ..vveevaccasarnrns

2.2 SOFTWARE QUALITY ASSURANCE VERSUS HARDWARE CQUALLTY
ASSURI&HEE R R R ERR RN FE R EEa sranmmnm EEE R R R R R R R T Y

2.3 CORRESPONDENCE BETWEEN APPENDIX B CRITERIA AND
S-OA REQUIREHEHTS I R R R R R R R R R R R R R R R I N RS EENTY

2.4 TYPES OF SOFTWARE PRODUCTS COVERED BY SQAuvisacsaacass
2,5 S0FTWARE QUALTTY ATTRIBUTES savevuisvnsssosvanvansvaasuannans
SOFTWARE LIFE CYCLE ,uuvevvvvrurannttniscasssvannnnnaanannnnnnnna
3.1 REQUIREMENTS SPECIFICATION L.cuuiivvrnrnrrscstrososnsrcsnnnas
3,2 FUNCTIONAL SPECIFICATION vuvvuevvuvrnornvnneonsorrossonsanes
3.3 DETAILED SCFTWARE DESIGN tamsnssensevatasielan NIRRT ene
3.4 CODING AND SOFTWARE GENERATIONceeniinesn..- traaitannme
3.5 TESTING, INSTALLATION, AND COMMISSIONINGciicuaianannas
3.6 TRANSFER OF RESPOMSIBILITY veevvvarrecssasrrivcnnsssssnnnan
3.7 OPERATION/MAINTEMANCEivvvurvrosnenrnomannnns veasrrrbaaa
3.8 PROJECT MANAGEMENT L.....ovevvavaasarnnncncannnns Tesseserane
3,9 SOFTWARE VERIFICATION ANG VALIDATIOMvecevivirnnssnsasnns

ix

iii

vii
1,1
1.1
1.2
1,2
2.1
2,1

2.1

2.2
2.4
2.5
3.1
3.3
3,3
3.4
3.4
3.4
3.5
3.8
3.6

d'lu HAHAGEHEHT mbhd s sasasasaas LI BE B B B B BN B BN B BN R BN RN B L N B R IR NI NE BN RN N RN BN RN R BN]

5.0

1,1

SETTING OF OVERALL SOA POLICIES, GOALS, AND OBJECTIVES

a'E SQA MNAGE“EHT DRG-AHIE-ATIGH oo o ook o o N kA PR RE A AT

4.3

1.4

4.2.1 Competent SEaffing ..eeveviiunsnsanrrnsrsssssrerenres
8.2.2 SErUCtUrE cavvsrnvrrrransessrsrnansnssnvsranssrrraanns
4.2,3 Interfaces and Authorities sesesnrmanervsrreraniseeas
SOA ITMPLEMENTATION .vvviussnnnenrrrosnnatnacsnnnnssoritasain
4,3.1 50A Organizational Tasks cossessauvarsrvassssroresnns
4,3.2 Responsibilities for Tasks ..eeeernasasstisssriavessn

THAIHIHGIEHUCﬁTIUH A mh A A FFFEFE A A AL AA NN R AN RN AR

DGCUHEHTATIGH T E L R R R R R E T S R N N R N NN N NN

5.1

5.2

MIMNIMUM DOCUMENMTATION REQUIREMENTS . .vesevnvvsesrrissrarnses
5.1.1 Software Quality Assurance PlAN scevvswesasrrscnnsnas
5.1.2 Software Requirements Specififcationecuciierenues
5.1.3 Software Design Documentabionec.vvvsararerinanes
5.1.4 Software Verification and Validation Plan ...vieavens
5.1.% Software Verification and Valldation Reportss.
5,1,6 User Documanfalionueeeeuiovrsransitnsnisamsivannas
OTHER DOCUMENTATION +vvevneuanenenenn. eteeteeneneieatarnas
5.2.1 Software Development Plan Cttesennaanrararen
5.2.2 Software Configuraticon Mamagement Plan ..ecevuacsvvas
5.2.3 Standards and Procedures Manualvcvrenanvanvrnas
§.2.4 Training Manual .,............ Prreraseannnna .
5.2.5 Operations Manual mmEEEEeEEaT TR EET T AR RN A

5.2.5 Insta]]at‘ﬂn Hﬂﬂua1 L R N N Y T N T Ny YR RN R RN

4.1
4.1
4,2
4,2
4,2
4.3
4.3
4,3
4.4
4.4
5.1
5.1
5.1
5.1
5.2
5.2
5.2
5.3
5.3
5.4
5.4
5.4
5.4
5.4
5.5

5.3

5.4

2.5

5.2.7 Maintenance Manualeceinrnsnnnncnaanans fenmeanan
5.,2.8 Unit Development FOUdEPS seievnnsovannsosarsonvannnns
5,2.9 Project File ferrhsmadEmeEssrdre bt adr s
DOCUMENTATION QUALITY Lo viiiaviarrniussusssnonsorssssnrsonrs
5.3.1 Application of Standards ..oevivsiiiiviiiinisnsvsenss
9.3.2 RevieM Liuuieviorescossessssssnrssesarsarananstansaces
5.3.3 Documentation Maintenance .,,..ssececncsnaans .
DOCUMENTATION CONTROL 4uvuuuvrunnrsnunrssrasanssssnnnrsnnsnes

SOFTWARE RECORDS: COLLECTION, MAINTEMANCE
Am RETENTIGN ErmdwarwrErra A vk ddd v n bbb R R R R PR

5.5.1 Records to he Collected ..uovceesnnanasnsnnnvnsnwanas
£.5.2 Recards Malntenance .,...eecresccnnans P,
5I5l3 R-Ecurd-s Retention L I T TR RN NN OB R RN BN B RN BN RN R RN BN BN N OB OB N BN BN RN BN BN RN BN BN A

5.9.4 Organizationmal Responsibility ..ceeceriecesnicinnains

6.0 STANOARDS, PRACTICES, AND CONVENTIONS ..eviivnriiionnnnsonrannsas

6.1

6.2

APPLICABLE STANDARDS .4y ivivecvrsnanrsnnosorsvasannasanansnna
6.1.1 Oocumentation 3tandards ..u.cvivuieivasssasrniseanesene
6.1.2 Design Standards ..cuvuivcescnniornsnacsasssisnnsnssna
6.1.3 Coding Standards ...uiresivevounsisrsssorsnsnssasnsns
8,1.4 Testing Guidelinescuisviaviaovsiassnrrvsnssrsons

6.1.5% Code Operation/Maintenance 5tandards ...ceivisirinnes

6.1.6 Code Quality Requirements tisssesssssrasenn

Elli? ﬂther Standard": s s A A A A A A A A YA
IMPLEMEKTATION OF STANDARDS 4.ccveruvmconnnansnnsmnanansnias
5.2.1 Use of Available StandardS ...eevvvsccerecrrensnssnns

6.2.2 Creation and Review of Standardscviiinsnssransas

xi

5.5
5.5
5.5
5.6
5.6
5.6
5.6

5.7
5.7
5.8
5.8
5.8
6.1
6.1
5,2
6.2
6.3
8.4
b.4

6.5

6.5
b.b
5.6
6.6

7.0

8,0

9.0

6.2,3 Maintenance and Control of 3tandardsiieavincsinss
6.3 COMPLIANCE MONITORINGuvsrvamnmnaranncnnnnnnrasansnan
6.4 ENFORCEMENT OF STANDARDS 4. eucccatenasssarsorssanancssauns
REVIEWS, AUDITS, AND CONTROLS ,....iccvvnesansacrascnsscsaasasnns
7.1 TECHNICAL REVIEWSccvcnmauuns vEsasssersatLsIeses et e U
7,1.1 Review Team Members ...eueiensrrsemmtonnasssnssssanans
7.1.2 Review Procadures .oceveesssssssrrnansssnnnnssnnnnnan
7.1.3 Review Types sevvvevcaneees PesssssiierrraNEreaTarsaan
7.2 AUDITS rerviiiniverrrnrrrosnrransaccrrnrrrranssosssrpnssassss
7.2,1 Functignal Configuration Auditcccviiicaann casansn
7.2,2 Physical Configuration Acdfteve-nee.. R
7.2.3 In-Process Audits ,...... S rrrransanea -
7.2.4 SOA AUditS sunnvvssvnanancrsnanrranassarsrsarnnansnan
7.3 CORRECTIVE ACTION L.uusnvvevsanuanannnannsssisrsasnnnnansses
TOOLS AND TECHNIQUES verbunsea P

311 TGDLS s Al d v aasanEEN *d i annrran da b dnupipddidddddbwvwdadddds N

8,2 TECHNIQUES L.ivuvranavnroerroranstocsrrrsrrsndtinnssvnnsssoas
8,3 EVALUATION OF TOOLS AND TECHNIQUES . ..cviivivvnvuunvnvmrrsnnne
8.4 CONTROL OF TOOLS AND TECHNIQUES .ouvieervreririvernoncanaens
SOFTWARE CONFIGURATION MANAGEMENT AND CODE CONTROL ,.sviveanvauass
9.1 PROBLEM REPORTING AND CORRECTIVE ACTION ...uuvivivvvnuevivane

9.1.1 Corrective Action Procedures seiivissanitssinnasasnss

9.1.,2 Organizational Responsibilities ..eeeeerrvvercasrrnes
9.2 SCM ACTIVITIES Luvevuarnnarrossrnnnnnnnsnssasnaannnsrransnnes

9.2.1 Configuration Identification .veeevevnssresrsnsnenrun

%iid

5.7
6.7
6.7
7.1
7.1
7.1
7.2
7.2
7.4
7.4
7.5
7.5
7.5
7.5
8.1
8.1
8,2
8.3
8,3
9.1
9.1
9.2
9.3
9.3
9.3

9.2.2 Cunfiguration Change Control seeeesvasrsannsrnssnsnanes
9,2.3 Configuration Status Accounting and Reporting
9.2.4 Configuration Audits and Reviews serrraans
9,2.5 Supplier SCM Control} ..,...... asrrsennannenunn A
9.2,6 Collection and Retention of SCM ReCords soivsuiiiinnns
9,3 CODE CONTROL iiusssvonrnnnsnsarrasmsssnsnrrssnssttsssrrrans
9.8 PHYSICAL MEDIA CONTROL u'v'ssseaaannnsorssranssnssersansaas
9.4.1 Access Authorization and Security cuvevscirecnvssens

9.4.2 Protection from Damage, Alteration, and
Degradﬂtim A gEEpprErevradndannnna ERE RN N NN N [E 0 I B B B B B

9.4.3 Verification of Physical Transmittal sevevecovasaavns

10.0 VERIFICATION AND TESTINGciceevrecencncnacacnns Cerstis bbb an
10,1 VERIFICATION .ouuivevvnvresosnsnnsanasnanan rrasrrrsbinnnnn ve
10,1.1 Effects of Verification ..iiiveiviiniinivenirrisneanna
10.1.2 VYerification Concepts ...vvevreranaas resawrearan -

10,1.3 Verification Methods Across the Software
Life Cycle souunersavinsininaseaans tesasnaassaan e
10.2 TESTING sovevenvnannns R AL LT LLT T TR Y
10.2.1 Planning .ceeeeesssrsucsnrsranrassssssnonssnsnnansnas
10.2,2 Performance T P IT T I T
15.2.3 Review ,.iiveecsssrsannes T T

10,2.4 Acceptance Testing and Certification suiiseseicvcevas

10.2,5 Operation/Maintenance Testing ...civeenvacasasnrenas

11,0 CONTROL OF SOFTWARE PROCUREMENT . .veveeveancanrsassrvssnssnnnna .
11,1 REQUIREMENTS FOR THE SUPPLIER'S SOA PROGRAMivvesnnuss

11,2 AUDITING OF THE SUPPLIER'S SQA PROGRAM .,......... anraisan

zifl

9.4
9.4
9.4
9.4
9.4
9.5
9.6
9.6

9.7
9.7
10.1
10.1
10.1
10,2

13.6
16,10
10.10
10.11
14.11
10,11
10,12
11,1
11.1
11,2

11.3 NONCONFORMANCE OF A SUPPLIER Liovioociivinirriiinannsensnass 11.2
11.4 TRANSFER OF RESPONSIBILITY ..veeenannaas.. fasaannnnansanus . 11.2
REFERENCES vovvvinvivnnrrnnas O | 5 |
T - 11 9 |
APPENDIX A - CRITERIA FOR ASSESSING SOFTWARE DGALITT . 14 |

APPENDTX B - EXAMPLE QUESTIONS TQ BE ADDRESSED FOR
PRDCURED SﬂFTHARE * kB R rErErA R kb h Rk Rk A F R d AR E‘Fl

APPENDIX £ - 3RS REVIEW CHECKLIST rereaaresnnsenn TR P |

xiv

1,1
10,1

2.1

2.2
7.1

10.1

FIGURES

Software Life Cyclevvvvuanns e

Saftware Error Cost VYersus Software Development Phase

TABLES

C&rrespondence Betwean S5GA Requirements and Appendix B
Criteria s evveensarenn VeEaseiruarEratEnsnannnantasnnnnn .

nttributes ﬂf Qua]’itf Softﬂare LN BN L LN NEREEREENELEERENENLENERNERNHNGMNNNIRELS!

Checklist of Potential Reviews Throughout the Software

L-'fe E.}'c]e LA LR B LI L NSRRI R R L L]

verifiﬂﬁtion Emcepts d kb kb T R kR Rk kR E R R R E R RS R EE R

v

3.2
10.2

1.0 INTRODUCTION

This chapter presents the need for SQA, the scope and applicability of
this handbook, and a discussion of the handbook’s structure.

1.1 HNEED FOR SOFTWARE QUALITY ASSURANCE

Software applications have become too prominent in the nuglear industry to
be developed and maintained in the informal atmosphere that was so common in
early softwiare development. Software 13 now used fn most aspects of nuclear
plant *1icensing, from desigr, through construction, and in some cases through-
qut the world, in operation as well, Use of software to produce calculations
critical to the design of safety-related components is one example of how soft-
ware can have a direct impact on safety functions in nuclear power plants. The
Code ¢f Federal Regulations, Title 10, Part 50, Appendix B (U.S. NRC 1984)
requires that a quality assurance {QA} program be implemented for all “struc-
tures, systems, and companents that prevent or mitiagate the consequences of
postulated accidents that could cause undue risk te the health and safety of
the public" in nuclear power plants and fue) reprocessing plants. Ffor this
reason, software used for these purposes is subject to the same kind of engi-
nearing control principles, includimg quality assurance, as other facets of
plant design, construction, and gperaticn.

Existing software quality assurance {5QA) programs established by vendors
and utilities represent each organization's interpretation of what is required
for control of software, Because 504 technigues are not widely known or prac-
ticed thers i5 a tendency within the nuclear industry to apply bardware Q&
techniques even when they are inappropriate or a "force=fit.," Because the
principles of development and QA of hardware are different from those for soft-
ware (see Chapter 2.0), the ferced substitution of cne for the other can be
cumbarsome and ineffectfve.

This situation fs not unique to the nuclear industry, With the exceptign
of the 2erospace industry and the U,3., Bepartment of Defense {U,3. Department
of Defense 19585), most organizations are neither organized nor equipped to
oroeperly address formal SQA requirements. Many compantes lack software pol-
fcies, and SQA parsonnel lack a parity with hardware QA personnel. There has
not baen encugh experience in software development within most organizations te
fully understand the full ramifications of S{A,

The basic need for SOA concerns the potential for latent defects or errors
in software, One of the main thrusts of an S0A program fs to reduce the like-
lihood of defects ever getting into the executable code by applying appropri-
ate, systematic technigues throughouwt the software life cycle,

Latent defects are not the only problem, however. Mapy computer pregrams
do not do the job that they were specified to do. A program that is poorly
documented or reflects complex rather than ttraightforward programming tech-
niques is hard ta understand, test, or "debug." The list aof problems that

1.1

confront saftware development, operaticn, and maintenance also includes unreli-
able software; difficult-to-maintain software; poor requirements specifica-
tions; inefficient use of resources: lack of conclusive testing: and poor
documentaticon {Brown 1979).

SQA results in 2 program of planned and systematic activities tg achieve
the required software qualities. These actions assure that the materials,
data, supplies, and services conform to established technical requirements, and
that they perform satisfactorily. The essence of SOA is to prevent problems,
to ramove defects as thay are found, and to contribute to the usability and
maintainability of the software (Fujii 1978).

1.2 SCOPE

The purpose of this handbook is to delineate those techniques that must be
an fntegral part of the develgpment, operation and management of software
systems to be applied to the design and operation of facilities regulated by 10
CFR 50, This document does not prescribe an SQ& program to be adopted by all
facilities. Such a program would be tog general to provide usable gquidance,
This document does contain a fairly comprehensive 1ist of subjects to be
addressed when structuring an 5QA program, For this reason, the adequacy of
e:;sting nuclear industry practices can be assessed using this document as an
aid,

1.3 REPORT CONTENTS

The structure of this document reflects the empbasis on nuclear utility
requi rements by first comparing SQA and hardware QA requirements {Chapter 2,0},
Chapter 2.0 also correlates the criteria of 10 CFR S0, Appendix B with the SQA
practices delineated in this document,

The next six chapters dea) with the basic definit{ons and philosophy of
50A. Chapter 3.0 describes the software 1ife cycle adopted for this document
and references other life cycles suitable for utility use. Chapter 4.0 dis-
cusses the management philosophy and structure of an 3QA organization. Alse
included fs a discussion of SQA tratning and education.. Chapter 5.0 presents
the requirements for documentation of SUA functions and discusses records
¢allection, maintenance, and retention, Chapters 6.0 and 7.0 provide the
rationale for adoption of the practices enumerated for records collection,
maintenance, and retention. Chapter 8.0 provides the basic tools and techni-
ques that may be used in software development.

The final three chapters of the document deal with those activities of the
software life ¢ycle that are more Commen to the nuclear utility environment:
Configuration Management and Code Control (Chapter %.0), Yerification and
Testing (Chapter 10,0}, and Control of Software Procurement ([Chapter 11.0}.

Because the subject of 3QA s so broad (basically encompassing the whole
area of software engineering}, only a brief discussion of each topic¢ is

1.2

presented. Guides, standards, and documents are referenced for further
reading. The referances are readily available in the open literature or from
standards sources such as the Computer Society of the Institute of Electrical
and Electronics Engineers, Inc. (IEEE),

1.3

2.0 DMERV¥IEW OF SOFTWARE QUALTITY ASSURANCE

This chapter discusses a number of issues: what SQA is; software QA versus
hardware QA; correspondence between 10 CFR 50, Appendix B criteria and SQA
oractices; the types of software products that should be subject to S0A includ-
ing how tha intandad use of the software affects the degree of QA; and the
elements which make up the attributes of gquality software.

2.1 DESCRIPTION OF SOFTWARE QUALTTY ASSURANCE

[t cannot be overemphasized that an 50A program involves the entire soft-
ware develapment process, not just inspection and testing of the end product.
Although the removal and analysis of defects is an important function of SQA,
it is the prevention of defects that demands most of 30A's attention. In the
past, SOA programs have equated SOQA to a test program i.e., a specification of
test plans, procedures, categories, types of tests, and methods of testing.

The major pitfall of such a test-oriented S0A program is that quality cannot be
tested into a software product; quality must be built into the product.

Definition of criteria to be used to judge the quality of a software
project establishes, in essance, the 30A processes and their degree for that
project. Without concrete guals, the process never reaches an endpoint. A
variety of methods and ¢riteria can be used to determing the specific SQA tech-
niques to be applied, For example, risk analysis can be used to assess the
impact of software failure on the overall system., Whenaever risks and conse-
dquences are considered great, an intensive SQA effort is merited,

Each organization needs to tailer an SDA program te Fit its activities.
Thase that develop software must be more concerned with the design and testing
process than organizations who apply acquired software products. The latter
organizations must concentrate their SOA efforts on configuration management
and code control, acceptance testing, and procurement practices., Most nuclear
utilities fall inte this second group. However, utilities must be able to
audit and review the 50A practices of their software suppliers to assure com-
piiance with 50QA requirements, This subject is addressed in Chapter 11.0,
Control of Software Procurement.

2.2 SOFTWARE QUALTTY ASSURANCE YERSUS HARDWARE QUALITY ASSURANCE

Although many of the concepts of hardware QA applied throughout the nuc-
Tear industry are applicable to $QA, there are many differences, These differ-
ences must be considered in establishing any 50A program (Dunn and U1Tman
1882},

» Hardware repairs restore the original condition, Software repairs
egstablish a new piece of software.

2.1

¢ Unlike hardware, software failures are rarely preceded by warnings.

e+ Hardware components can be standardized. Software components have
raraly been standardized,.

s Hardware can usually be tested exhaustively. Software essentially
requires infipite testing.

s Hardware quality can be establfshed by product measurements such as
ultrasonics, materials testing, and by accumslating statistics when
msltiple copies are available, In contrast, each piece of software
is unigue.

The consequence of the above considerations is that software quality must
be built inte the software during the development process. S0A seryes as an
independent instrument for assuring compliance with performance objectives and
development and maintenance standards.

2.3 CORRESPONDENCE BETWEEN APPENDIX B CRITERLA AND SQA REQUIREMENTS

The 18 eTements of a complete nuglear guality assurance pragram given in
10 CFR 50, Appendix 8 correspond in many ways to the practices and requirements
of a complete SQA program, Table 2.1 identifies the chapters of this document
that are applicable to the 18 criteria of Appendix B.

TABLE 2.1. Correspondence Between SQA Regwirements and Appendix B Criteria

Repart Chapter Appendix B Criterta

3.0 Software Life Cycle [I. Quality Assurance Program
[T1. Design Contral
XK. Inspaction

4.0 Management [. Organization
[I., Quality Assurance Program

5.0 Documentation IT, Quality Assurance Program
Ill., Design Cantral
I¥. Procurement Document Control
¥, [Instructions, Procedures,
and Urawings
¥I, Document Control
A¥IT, Quality Assurance Recards

6.0 Standards, Practices, and II. CQuality Assurance Program
Convanticns IIL. Design Control

2.2

TABLE 2.1,

Report Chapter

{contd)

Appendix B Criteria

7.0 Review, Audits, and Controls

8.0 Tools and Technigues

9.0 Software Configuration
Management and Code Control

10.0 Verification and Testing

11,0 Control of Software
Procurement

I.
IT.
I,

¥.
¥I.
YIII.

L.
AVIII.

ITI.
Ix.

VII.
¥III.

LI11.
X1V,

XV,

AVI.
XVI1.

I1.
IlI.

X1,
1.
.

IV.
VIT,

2.3

Organization

Dueality Assurance Program
Design Contrel

Instructions, Proceduras, and
Urawings

Document Control

[dentification and Controi of
Materials, Parts, and Companents
Inspection

Audits

Desifgn Contral
Control of Special Processes

Jrganization

Quality Assurance Pragram
Instructions, Procedures, and
Drawings

Rocument Control

Control of Purchased Material,
Equfpment, and Services
[dentification and Control of
Materials, Parts, and Components
Handling, Storage and 3hipping
Inspection, Test, and Operating
Status

Noncoanferming Materials, Parts,
and Compenents

Corrective Action

Quality Assurance Records

Quality Assurance Pragram
Design Control

Inspection

Tast Control

Organization

Qualtity Assurance Program
DesTgn Control

Procurement Document Control
Contro) of Purchased Material,
Equipment, and Services

2.4 TYPES OF SOFTWARE PRODUCTS COVERED 8Y SQA

The type of software products that need to be covered by an 50A program
are essentiaily specified by the requirements given in 10 CFR 50, Appendix 8,
The motivation for including software under a QA program is that saoftware can
be used in the design, analysis or cperation of safety-related structures,
systems, and components. Four types of software are commonly used in the
nuclear power industry: application, suppert, test and maintenance, and
training software,

e Application Software

Examples of application software include computer codes written for reac-
tor design, core physics studies, stress calculations, thermal calcula-
tions, hydraulic calculations, all reactor safety accident analyses estab-
lishing plant limiting conditions (such as power distributions and heat
generation rates}, for surveillance testing, for safety systems actuation,
and {for potential future applications) plant control. Other areas in
which application software is used include the determination of materials
compatibility, plant accessibility far in-service inspection, and mainten-
ance and repair scheduling.

s Suppart Saoftware

Support software includes those software items employed to create or use
application software, such as compilers, assemblers, editors, testing pro-
grams, data bases, input parameters to the codes, debuggers, mathematical
subroutinge librarfes, system libraries, and utility routines, Support
software should be considered in S0A pecause the cutput of the support
softwdre can influence the outputs af application software,

o Test and Maintenance Software

Test and mafntenance software is used to carry out the testing, operation,
and maintenance functieons during the tatter phases of the software l1ife
cycla, described tn Chapter 3.0, The results of testing programs are
directly affected by the particular set of software tools that are used,

o Training Software

More and more, software systems are used Lo perform computer aided
instruction (CAL} in the tasks associated with nuclear facilities. Train-
ing software consists of CAl as well as software for simulators built for
training reactor operators and other persannel in the detailed aperation
of nuglear fagilities. [t is critical that the response of the simulator
{or CAL system) wary closely approximate that of the real plant or actual
situation, This implies that the requirements specification for the soft-
ware be exactingly written and implemented.

2.4

2,5 SOFTWARE QUALITY ATTRIBUTES

To adequately establish an 5QA program, the definition of software gualily
must be considered. The concept of what constitutes software quality is not
well formulated, Table 2.2 contalns an abbreviated list of attributes that can
be used to define software quality (Lipow et al, 1977; Caveno and McCall 1978;
Boehm et al, 1978; McCall 1979), Appendix A contains a more axtensive list
with expanded definitions. There is presently no way of measuring these attri-
butes. However, this 115t i3 included as one possible checklist for evaluating
software quality.

Many of the fndividual characteristics of software quality ara in con-
flict, - For example, added efficiency is often gained at the price of portabil-
Tty, accuracy, understandability, and maintainability; added accuracy often
conflicts with portability due to the dependance upon hardware constraints;
conciseness can conflict with readability. Software users generally find it
difficult to assess the relative values of these attributes in such situations.

To sumnarize, the measurement of quality of a software product varies with
the needs and priorities of the prospective user. No measure can Currently
glve a single composite rating for software quality. ALt best, a prospective
user can develop & meaningful rating system with a tharough checklist and asso-
¢iated prieorities. Attention to characteristics of software quality throughout
the software 1ife cycle can lead to fncreased software reliability and signffi-
cant cost savings.

TABLE 2,2, Attributes of Quality Software

Correctness Does it do what I want?

Efficiency Ooes it run as well as it can?
Flexibility Can it be modified?

Integrity Is it secure from intrusion?
Interoperabl1ity Does it interface well with ather systems?
Maintainability Can it be fixed?]
Partability Can it be moved to another computer?
Reliability Does it always perform correctly?
Reusability Does {t consist of general modules?
Testability fan it be tested?

Usability [s it easy to use?

2.5

3.0 SOFTWARE LIFE CYCLE

A software life cycle provides a systematic approach to the development,
use, and operation of any software system (Kastelein 1971}, The software life
cycle has been defined as follows (IEEE 1979¢): "That period of time in which
the software is conceived, developed and used." All organizations that have an
effective SQA program use such a formal life-cycle development system, There
are many different 1ife cycle variations, as referenced in these documents:
ANST/IEEE 1984; Boehm 1976 and 1979; Carrow 1976; Holthouse and Greenberg 1978;
kKerola and Freeman 1981; Lattanzi 1979; Peters and Tripp 1978; U,5., DOD 1979
Fairley 1985, Strict adoption and use of a 1ife cycle ensures that software
development wili progress in a traceable, planned, and orderly manner.

The division of the SQA effort into well-defined tasks has additional
benefits. Such a division provides a logical canclusion for each phase of
development, use, and aperation, usually with a document. The phases and
activities of the software 1ife gycle that have been chosen for this study are
given below and are shown in Figure 3.1:

. regquirgments specification

. functional specification

. detatled software design

¢oding and software generation

testing, installation, and commissioning
transfer of responsibility

« operation/maintenance

« project management,

O3 =Joh U0 P L e
»

The requirements specification phase {the WHAT) consists of identifying the
requirements that the computer pregram must satisfy. The functional specifica-
tign phase {the HOW) determines the design for the software. Together, these
two phases produce a statement of the project objectives, system functional
spacifications, and design constraints.

The detailed software design phase continues the breakdown of the func-
tions identified in the software requirements, providing a conceptual solution
ar blueprint for the phases that follow. During the detailed design phase, the
software component definition, interfaces, and data definitions are generated
and checked for accurdcy against the requirements,

The coding and generatfon phase consists of both actwal code generatton
and uenft testing of the program by the developer. DQuring the testing phase,
system integration of the software companents and system acceptance %ests are
performed against the requirements. Transfar of responsibility of the mainten-
ance of the software from the developer to the user often takes place after
installation and certification. {Procured software commonly entars an organi-
zation at this phase of the Tife cycla. Chapter 11.0 discusses this in more
detail.) The operations/maintenance phase involves the use and maintenance of

3.1

2 't

Sarlewnd i
B eyt e b
ST ST

g I

[[T
S C i

L

{Feaect Munageaum |

[FRRCT R T PR
urerdd L v logwal e
FrigmeM
GunistAuL
Eefrwan
Voul bl sl
irarvin ek L ¥artstaliun
T Lol
i L _I_
mien
[T
_I Co . Wigtallaf i ol Apdrsiars
P l"""" & Vil [T A
Sl - B ¥ dhtbeti
FILIR Dengti Flun
Dk ciies PP -l kil rP. Fun
“TheiBia¥
Uy (. L &
/‘-K/ o
- LT (e]
.
(R T e L
Aox gl wHR
Fhedbar
Ep pptuarr b
[I Y—
[T
A LY
FAE il Honont ey i iyt oy, it
[T TEOFER T EREY N T "
FAM EMerdcd Aniudnm e B
A Mishaseary Pabt Rasder
S0 EuMuarn Dot s Qeik i
COf Corm ol Drm o™ P
WA ekl Reedenih M e
FOA Funcandl Cirebg' i s Sl
[R TFTTTE e R i ¥
N Bl it e ' e s s
Bt ot e Gl A it gy

Gurinkian

L LU LR

ol Sl iy
Waugetin

[T
Sulimals
Cunhguiatmnt

[
sk n
Wil shal v

ILEAEE]

1

Nazdimy

Salvmury

[LLTE e
Fapety

FIGURE 3.}. Software Life Cycle

the system. This includes the detection and correction of errors and incorpo-
ration of modifications to add capabilitias andfor improve performange,
froject management should govern throughout the entire life cycle (see

Chapter 11.0}.

3,1 REQUIREMENTS SPECIFICATION

Puring the requirements specification phase, the requiremants that the
computer program must satisfy are identified and recorded, uwsually in a docu-
ment called the software requirements specification (SRS) (Wilburn 1982b).
System requirements are analyzed to decide what is to be implemented by the
software. Analyses determine which software functions are needed and the
inputs, processing, and outputs reguired for each function. The requirements
specificatfon 75 the most significant phase of the overall project in terms of
its affect on quality of the final product (Deutsch 1982). Critical errors
need to be caught durfng the requirements analysis to avaid costly rework,
reanalysis, and replanning during later development. If this phase fs properly
performed, the cost effectiveness ratios for requirements verification and
vallidation and assochated QA activities are probably greater than for any othar
activity throughout the life cycle,

The software requirements specification may take many forms. An SRS
shauld include details of the quality of the software and its testability, It
must contain encugh information to frame the problem so that the softwara
design ¢an addrass the fumctions correctly. A type of specification that will
lead to quality software is one that is 1) simply structured, 2) traceable to
the specified system problem it is intended to solve, and 3) comprehensive and
accurate {Dunn and Wlman 1982), The SRS should not specify how the impleman-
tation or the design is to be done (the latter is specified in the nest step).

References with gufdelines for how to write good software requirements
specifications (WiTburn 1982h; [EEE 1984a) may be used to simplify the process,

3.2 FUNCTIONAL SPECIFICATION

Functional specifications determine the high level- design for the software
and are documented in a software design specification (S0S). At this point,
“how" the software is to provide the requirements and to be implemented is
specified, (Several acceptable methodologies are avaflable to carry out this
phase of the operation [Enss and Yan Tilburg 193); TEEE 19280b and 1983d,
Jackson 1985; Yourdon and Constantine 19781,) The purpose of high level design
{s Lo separate the system into functional parts so that each part is a cohesive
unit that carries out, as independentiy as possible, the functions specified in
the software requirements specification., This s a key activity in developing
the modular structure of the program. HModularity i{s a means of dividing a
large and complex problem into a set of smaller, less complex ones, The divi-
siont of the problem into hierarchies of related modules represents a major step

3.3

in the completion of the final design {Dunn and Ullman 1982}. The suc¢cess with
which software can be made modular influences the quality of software over the
entire life cyc¢le,

3.3 DETAILED SOFTWARE DESIGN

Davelopment of the detailed software design caontinues the logical separa-
tion of the functions identified in the software requirements specification
(Glass 1979}, The detailed design should include the definition of algorithms
and equations, the detailed control. logic, and data operations that are to ke
performed within the software, The detailed software design provides a concep-
tual solutisn or blueprint for the implementation phase that follows, All the
ingredients that will ultimately make up final implementation are considered.
Some of the specific considerations are defined at this time, including 1) the
computer, 2) the computer resources to be used and the extent of use, 3) the
computer language, 4} the modules, 5} the sequence of functions, 6} the data
structures and 7) other items specific to tha softwara product,

Tha primary output of this phase is a detailed design specification, which
is usually designated as the spftware design description (SDD) It may consist
of words, flowcharts, decision tables, program design languages, or other
choices. Acceptable design methodologies are provided in several references
(Enos and Yan Tilburg 1981; IEEE 19B0b and 1983d; Jackson Ll%75; Yourdon and
Constantine 1978),

3.4 CODING AND SOFTWARE GENERATION

During this phase, the detalled software design s translated inte a high
Tevel or assembly level programming language. Compilation and assembly arrors
are corrected and preliminary program checkout {s begun by executing the indi-
vidual program modules to remove obyious errors. Although much testing is
performed by the developer in this phase of the life cycle, this testing does
not formally constitute the testing phase of the software life cycle but is
vital to the overaill verification process as desc¢ribed in Chapter 10, The pro-
duct of this phase is uwsually a computer program listing, the first item in the
1ife cycie that is available in computer-readable and computer-processable
form. Several guidelines have been prepared for this phase {ATC 1983 and 1985;

Kernighan and Plauger 1978],

3.5 TESTIWG, INSTALLATION, AND COMMISSIOKING

These phases of the life cycle in¢lude final testing by the develgper,
fnstallation, acceptance testing, and commissioning [or certification) of the
software system, During the testing phase, program components are combined
into the overall software code, and testing fs performed according to a devel-
oped Test {Software Verification and Validation} plan, This plan has been
devgloped in parallel previous three phases and draws on the SRS, 505 and
S0D. (Information on the specific processes te be followed during the testing

3.4

phase can be obtained from the following sources: Adrion et al. 1981; Beizer
1983 and 1984; Branstad et al. 1980: Computer Program Tasting 198l: Glass 1979,
IEEE 1978, 1986c; ANSI/IEEE 1987; Infotech 1979a and 1979b; McCabe 1982; Myers
1976 and 1979; Powall 198221 and 1982b,)

Testing during this phase detzrmines whethar all the requiremants have
been satisfied and is perfeormed in accordance with the reviewed software veri-
fication and validation plan. Test results are evaluated and test and verifi-
cation reports are prepared to describe the outcome of the process fallowing
the regquirements of the Software Verification and Validation Plan (IEEE 1983f).

Part of the testfng process is system integration, which brings togethep
all system components, man, hardware and software, This testing is conducted
to assure that system reguirements in actual or simulated system enviranments
are satisfied.

When the developer's testing and system installation have been completed,
acceptance testing that Jeads to ultimate commissioning {or certification) is
begun. Acceptance testing should he done by an independent organization. 0On
completion of acceptance testing, a fumctional configuration audit (FCA) and a
physical confiquration audit {(PCA) are conducted (see Figure 3,1 and Section
7.2), the official commissioning [or certification) of the software occcurs, and
the software 15 turned over to the user for implementation,

Concurrent with all of the previous phases is the preparatiocn of the user
and maintenance manuals. These documents require input from the SRS, SDS, SDD
and the testing decumentation. They should be reyiewad ["tested"} in the
FCA/PCA for completeness and usability.

3.6 TRANSFER OF RESPONSIBILITY

The turngver of the software is a fairly short phase of the 1ife cycle but
1% quite important. It involves the transfer of responsibility for the mainte-
nance of the software from the developer to the user, and takes place after the
FCA and PCA described fn Section 7.2. At this peint all the items to be given
1o the user for softwars implementation are assessed, It then becomes the
user's responsibility to establish an appropriate 30QA program to control and
manage the software.

3.7 OPERATION/MAINTEWANCE

The final phase in the software life cycle is operation and maintenance,
At this point, the software has been accepted for operational use, Further
activity consists of medifying the software te remove latent errors o to
respond to new or revised requirements. Maintenance is defined as any change
madz to the software, eithar to correct a deficigncy in performance, as
required by the original software requirements specification, to compensate for

3.5

environmental changes, or to improve its ocperation {which i5 also called
enhancement] {Barikh 1980; Glass and Nofsex 1981; [EEE 1983e; N8BS 19831),

Because changes are inevitable in this phase, a software configuration
management [SCM) program following a 3CM Plin mus: be established, SCM is
dfscussed in Chapter 9.0. The following refarer- s are SCM standards, text-
books, and tutorials on software maintenance: Zersoff et al. 197%a and 1980;
Doggett et al. 1983; I[EEE 1980a, 1383h, and 1384k, HBecause mafntenance also
invalves regressfon testing (the function required to detearmine that the soft-
ware has not been affected by enhancement or the environment changes), syste-
matic archiving must be implemented. These archived results can then be used
for direct comparison {either automatically or manually) of software versions
to determine that the software still correctly performs its originally speci-
fied tasks.

3.8 PROJECT MANAGEMENT

Project management s a eritical element of 304 and covers the entire
software 1ife cycle, including both the development and operational phases, It
includes management of the SQA function, the software configuration management
functions, the establishment of standards, scheduling of all reviews and veri-
fication and validation, preparation of the Software Quality Assurance and the
Software Configuration Management Plans,

Funding {a management function) also affects the quality of software,
Typically, underfunded projects have 1ittle or no documentaticn. This navit-
ably leads to poor contrel over the product, resulting fn poor performance,
Similarly, inadequate funding significantly limits the amount of seftware prod-
uct testing. The result is that the user performs the ultimate testing, too
gften by trial and error.

Praject managemant controls the level of software quality because it
determines the budget for software development. Upper management must consider
total costs over the entire software life cycle from its inception to ultimate
removal of the softwara from service and budget funds appropriately. Because
Tow quality software rasults in systems that are difficult and costly to main-
tain, other considarations such as software reliability-must be addressed as
software is developead.

Many guides and standards are available for the project manager: Bruce
and Pedersan 1982; Cogper and Fisher 1979; DeMaprco 1982; Fife 1977; [EEE 1979b;
Tauswarthe 1977 and 1979; and Yourdon 1979, Implementing the concepts detailed
in these guides and tutorials will greatly enhance the quality and relfability
of the software,

3.6

3.9 SOFTWARE VERIFICATION ANC YALIODATION

Software Verification proceeds in parallal with the other elements of the
life cycle, It consists of the preparation and implementation of the Software
Yerification and Validation Plan. The methods that can be applied are
dascribed in Section 10.1.3.

Software Validation consists of the whole process of verification through-

out the software life cycle, whereas verification consists of the individual
techniques and methods used.

3.7

4.0 MANAGEMENT

Software quality assurance consists of the applicatton of procedures,
techniques, and tools throughout the spftware 1ife cycle to ensure that the
software products conform to {meet or exceed) prespecified requirements. The
abjective of the 304 function is to train, plan, re?ost, and control the soft-
ware davelopment process, so that this goal is met.'d’ The SOA function must
be managed with this objective ir mind, The degree of auality in a program
correlates strongly with the software quality cbjectives and priorities set by
management {Boehm et al. 1976). Imposing plans and procedures that provide for
well-defined milestones within the framework of software life cycle phases will
allow the evaluation of software quality performance at each step (Cooper and
Fisher 1979},

This section considers aspects of management of the 50A function, fnclud-

ing overall SQA& policy setting, 5304 management organization, SOA program imple-
mentation, and SOA training and education.

4,1 SETTING OF OVERALL SQA POLICIES, GOALS, AND OBJECTIVES

& set of SOA managament policies, goals, and objectives is necessary to
quide the implementztion and applicatiogn of the 504 program. Upper levels of
management must recognize that QA is a vital part of the software developmant
process and that software development, implementation, operation, and mainte-
nance are similar to other engineering processes subject to QA requirements.
This recognitfon by upper management must be translated into a commitment
through policies that set software quality goals; establish 3QA functions; and
authorize the necessary resources in terms of people, money, and equipment to
perform the tasks.

The SQA function must not make project management decisions, The issue of
compliance or noncompliance to established standards and procedurss should be
the only Issue in which 30A has the power to dictate a project's fate, The
determination of compliance or noncompliance should be objective in nature,

The consequences of noncompliance should be spelled out in the policies and

procedures,

The 30A gorganization will be accepted more readily by the project team if
its policy 1s one of assistance, rather than exclusively one of audit, S0A
management should always be aware of the danger of overregulation. There is
always the fear of empire-building associated with the 50A function, and that
SQA will be a hindrance rather than an aid (Buckley and Poston 1984}, An

{a} The SOA function encompasses those actfvities comprising an SQA prugram,
These activities can take place internally within a project or be
implemented by a separate organizational companant,

4.1

erganizatien that performs only as watchdog or policeman tends to breed resent-
mznt and will usually be unsuccessful., A spirit of cocperation cannot exist
between the project team and the SQA function 1f the latter 15 always a source
of bad news.

4.2 SOA MANAGEMENT ORGANIZATION

This section discusses the staffing, structure, interfaces, and author-
ities associated with an SQA organization, The makeup of the SQA function
depends on the amgunt of soaftware development performed, An organization that
only uses acquired software needs a much different S0 function than an organi-
zation that extensively develops software for use by others, Likewise, soft-
ware used in dasign and production requires a different S$08 envirgnment than
that necessary for scientific research,

4.2.1 Competent Staffing

Competent staffing is the key te 2 successful S0A program, S$0A staff must
have the respact of the project staff with which they work. They must under-
stand how the work whose quality they are assuring is actually accomplished;
i.e,, the 5QA staff should be competent to recognize quality in software. 350A
persaonnel should possess technical experlence in seftware develapment, software
specification, software design, and software testing. Senior technical staff
are preferable to administrative project management staff. S0QA personnel
should have technical currency; they should be able to use current programming
methodologies such as structured programming, top-down design, implementation,
and testing methodologies. The personnel must also have the skills to communi-
cate the concepts they are advocating (Gustafson and Kerr 1982), S0A parsonnel
&él1sc need to be conversant with current (A practices, regulations, and stan-
dards. They must know how to construct an S0A program to meet the regulatory
requirements of the nucTear industry.

4,2,2 Structure

The SQA arganization shawld have 2 charter, with each element of the
organization defined and its responsibility outlined. The elements responsible
for S0A should be independent from those responsible for software development,
The responsibilities and authorities for each element of the organization must
be clearly delineated with the means established to measure the proficiency of
the organization.

S0A personnel should be given suffigient respensibility, authority, and
organizational freedom to identify problems in quality and to initiate, recom-
mend, and provide solutions. The parsonnal performing 30A tasks should also be
free to evaluate and recommend changes in the software design and production
activities,

The SQA prganization must not be subgrdinate in any way to software devel-

opment activities or to software delivery, The SQA function cén best be per-
formed by a separate organization if the develepment of software constitutes a

4.2

significant peortian of the organization's tasks. This provides the independ-
ence desired for the SGA function and can he cost-affective because all func-
tions are maintained in a single organization, Many of the common functions
that are necessary for software development projects can be i{mplemented by one
organization and in one system, assuming that a high level of technical com-
petancy is maintafned by the SQA staff. Howavaer, if the projects are smal)
enough, an 30A function that is integral to the development organization can be
implemented, recognizing the danger that independence may not be maintained.
Ancther possible mode of operation fs to combine the software and hardware

A organizations. This can only be affective 1f the differences between hard-
ware and software QA are recagnized inm the organization's policies.

4,2,3. Interfaces and Authorities

The interfaces between the SQA organization and the software develgpment
organization need to be carefully defined. It is important that project man-
agers know when and how to bring in SQA resources.

4,3 S0A IMPLEMENTATION

Implementation of an 3JA program requiras that all the individuals
fnvolved understand what is happening, why it is beaing done, how they will
benefit, how the organization will benefit, and exactly what is expected of
them, Each individual involved in a software development or operation and
maintenance program must be convinced that a systematic engineering methodology
and an effactive SOQA program will help rather than hindar the software develop-

ment process {Poston 1982),

4,3,1 SQA Organizational Tasks

For each project invelving software development, operation, implementatfon
and maintenance, a set of S0A tasks needs to be established, The input for and
output from each task should be identified and the responsibility for the task
defined (Gustafson and Kerr 1982; Boehm et al. 1976; Fisher 1978).

An 3JA task list for a given project can be drawn from a number of
spurces: the general organizatfonal 5QA plan and policy guides, this document,
or 3QA plan standards that have been develgped by others (ANSL/IEEE 1984; Bruce
and Pederson 1982; DeMarco 1982; Fife 1977:; IEEE 1979b; Tausworthe 1977 and
1979; Yourdon 1979), The software tasks may consist of the following:

preparation of an S5QA plan
development of policies, procedures, and standards
analysis and enforcement of policies, procedures, and standards
cartification and testing of software
education and training of personnel performing SQA tasks
SGA audits of
- design
- c¢onfiguration management

4.3

- testing
- vwerifigcation and validation,

Each task needs to be defined by entrance and exit ¢riteria: i.e,, what
is neaded to initiate the task and what is the output of the task? The output
of edach task should be defined in such a way that its achievement or completion
can be objectively determined in a prescribed manner, Additionally, a table
indfcating the staffing levels for each of the tasks should be developed
{ANSI/IEEE 1987).

4.3.2 Responsibilities for Tasks

The: arganizational elements responsible for each task listed should be
identified, If two or more elements share respensibility for a task., their
respective responsibilities should be identified, as well as the management
position accountable for the overall project 50A.

It can be beneficial to arrange the elements of the 30A organization aleng
task 1ines to clearly delineate responsibility. For example, separate elements
of the arganization might be assigned to perform education and training,
audits, and development of policies and procedures, However, it is probably
better for clear communications to assign specific personnel tg each software
element or major program,

4.4 TRAINING/EDUCATICN

While training of personnel is not usually thought of as an S04 activity,
it has been included here because quality of the software product is directly
related to the competence of the individuals developing the product. The 50A
proagram should provide in-depth training 1n the elements of software engineer-
ing and S5QA for al! personnel performing activities affecting qualfty. This
ircludes training in software design and development techniques, as well as 50QA
procedures, The subject areas presented in this document can provide a frame-
work for developing a trafning program specific to a facility's neads,

Classes and seminars can be conducted to train persannel in software
development, software standards, and software engineering techniquas. Seminpars
or short coursas are available from companies in the software industry. Many
of these courses are Jisted in trade journals, 3Since the seminars may ba some-
what expensive, it may often be mere practical to bring the seminar to the
company itself. Other possibilities for training are videotape seminars,
interactive laser-disk seminars, computer-aided instruction, and in-house
training using in-house experts.

Training records [courses taken and dates complated) should be kept on
each individual invalved in soffware development, seftware maintenance, soft-
ware testing, and S0A. This information is valuable in establishing whan
fndividuals should be trained or retrained. It also identifies individuals
able to carry out the various phases of development theoughout the software

4,4

1ife cycle. Tests are available through commercial argamizations or through
certification organizations that could be used to determine competence in the

subject areas.
Tralning of persanpel takes time and money, Some organizations have
required up to a d-month fulltime commitment by individuals to obtain adequate

trajning in software enginesring and SQA. Therafore a strong commitment by
upper management to suppert training is necessary. This commitment should be a

part of company policy.

4.5

5.0 DOCUMENTATION

Opcumentation issued during a software development project is essentially
the only meant by which progress through the software 1ife cycle can be mea-
sured. This chaptar presents minimal documentation requirements, possible
additional documentation, documentation quality, and documentation control, It
is recommended that the following standards and guidelines be followed when
documentation is prepared: ANSI/ANS 198&; ATC 1985; IEEE 1986b; MBS 1976 and
1982: and Meumann 1382,

5,1 MINIMUM DOCUMENTATION REQUIREMENTS

For any project considered safety related and subject to 10 CFR 50, Appen-
dix B criteria, the follewing documentation is considered by many to be the
minimum necessary {ANSI/IEEE 1984):

Software Quality Assurance Plan (50QAF)

Software Design Documentation (SDS and SD?;
Software Requirements Specification {SRS)\d)
Software Verification and Validation Plan (SVVP)
Software Yerification and Validation Reports {S¥YVR)
User Documentation.

5.1.1 Software Quality Assurance Plan (S0AF)

The SOAP should identify the documentation to be prepared during the
development, verification and validation, use, and maintenance of the particu-
lar software system [ANSI/IEEE 1984; IEEE 1986b). The SQAP should identify the
organizational elements responsible for the origination, verification and vali-
dation, maintenance, and control of the required documentation, It should also
identify the specific reviews, audits, and the associated criterfa required for
2ach document. The SJAF should specify the tools, techmiques, and methodol-
ggies to be followed during quality audits; checks and other function: that
ensure the Tntegrity of the software products; required documentation; and the
management structure and methodology to be employed.

5.1.2 Software Requirements Specification (SRS)

The SRS should clearly describe each software requirement {function, par-
faormance, design censtraints, and attributes of the software and external
interfaces). Each requirement should be defined such that its achievement can
be verified and validated objectively by a prescribed method (e.q., inspection,

[a) The SRS is mandatory for any software development project. The 3RS
describes what the software i5 to do and unless it fs available, there is
nothing by which software performance can be measured,

5.1

demonstration, analysis, or testing) (ANSIFIEEE 1984; WiThurn 1982b). The SRS
should specify in detail the requirements agreed on by the software developer
and the reguester or user.

The particular form that the SRS should take 7s described in many stan-
dards and gquidelines (ANSI/ANS 1986; [EEE 1984a; NB$5 1976 and 1982; Neumann
1982).

However, it i5 a simple fact that the major quality problem is not the form of
the sofiware requirements specification but simply its lack or inadequacy.

5.1.3 Software Design Documentation (508, 500}

The Software Design Specificaiton (S05) should describe the major compo-
nents of software design, including the data bases and internal interfaces
{ANSI/IEEE 1984; IEEE 1986b). The SDS is a technical description of how the
software will meet the requirements set forth in the SRS, [t describes the
major functions of the software such as data bases, diagnostics, external and
internal interfaces, and the overall structure, The Software Design Descrip-
tion (50D} involves detailed descriptions of the operating environment, moni-
tors, timing, system throughput, tables, sizing, modeling, etc. For each
component in the system, it thould contain descriptions of companent inputs,
putputs, and calling sequences; function or tasks or algorithms; a list of all
calling components; the allowable and tolerable range of values for all inputs;
allowed and expected range valuas for all outputs; and assumptions, limita-
ttons, and effects on other compaonents. The SDS and SOD documentation should
foliow the formats suggested in references on software design (Enos and Van
T;}ggrg 1981; IEEE 1980b and 1983d; Jackson 1975; Yourdon and Constantine
1 .

5.1.4 Software Yerification and Yalidation Plan {SVVP)

The SYYP should desceribe the following for each phase of the software life
cycle: the verification and validation tasks; tools, techniques, methods and
¢criteria; inputs and outputs; schedule; resources; risks and assumptions: and
roles and responsibilities for accomplishing verification and validation of the
software. The SYYP should jdentify all the test documentation that s to be
prepared. The S¥VP should include a verification matrix in which the require-
ments are refarenced to thair corrasponding SVWWP section, The LEEE and others
have fssued standards and guidelines usaful for preparation of software verifi-
catfon and validation plans (Adriom at al. 1981; ANSI/ANS 1987; Deutsch L98Z:
[EEE 1986; Powell 1982a and 1982b; Wilbuem 19B3a),

5.1,5 Software Verification and VYalidation Reperts (SVVR)

The SYVR should describe the results of the execution of the SYYP
{ANSI/IEEE 1984). This includes the results of all reviews, audits, and tests
required by the SQAP. The SVVR summarizes the status of the software as a
rasult of the execution of the 3¥WP, It describes any major defictencies
found; provides the rasults of reviews, audits, and tests; and recommends
whether *the software is ready for operational use. The proposed IEEE standard
for test documentation (IEEE 1983f) can be used to format the SYVR.

8.2

5,1.6 User Documentation

User documentation {e.g., operations and maintenance manuals, or guides)
should specify and describe the required data, input sequences, optigns, pra-
gram limitations, and other activities/items necessary for the execution of the
software [ANSI/IEEE 1984; ICEE 1986b). A1l error messages should be fdentified
in text meaningful to the user and possible corrective actions described, A
method for transmitting user-identified errors to the software developer should
be developed. User decumentation should include the following items:

-# user instructions that contafn an introduction, a description of the
user's interaction with the system, and a description of any required
training for using the system

a system narrative

¢ finput/output specifications

s samples of original source documents and examples of all input
formats, forms, or displays

e samples of all outputs, forms, reports, or displays

e data entry instructfons for data preparation, data keying, data veri-
fication, data proofing, and error carrection

e referances to all documents or manuals intended for users
» a description of system 1imitattons

o a description of all possible error situatfons and how the user
shauld react to these situations {IEEE 1986b).

There are many user documentation quidelines and standards for preparing this
documentation (ANSI 1980; NBS 1976 and 1982; Neumann 1982}.

5,2 OTHER DOCUMENTATION

Other documentation that might be created during the course of a software
development project includas the following (ANSISIEEE 1984; IEEE 1986b):
Software Developmant Plan [SOP)

Software Configuration Management Plan (SCMP)
Standards and Procedurss Manual

Training Manual

Operations Manual

Installation Manual

Maintenance Manual

Unit Davelopment Folders

Project File,

L. B B B N BE BE N

5.3

These additional items may be desirable for larger or more complex projects.
Each item is gutlined in the subsectigns that follow.

5.,2.1 Software Development Plan

The software development plan describes the breakdown of the software
development project into manageable tasks arranged into a hierarchical refine-
ment of detail. The 3DP should identify all technical and managerial activ-
ities associated with computer program development. It could specify the
following items {ANSI/IEEE 1984; IEEE 1986b): an activity description, activ-
ity deliverables and associated completion criteria, prerequisite deliverables
from prior activities {if any), interrelationship among the activities, and
assignmant of responsibilities for each activity. There can be a great deal of
overlap between the S0P and the 30AP, as described above. Project management
determines which section should be in which document.

5.2,2 Software Configquration Management Plan

The SCMP addresses the 1dentification, control, status accounting, and
configuration awdit of the operational and support software needed to develop,
produce, support, and test the software throughout its life ¢ycle. The plan
should make wisible the configuration management process (ANSI/IEEE 1984; IEEE
1986b)Y for the trstaller and any regulatery agency.

5.2.3 Standards and Procedures Manual

The standards and procedures manual should provide details of the stan-
dards and procadures to be followed for software development. These standards
and procedures can be derived fram a general standards documentation used by
the software development company or from natignal standards such as the IEEE
{ANST/IEEE 1984, IEEE 1936b).

5.,2,4 Training Manual

The training manual should contain an introduction, instructiens for using
the system and preparing the input, data input descriptions, data control
descriptions, instructions for running the system, and a description and jnter-
pretation of output data (ANSI/IEEE 1984; IEEE 1986b).-

5.2.5 Operations Manual

The operationt manual sheould be composed of the following items: run
schedules, set-up requirements, job control procedures, error pragedures,
security procedures, distribution procedures, backup and racovery procedures,
and rastart procedures, In addition, the operations manual should contain
specifications far the system, including all the environmental requirements,
input/output specifications, and auditing controls (ANSI/IEEE 1984;

{EEE 1986h).

£.4

h.2.06 Installation Manual

The installation manual should contain instructions for the installation
of the software product, instructions for file conversion, use of usepr-
controlled fnstallation options, and instructions for performing an installa-
tion test (ANSI/IEEE 1984; IEEE 1586b).

6,2.7 Maintenance Manual

The maintenance manwal should contain instructions for software praduct
support and maintenance such as procedures for correcting defects and install-
ing enhancements. This document should refer to both the procedures described
in Section 9.3 and to the Software Configuration Management Plan (ANSI/IEEE
1984; 1EEE 1986b).

h,2.8 Unit Development Folders

Unit development falders consist of the programmer's technlcal records
during the design and testing work on the indfyidual program modules. Ag stan-
dard project documents, these folders augment the project records and specifi-
cations by providing more technical documentation for review and inspection.
The folders are especially fmportant in large projects that are subject to
fraquent parsonnel changes or reassignments (IEEE 1983a}.

%.2.9 Project File

Fer each project a file consisting of records, project plans, specifica-
tions, schedules, work assignmeants, budgets, and technical standards should be
mafntained. A central repository should be maintained for all currant docu-
mentation associated with the project and should be available to oroject devel-
opers, users, and managers. It is appropriate that this file be indexed with
an on-line computer system, possibly by means of a relational data base in
which each word in the title can be scamned to identify documents pertinent to
any requested subject. This indaxing will allow the computer to do the organ-
fzing or sorting (IEEE 1983a). .

5.3 DOCUMENTATION QUALTTY

When considering the quality of the overall development project, the qual-
1ty of the documentation itself must not be negqlected. 1If the SQA Program is
to be effective, company-wide standards should exist that spectfy uniform
requirements for all project and software documents. These standards should
define the scope and format of each document, The standards should also
address the issue of technical writing style to improve document clarity and
consistency. Because of the necessity for traceability, paragraph numbering by
means of a decimal system is probably in order. A means of identifying changes
to documents, such as bars in the right or left margins, can be used.

5.5

5.3.1 Application of $tandards

Documantation should be formatted accu~ding to appropriate standards,
Standards provide a means for the author to <etermine exactly what needs to be
included in the document as well as the forin 1t s to take. Their use promotes
consistency in documentation among prejects, Stindards can also provide a
checklist with which documents can be revigwao.

5.3.2 Review

Upon completion, all documentation should be reviewed, preferably by an
independent party who has not been part of the documentation generation.
Reviews will be covered in detail in Chapter 7.0, Most reviews are conducted
after all documentation has been generated, However, documentation can also be
reviewed npiecemmal in draft form during the course of its generation.

5.3.3 Documentation Maintenance

One major problem in SQA is the maintenance of documentation. This seems
to be an odious chore to most technical personnel., It has been recommended
that all documentation assocTated with the software project be maintained
on-line, This aliminates any distribution problem and the {nevitable publica-
tion costs associated with revisions to decumentation, espacially for a large
project. Maintenance of documentation en-line allows the developer teo obtain
the most up-to-date copy directly when it is needed. [t also ¢ircumvents the
prablem of determining who should receive updated copies of the documenta-
tion. With the incraasing cost of document reproduction and the decreasing
cost of bulk storage on a computer system, this means of documentation mainte-
nance i5 be¢oming more and more attractive. Programs te facilitate on-line
documentation are available commercially.

5.4 DOCUMENTATION CONTROL

Contral of documentation falls undar the heading-of software configuration
management (see Chapter 9.0). Documentaticn can be considered a software pro-
duct as much as the computer program itself, and is subject to the same con-
figuration management and control. Use of an on-line computer system for
documentation makes its control simpler because only one copy of the documenta-
tion need be controlled. Mo changes should be made to the documentation with-
gut the appropriate librarian or other responsible person's concurrence, The
computer system alsc can provide appropriate tools such as software configura-
tion control systems, as discussed in the following: BRersoff et zl, 1979 and
1980; Doggett ot al. 1983; IEEE 1980a, 1983L, and 1986a,

5.6

5,5 SOFTWARE RECORDS: COLLECTIOM, MAINTENANCE, AMG RETENTION

This section deals with the records and data that should be collected and
retained during the course of the software life cycle and the methods that
should be used to assemble and maintain this documentation aver the designated

retantion paried.

5.5.1 Records to be Collected

The records that should be retafned during a particular software develop-
ment project and its follow-on operation and maintenance phases should be
desfgnated in the software quality assurance plan [ANSI/IEEE 1984). The types
of records to be collected are determined by the overall recordkeéping objec-
tivas established during the project, Possible abjectives are to provide
1) legal and contractual evidence that the software development process was
performed in conformance with established professional practice or with the
customer requirements, and 2} histerical or referance data that could be used
ta discover long term trends in development techniques. The documents col-
lected for histgrical or reference purposes should be capable of providing data
for praductivity, qualfty, and methodology studies.

The documents collected for lega) or coantractual purposes should provide
evidence that 1} the SQA plan was followed and all the documents conform to the
requirements of applicable standards, 2) the software meets the desfgn intent
and satisfies gontractual requirements, 3) corrective action is effective, and
4) testing has been performed in accordance with test plans. The documents
collected for trend analysis should provide sufficient design, implementation,
and testing data so they will be useful for determining future development

practices,

In addition to these kinds of documents, records should also include pro-
gram media containing the exact version of programs and materials used in per-
forming tests to assure test repeatability, and a central index listing all the
documents associated with each code used in the design or safety analysis of
the nuclear facility. This 1isting should contain all informattan pertinent to
the documentation of the code and any data accumulated throughout code develop-
ment, operation, and use. In addition, records should -identify the approved
115t software users so that when any errors gr defects are discovered, the
users can ba notified promptly.

The wser of a critical piece of software should retain a record of how and
whan the code was used. This record could consist of date of use, the code's
fdentification and varsicn numbers, the project identification, any problems
encountered in running the code, and any other pertinent information. The
completed data sheet could be sent to a central location for retention,

Records of use could be implemented successfully using a data base managemant
systom, [f the data for each piece of software are collected in a relational
data base, interrogations could detarmine trends and occurrences throughout the
1ife of the software, such as problematic code modules. The collection of
information on standardized forms during development and operation of software
makes b easy to analyze the data using such a data base. Examples of standard

5.7

forms for this type of use are provided in the following references: Barikh
1930; Glass and Noisex 1981; IEEE 19832 and 1986d; NBS 1974 and 1983,

%,5.7 Records Maintenanca

The 5QA plan should specify acceptable methods of keeping records, {i.e.,
hard copy, computer file, microfiche, ete.) [ANSI/IEEE 1984}, Maintaining
records invelves bath physical media control, discussed in Chapter 9.0 and
updating of the information contained there. Use of a data base management
system or relaticnal data base s a systematic way of accomplishing this main-
tenance. Spacialized tools for this purppse could ilso be utilized affect-
ively. 3ee jection 8.1 for examples of such tocls.

%.5.3 Records Retention

The length of retention for each type of record maintained should be spe-
cified in the SQA plan (AMSI/IEEE 1984}, In addition, the retention length
could be specified in the document or form itself. The date for destruction or
review for possible destruction should be stated; a compyterized system detail=
ing this date could be in¢luded as part of the maintenance system,

5.5.4 Oraganpizational Responsibility

The 50A plan should fdentify tha organizational elements responsible for
the origination, collection, maintenance, storzge, and protection of records,
Authorities responsible for changing, purging, and destroying records should be
identifled. Chapter 9,0 discusses control and management of software project
records,

5.8

6.0 STANDARDS, PRACTICES, AND COMVENTIONS

The establishment, implementation, and enforcement of sound standards,
practices, and conventions are essential to any 50A program. Software stan-
dards include procedures and rules employed and enforced that prescribe a dis-
¢iplined, uniform approach to software development apd utilization. A software
standard specifies the methods and procedures that should be carried out to
complete a specified software task. Practices are agreed-upon methods or tech-
niques for developing and using software, established to ensure uniformity
throughout a project. A software practice specifies the methods and techniques
to be used to carry out a particular software related activity., Conventions
are the uniform patterns or forms for arranging data or presenting information
to provide consistency and to fagilitaté understanding {ANSI/IEEE 1984). (For
readability, standards, practices, and conventions are referred to in this
chapter as standards,)

Standards serve both technical and managerial fumctions. They facilitate
program readability, software verification and validation, interface defini-
tion, and management review of software development, The use of standards is
consistent with Appendix B af 10 CFR 50 {U.S. MRC 1984), which requires that
activities affecting quality shall be prescribed by documented instructions,
procedures, or drawings of a type appropriate to the circumstances,

A primary function of 50A consists of defining and recommanding the soft-
ware related standards, practices, and conventions for management approval and
monitoring the software products and software development process to ensure
that they comply with the adopted standards, The standards adopted should con-
stitute a thread that links one event to another throughout the software life
cytle and shows how the particular requirement has been implemented in the

ultimate product.

The sections below consider recommanded standards and their implementa-
tion, monitoring of compliance, and enforcement,

&.1 APPLICABLE STANDARDS

The project manager, fn cooperation with the 50A organization, should
selact and establish a set of standards and procedures applicable to the par-
ticular project. These standards should be fdentified along with the Jife
cytle phases to which they are applied. As a minimum, the standards should
address documentation, reguirements specificatfon, design, coding, testing, and
gperatfons/maintenance.

Jtandards that are to be followed during the course of the project are
specified in the 50A plan, If a standard or procedure s revised while the
project is under way, the effect of the revised standard on the project should
be evaluated and a decision made whethar to continue to compiy with the pre-
vipus standard or with the new pne. However, records shouid ciearly state
which procedurs is baing followed at all times during the course of the

6.1

project, As a practica) matter, the standards pertinent to the particular
project can be packaged in a single handbeok, This can be part of the project
file or maintained in an-1ine camputer files.

6,1.1 Gocumentation Standards

The objective of imposing documentation standards is to ensure upiform
quality, This does not mean that al) software will be documented to the same
leval of detail. The detail needed depends on the application, complexity, and
expacted 1ife span of the software, It does mean that the format of the docu=
mant should be prescribed te minimize wariation in style, notation, and termin-
ology to make review, use, and control of the software documentation easiar.

Documentation standards and procedures must be established early fa the
software development process and must be adhered to rigidly., The develapment
of documentation standards is one of the initial activities of the 504 e¢rgani-
zation, The standards should adhere t¢ industry standards as much as possible.
Standards and guidelines for documentation are given in these references:
ANSI/ANS 1986; ANSI/IEEE 1984; ATC 1983 and 198%; IEEE 1982b, 1983f, 19584a,
1986a, 1986b, and 1986e; NBS 1976 and 19BZ; Heumann 1982; Tausworthe 1979;
Wilburn 1982b.

6,1,2 Design Standards

The basis for software reliability s design, It is a well known fact
that reliability cannot be tested intc a software System., Programs that are
well designed in both data structure and control structure are the first
defense against errors. Good design should be accompanied by careful
proofreading.

The standards to be used during the design phases should be described in a
destfgn standard, Serious consideration should be given to the use of graphical
techniques and the use of top-down design (Yourden and Constantine 1978},
Maming conventions and argument 1ist standards should be addressed, and seriopus
consideration should be given to requiring the use of program design languages,

Some attributes of software quality can be enhanced by appropriate design
and implementation methodologies ?Guudenuugh 1979), For example, robustness
can be {ncreased by the use of fault-tolerant design. Defensive programning {s
also a technique for increasing system robustness. Such programming consists
of identifying and implementing assumptions whose violation would lead to
critically unacceptable behavior. For example, if the effect of an out-of-
range input would be severe, a procedure should check the range., Similarly, a
program that expects input from an on-1ine terminal is more robust if it {s
designed to process arbitrary input sequences, even if the preogram specifica-
tions state that only certain sequences will actually be prasentad,

As part of the design standard, certain standards can be implemented that
are specific to the design methodology, such as flowcharting standards, hierar-
¢hical chart standards, or the kind of methodalogy to be used [e.g., the
Jackson (Jacksan 197%5; [EEE 1983d), the Hassi-Schneiderman (IEEE 1980b) or the

6.2

Yourdon=Constantine (Yourdon and Constantine 1978; Gane and 3arson 1977)
methodologies of designl. It could also be specified that particular program-
ming languages should be used or that certain high-level design languages are
to be used,

6.1.2 Coding Standards

The practices and conventfons to be used during the implementation and
coding phases should be described in a coding standard, Ceding standards pro-
vide for specifying quality attributes in a testable way. Implementing stan-
dards for structured code or use of structuring precompilers, localfglobal data
access, and parameter passing will reduce the number of coding errors., Code
maintenance will also be improved by using coding standards, particularly those
that deal with the appearance and arrangement of the code as well as commen=
tary. The standards should include criterfa for module size, naming and num-
bering, header commentary, in-line commentary, lecal/global data access,
parametar passing, and code formatting, Automated methods or manual methods
for verifying compliance with programming $tandards can be implemented using
software tools. Using these methods is cost-effective, based upon the authors'
sxperience,

Coding standards should specify the coding language and format to be used
for implementation. Available coding standards for each of the common langu-
ages are provided by Associated Technology, Inc. (AT 1983 and 1985). Both
high=level and assembly languages are available for computers, AssemBly langu-
ages are used for systems programmfng and online systems and are not appropri-
ate to scientific codes used in the nuclear industry. For most situations, a
high-level language should be specified. :

To provide uniformity in an organization, naming and labeling conventions
should be established for each version and every component of the software,
Tha program name should be included in all source code and each version derived
from every element. Each version of a program must be given a unique version
number, The version number should be referenced in any testing results
obtained from the program as well as the date on which the program was
testad. MNaming and Jabeling conventions should be unigue to each praject but
uniform in format throughout a company.

Use of appropriate layout conventions far gach software module will result
tn higher gquality software. Detailed specifications should be established thar
cover such programming conventions as indenting and spacing of the program
statamants, use of comments, and required use or restriction of certain fea-
tures of the programming language, Layout conveations are important, particu-
larly fgr maintenance. If the software throughout an srganization always has
the same Tormat, a maintenance programiner can gain a g¢reat deal of information
stmply from familiarity with the particular format, This is the one area where
a standard for an organization is a must,

Coding technfques tend to be specific to a particular programming lan-

guage. All the basic structured constructs can be implemented in a standard
Fashicgn using any of the programming languagss available and in use throughout

8,3

the nuclear industry. Standard constructs, followed rigorously, allow ease of
translation of the so-callad pseudo-coding cr other design representations
created during detailed design directly inte the programming language.,

One method for coading that allows in-line verification is assertion test-
ing. Assertions are embedded within the code in the form of commants that can
later be activated to determine the state of the processing variables at any
point in the code. The assertions can check limitations on the wvariables that
are physically realizable, such as ranges of temperature and pressure, and
thereby provide a degree of verification while the code i3 operating, Pre- and
post-processors can be used to embed assertions into almost any type of imple-
mentation language. For example, a FORTRAN assertfon checker s available from
the Rattonal Bureaw of 3tandards, and other tools that perform the same func-
tion are available from commercial software vendors [Houghton 1981, 1982, and
1983; Houghton and Oakley 1980; Riddle and Fairley 1980).

Establishment of standards for in-line commentary will lead to uniformity
in the amount of detall included ¥n the commentary. Commentary should not
simply reflect information that can be obtained more readily by looking it the
logic flow itself, such as by saying, "branch on plus,” when it is obvious from
the computer toding., Commentary should add information about programming logic
and can be used as a means to embed the detail design into the program listing,.

6.1.4 Testing Guidelines

The standards, practices, and conventions to be used during the testing
phase should be described in a set of guidelines for unit, integration, regres-
sjon, and system tasting, The test dotumentation requfred could follow that
specified in IEEE Standard 829-1983 {1EEE 1983f) for software test documenta-
tion, The criterfa for test repeatability and test caverage should be
addressed, perhaps by intluding requirements that specify testing every
requirement, user procedure, and programming statement.

The guidelines should indicate whether support software may be used. A
testing guideline contains specific criteria governing the program testing be
performed. It assures that programs are uniformly tested by all programmers.
A draft software unft testing standard was recently developed hy the IEEE that
can be used in preparfng such a testing quide {ANSI/IEEE 1987).

6.1.5 Code Operation/Maintenance Standards

A set of standards or guidelines should be preparad for code operation and
maintenance. Many of the items in such a standarcd may bhe indirectly imple-
mented by requiring the appropriate items in the desfgn standards discussed in
Section 6.1,3, However, some items can be considered unique to the operation
and maintenance phase., Items that may be considered in preparing a code opera-
tions standard are as follows:

e A1l programs should be dasigned to print on each page of output the

corresponding version number of the program, the current reviston of
the user's guide along with the output date, and the page number.,

6.4

s All codes should print out the input data so that the 1nput actually
used hy the code can be checked as part of the output verification.

s Each page of the paper or microfiche produced by a production, devel-
apment, or test praogram should be identified by the letters PROD,
DEV, or TEST, respectively.

There are two types of maintenance: repafr and enhancement. Repair
carrects a defect found in the software or incorporates changes required by a
change in the environment; enhancement adds some feature to the requirement
specification. When considering an operation/maintenance standard, a new kind
of maintenance known as preventative maintenance might alsc be considerad
(Arthur 1924}, Most organizations typically practice anly the first two types
of maintenance.

Once a program or madule has been jdentified as a candidate for preventa-
tive maintenance, an editer {preferably not the programmer) should he chesen to
review and revise the code. In programs where size fs a problem, the editor
shauld look for ways to eliminate redundant code, In a typical pregram, 10% to
20% of the code is probably redundant (Arthur 1984). Once the redundant code
has bean removed, the editor should attempt to reduce decision complexity.
Automatic tools can be used to measure program complexity and indicate where
improvements can be made, The editor should then look for ways to restructure
the logic to reduce decision complexity. 3uch jtems should be considered when
preparing an operationfmaintenance standard.

6,1,6 Cpde Quality Requirements

A standard practice or guideline should be considered for specifying the
code quality required. Chapter 2,0 and Appendix A c¢an help determine which
attributes should be included in the standard. While it js difficult to make a
quantitative measurement of these attributes, a statement should be included
regarding the importance of the particular attribute, a description of what it
constitutes, and examples of how 1t can be cbtained. A standard requiring that
these quality attributes be included would be strong mntivatiun toward improv-
ing software quality,

§,1.7 Other Standards

Other useful standards could be created for the following:

software configuration management

problem reparting and corrective action

tools, techniques, and methodalogtes

code control

physical media control

software supplier control

records ¢ollection, maintenance, and retention
training and education,

LA B B BN BN BE NN

6.5

The recommendations given within this document and found in the literature
{Foreman 1980; Glass 1981a; Poston 1984 and 1985) can be used to prepare stan-
dards for these areas, Such standards will provide management with a tool to
evaluate how well a project is being carriad out.

6.2 IMPLEMENTATION OF 5STANDARDS

The following sections discuss the procedures by which standards may be
implemented within an organization. The first task is to determine who should
create the standards and practices, It is suggested that the SQA organization
be responsible; they must work with the technical staff who will ultimately use
the standards and practices, however. The standards are the most important and
visible result of an 50A program, It is imperative that the standards and con-
ventions be acceptable to the software developers, to managemant, and to the
user.,

5.2,1 Use of Available Standards

Many standards have been created by companies, government agencies, and
nongovernment agencies, several of which are referenced in this document and
elsewhere (Wilburn 1983b). The standards can be used as quides for preparing
the company's own in-house stamdards.

6.2.2 Lreation and Review of Standards

An organization must have a structure in which to develop standards.
There should be a limited number of standards and the standards themselwves
should be brief. However, they should not be so abbreviated that they do not
cover the subject adequately. The standards should be organized systematically
and ba readily available, either in a looseleaf notebook or on an on=line com-
puter system so that they can be maintained easily. The fallowing is a sug-
gested cutline for 4 standards document {Glass 198la):

name and number of the standard
effective date and expiration date
objective and applicability

method for verifying conformance
degree of conformance required
procedure for obtaining a waiver
related standards and documents
datailed statement of the standard
explanatory comments

indexas,

* & 0B eRe

The fallowing quidelines are suggested for creating software standards:

follow a common gutline
& use consistent terminology
& be brief

6.5

e check for overlap and inconsistency with other standards
+ address the reader.

Procedures for the revlew and development of standards should be estab-
lished, Two distinct organizations should review software standards: a tech-
nical group and a mapagement group. Review of the standards can follow the
proceduras established for any other documentation review (see Chapter 7.0).

8,2,.3 Maintenange and Contrgl of Standards

Standards should be controlled like other documentation and be subject to
the same software configuration management procedures as the documentation
associated with that project. All standards should include a “sunset” clause
by which the standard is automatically void unless reviewed and updated at
periodic intervals (e.q., every 5 years).

6.3 COMPLIANCE MONITORING

The S0A crganizatfon must be involved in defining valid software develop-
ment standards. They alsc must ensure that the software products and the pro-
cosses used to develep them comply with these standards. An appropriate
methodolagy to accomplish this is the review and audit process. This implies
that SQA personnel must be competent to evaluate whether the standards are
indeed being followed.

6,4 ENFORCEMENT OF STANDARDS

Associated with compliance monftoring is enforcement of the standards. A
mechanism must be in place to Keep management informed, and management in turn
must take the steps necessary to assure that the standards are adhered to.
This sometimes becomes difficult due to conflicting criteria, e.q., software
quality versus production milestomes, At this point, it is again necessary to
reaffirm that standards are established in the interast of productivity, per-
formance, user acceptability, predictability, and conterel.

6,7

7.0 REVIEWS, AUBITS, AND CONTROLS

Spftware development, gperation, and maintenance efforts should be
reviewed and audited periodically to determine conformance to 50QA requirements.
Technical reviews and audits should be periodically conducted to evaluate the
status and quality of the engineering afforts and to assure the generation of
required enginearing documentation and adherence to appropriate standards. The
raview of software under development 15 the primary wmethod used by SQA groups
o assure quality.

The specific technical reviews and audits of software development plans
and schedules should be identified in the 50A plan (ANSL/IEEE 1984), The pro-
cedures o be used fn reviews and audits should be described in a guideline
{see Freedman and Meinberg 1979; Wilburn 1982a and 1983a; Yourdon 1978), The
participants and their specific responsibilities are to be identified as well,
As a minimum, the following reviews and audfts should be conducted {see
Figure 3.1):

software requirements review (SRR)
preliminary design review {(PDR)
critical design review (COR)
software verification review (SVR)
functional configuration audit {FCA)
physical configuration audit (PCA)
in~process audit

managerial reviews (ANSI/IEEE 1984),

LI N BB 3 BN O

7.1 TECHWICAL REVIEWS

Technical reviews serve many purpeses beyond helping teo establish software
quality. They allow several individuals to share their experience with the
creators of a product. The software review has the effect of improving the
technical capabilities of the individuals, as well as the team associated with
the development project. The members of the group gradually come to know and
understand their colleagues, how they think in ceptain situations, whare thay
rautfnely make mistakes, ete. Such mutual understanding creates a better tech-
nical team and can keep the same types of problems from recurring. The organi-
zation of people into teams allows projects to proceed smoothly. The process
of assembling the teams and assigning work can compensate for differences in
individual capabilitias, A team can often find defects gverlooked by
individuals.

7.1.1 Reyiew Team Mambers

The review should be performed by individuals having sufficient technical
expertise to provide 2 thorough review of all activities, Independent chacking
should be performed by an engineering or technical group rather than by an SQA

7.1

organization, which normally performs the auditing function, Review partici-
pants should be independent of those develgping the program logic and techni-
cally competent in areas related to the program tasks,

7.1.2 Review Proceduraes

Methods of software review are provided in the following: Freedman and
Weinberg 1379; Wilburn 1982a and 1983a; Yourdon 1978, The reviews and audits
should be clearly identified, scheduled, and properly sequenced.

The procedures to be used for reviews and audits should identify the par-
ticipants, their specific respensibilities, and the types of information to be
collected and reviewed. They should alsc specify the preparation of a written
report for each review and identify who is to prepare the reports. I[n addi-
tion, the report format, who is to receive the reports, and the assocfated
management respensibilities are to be described along with any follow-up
actions assure that recommendations made during the reviews and audits are
properly implemented. The time interval between the review and the follow-up
action should be prescribed, as well as the personnel responsible for perform-
ing the follow=-up actions.

Checklists can be effectivaely used in tha course of the technical review
{ANSI/ANS 1979, Wilburn 1982a). The participants in the review should inspect
all available documentation in light of these checklists before the formal
review meeting. It is almost impossible to conduct an effective review during
the course oF the meeting itself.

7.1,3 Review Typés

Table 7.1 lists the types of reviews appropriate in the software develop-
ment phases of the 1ife ¢ycle. These reviews, which are recommended by the
IEEE in their 30A plan guide (1EEE 1986b), are described 1n the subsections

below,

7.1.3.1 Software Requirements Review

The software requirements reylew (SRR} takes place at the end of the life
cytle phase in which the software requirements specification (SRS) (ANSI/IEEE
1984) is generated. The SRR constitutes an evaluation of the SRS. [t fs con-
ducted to assure the adeguacy, techmical feasibility, and completeness of the
requirements stated in the SRS, The SRR is held to evaluate the SRS to ensure
that it is complete, verifiable, consistent, maintainable, modiflable, trace-
able, and usable during the gperation and maintenance phases. The review
ensures that sufficfent detail is available to complete the software design.
A1l grganizational elements affected or impacted by the requirements should
participate in this review. These may include scftware design personnel, soft-
Aare testing personnel, 5QA personnel, systems engineering personnel, cus-
tomers, users, and marketing and manufacturing parsonnal. The results of the
SRR should be documented and include a record of all daficiencies identified,
and a plan and schedule for corrective action. After the 3RS {s updated to
correct these deficiencies, the document should be placed under configuration

7.2

TABLE 7.1. Chacklist of Potential Reviews Throughout the Software Lifa Cycle

Name of Review(3) Acronym Reference SectioniP)
Software Requirements Revfaw* SRR 7.1.3.1
Praliminary Dasign Review POR 7.1,3,2
Critical Desfgn Review™ COR 7.1,3.3
Software Yerification Review™ SYR 7.1.3.4
Formal Management Reviews -- 7.1,3.5

{a) An asterisk (*) indicates those reviews required for all
software develapment projects, Other reviews in the list
may be required, depending on the nature of the software
project and final product{s).

{b) The section of this document that discusses the review listed.

control, establishing the baseline to be used for software design and other
efforts throughout the 1ife cycle. During software design and Tts implementa-
tion, make further changes to the 5R3, In such instances, the broader and far-
reaching effects of such changes should be assessed,

7.1.3.2 Preliminary Design Review

Tne preliminary design reyview (PDR} is held at the end of the functianal
specificatian phase (ANSI/IEEE 1984), The PDR evaluates the technical adequacy
of the preliminary design as a prelude to the detailed design. The review
dssesses the technical adequacy of the selected design approach; checks the
design compatibility with the functional and performance requirements of the
3R5; and verifies the existence and compatibility of tha fnterfaces between
software, hardwara, and user.

A1V crganizational elements that impose requirements or that are impacted
by the design should send representatives to participate in this review. Docu-
mentation of the results should contain a record of all- deficfencies identified
in the review, and a plan and schedule for their corrective action. The
updated 5D5 document should then be placed undar configuration control, estab-
lishfng a baseline for the datailed software design effart. Changas to the
high level design that become necessary during detailed de<ign, implementation
or testing should be 1ncorporated into the design documentatian, with appropri=-
ate reviews made to determine the impact of these changes.

7.1.3,3 Critical Dagsign Review

Tha critical design review [COR) is held at the end of the detailed soft-
ware design phase (ANSI/FIEEE 1984). The CDR evaluates the technical adequacy,
completeness, and correctness of the detailed design befare the start of actual
coding, The purpose of the COR is to evaluate the acceptability of the

7.3

detailed design depicted in the software design description (30DD) to establish
that the detailed design satisfles the requirements of the 5RS; to review com-
patibility with other software and hardware with which the product is reguired
to interact; and to assess the technical, cost, and schedule risks of the
product's design.

The organizational elements that impose requirements or that are impacted
by the design should participate fn the review. Documentation of the results
of the reyiew should identify the discrepancies found during the review and
should present schedules and plans for their resolution. The updated 500 is
then placed under configuration control to establish a baseline for the next
phase of implementation and coding.

7.1,3.4 Software Verification Review

The software verification review {SVR) constitutes an evaluation of a com-
pleted software verification and validation plan (SVWP) (ANSI/IEEE 1984).
Since this plan may be developed incrementally as the requirements specifica-
tian, high level design, and detailed design proceed, miltiple reviews may be
necessary, These reviews are held to assure that the methods described in the
SYP are adequate and will provide an acceptable verification of the software.
Documantation of the results of the review should record all daficiencies noted
in the reviow, and schedules and plans for their resalution, The updated SYP,
when placed under confiquration contral, establishes the baseline for the soft-
ware verification {or testing) effort.

7.1.3.% Managarial Reviews

These reviews are held periodically to assess the status and implementa-
tion of the SQA plan and program development plan (ANSI/TIEEE 1984}, The plan-
ned frequency and structure of the managerial reviews should be stated fn the
SOA plan and should be conducted under the direction of the program manager.
Each review should be decumented by a report summarizing the review findings,
including any exceptions to the process stated in the SOQA plan and any recom-
mendad changes or improvements,

7.2 AUDITS

The following sections describe audits of the SQA program and the QA
function,

7.2.1 Functional Configuration Audit

A functional configuration audit is held prior to software delivery to
verify that all requirements specified in the software requirements specifica-
tion (SRS} have been met {ANSI/IEEE 1984). The functional audit compares the
code with the requirements stated in the current 5RS. Its intent is to deter-
mine that the code addresses all documented requirements, Decumentation of the

7.4

results should include any discrepancies and the plan and schedule for their
resolution. Once the discrepancies have bean resglved, the software can be

delivered to the user.

7.2,2 Physical Configuration Audit

The principal purpose of a physical configuration audit is to determine if
all the technical products of the computer program development effort are com-
plete and formally acceptable to the yser (ANSI/IEEE 1984}, The material
audited during a physical audit includes the technical products related tg the
computer program to be deliverad to the ¢ustomer, such as the final 3RS, the
software design description, and all other documentation formally prepared for
the user and i{dentified in previous sections.

7.2.3 In=Process Audits

Walk-throughs and inspections may be included as part of the in-process
audit activity (ANSI/IEEE 1984). The objective of these audits is to verify
the consistency of the product as it evolves during development or as it is
changed during the maintenance phase. The resulis of all the in=-process audits
should be documeated and should identify all discrepancies found and the plans
and schedule for their resolution,

7.2.4 S0A Audits

These audits should evaluate the adherence to and effectiveness of tha
prescribed procedures, standards, and conventions pravided in SQA program docu-
mentation. The internal procedures, the project SQA plans, configuration man-
agement, and contractually required deliverables from both the physical and
functional aspects should be audited throughout the 1ife cycle., The SOA audit
consists of visual inspection of documents to determine if they meet acceptad
standards and requirements (Tausworthe 1977). The S0A audit is net intended to
review tha conceptual approach to a solution of a problem or to 2 design.
Rather, the auditor should check the format of each document for conformance
With its prescribed outline as well as for omissfong, apparent contradfctions,
and items that may be sources of confusion in later work, The auditors shauld
verify the existence of all required documents and that the quality of each is
acceptable, A farmal SDA audit report should be generated and submitted to the
cognizant prgject manager for Information and action. MWhen such audits are
carried on concurrently with design, coding, documentation, etc., they decrease
the possibility of oversights or inadvertent misconceptions that could result
in major rework and cost overruns,

7.3 CORRECTIVE ACTION

Plans and schedules for correction of deficiencies are necessary to com-
plete the review and audit process. Corrective action should take place within
4 short time (specified by project management)} after the review or the audit,
Corrective actions are best impiemented by assignment of an individual or team
to ¢arry out the corrections. If it has Been decided that the corrective

7.5

action is not necessary or can be deferred, software users should be notified.
The problem reporting and corrective actions detailed in Chapter 9.0 may be
utilized to inform users of identified software problems.

7.6

§.0 TOOLS AND TECHNIQUES

fpplication of software tools and techniques in the development/operation
of software systems and 504 functions can significantly improve the quality and
reliability of the software.

2.1 TOoOLS

The fallowing tools can be used to develop software systems or in S04
functions:

sSouUrce comparitors
instruction tracers
editors

dynamic analyzers
consistency checkers

test heds

standards analyzers

test result processors
flow charters

interface checkers
automated test generators
static analyzers

software monitors
management informatisn systems

interrupt analyzers
debuggers

data base andlyzers
language processors

text editors

dynamic simulators
requirements tracers
decision tables

hardware monitors
structural test analyzers
logic analyzers

library handlers

cross reference generators
test drivers

timing analyzers

* & " 0BRSS ERE S
LR BN L BN K R BN BN BN WY O S

Thase tools are described in the following references: Brown 1979; Fisher
1978; Houghton 1981, 1982, and 1983; Houghton and Oakley 1980; IEEE 1979 and
1983¢c; MBS 19Bl; Osterwail 1982; Powell 1982a; Raifer 19794; and Riddle and
Fairley 1980.

Another method that can be used to improve reltability is to create for
each production pragram run a run 1og thaft contains a record of everything that
happened during the run. This could include operator commands; time and cycle
of rastart dumps; timing statistics showing where the CPU, I/0, and system
times are being used; and a record of all errors together with diagnostic snap-
shots detailing the cause of the problem.

8.1

8.2 TECHNIQUES

Listed below ara techniques that support various software quality assur-
ance functions:

ra2.iowing

sirw;ntion
stapdardization

stetic analysis

stress tasting
walkthroughs

statistical recordkeeping

auditing

code inspection
design inspection
grror-prone analysis
functional testing
logical testing

path tasting

& e ey
L IR B N BTN -

Statistical recordkeeping merits further discussion here, It has been
demgnstrated repeatedly (Bunn and Nman 1982) thet a few modules in any given
system ¢ontribute to the observed failures far out of proportion to their num-
ber. These modules are candidates for further anmalysis to determine if the
most appropriate action would be to redesign and recode them. Records can be
used for a trend analysis and review of the effectiveness of the corrective
actfon program,

Furthermore, it is advantageous to collect data to compute statistics
about software for comparison with other project software with similar attri-
butes. Without data to analyze, identifying effective and ineffective methods
used in the development and operation of software is not possible, Methods
cannot then evelve into efficient techniques and tools. Recommendations are
given by NBS (1983) regarding the type of statistical data that should be col-
lected durfing software development and operation. Use of statistical data is a
tool with which to evaluate the effectiveness of the 50A plan ftself. OQuan-
tifying the efficacy of the plan is of primary impaortance to assuring software
quality.

One method of statistical data collection is tg use automatic tools that
gperate in the computer on which the software is being developed. The metrics
developed by McCabe {1982) can be used in cellecting data with such automatic
tools. Software metrics based on mechanized analysis of code systems can pro-
vide a means to quantify many important characteristics before a component
moduie is compiled or tested., Dynamic analysis helps te identify a module's
efficiency; operational analysis measures fts reliability; and change manage-
ment tracking f{i.e., how frequently the module is required to be changed)] mea-
sures fts maintainability, flexibility, and reliability. Software quality
measurements of this type can be applied to both the developmental and opera-
tional phases of the software life cycls,

At the conclusion of sach software development project or after a perfod
of time has slapsed while the software has been in active use, the data col-
lected should be analyzed to determine the quality of the particular software
module, Calculatfons can be made of the number of errors occurring as a func-
tion of the number of Tines of code, the number of arrors per module, and the
number of errors versus the size of the module, Data analysis could involve
comparison with similar data that have been accumulated from other spftwars

3.7

systems, The data analysis could also help determina whether it might be more
cost-effactive to completely rewrite a piece of software than te continue to
maintain inferior software,

8,3 EVALUATION OF TOOLS AND TECHNIQUES

Tre following factors may be used to avaluate software development and
quality assurance tocls and techniques (Lipow et al. 1977):

APPLICABILITY Is the proposed tool or technique well-suited for its task?
UDoes the proposed tool or technigue have a sound guality
basis?

COST-BENEFIT Is there an explicit benafit to be gained from each of the

proposed tools or techmiques? Do the benefits of the pro-
posed topl or technique equal or exceed the cost to the
project?

RISK What is the risk involved in implementing the proposed tool
or technique?

STATE OF THE ART Is the proposed tool or technique appropriate with respect to
the current state of the art?

CONTROLLABILITY How easily can the proposed tool or technique be contralled
by either management or quality assurance personnel?

PAST EXPERIENCE What has been done to show that the proposed tool or techni-
que can be developed or implemented? Is therz 2 good
resource hase from which to draw?

DEL IYERY Will the tool be delivered on time with enough infarmation to
make it easy to use and maintain?

2,4 CONTROL OF TDOLS AND TECHMWIQUES

The design, development, testing, and documentatiaon of tools and tech-
nigues must entail the same rigor and level of detail as other deliverable
software. The tools and techniques need to be placed within a central reposi-
tory that has management responsibility and funds fer configquration management,
mafntenance, decumentation, and dissemination, making them available for wide
distribution and use by many prgjects and organizations. Most tools and tech-
niques will need to be modified to fit specific prejects. Thareforae, consider-
ation of their maintenance and modification is an important part of any
development effert. Tool$ should be coded in high level languages s¢ that
portability from one computer to angther dees not entail major rewerk.

3.3

9.0 SOFTWARE CONFIGURATION MANAGEMENT AND CODE CONTROL

This chapter preseats a general discussion of software configuration man-
agement {SCM} and code contrel, including problem reporting eand corrective
actions. Control of physical media and computer security {access control) are
2lso discussed.

9.1 PROBLEM REPORTING AND CORRECTIVE ACTION

A farmal procedure of software problem repﬂrtln? and corrective action
should be established for all “"critical® software.‘?! Measures should be
established to promptly identffy failures, malfunctions, deficiencies, devia-
tions, defective materials and equipment, and nonconfarmances, The problem
reporting system should interface with software conftguration management pro-
cedures to ensure formal processing to resolve thesa problems, For any softe
ware defect identified, & time frame should be specified in line with NRC
requiremants in which to determine if a potential safely concern has arisen and
if sa, whether it is reportable to HRC.

Problams encountered during software development or operation may result
from daefacts in software, in hardware, or in system aperations. Because of the
large number of possible defects, defect sources, and means of detection, a
centrally lccated system for monitoring software defects is necessary. The
objectivas of the software problem reporting and tracking system are
{IEEE 1986b):

t0o assure that the defects are dotumented, corrected, and not
forgotten

o {0 assure that the defects are assessed for their validity

e to assure that all defect corrections are approved by a review team
or thange control board before changes to the software configuration
are made

o to factlitate measuring the defect correction process
s to inform the designer and user of the defect's status

¢ to provide a method of setting priorities for defec¢t correction and
scheduling appropriate acttons

o to provide management with knowledge of the status of software
defects

{a) "Critical” denotes software whose faflure could cause a menetary loss or
physical loss, or would have impact on public health or safety,

9,1

e t0 provide data for measuring and predicting software quality and
reliability.

standard forms or documents are encouraged for reporting problems and pro-
posed changes for critical software. These forms should include the follgwing
items as a minimum (1EEE 1986b):
¢ a description of the problem and preposed corrective action
¢ authorization to implement the change
« a.list of all items expected to be affected by the change
e an estimate of the resources required for the change

¢ identification of the personnel involved in the origination and dis-
position of the problem report and in the rescglution of the problem

» an identification number and date.

9.1.1 Corrective Action Procedures

Corrective action procedures deal with the process of correcting software
discrepancies. A1l corrective actions must be supported by software develop-
ment and testing. Corrective actions must allow develepers encugh Tatitude so
that their productivity and creativity are not encumbered. Significant nega-
tive impacts on the cost and reliability of seftware can occur if corrective
action is not timely or is improperly administered. Software errors that go
uncorracted until the system is implemented cost far more to correct than those
that are uncovered during softwiare development. The corrective action process
must be established early in the development cycle, Prompt detection and eariy
correction of software deficiencias cannot be overemphasized,

Corrective action procedures thould aid rather than hinder the systematic
identification and correction of software discrepancies and anomalies. The
baselines established in the SCM system should permit systematic incorporation
of corrective action procedures. These procedures should include steps for
ident{fying the discrepancy in writing, docvumenting the proposed changes, inde-
pendently reviewing the proposed changes for adequacy and retesting of tha
affected code and all interfacing modules.

Corractive action proceaures should establish a mechanism for feedback to
users on the error analysis of individual problems, and information about
recurrent types of problems. Conversaly, corrective action procedures should
require software users ta inform the program developer whan errors are disg-
¢ovarad in the computer program, so that the developer ¢an examine and assess
the overall effects of the error. Users should be provided with sufficient
infarmation to determine what effect the defect has had on previous calcula-

tians or decisions.

2.2

The program developer is ultimately responsible for the resolution of
errors discovered during softwiare development and use. Furthermore, the devel-
oper should decide if the error can be corrected with a minor change, or if a
significant revision that reguires reverification of the software i5 neces-
sary. After the significance of the error i35 assessed, the developer should
inform all users of the corrective action planned and the effect of the changes
on the results already obtained with the defective program.

Effactive corrective action procedures require input from softwara
designers, developers, and testers, as well as S04 and configuration management
organizations. This input helps determine what in the griginal development
process went wrong. Existing methodologies should then be reexamined by pro-
ject mapagement teo determine actions to be taken te minimize recurrence of such
defacts. 1In particular, any points in the software development life cycle that
tend to be error-prone should be identified. This function should be incorpor-
ated as part of records collection, maintenance, and retention, discussed in
Chapter 5, Section 5.

9.1.2 Qrganizational Responsibilities

Validating, tracking, and resolving software problems require the coordi-
nation of varfous groups within the organization. The S0A plan should specify
the groups responsible for authorizing and implementing problem rzporting and
corrective actions. The groups should be composed of software designers,
davalopers, and testers, as well as 50A and 5CM personnel, These groups snould
be vested with the authority to enforce the program.

The relationship batween the corrective action program and the overall SQA
program, 3CM system, and program management plan should be clearly defined.
The 5QA plan should alsg identify the point in the development process at which
the generation of problem reports is required. The program plan should cover
the organization of the 5CM operation; management responsibilities; the inter-
faces between S5QA, program development, and the 5CM organization; SCM implemen-
tation; and applicable managemant policies. Fkach of these topics is covered in
detail by Bersoff et al, {1980), and IEEE's Guide For Software Configuration
Management ([EEL 1986a). T -

9.2 S{M ACTIVITIES

SCM activities consist of the following: configuration identification;
configuration change control; configuration status accounting and reporting;
configuration avdits and reviews; use of 5CH tools, techniques, and wmethod-
ologies; supplier SCM control; and collectien and retention of SCM records
{Bersoff et al. 19B0; Doggett et al. 1983; IEEE 1980a and 1386a).

9.2,1 Configuratign ldentification

Labeling the comonents, units, or documents assocfated with software can
be accomplished several wavs, MHumbering schemes can identify the components,
ar 4 hierarchy of names czan be uwsed to organize and identify Components with

9.3

anemanics or key English Tabels. The concept of basalines is important in this
function because it allows everyone associated with a project to have a commoa
paint of reference when they are defining, developing, or chaaying a software
product.,

Configuration change control must nrovide the controls secessary to manaqe
and control the change process. The wmechanics of processing changes need to be
definad by the 5CM plan. Appropriate signoff procedures must he incorpor-
ated, A change control board (CCB) has proven to be most effective in SCM of
large projects and critical software, A plan needs to be established to define
the formal structure of the CCH; most importantly, the scope of the CCB author-
1ty must be established.

9.2.3 Configuration Status Accounting and Reporting

Configurabion status accounting (CSA) dis used to develop and maintain rec-
ords of the status of software as it moves through the software life cycle,
L3A may be thought of a5 an accounting system, It must be established early
anought in the software development life cycie to allos firm control to be
applied.

9.2.4 Configuration Audits and Aeviaws

As with any established 504 procedure, the 5CM process should be audited
and reviewad, The configuration items can be audited when the baseline is
released, The amount of audits ¥nvelved will vary according to the baseline
being released. The ¢riteria for the audit, including the roles of its par-
ticipants, should be set in the 3CM plan. At a minimum, audits should be per-
formed whenever a product baseline is established, whenever the product
basaline is changed, or whenever 4 new version of the software i{s released,

9.2.5 Suppiier 5CM Control

The subcontractor or software supplier must implement an S5CM system com-
patiale with the buyer's S5CM system, The buyer's SCM group should perform an
SCM audit of each major subcontractor used to ensure satisfactory compliance,
Further discussion of this important activity is found in Chapter 10,0.

0,2.6 Callection and Retention of SCM Records

The general collection and retention of SCM records fall are discussed
ynder the topic documantation (Chapter 5,0)}. Specific ftems that should be
retained under code control are user-supplied items and the basaline and tests
library.

User-Supplied ltems

When a code is specified, items are developed that need to be retained and
controlled as the software is baing developed, Inclyded 1n this category are

9.4

documentation providing the equations for the model, data to be included in the
data base, parameters to be incorporated into the model, and possibly, previ-
cusly coded subroutines and software. These items are listed at the outset of
code development and placed under configuration control.

Baseline and Tests Library

The jtems enumerated in Chapter 5.0 that are pertinent to a particular
project should be maintained, using SCM procedures in the baseline and tests
library. Most of these {tems will change 1ittle during the course of operation
af tha tade itself,

A computer program library system provides an effective means to control
software decumentatfon and operating programs that may be stored on several
kinds of media (cards, tapes, disks, stc.). Documentaticn and program storage,
cetrieval, and change processing are essential activities in the library func=
tion, S0A policies should provide for monitoring of the library control system
to ensure that correct procedures are fallowed,

Test documentatian that has been preparad during saftware development
should be maintained for regression testing whenever changes are made, Doing
s¢ provides confidence that the software is still reliably producing the same
results as when originally tested upon completion of development, These tests
can be repeated and compared manually or with appropriate file comparison rou-
tines on-line to determine where any changes have occurred in the results of
the calculation or in any function that the software is to carry ocut.

The amount of material may seem large, However, with the improving stor-
age media such as laser disks, videotapes, and other storage media having large
capacity capabilities, the storage of such documentation on-line becemes quite
practical. For updating and maintaining documentation, the advantages of these
media far outweigh the incomvenience of storing them,

3.3 CODE CONTROL

Code control encompasses the procedures necessary to distribute, protect,
and ensure the validity of the operating software and associated documenta-
tion. Once a code baseline has been established, the operating code should be
put under SCM and placed in a centralized computer program library. The 50A
plan should requirs that adeguate controls and security measures are estab-
lished for software changes and for protection from inadyartent alteration
after the code has been baszlined.

The software ta be controlled can include computer-readable documentation
and executable code, The particular types to be controlled on 2 given project
should be specified by gemeral SQA pelicy. In the nuclear industry, these
typas are typically involved in the desfgn or analysis of operation of safety
systems, However, any software considered critical can be a candidate for
control,

9.5

Mew versign implementation should generally follow the procedures men-
tioned in Section 9.2.6, It is the responsibility of the baseline and tests
librarian to maintain & user 1ist as a formal record and to notify users when a
new version becomes avaflable, alerting them when any changes have been made
that might affect their calculations, It is beneficial to identify where the
code or documentation has been modified by bars in the margins, or lists of
pages or lines that have hesn modified. The easiest way to maintain a user
1ist is by simply employing system software that identifies when a particular
piece of software is being used, However, when software is distributed for use
on mare than cne type of computer, maintenance of a user Yist becomes somewhat
more difficult,

Acéurate and unigue identification of all versions of a computer program
should be ensured. Controls mist be established to record the changing of
source or object code or related material. The software library should assign
and track identification numbers of computer programs and documentation,
including revisions, The library should also provide documentation of release
authorization, An authorized signature 1ist needs to be in place for this
purpogsa, The software library should assist with the arrangements¢ for marking,
labeiing, and packing software shipments, and should maintain logs and records
of the distribution, inventory, and cenfiguration control/status accounting for
deliverables. A central index should be established that Tists the documents
compasing the project file,

9.4 PHYSICAL MEDIA CONTROL

The control of physical media and associated services is the performance
of furctions that assure that the stored data or softwire is physically
retriavable and cannot be lost or compromised by day-to-day operations or cata-~

strophic events,

Typical storage media includes magnetic disks, magnetic tapes, large-scale
integrated circuits, punch paper tape, program cards, magnetic diskettes, and
computer listings. As technology evolves, the media will probably also include
videocassetta tapes, laser disks, compact disks, and other media of the audio-
yideo industry.

9.4,1 Access Authorizatjon and Security

Control of physical media must be provided to assure that the stared
software is accessible only to awthorized persons that can demonstrate need of
access. Greater attention has been focused lately on physical media control
bacause of recent violations of many computer systems by “hackers” and other
unauthorized individuals, Adequate protection from unauthorized access to
computer program media s available through several methods. The primary
method is password contrel or hardware access protection, including limited-
access program libraries, encryption, external markings, and proprietary state-
ments fdentifying the controlled programs. Modern computer operating systems
are being designed with extensive security features, especially when access is
permitted by telephone lines and associated hardware modems. The following

9.5

standards and guidelines have bean developad for physical security of computer
media: MBS 1974, 1979, and 1980; Ruder and Madden 1978: Shankar 1977; and

Steinauer 1985,

Operating computer codes are wsually controlled and maintained by the code
librarian. The code librarian is responsible for assuring that only the
appraved versions are distributed and used for analysis, and that any code
madifications are made in accordance with established procedures., The computer
system used should have the necessary software toels to capture all the infor-
matfon essential to produce distribution records and status reports on the

software.

9.4.2 : Protection from Damage, Alteration, and Degradation

The physical media upon which the software is stored must be controlled so
that the s¢ftware is not damaged, altered, or degraded. This can be accom-
plished by providing adequate SCM techniques, controlled software libraries,
and safe storage technigues such as fireproof and waterproof vaults that are
anti-static and anti-magnetic in design, Periodic physical checks of the media
to ensure the use of such controlled environments will minimize deqradation.

It is recommended that there be at least two backup copies of any software
considered critical, These backups should be stored in separate locations to
preclude the possibility that the same catastrophic evant could damage both
copies, One common practice is to implement a common storage facility for use
by many different organizations, with each organization having an additional
local facility for software storage.

A second operating copy of critical software should be provided to allow
ease of access to the user in case the first operating copy is somehow
degraded, The second copy is maintained on tha same cenbtral maching so that
the user can access it readily 1if it becemes evident that the primary copy has
not given a correct result, Periodically, the two copies should ba compared to
assure that no degradation has taken place.

In addition, toe safeguard against physical damage, protection from inad-
vertent damage during routine operations must be available. This protection
can be provided hy using library facilities in which access is limited by means
of controlled passwords., The system manager or Jibrarian is the only person to
allow access, write, or deleta privileges. Procedures must be provided to
quide the Tibrarian in providing backups and in rare fnstances, to only author-
ized changes to the software itself, There have been many cases of people,
including coda 1ibrarians, who have inadvertently destroyed software by not
following established procedures. The routine functions of library managament
are described in the references listed in Section 9.4.1.

9.4.3 Verificetion of Physical Transmittal

Whan software is accessed from the central library, it is important that
there be an established way to verify that the software was transmitted cor-
rectly. Several practices can be used, such as using check sums, parity

9.7

checking, and multiple transmissions with ensuing file comparisons. Appropri-
ate test cases should be transmitted along with the software. These test cases
can be run to verify that the software performs correctly.

9.8

10.0 VERIFICATION AND TESTING

As software bzcomes an increasingly important part of many different kinds
of systems that perform complex and critical functions in the nuclear industry,
the risk of software-caused failures has increased dramatically, There is now
genaral agreement on the need to increase software reliability and quality by
eliminating errors made during software development, Industry and academic
institutions have responded to this need by improving development methods in
the technolagy known as software enginearing, and by emplaoying systematic
thecks for detecting errors in software during and in pardllel with the devel-
opment. process. This second technique for achieving reliable software is
called verification. Software tosting is a subset of software verification and
will alse be dealt with in this chapter. Validation is a broader term than
verification and includes the whole process of verification throughout the
software life cycle.

10.1 VERIFICATION

¥arification concepts and principles for software develapment and use have
typically not been widely implemented in the nuclear industry. Until recently
no guidelines or standards have besn available that directly address verifica-
tion (axcept in the aerospazs industries), although there are guidelines cover-
ing various types of reviews and related activities. The ICEE, NBS, and ANS
are currently addressing this lack of guidelines {Adrion et al. 1981; ANS/ANSI
1987; IEEE 1986a),

Confidence in the performance of stand-alone codes has traditionally been
established by benchmarking the results from ¢ode computations or empirical
data, and by comparing computed results with less complex models., The verifi-
cation methods described in the following sections have seldom been implemented
during the other phases of code development.

Programming 15 done primarily by sciemtists or engineers, who have 1ittle
training in the formal aspects of software development. These groups are
fighly motivated to get a program running in the shortest time possible. The
results of this expediency is that the users find the bugs in a software sys-
tem, after the system is put inte production. While this costs the developer
very little, it potentially costs the user orders of magnitude mere than it
would cost the devaloper to fix the defect during the development phase. The
cost of fixing an arror, both in time and money, increases dJdramatically as the
life cycle progresses. Figure 10,1 illustrates this peint {Wilburn 1983a),

10.1.1 Effects of Yerification

Implementation af a verification methodology results in systematic review,
analysis, and testing employed throughout the software life cycle. Yerifica-
tion ensures the production and maintenance of reliable and high quality soft-
wara, There are two fundamental criteria for reliable software. The First is
that the software adequately and correctly performs all intended functions.

The second, and nore subtle, criterion is that the softwarse does not perfarm

10,1

1
(T -
L") .
AELATIVE
Coar 1o
CORAECT 17 b=
ERRGN
§ =
1 —
] i ! [I

PRELIMINARY | DETAILED L CoRE] INTEQRAATE] VALIDATE |. OPERATION
DEIHIN DESIIN AND
DERUG

FIGURE 10.1, Software Error Cost Versus Software Development Phase

any function that either by itself or in combination with other functions can
degrade the performange of the entire system,

Yerification has caused major changes in the pragtice of software devel-
opers. "Black-art" programming practices have been replaced with plannad,
systematic program development. Each phase of development is considered com-
plete anly when the phase has been documented and reviewad sufficifently so that
an independent person can easily understand and evaluate the documentaticn.

One criticism of varification programs is that they substantially increase
the cost of saftware development, However, when the total cost of software is
considered (1.e., the costs throughout the total software life cycla, from
inception to decommissioning)}, verification actuaily results in a reduction in
the overall cost of software devalopment,

10,1.,2 Verification Concepts

This section describes a number of concepts associated with the verifica-
tion process (Wilbuen 1983a). In general, these contepts will affect at least
one of the phases of the software 1ife cycle. Table 10.1 presents these con-
cepts, which are discussed below.

10,2

TABLE 10.1. VWerificatioen Concepts

5RS Is Required

Baselines Must Be Congruent

Verification Is Not Only Testing

Verification Should Be Applied to A1l Components
Verification Should Be Applied to Al)l Changes
Yerif{catjon Should Be Independent of Development
Yerification Costs Can Be Reduced Using Automated Tools
Yerification Requires Training, Judgment, and fxperfence
VYerification Must Be Done by More than One Methed

A Yerification Plan Is Required

Yerification Should Include a Metrics Group
Yerification Must Be Tailcred to the Project
Organization 3tandards and Guidelines Are Required
Enforcement Is Required

SCM 1s Required

Accurgte Records Must Be Kept

Management Must Show Commitment

*« & & ° & @

SRS Is Mandatory: The Software Requirements Specification (SRS), which is the
first praduct 1n the software life cycle, s a requirement for any verification
program, The SRS forms the foundation for determining the correctness of a
software system by specifying what the software is supposed to do, Unless the
tester, developer, and user know what the program is suppused ta do, the pro-
gram s essentfally impossible to verify.

gaselines Must Be Congruent: Y¥Yerification must check the consistency between
successive levels of detail within and between succestive baselines {i.a.,
products of successive 1ife cycle phases}. The extent to which this can be
accomplished depends on the information contained at each level in the respec-
tive baselines. The design specification, for example, can only be verified
2gainst an unambiguous and complete SRS, In this manner, verification ensures
that what is intended in one baseline gr 1ife ¢ycle phase is actually achieved
in the succeeding one. In other terms, the verification process must establish
traceability betweea 1ife cycle phases, A systematfc mathod for carrying out
this traceability should also be included within a software confiquration man-
agement program, which is described in Chapter 9.0.

Yerification [s Mot Only Testing: Verifigation should be integrated into zll
phases of the software development 1ife cycle, rather than isolated in a sepa-
rate testing stage, which takes place long after Lhe requirements specification

10,3

and design phases. Testing is one aspect of verification, but 1t camaot do the
whole job. VYerification is most effective and efficient when applied from the
beginning of the development process.

Verification Should Be Applied to All Compeneans: Many software products are
created within each software life cycle phate 244 include intermediate pro-
ducts, support software, or tools that have been cr2ated for tha particular
development process. VYerififcation should be appited to these components, as
wall as to the end products, to accomplish a qualtty end-product.

Yerification Should Be Applied to All Changes: Because of their high cost,
documentation and verification of software changes are sometimes omitied, with
sgevere Lonsenuences to the gverall project, If the changes are significant
{i.e., 2 modification to the ¢riginal requirements), the change should be
implemented as though a new pigce of software were heing developed. Modifi-
cation or ¢orrection to the software structure at later phases requires reveri-
fication of the original structure produced during previous phases.

Yerification Should Be Independent of Development: Independent verification by
a group separate from the development group s vsually necessary, A software
developer has a vested interest in showing that the piece of software works
because it reflects on his other skills as a developer. A group independent of
the development process is5 likely to do a more thorough and ebjective job of
planning and executing the software verification, producing a series of complax
tests and verification methods. Anothep motive for an independent verificalkion
teaT is 1ts freedom from preconceived ideas that may create blind spots in the
evaluation.

Yarification Costs Can Be Reduced by Using Automated Toals: Hany activities of
the verification process throughout the software Tife cycle can be reduced in
cost using automated taoocls, OGovernment and industry publications are available
that give extensive lists of these tools (see Houghton 1880, 1981, 1932, [EEE
1979a, NBS 1981).

Yerification Requires Training, Judgment, and Experience: The use of verifica-
tion does not of itself guarantee success. Success depends heavily on the use
of judgment, training, and experience by the individuals involved. It is best
to use paople who have experience in software development projects that have
employed software engineering and verification methodologies,

Yarification Must Be Done By More Than One Method: Traditionally, testing has
been the only methodology of software verification. However, a single method
aof verification cannot provide sufficient substantiation of the correctness and
reliability of the software.

A Varification Plan [2 Required: A plan must be created to describe the veri-
fication process In detail. A software verification plan describes the verifi-
cation approach and methods of performance, specifies how errors will be
reparted and documented, specifies the level of detail, and establishes the
deqrea of rigor to be imposed in accordance with system criticality {ANSI/IEEE
1984},

10.4

Verification Should Include a Metrics Group: A metrics group is responsible
for quantitative data collection, and the metric analysis and forecasting of
the expected number of errors, This group defines useful metrics and uses them
to forecast results with maximum effectiveness. A discussion of the types of
Tetrics and data that are appropriate to collect are covered by Wilburn

1983a).

Yarification Must Be Tailored to the Project: The ¢riticality of the software
project determines the amount of verification necessary., The decision as to
how much verification should be used is basically ome to be made by project
management. VYerification should, however, always be applied to critical areas
of a particular piece of software,

Organization Standards and Guidelines are Required: For the verification pro-
cess to proceed systematically, company standards and guidelines need to be
developed to guide the development process. These standards and guidelines can
either be developed in-house or by an organization such as IEEE.

Enforcement. Is Required: The lack of enforcement of appropriate standards and
gquidelines on the earlier products of the life cycla make code verification
difficult, time-consuming, and almost fmpractical.

SCM Is Required: A software configuration management (SCM) system [described
in Chapter 9.0) is requires that identifies and controls approved and imple-
mented changes. It is vital that any changes found to be necessary to the
verification process are correctly implemented.

A configuration control librarian is given the responsibility for ensuring
that all development materials {such as the SRS and other products, tape and
card decks, and program listings) are complete, current, and unaltered. Verf-
fication materials such as tools, test data, and test results are similarly
controlled by SCM procedures and the configuration contral librarian,

Accurate Records Must Be Kept: Many documents may be generated during the
software 1ife ¢ycle that record verification activities., These documents
include review reports such as the software requirsments specification reviews,
design reviews, and the verification readiness review; inspection reports that
result from desk checks of software or other basaline documents; software veri-
ficatfon reports that describe the tests that have been run on the system:; and
any data collected by a software metrics group.

Management Must Show Commitment: For verificatfon to be an effective process
in spftware development, management must he committed to the fdea. Unless top
management is committed to verification, there s little incentive for project
managamant to follow verification practices. In fact, verification may be per-
ceived as undesirable because of the additional short-term cost of verification

effurts.

Management cannot assume thab nprogrammers know how to carry out software
development and verification properly., Most inexparienced programmers and
software developers tend to generate complex and poorly documentad codes.

10,5

Tharefore, trafning programs, in addition to appropriate software development
standards, are required. In assocfation, management incentives must be pro-

vided to oroject management and softwarz developers to encourage use of these
training programs.

10.1.3 VMerification Methods Across the Software Life Cycle

The sections below describe how verification methods can be implemented in
each phase of the life cycle. Appendix A of Wilburn's work (1583a) references
more than 30 verification methods that can be used throughout the software life
cycle. These verification methods are summarized below.

Requirements Specification

Software Requiraments Analysis: Software requirazments analysis is one of
tha most important verification methods because the derivation of formal speci-
fications is ane of the most errar-prone of all programming activities,
Regquirements analysis is performed by the development team to ensure that each
software requirement is complately and correctly defined. The checklist given
in Appendix C {Wilburn 1982b) can also be used effectively in this analysis.

Unique Tagging of Requirements: The verification process throughaut the
software 1ife ¢ycle 1s substantially easier if each requirement iz given a
unique identification or tag,

Writing of Testable Requirements: An adequate verification process beqing
in the SRS activity with the writing of valid testable requirements. The veri-
fication should specify criteria that can be measured to determine whether they
have heen successfully met, rather than simply stating general requirements,

Use of Requirements Specification Languages: Many of the mistakes
{defects]) of the 3RS can Ge eliminated by us¥ng better methods of problem dafi-
nition, i.e., using specification lanquages. Languages such as SREM and POL
are being developed to address problem definition, The use of these languages
makes each requirement more quantitative and testable, which, as noted above,
is required for proper verification.

Use of Structured Methods: By systematically braaking down a complex
problem Tnto a number of intellectually simpler problems, solukions can be con-
structed for each "subproblem." These solutions are probably more correct and
easily verifiable than those from the total problem. S3imilarly, because of
these simpler problem pieces, tests can be generated more easily, This is the
essence of the structured approach.

Model Verification: Part of the requirements definition phase in scienti-
fic and engineering software davelopment s definition and incorporation aof
mathematical models to describe physical processes, To assure that these
models are adequate, a model verification methadology should be incerporated.
The following approach may be used:

18.6

1, establish the 1imits of the system inputs over which the model is
believed to be valid due to appreximations used in modeling and/or
physical constraints

2. determine the varlability in performance of similar scftware systems
given the same inputs

3, establish prediction error tolerances for the software system being
considered

4, run a simulation of the software system and establish acceptable
bands arcund each simulation

5. superimpose any experimental data on simulaticn results
6. ijdentify data points that fall outside the bands,

Functional Spacificatfon/Detailed Softwars Design

Several methodologies can be incorporated into the function specification/
design phase af the saftware 1ife cycle which will result in software that is
easily verifiable during the software construction and software verification
{or testing) activities, and which also will lead to higher quality software
with less propensity to failure, Some of these methods are identified below,

Defensive Dasign: Oefensive design is basically the use of design method-
ologies known to rasylt in high quality software. Examplas are use of appro-
priate standards and guidelines; use of design margins; design that anticipates
defects; avoidance of intertwined control constructs; use of a hierarchical
design structure; use of a program design langquage: and use of principles of
medular design with ¢oherent, cohesive modules.

Fault-Tolerant Design: The impact of program faflures can be reduced most
effectively during the design phase by first explicitly ident{fying assumptions
whose violations would be critical to acceptable program operation. The
desfgnar should then specify how the program should bashave if any of these
assumptions are viplated, Such a "fault-tolerant" design makes software con-
tinue to function successfully in spite of failures when faults occur.

Use of Structured Techniques: A higher quality and more easily veriffable
product 15 wsually achieved by applying approaches popularly known as strug-
tured techniques. The cbjective of these technigues is to reduce the complex-
ity of the design and verification of the software by dividing the system into
intellectually manageable components.

Completensss of Design Documentatign: The farm and completeness of design
documentation are a2 significant part of the werification process, Thay deter-
ming the feasibility of 1) verifying that the dasign is consistent with and has
satisfied the requirements, 2) performing consistency and completeness checks

10,7

within the design itself, 3) verifying the consistency of the code with the
design, and 4) providing a more therough testing of the code based on the
design.

Thraading of Design to SRS: Tracing and verifying regquirements as they
are interpreted into the design and then into code is a major problem, One way
of tracking requirements is to note the driving reguirement for each design
element or section of code in the design representatign, or as comments in Lthe
code or listing. A master requirements tracking document can summarize for
each requiremant the locatien of the related degsign elements or ¢ode sections.

Dasign Analysis: Design analysis ensures that the computer program design
is corract and that it satisfies the defined software requirements, The first
step in design analysis {s to check for design completeness by correlating
design elements with thair source requirements, Technigues are then applied to
verify design elements such as mathematical eguations, algorithms, and control
legic, Techniques for verifying the mathematical elements include {ndependent
derivation, dimensiaonal analysis, and comparison to ocutside references, To
verify certain algorithms, such as those for estimation and automatic control,
simulation models are used ta evaluate the algorithm’s response to external
stimuli, Control logic is more difficult to verify; it 15 best analyzed by
determining the set of conditiaons for which the program must execute correctly,
then manually analyzing the logic paths for each condition,

Coding and Software Generation

Many varification methods can ba in¢corporated into the software coding and
genaration phase to improve quality, reduce error rate, and increase reliabil-
ity, The following sections present some of these methodologies.

Team Efforts: Software {s best developed by teams. An advantage of team
development 15 that it can compensate for individual differences. A team can
find defects overlooked by individual membars in their own work and <¢an keep
the same problems from resurfacing, The exchange of information at team meet-
ings keeps all members up to date on various problems.

Peer Review: Peer review 15 a technique of evaluaking programs in terms
of overall guality, maintainability, extensibility, and usability.

Coding Standards: The use of coding standards in the development of soft-
ware permits reviewers to be on commen ground when they are verifying a soft-
ware module, If each software module throughout the project is formatted like
every other, a reviewer will zlways be in familiar territory., A similar format
expedites the review process and makes possible the relatively sasy identifica-
tion of errors fn format and deficiencies. It is strongly recommended that a
coding standard be utilized and developed for each softwars development
praject,

Self-Descriptive Programs: Self-dascriptive programs incorporate documen-
tation (whether it is design or requirements specifications} into the sourca
program itself, Documentation internal to the program makes the verification

10,8

and testing easier, and is a powerful incentive for proper maintenance and an
assurance that documentation will be accessible to the user. In the case of
scientific software commentary which references the source of the equations,
the models, and the logic are of great help to reviewars and users in verifica-
tion and validation of the software or in establishing the adequacy or applica-
bility of the software.

Code Analysis: Code analysis s performed to verify that the computer
program, as coded, correctly implements the specified design. Code analysts
axamine the program's source language and its compiled or assembled gbject code
wsing a variety of techniques. The equations and logic of the source language
program are reconstructed, either mapually or using automated aids, and com-
pared to those specified in the design to identify errors made in translating
tire design inte programming language, VYi{olatfons of programming standards are
also identified.

Assertions and Assertion Checkers: The use of assertions and asseciated
assertion checkers come under the general heading of self-validating programs,
The program is instrumented with dynamic assertions, and then usually a pre-
processor is used to generate the approprfate code in the high level language
that is being used to check the assertions during code operation. Assertions
should be placed between statements such that every loop and every branch are
cut by at least one assertion. Assertions are a claim that the stated rela-
tions hold at this point each time the program control reaches that point.

Parallel Design of Module Tests: An effective means of validation during
software construction is to design the module tests in parallel with the con-
struction of the module., When applying criteria to ensure that the module is
affectively tested, logic errors will often become readily apparent to the
developer,

Jata Flow Analysis: 1f, in the design of a program module, each subrou-
tine parameter 1s classifted as fnput, gutput, or computational, data flow
analyses can then be used to ensure that 1} all input variables are only refapr-
enced and never assigned values, and 2} all output wvalues are always assigned a
value along some path through the program. In data flow analysis, the goal is
to trace the behavior of program vartables as thay are initialized or modified
while the program executes. Data flow analysis is performed by asseciating at
aach node fn the data fiow graph values for the tokans that reprasent program
variables, and by indicating whether the carrespanding variable is referenced,
unreferenced, ar defined with the axecution of the statement represented by
that node. Some data flow analysis methods can be automated.

Code Instrumentation: <£ode instrumentation is fnserted into the program
solely to measurs program characteristics, Knowledge of these characteristics
can e wseful for program verification., For medium-sized and large projects,
toals can be acguired or developed to do instrumentation automatically. For
small projects, the programmer can do his or her own instrumentation. Examples
af the type of analyses that can be performned using code instrumeatation
include the following: auxiltary coding such as chacking array bpundaries,

0.2

checking loop contrel variables, determining if key data values are within per-
missible ranges, tracing the execution, and couating the number of times a
group of statements is executed,

Static and Dynamic Analysis: Static analysis focuses on the form and
structure of the programming module, but not on the fun¢tional or computational
aspects, [t detects classes of errors or error=-prona constructs or anomalies,
Dynamic analysis usually consists of 2 three-step process: 1) static analysis
plus instrumentation of the program, 2) execution of the instrumented program,
and 3) analysis of the instrumented data. Often this process is accomplished
interactively through automated tocls.

10,2 TESTIKG

Software testing is the final verification activity in the software devel-
opment phases of the software lifa cycle and includas software unit, subsystem,
and system testing, This activity should follow the procedures detailed 1n the
software verification plan. The subject of software testing is very broad.
HMany backs, reports, and papers have been written on this subject (see Adrion
et al, 1981; Beizer 1983 and 1984, Branstad et al. 1980; Computer Program Test-

ing 1981; Glass 1979 IEEE 1978, 1983f; ANSI/IEEE 1987; Infotech [97%9a and
19/79h; McCabe 1982; Myers 1976 and 1979; Powell 1982a and 1982b).

The objective of testing during software development is to provide assur-
ance that the software performs as specified by its technical and operational
requirements, which are detailed in the SRS and design dacumentation. Testing
activities should be designed to assure that these objectives are achiaved in
an orderly, cohesive, ¢lear, and controlled fashion. An effective SQA testing
program mest start with the requirements definition phase and address any test-
ing performed throughout the software 1ife c¢ycle, including the operation and
maintenance phases.

10.2.1 Planning
A test plan document should include {Lipow et al. 1977):

& a description of the purpose and scope of each level of testing to be
conducted on each deliverable item or support item

s fdentification of the arganization responsible for each lewvel of
testing

« fdentification and description of the pre- and post-test documenta-
tion to be generated for each level of testing, including test speci-
fications, procedures, and logs

s test methods to be used to establish compliance (i.e., test by func-
tion or structure}

10,10

¢ ldentification and use of the suppart software and tomputer hardware
to be used in testing

e test standards and quality criteria for acceptance to ba employed.
10.2,2 Performance

The performance of testing should follow the develgped test plan in
detail, keeping appropriate records. Individual tests that are apprepriate to
specifi¢c cases can be designed using recommendations from the references
identified in Section 10.2.

10.2.3. Review

The SQA plan should identify the activities for review of software testing
which should include (U.5. DOD 1979):

e review of the software requiraments to determine their testability

o review of the test plans and procedures for compliance with appro-
priate standards and satisfaction of contractual requirements

¢ review of the test requirements and criteria to be used to d=termine
their adequacy, feasibility, and the satisfaction of the requirements
specification

¢ monitoring of the test and certification processes to establish that
the test results are indeed the actual findings

¢ review and certification of test reports

& assurance that test-related documentation js retained tg allow
repeatability of the tests,

Review procedures should follow the racommendations given fn Chapter 7.0 and be
incorporated into astabiished milestones,

10.2.4 Acceptance Testing and Cert{fication

Acceptance testing and certification are related to tasting performed
during software davelopment. In fact, many tests used in acceptance testing
are identical ta those performed during development testing; however, accep-
tance testingfcertification is more formalized than development testing.

Acceptance testing fs defined as “formal testing conducted te determine
whether a software system satisfies its acceptance criteria and to enable the
customer to determine whether to accept the system" (Powell 1982b;,

Formal testing includes the planning and execution of sevaral kinds of

tast, (e.g., functional, volume, performance tasts to demonstrate that the
implemented software satisfies customer requirements for the software system,

10,11

Acceptance testing consists of three activities and many sub-activities. Ref-
erence should he made to Wallace (1988} for an overview of software acceptance
testing and an extensive bibliography on the subject.

The first activity, test plamning, determines, from the softwarz require-
ments, what tests should be performed for each software function and what tests
will exercise the entire computer program’s functions or modules, An accep-
tance test plan 15 developed from these findings and the test procedures pre-
pared to specify the actual acceptance tests in detatl. Second, the acceptance
testing #s conducted to establish the proper execution of each software func-
tion, Third, analysis is performed to demonstrate that the integrated software
has operated carrectly in the use environment,

Performing adequate acceptance testing requires that each software
raguirement be identified according to some numerical or other scheme. This
allows a specific requirement to be tested with an appropriate result, so that
it can be recorded that the function was indeed performed correctly. Detailed,
adequate testing can be expensive and time=-Consuming, Howevar, in the long
run, the time spent and the cost involved are justified, Certification of the
software is indicated by signatures of the concerned parties that testify the
software has indeed performed its functions as speci{fied and is ready for oper-
ational use.

10.2.5 Operation/Maintenance Testing

During the course of day-to-day code operation the software system should
be routinely tested, following the same procedures established in the test
planning documentation described above in Section 10.2.1. The results should
be compared with the original results which are to be maintained under configu-
ration management. Such routine testing {egpecially after any maintenance
activities or operating system changes] is known as regression testing and may
identify either software degradation or hidden changes in the environment which
compromise the validity of the software.

10.12

11.0 CONTROL OF SOFTWARE PROCUREMENT

Procured software generally consists of two types. The first type of
software is developed specifically for a particular organization and 15 new
code. This type is dealt with in Sectiens 11.1, 11,2, and 11,3, The secend
type of software is that which has been developed previcusly and is befng pro-
vided "off the shelf” by the supplier (see Section 11.4}.

It is essential that appropriate S0A requirements be imposed upon all
suppliers of saftware to a nuclear utflity {Lipow et al. 1977). This can be
achieved by including appropriate supplier 5GA requirements in the Request for
Propasal and monitoring the supplier's conformance to these requirements,

11.1 REQUIREMENTS FOR THE SUPPLIER'S SOA PROGRAM

[t is recommended that any organization supplying software to nuclear
utilities have a defined 5QA program. The supplier's S0A program must include
the following:

e definition of a software life cycle with intermediate milestones
e commitment tgo specific documentation to be supplied to the user

e commitment regarding the level of detail to be contained in the
documents

& &s5tablished review procedures
e existence of a verification and validation effort

+ identification of software development tools and technigues used in
the effort

» system of software configuratign management

+ methods to provide assurance that the S5QA program is actually being
implemented as written,

The purchasing organization should evaluate 1ts choice of suppliers {Lipow
et al. 1977) bhased on the following considerations:

e the extent of and specific interacticns between the software devel-
gpmant organization (the developer) and the purchasing organization
{user}

e description and assurance of implementation of the software life
cycle utilized by the developer

11.1

« description and implementation of the developer's software problem
reporting and corrective action processes

¢ descriptfon and implementation assurance of configuration contrul énd
management of the software throughout its life cycle

+ devaeloper's methods of assuring that the user's requirements for the
software have baen met

+ documentation included in the software package delivered to the user.
Criteria for evaluating each area given above will be established by the pur-
chasing: urganization and will be highly dependent on the end use of the soft-

ware 1o be developed. Examples of questions to be addressed fn the procurement
process are provided in Appendix B,

11.2 AUDITING OF THE SUPPLIER'S SQA PROGRAM

The purchasing organization should audit the supplier organization to
assure that each item that the supplier specified will be performed was pers
formed adequately. The supplier's 304 plan and procedures for its implementa-
tfon should be reviewed as well, At specified intervals, the supplier's con-
trol activities shauld be reviewed, including applicable records. These activ-
ities should establish that problems fdentified are corrected quickly and that
the results of the corrective action are documented. Sufficient records should
be maintained to demonstrate the effectiveness of the SQA program.

11,3 HONCONFORMANCE OF A SUPPLIER

Penalty clauses should be written into procurament documentation to
enforce the conformance of the supplier (developer) to the spacifiad 508 pro-
gram, The penalty clauses should be strong enough to deter the supplier from
deviating from the plan established when the contract was established. In this
manner, preventative rather than punitive actions will be taken to assure com-
pliance to the specified 3QA program.

11,4 TRANSFER OF RESPONSIBILITY

Procurad software typically enters the organization's 1ife cycle at the
operational phase, where responsibility for configuration managament and code
control s transferred to the buyer/user,

This approach to using software "off-the-shelf" has several disadvantages,
including lack of control over the initial phases of the 1ife cycle. The soft-
ware package procured from gutside suppliers must meet the same QA requirements
as software designed within the organization, Verifying that software indeed
meets the specified criteria for its code class relies on establishment that
the design process for that software has been carried out in the structured,

11.2

systematic manner described in this document. Requisite documentation must be
incTuded as part of the delivered software package, Accaptance test:s on the
purchasing arganization's computer myst be planned, designed, and carried out
in accordance with the software's requirements specifications.

After the code has been tested and/or verified on the purchasing organiza-
tfon's system, the software must be placed under configuration management .
From that point forward, the code is handled and treated as software developed
by the crganization, and the software life cycie is implemented as described,

Ancther commpn situation is for facilities to purchase use of software via
a "software clearinghouse.” These companies provide read-only access to soft-
ware used by the nuclear community, In this case, the clearinghouse places the
software under configuration control and allows access to software on a con-
tractual basis. However, this does not absolve the user facility of respon-
$ibility for controlling use of the software and knowing specific information
about that software. For example, it is important to know version numbers of
the softwiare used to perform calculations, the dates they were run, and who ran
the code. Furthermore, it is imperative that the purchasing crganization have
a2 systematic means of informing all past code users of updates, bugs that have
been identified and fixed, and planned changes to the software. To do this, a
contractual obligation must be established that requires the clearinghouse to
infarm the user organization of such conditions, Furthermore, the user facil-
ity must assure that someone s responsible for getting this infarmation dis-
tributed to the approperiate people within the organization,

Purchasing of f-the-shelf software does not absolve the user facility of
responsibflity for accuracy of calculational results, identification of soft-
ware errors, and assessment of impacts caused by software errors identified by
other users.

REFERENCES

ANS. 1982, Application Criteria for Programmable Digital Comguter Systems of
Nuclear Power Generating Stations. ANS/TEER-7.4.3.2-T982, American Wational
Standards Institute/Institute of Electrical and Electronic Engineers, Inc.,
New York,

ANSI/ANS, 1987, American National Standard Guidelines for the ¥erification
and V¥alidation of Scientific and Engineering Computer Programs for the
Wuclear industry. Approved Oraft Standard, ANSL/ANS 10.4, American Nuclear
Society, La Grange Park, I1linois.

AMSIKA&S. 1986, American National 3tandard Guidelines for the Documentatior
of Digital Computer Programs., ANSI/FANS 10.3-1580, American Huclear society,
La Grange Parke, Illinois.

ANSIJANS, 1979, Guidelines for Considering User Needs in Camputer Program
ANST/ANS-10.5-1973, Rmerican Nuc ear society, Laarange Park,

Davelopment .
1111nois.

ANSI/IEEE, 1937, 5&Standard far Software Unit Testing., MNASI/IEEE Standard
1008-1987, American Mational Standards [nstitute/Institute of Eiectrical and

Elactronic Engineers, Inc., New York.

ANSI/IEEE, 1984, IEEE Standard for Software Quality Assurance Flans.,
ANSI/IEEE Standard /30-1984, American Nationdl Standards Institute/Institute
of Electrical and Electronics Engineers, Inc,, New York,

ATC, 1983, A FORTRAN Coding Standard. Associated Technolagy Co., Estill
5prings, Tennessee,

ATC, 1985, A Product Level Software Documentation Guide. Associated Tech-
nolegy Co., Estill 3prings, Tennesses,

Adrfon, W, Richard, Martha A. Branstad, and John C. Chernlavsky. 1981, Vali-
datfon, Yerification and Testing of Computer Software. MBS Spacial Publica-
t1on NB>-5F-500-7%, Wational Bureau of Standards, Washington, 0.C.

Arthur, Jay. 1984, '"Software Quality Measurement." Datamation, p. 115
(December issue).

Barikh, Girish, 1980, Techniques of Program and Systems Maintenance. Ethno-
teeh Ine., Lineeln, Mebraska.

Befzer, Boris, 1983, Software Testing Techniques, Yan Nostrand-Reinhold, Mew
Yark,

Beizer, Boris, 1984, Sgftware System Testing and Quality Assurance. Yan
Mostrand-Reinhold, New Yerk,

Bersoff, E. H., ¥. D. Henderson, and 5. E. Siegel. 1979%. "Software Configur-
ation Management--A Tutorial." IEEE Computer 11(1):6,

Bersoff, £. H., ¥. D. Henderson, and 3, E. Seigel, 1979b, ‘“Attaining Software
Product Integrity.* In Proceedings of the Computer Software and Applications
Conference 1979 (COMPSAC-79), p. 680, TEEE Computer Society Catalcg
F9LHIS15-6C, Institute of Electrical and Electronics Engineers, Ing., New
York.

Bersoff, E. H., ¥. D, Hendersen, and 5. E. Sfegel. 1580, Software Configura-
tion Management=-=An Investment in Product Integrity. Prentice-Hall, lnc.,
Englewood C1iffs, New Jersey.

Boehm, B. W., J. R. Brown, and N, Lipow. 1976. "Quantitative Evaluation of
Software Quality." In Proceedings of the 5econd International Conference on
Software Engineertng, p. 597. IELE Lomputer society Catalag 76CHI1Za-9C,

Institute of Electrical and Electrenics Engineers, Inc., New York.

Boahm, Barry M. et al. 1978, Characteristics of Software Quality. HNorth
Halland Publishing Co., New Yeork.

Boehm, B. W. 1976. "Software Engineering,” [IEEE Transactions on Computers
C=25(12):1226-1241,

Boehm. B. W, 1979, ‘“Software Engineering As 1t Is." In Procesedings of the
Fourth International Conference on Software Engineering, p. 11. LEEE Catalog
FICHL4/3-50, Institute of Electrical and Electronmics Engingers, Inc,,

New York.

Branstad, Martha A,, Jobn C. Cherniavsky, and W. Richard Adrion, 1980, "Vali-
dation, Verification and Testing for tha [ndividual Programmer." Computer
13(12):24,

Brown, John R, 1979, Programming Practices for Increased Software Quality."
In Software Quality Management, p. 197. Petrocelli, New York/Princeton.

Bruce, P, and S. M. Pederson, 1982, The Software Development Project--
Planning and Management. J. Wiley and 5ons, Inc,

Buckley, F. J. and R. Poston. 1984, "Software Quality Assurance,” In IEEE

Transactigns on Software Engingering SE-10{1}:36, Institute of Electrical
and Electronics Engineers, Inc., New York,

Carrow, J, C, 1976, "Structured Programming: From Theory to Practice.” In
Proceedings of the Second International Conference on Software Engineering,
p. 3/0, Ttk Catalog 76CHIT2E-4C, Institute of Electrical and Electronics
Engineers, Inc., New Yaork.

Computer Program Testing. 1981, HNorth Helland Publishing Co., Amsterdam, New
York,

R.2

Cooper, John D, apd Matthew J. Fishar, eds. 1979, Software Quallty Manage-
ment, Petrocelli, New York/Princeton.

DeMarco, Tom. 1982, Controlling Software Projects--Management Measurement and
Estimation, Yourdon Press, I[nc., Mew York,

Deutsch, Michael §, 1982, Software VYerification and Validation--Realistic
Approaches. Prentice-Hall Inc¢., Englewcod CTiffs, New Jersey.

Doggett, R. B., Z. E. Carey, and N, P, Wilburn. 1983, OGuidelines--Software
Configuration Management. HEDL-TC-2263, Westinghouse-Hanford Co., Richland,
Washington,

Bunn, Robert and Richard Ullman. 1982, Quality Assurance for Computer Soft-
ware, MeGraw-Hi1l, New York.

Enas, Judith L. and R, L, Yan Tilburg. 1981, "“Tutorial Serfes 5: Software
besign.” Computer 14(2):61.

Fairley, Richard E. 1985, Software Engineering Concepts. McGraw Hill Book
Co., MNew York,

Fife, Dennis W. 1977. Computer Science and Technology: Computer Software
Management, & Primer for Project Management and Quality Controi. NBS Special
Fublication WNB5-5P-500-11, National Bureau of Standards, Washington, D.C.

Fisher, Curt F, 1978, "Software Quality Assurance Toels: Recent Experience
and Future Requirements.” In Proceedings of the Software Quality Assurance
Workshop, Wovember 15-17, 1673, San Diego, California, p. 116, ACM, Rew

ore .

FureTa?, Jo J. 18980, "Implementing Software Standards.” IEEE Computer
13(6):67.

Freedman, Daniel P, and Gerald M, MWeinberg., 1979, Ethmotech Review Hand-
book. Ethnotech, Inc., Lincoln, MNebraska,

Fujii, Marilyn S. 1978, “A Comparison of Software Assurance Methods." In
Proceedings of the Software Quality Assurance Workshop, November 13-17, 1978,
an UDiego, Lalifornma, p. . ACM, New York.

Gane, Chris and Trish Sarson., 1977, 3Structured Systems Analysis: Tools and
Techniques. McDonnel1-Douglas Automation Co., St. Louts, Missouri.

Glass, Robert L, 1979, Spftware Reliability Guide Book. Prentice-Hall, Inc,,
Englewood Cliffs, Mew Jersay,

R.3

Glass, Robert L. 198la, "Standards for 5tandards Writers.“ In Proceadings of

Software Engineering Standards Applications Workshop [SESAW-1), San
Francisce, California, p. 144, IEEE Computer Socrety Catalog B1CH1633-7,
Institute of Electrical and Electronics Engineers, Ing., New York.

Glass, Robert L. and Ronald A. Mofsex., 1981. Software Maintenance Guide
Book. Prentice-Hall Inc., Englewnod Cliffs, New Jersay,

Gopdengugh, Jdohn B, 1979, “A Survey of Program Testing Issues.” In Research
Diractions in Software Technology, p. 316, MIT Press, Cambridge,
Massachusatts.

Gustafsan, G, G. and B, J. Kerr. 1982, "Some Practical Experience with a
Software Quality Assurance Program," Communications of the ACM 25({1).

Holthouse, M, A, and 5. G, Greenberg, 1978, "“Software Technology for Scien-
tific and Engineering Agplication." 1In Proceedings of the [EEE Computer
Software and AppTications Conference {COMPSAC 78}, p. 814, IEEE Catalog
78CHI338-3C, lnstitute of blectrical and Electronics Engineers, Inc.,

New York.

Houghtgn, Raymond C., Jr. 1881, Features of Joftwiare Development Tools. MBS
Special Publicaticn 500-74, Mational Bureau of Standards, Washington, 0.C.

Houghton, Raymand £., Jr. 1982, Software Development Toals. MBS Special
Publication MNES-5P-B00-88, National Bureau of Standards, Washingten, D.G.

Houghton, Raymond C., Jr. 1983, "Software Development Tools: A Profile."
Computer 16{5):63,

Houghton, Raymond C.. Jr. and Karen A, QOakley. 1980, NBS Software Tools (Data
Base, NBS Special Publication NBS-1R-80-2159, National Bureau of Standards,
Washingten, 0.C.

IEEE. 1978, Tutorial: Scoftware Testing and Validation Techniques. IEEE
Computer Society Catalog EHUL38-8, Institute of Electrical and Electronics
Engineers, Inc., HNew York,

IEEE. 1979a. Tutgrial: Automated Tools for Software Engineering, IEEE Com-
puter Seciety Catalog EHUOLSU-2, Institute of Electrical and Electronics Engi-
neers, Inc., New York.

IEEE., 19790, Tutorial: 3Software Management., [EEE Computer 3ociety Catalog
EHOLl46-1, Institute of Electrical and Electronics Engineers, Inc., New Yark.

TEEE, 1979¢. Standard Computer Dictionary, IEEE Computer Society, Institute
of Electrical and tlectronics tngineers, Inc., New York,

R.3

IEEE, 1980a. Tutorial: GSoftware Configuration Management. IEEE Computer
Society Catalog EHU169-3, Institute of Electrifcal and Electronics Engineers,
[ne., New York.

IEEE, 1980b, Tuterial on Software Design Techniques, ITEEE Computer Society
Catalog EHO16I-0, Institute of Electrical and Electronics Engineers, Inc.,
New York.

IEEE, 1983a, IEEE 3tandard Glossary of Software Engineering Terminology.
IEEE Standard 729-1983, Institute of tlectrical and Electronics Engineers,
Inc., Kew York.

IEEE. 1983b, IEEE Standard For Software Configuration Management Plan, IEEE
Standard 328-1383, Tnstitute of Electrical and Electronics EngTreers, Inc.,
New York.

[EEE, 1983c. SOFTFAIR: A Conference on 5Software Davelopment Toals, Techni-
gues, and Alternatives. IEEE Computer JSociety Catalogq S3CHISIF-0, Institute
of Electrical and Electronics Engineers, Inc., New York.

[EEE. 1983d. Tutorial JSP and J5D: The Jackson Approach to Software Develop-
ment, [EEE Computer Society Catalog EHGZ06-3, Institute of Electrical and
fTectronics Engineers, Inc., New York,

IEEE. 1983e, Tutorial on Software Maintenance, IEEE Computer Society Catalog
EH0201-4, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1983f, IEEE Standard for Software Test Documentation. IEEE Standard
829-1983, Institute of Electrical and Electronics Engineers, Inc., New York.

[EEE. 1984a. IEEE Guide to Software Requirements Specification. I[EEE Stan-
dard 830-1984, Institute of Electrical and Electronics Engineers, Inc., New
fork.

{EEE. 1984b. Model Program in Computer S5cience and Endineering, IEEE Com-
puter Society, Institute of Electrical and Electronics Engineers, Inc., New
York. .

[EEE. 1986a. Guide for Software Confiquration Management. IEEE Computer
Saciety Approved Uraft Gulde P1032, Institute of Electrical and Electronics
Engineers, Inc., New York.

TIEEE, 1986b, Guide for Software Quality Assurance Plans, [EEE Guide 983-
1986, Institute of Electrical and Electranics Engineers, Inc., Mew York.
IEEE., 1986¢, Standard for Software Engineering Standards Taxonomy, ITEEE

Computer Society Approved Draft Standard P1002, Institute of Electrical and
Electronics Engineers, Inc., Mew York.

R.5

IEEE., 1986d, A Standard for Measurements to Produce Reliable Software., [EEE
Computer Society Draft Standard P982, Institute of Electrical and Electronics
Engineers, Inc., New York.

IEEE. 1986e. Standard for Software Yepritizit-o and Yalidation Plans, TEEE
Computer Society Approved Draft Standard °1012, Institute of Electrical and
Electronics Engineers, Inc., New York.

Infotech, 1979a, Infotech State of the Art Report--Software Testing, Yolume
1: Analysis and Bibiiography. Inftotech International Ltd., Berkshire,
enghand,

Infotech. 1979b, Infotech State of the Art Report--5oftwara Testing,
Yolume 2: Invited Papers. EInfotezh International Ltd,, Berkshire, England.

Jackson, M. A, 1875, Frinciples of Program Design. Academic Press, New York.

Kastelain, J. E. 1971, Quality Assurance Requirements During Flight Software
Development. TRW-55-71-05, TRW Systems Group.

Kernighan, Brian W. and P, J. Plauger. 1978, The Elements of Programming
Style. McGraw-Hill, New York.

Kerola, P, and P. Freeman. 1981, "A Comparison of Life Cycle Madels.” In
Praceedings of the Fifth International Confersnce an Software Engineering,
p. 90, IEEE Catalag BICHIAZ/-9, Institute of Electrical and Electronics
Enginears, lnc., New York.

Lattanzi, L. D, 1979, ™"An Apalysis of the Performance of a Software Davelop-

ment Methodology." In Proceedings of the Computer Software and Applications
Conference, {COMPSAC 797, p. 7. Institute of Electrical and Electronics

Engineers, Inc., New York.

Lipow, H., B. B. White, and B. W, Boehm. 1977. 5Software Quality Assurance, An
Acquisition Guidebook, TRW-55-77-07, TRW Systems Group.

McCabe, T. J, 1982, Structured Testing., [EEE Computer Society Catalog
EHB200-6, Institute of Electrical and ETectronfcs Engineers, Inc,, New York,

McCall, James A, 1979, "An Introduction to Software Quality Metrics.," In
Software Quality Management, p. 127. Petrocelli, Hew York/Princeton.

Myers, Glenford J. 1976, Software Reliability Principles and Practices.
Wiley-Interscience, Yew York.

Myers, Glenford J, 1979, The Art of Software Testing, Wiley-Interscience,
New York.

R.b

NBS. 1974. "Guidelines for Automatic Data Processing Physical Security and
Risk Management.” Fedaral Infarmation Processing Standards Publication 31,
Natipnal Bureau of Standards, Washington, D.C.

NBS., 1976, "Guidelines for Rocumentation of Computer Programs and Automated
Data Systems." Federal Information Processing Standard Publication 38,
National Bureau of Standards, Washington, D.C.

NBS, 1979, "Guidelines for Automatic Data Processing Risk Analysis.” In
Federal information Processing Standards Publication &5, National Bureau of
Standards, Washington, D.C.

MBS, 1930. "Geidelines for Security of Computer Applications." Federal
Information Processing S5tandards Publication 73, Matienal Bureau of Stan-
dards, Washingten, D.C.

NBS. 1981. Computer Made]l Documentation Guide. MBS Special Publication
500-73, Mational Bureau of 5Standards, Washington, D.C.

HBS. 1981. Proceedings of the NBS/IEEE/ACM Software Toal Fair., HNBS Special
Fublication HES-EP-SED-BH, Nattonal Bureau of Standards, Washington, D.C.

NBS. 1982. Proceedings of the NBS/FIPS Software Documentation Workshop. KBS
Special PubTication NBS-SP-500-04, National Bureau of Standards, Washington,
b.C.

MBS, 1%83. Guidance on Software Maintenance. N85 Special Publication NBS-5P-
500-106, National Bureau of Standards, Washington, O.C.

Neumann, Albrecht J, 1982. Management Guide for Software Documentation, WNBS
Special Publication HBS-SP-Eﬁﬁ-g?, Natfonal Bureau of Standards, Washington,
0.c.

MRC. 1982. Ingpection and Enfercement Manual-Computer Cede Development and
Use, USNRC Inspection Procedure 37998, .

Osterweil, L. J. 1982, "TOOLPACK--An Experimental Software Devalopment Envi-
ronment Research Project.” In Proceedings of Sixth International Cenference
an Software Enginearing, p, 166. TEEE Computer Society Cataleg OeLHL795-7,
Institute of Electrical and Electronics Engineers, Inc., New York.

Peters, L. J. and L. L. Tripp. 1978, ™A Model of Software Engingering.” In
Praceedings of the Third International Conference on Software Engineering,
p. 83, [Catalog 73CHL317-7C, Institute of Electrical and Electronics
Engineers, Inc., New York.

Poston, R, M, 1982, "Software Quality Assurance Implementation." In Froceed-
ings of Computer Software and Application Conference 1982 (COMPSAC-8Z], p.
. IEEE Computer Society Catalog BZCHI210-1, Institute of Electrical and

Elactronics Engineers, Inc., New York.

R.7

Poston, R. M, 1984, ‘"“Determining a Complete Set of Software Development Stan-
dards." Software 1{3}:87.

Paston, R. M, 1985, '"Software Standards." IEEE Software 2{1):83,

Powell, Patricia B., ed. 1982a. Software Validation, Verification and Test-
T111_33: Technigue and Tool Reference Guide, B85 Special Publication HBG~SP-
-93, National Bureau of 5Standards, Washington, 0.C,

Powell, Patricia B,, ed., 1982b., Planning for Software Yalidation, Verifica-
tion, and Testing. MNBS Special Publication NBS=-5P-500-%98, Natjonal Bureau of
Standards, Washington, D.C.

Reifer, Donald J, 197%a, "Software Quality Assurance Tools and Techniques.”
In Software Quality Management, p. 209. Petrocelli, New York/Princeton,

Riddle, W. E. and R. E. Fairley. 1980. Software Development Togols. Springer-
Yerlag, New York.

Ruder, Bryan and J. D. Madden. 1978. An Analysis of Computer Security 5Safe-

gards for Detecting and Preventing Intentional Computer Misuse. MBS Special
BubTicatfnn NES-SP-500-25, Mational Bureau of Standards, Washington, D.C.

Shankar, K, 5, 1977, "The Total Computar Security Problam: An Overview.™
IEEE Computer 10(6):50.

Steipauer, Dennis D. 19856, Security of Personal Computer Systems: A Manage-
ment Guide, NBS Special Publication NBS5-5P-500-120, WHational Bureau of Stan-

dards, Washington, D.C.

Sheron, B. W. and A, R, Ros2tocsy. 1980. Report on Nu¢lear Industry Quality
Assurance Procedures for Safety Analysis Lomputer Code Development and Use,
NUREG-0653, U,S, Nuclear Regulatory Commission, Washington, U.C.

Tauswarthe, Robert C, 1977, S5tandardized Development 'of Computer Software:
Part I, Methods. Prentice-Hall Inc., Englewoad C1iffs, New Jersey.

Tausworthe, Robart C. 1979, Standardized Development of Computaer Software:
Part [1, Standards. Prentice-Hall Tnc., Englewood C1iffs, New Jersey.

U.S5, Department of Defensa, 1979, Software Quality Assurance Program Require-
ments. Military Specification MIL-5-RZ779A IS, Department of Defense,
Washingten, D.C.

U.5. Department of Defense, 1985, M{litary Standard-Defense System Software
Develeopment, DOD-5TD-2167, U.S5. Department of Defense, Washingion, D.T,

R.B

U.5. Nuclear Regulatory Commission, 1984, "Quality Assurance Criteria for
Muclear Power Plants and Fusl Reprocessing Plants." Appendix 8 of Code of
Federal Regulations, Title 10, Energy; Part 50, Domestic Licensing of Produc-
tion and Utflization Facilities. U.S. NRC, Washington, D.C. (10 CFR 50),

Wallace, D, R, 1986, Ar Uverview of Computer Software Acceptance Testing.
NBS Special Publication 500-136, U.5. Department of Commerce-National Bureau
of Standards, Mashington, D.C.

Wilburn, K. P. 19B2a. Guidelines for Technical Reviews of Software Pro-
ducts. HEDL-TC-2132, Westinghouse-Hanford Co., Richland, Washington.

Wilburn, N, P, 1982b., Guidelines--Software Reguirements Specification {5RS)
Document Preparation. HEDL-TC-2159, Westinghouse-Hanford Co,, Richland,
Washington.

Wilburn, N, P. 19833. Guidelines--Software Verification. HEDL-T(-2425,
Westinghouse-Hanford Co,, ®ichland, Washington.

Wilourn, N. P. 1983b. Standards and Guidelines Applicable to Scientific Soft-
warg Life Cycle, HEDL-TC-Z314, Westinghouse-Hanford Co., Richland,
Washington.

Yourdon, Edward. 1978, Structured Halkthroughs, 2nd ed, Yourdon Press, Inc,,
Mew York,

Yourdon, Edward. 1979, Mapaging the Structured Technigques. Yourdon Press,
Inc., Mew York.

Yourden, Edward and Larry L. Constantine. 1978, Structure Design: Funda-
mentals of a Discipline of Computer Program and Systems Design, Yourdon
Press, Inc., New York,

R.9

BIBL IDGRAPHY

ANSI/ANS, 1980, Standard Criteria for the Application of Programmable Digital
Computer Systems in Safety Systems of Wuclear Power Generating Stations,
ANSI/ANS-4.3.2, Proposed American National Standard, Draft &, American
H?¥Tﬂnal Standards Institute/American Nuclear Society, La Grange Park,
ITlinois.

Ackerman, A. F., A. 5. Ackerman, and R. G, Ebenau. 1982. "A Software Inspec-
tion Training Program." In Proceedings of IEEE Computer Society's Sixth
International Computer Software and Applications Conference 1982 {COMPSAC-
82), -p. 443, IEEE Computer Society Cataleg B2CHISIO-1, Tnstitute of Elec-
trical and Electronics Engineers, I[nc,, New York.

Barnes, Kate, 1985, "Doing It Yourself-=A Blueprint for Training.” PC Maga-
zine, p. 147 (August 6 {ssue),

Basili, V. R. and B. T. Perricone, 1984, “Software Errors and Complexity: An
Empirical Investigation." Communications of the ACM 27{1}.

Basili, Victor R. and Robert W, Reiter, Jr, 1980, '"Evaluating Automatable
Measures of Software Development and Engineering.” In Tutorial on Models and
Metrics for Software Management, p. 280, TEEE Computer Society Catalog
EHOLG/ -7, Institute of Electrical and Electronics Engineers, Inc., Wew York,

Bryan, William L, and Stanley E. Siegel. 1984, "Product Assurance: Insurance
Against a Software Disaster." Computer 17(4}:75,

Buckley, F, J, 1982, Software Quality Assurance--A Tutorial. RCA Government
Systems Division.

C5A. 1984, Sopftware Quality Assurance Program, Canadian Standards Associa-
tion Standard 0396.1, Canadian Standarqs Assaciation.,

Cain, J. T., G. G. Langdon, and M. R, Varanasi. 1984, "The IEEE Computer
So?i?ty Model Program in Computer Science and Engineering." Computer
17{4):8. .

Caveno, Joseph P, and James A, McCall, 1973, "A Framework for Measurement of
Software Quality.” In Proceedings of the Software Quality and Assurance
Workshop, p. 133, ACM, Mew York,

Cooke, C. M. 1984, "Lessons from Implementing a Software QA Section." In
Proceedings of Third Software Enginsering Standards Apolication Workshap
(SESAW-TIT), p, B8, IEEE Computer Society, Institute of Electrical and Elec-
tronics Engineers, Inc., New York.

Bib.1l

Daughtrey, M, T., 5. Y, Horn, and C, A, Schamp, 1984, “Independent Verifica-
tion and Yalidation for Nuclear Plant Safety." In Proceedings of Third Soft-
ware Engfneering Standards Application Morkshop (SESAW-TTIY, p. 92. TEEE
ﬁﬂmp$ter Society, Institute of Electrical and Electronics Engineers, Inc.,

ew York.

DeMarco, Tom, 1978, Structured Analysis and System Specification. Yourdon
Press, Inc., New York,

EAI. n.d. EAl Software Qualfty Assurance. Electronic Associates, Inc.

EAI. 1977. EAI Software Methodology. Electronic Associates, Ing,

ESD. 1977, Software Acauisition Management Guidebook: Software Qualit
Assurance. =TR=7f~- - » Mational Technical Infarmation
Service, Springfield, Yirginia,

Endres, Albert., 1%75. "An Analysis of Errors and Their Causes in System Pro-
grams." In [EEE Trapsactions on Software Engineering SE-1(2).

Fagan, M. E. "“Design and Code Inspection to Reduce Errors in Program Develop-
ment.." In Tutorial on Structured Programming: Integrated Practices, p.
216, IEEE Lomputer Society Catalog EHDL/B-4, Institute of Electrical and
Electronics Enginaers, Inc., New York.

Foster, K. A, 1980. "Error Sensitive Test Case Anmalysis (ESTCA).," IEEE
Transactions on Software Engineering SE-6(3):258.

Gannon, Carolynn 1979. “Error Detection Using Path Testing and 5Static
Analysis," Computer 12(8):26.

Gannon, Carglyn. 1983, "Software Error Studies." In Proceedings of Natipnal
Conferance on Software Testing and Evaluaticn, p. 1-17 Natioral 3decurity
Industrial Assoclation.

Glass, Robert L. 1981h. "Persistent Software Errors." IEEE Transactions on
Software Engineering SE-7(2):162-168,

Greena, J. J., £, P. Hollocker, M. A. Jones, and T. . Pingel. 1982, "Devel-
oping a Software Quality Assurance Program Based on the [EEE Standard 730-
1981," 1In Proceedings of TEEE Computer Society's Sixth Interpational Com-
puter Software and Applications Lonference 1982 [LUMPSAGC-B2), p. 257. IEEE
Computer Society (atalog J2CHIBIO-I, Institute of Electrical and Electronics
Enginears, Inc., New York.

Guideline for Lifecycle Yalidation, Verification, and Testing of Computer Soft-
ware, rederal Information Processing otandards Publication (FiPS PuB 101),
U.5. Department of Commerce, Mational Bureau of Standards, June 8, 1983,

Bib,2

Howden, W. E. 1981, "Errors, Desian Properties and Functional Program
Tests,” In Computer Program Testing, p. 115, North Holland Publishing Ca.,
Amsterdam, New York.

Huang, J, C, 1977, "Error Detection Through Program Testing.” In Current
Trends in Programming Methodology--Yolume 2, Program Yalidation, p. 16,
Prenttce-Hall Inc,, Englewood C1iffs, New dersey.

Keefe, Patricia, 1972, "Quality Assurance Shows Top Growth in Corporate
DE." Computer Warld, p. 17 {January 16 fssue).

Malsbury, J. 1983. "Educational Support for the Standards Process." In
Second Software Engineering Standards Application Workshop (SESAW-IL), p.
119. 'TEEE Computer Soclety Catalog 83CH1884-6, Institute of Electrical and
Electronics Engineers, Inc., New York.

McGill, J. P. 1984, "The Software Engineering Shortage." [IEEE Transactions
an Software Enginsering SE-10(1):42.

Megkel, J. and R, Troy, 1984, "Comparative Study of Standards for Saftware
{uality Assurance Flans." In Software Engineering Standards Workshop (SESAW- -
1[T). IEEE Computer Socfety, Institute of Electrical and Electronics Engi-
naers, Inc,, New York,

Willer, Edward., 1979. "Software Quality Assurance.” Computer 12({8):7.

Mills, H. D. 1979, *“Software Development." In Research Directions in Soft-
wara Technology, p. 87, MIT Press, Cambridge, Massachusetts,

Mills, H. B. 1980, "Software Engineering Education." Proceedings [EEE
68(9):1158,

Mizuno, Yukie. 1983, "Software Quality I[mprovement," Computer 16(3}:66,

Neumann, A. J. 1932. Management Guide for Software Documentation. NBS
Special Publication 500-87, U.S, Department of Commerce, National Bureau of
Standards, Washington, D,C.

NRC Inspection and Enforcement Manual: Inspection Procedure 37998 - "Computer
Code Development and Use.®

Orr, Ken. 198l. Structured Requirements Definition, Ken Orr and Associates,
Inc., Topeka, Kansas.

Osborne, W, M, 1986, Executive Guide to Software Maintenance. NBS Special
Publication 500-130, U.5. Department of Commerce, National Bureau of
Standards, Washington, D.C,

Bib.3

Osterweil, L. J. and L, D. Fosdick. 1978, "DAVE--A V¥alidation Error Detection
and Documentation System for FORTRAN Programs.” In Tutorial: Software Test-
ing and Validatjon Technigues, p. 473, IEEE Cataloq EHOI3B-8, Institute of
Electrical and Electronics Engineers, Inc., New York,

Ferry, William F. 1981, Effective Methods of EDP Quality Assurance, QED
Information Sciences, Inc., Wellesley, Massachusetts.

Poetschat, G, R, 1981, “Review of ANS-10 Standards and Activities.® In Pro-
ceedings of the International Topical Meeting on Advances in_Mathematical
Methods for the Solution of Nuclear Engineering Problems, p., 567. Munich,
Federal Republic of Germany.

Powell, P. B., ed, 1982, Planning for Software Validation, Verification, and
Testing. NBS Special Publication 300-3Z, Computer Science and Technology,
National Bureau of Standards, U.S. Department of Commerce, Washimgton, D.C.

Powell, P, B,, ed, 1982, Software Validation, Verification and Testing
Technique and Tool Reference Guide, NBS Special Publication 500-93, National
Bureau of Standards, Washington, D.C.

"QA Survey Results: Views Vary Significantly.” 1985, Government Computer
News, p. 22 {April 26 issue).

Raskin, Robin, 1985, "Individwal Training: A Matter of Style." PC Magazine,
p. 121 {August & issuel,

Relfer, Uonald J. 197%b., "The Software Engineering Checklist.” In
Tutarial: Saftware Management, p. 70. IEEE Computer Society Catalog
EHBLl36-1, Institute of tlectrical and Electronics Engineers, Inc., New York,

Rice, John R. 1979, "3opftware for Numerical Computation. iIn Research Direc-
tfons in Software Technology, p, 688, MIT Press, Cambridge, Massachysetts,

Roderique, G., E. D. Giroux, and M, Pratt. 1980, "Perspectives on Large-Scale
Scientifi¢ Computation," Computer 13(10):65,

Schneiderman, Ben. 1980, Software Psycholegy: Human Factors in Computer and
Information Systems. Winthrep Publishers Inc., Cambridge, Massachusetts.

Schneidewind, N, 5. and H, M., Hoffman. 1975, "An Experiment in Software Data
Collectfon and Analysis." ILEEE Transactions on Software Engineering SE-
5{3):276,

Schotten, Roger W. 15977, "Software Quality Assurance.” In Proceedings
Western Regicnal Conference ASQC, Seattle, Washington.

Shen, ¥. Y., T. J. Yu, 5. M. Thebaut, and L. R. Paulsen, 1985, "ldentifying
Error-Prone Software--An Empirical Study." In IEEE Transactions on Software

Enginesring SE-11(3):302,

Bib.4

Sheron, B, W, and Z, R, Rasztoczy. 1980, Repart on Nuclear Industry Quality
Assurance Procedures for Safety Analysis, Computer Code Development and
se. - s U5, Nuclear Kegulatory Commission, Washington, LG,
Shooman, M, L, and M. I, Bolsky. 1975, "Types, Distribution, and Test and
Correction Times for Programming Errors.” In Proceadings of the Interna-

tigna) Conference on Reliable Software, p. 347, [tEE Computer Society,
Institute of Electrical and ETectronics Enginears, Inc., New York,

S5i1ling, 5. A, 1983, Final Technical Position on Documentation of Computer

Codes for High-Level Waste Management, U.5. Nuciear Regulatory Commission
Report NUREG- s duna 1 .

Standard for Software Quality Assurance Plans, Institute of Electrical and
Electronic Engineers {IEEE} Standard 730-1684.

Straker, E. A, 1985. "Software Quality--How [s It Achieved?" In Proceedings
of Nuclear Power Plant Safety Control Technology Seminar,

Thomas, MNina C, and Henry L. Reaves, Jr, 1980, "Experdience from Quality
hssurance in MNuclear Power Plant Protection System Software Validation.™
IEEE Transactions on Nuclear Science NS-27(1}.

Tica, George D,, Jr. 1980. "Software (uality Control--Roadbed for the
Bullets." In Proceedings 1980 ASQU Western Regional Conference, Seattls,
Washingtan.

WHC., 1%80. Computer Software Development and Use. Hanford Engineering Devel-
opment Laboratory (Quality Assurance Bulletin ¥9-3, Westinghouse-Hanford Co,,
Richland, Mashington,

Wallace, D, R., and J. €. Cherniavsky. 1%87. Report on the NBS Sortware
Acceptance Test MWorkshop--April 1-2, 1986. NES Special Publication 500-146,
U.5. Department of Commerce, National Bureau of 3tandards, Washington, D.C.

HWasserman, A. I, and Peter Freedman. 1980, "Software Engineerting Education:
Status and Prospects." In Tutorial on Software Design Techniques, 3rd ed.,
p. 445, [IEEE Computer Society Catalog EHULB1-0, Institute of Electrical and
Electronfcs Engineers, Inc., New York. :

Westermeier, Jd. T., dr. 1979, “Nuclear Near-Disaster." Data Manzgement, p.
30 {June issue).

Wilkinsan, 3. F. 1985, {uality Assurance Plan for Computer Software Support-
ing the U.5. Nuclear Regulatory Commission’ s High-Level Waste Management
Program, Sandia Mational Labortory LDRAFTJ Report NUREG/CR-4369 (SANDSS-

I??ﬂ » September 1985,

Bib.5

APPENDIX A

CRITERIA FOR ASSESSING SOFTWARE QUALITY

APPENDIX A

CRITERIA FOR ASSESSING SOFTWARE QUALITY

ACCOUNTABILITY The abllity to measure use of computer resources by a
module or program, Critical segments of code can be
instrumented with probes to measure timing, to determine
whether specified branches are exercised, etc. Codes or
subroytinas used for probes are preferably invoked by
conditional assembly or compilation.

ACCURACY The extent that the code's outputs are sufficiently pre-
cise to satisfy their tntended use.

AUGMENTABILITY The extent that the code can easily accemmodate expansion
of computational functions within components or data
storage requirements.

COMMUNICATIVENESS The =xtent that the form and content of the cade's inputs
and outputs facilitate assimilation, usefulness, and
understanding. Communicativeness alse includes those
attributes of the software that provide standard proto-
cols and interface routines required to couple the system
with another independent system,

COMPLETENESS The extent that the code's required functions are present
and fully devaloped. External reference documents must
be available and the regufred functions coded and present
as designed.

CONCISENESS The absance of redundant or excessive coding and the
assurance that tha reguired functions are implemanted
with a4 minimum amount of coding, Conciseness fmplies
that the program is not excessively fragmented into
modules, overlays, functions, and subroutines; and that
the same sequence of coding is not repeated in numerous
places (rather than defining a subroutine or macro).

CONSISTENCY The extent that the code contains uniform notation, ter-
minology, comments, symbalogy, and implementaticn
technigues,

Internal consistency implies that reding standards are
uniformiy adhered to] e.g., comments are not unneces-
sarily wordy in one place, while being scanty at another;
the number of arguments fn subroutine calls match with
the subroutine header, etc.

A.l

CORRECTNESS

DEVICE EFFICIENCY

DEVICE INDEFENDENCE

EFFICIENCY

ERROR HANDL ING
CAPABILITY

HUMAN ENGINELRING

INTEGRITY

External consfstency refers to the extent that the code's
conterts are traceable and conform to the requirements
and design. External consistency implies that variable
names and definitions, ingcluding physical units, are con-
sistent with a glossary, or that there {s a one-to-gne
relationship between Tunct’onzl flowchart entities and
caded routines or modules,

The akility of the software to produce specific outputs
when given the specific inputs, and the extent to which a
program satisfies its specifications and fulfills the
user's mission,

The extent that the operatiens, functiens, or instruc-
tions provided by the code are performed without waste of
computer resources (CPU time, I/0 channel capacity, core
memory, etc.}, Thus a program may be efficient with
raspect to one device {e.g., CPU time) but not to another
{e.g9., core memary}, implying that it is not efficient
with respect to tha overall set of resources it employs.

The ability of the code to be unaffected by changes to
the computer hardware or peripheral equipment. For
independence, coding directly related to a specific
hardware device should be minimized, isglated, and
fdentified.

The axtent to which the code performs its required
functions without waste of resources. Choices of source
code construction must be made to produce the minimum
number of words of ghjeet code: whera alternate algo-
rithms are available, those taking the least time should
be chosen; information-packing density in the core should
be high, ete¢.

The code's ability to handle errors due te hardware

or software failures in a way that the resulting system
parformance deqrades gracefully rathee than
catastrophically.

The extent that the code fulfills its purpose without
wasting the users' time and energy or degrading their
morala. Inputs and sutputs should be self-sxplanatory,
understandable, unambiguous, and designed to aveid misin-
terpretation, This attribute implies robustness and
communicativeness.

The extent to which access to software or data by unau-
thorized persons can be controlled.

A.2

INTEROPERABILITY

MAINTAINABILITY

MODIFIABILITY

PURTRB&LiT?

READABILLTY

RELTABILITY

REUSABILITY

ROBUSTNESS

SELF-CONTATREDNESS

The effart required to couple the code system to anothes
indapendent code system.

The extent that the code facilitates updating to satisfy

new requirements, te correct deficiencies, or to move to

a similar computer system, This implies that the code is
understandable, testable, and modifiable.

Characteristics of the design and implementation of the
code that facilitate incorporation of changes, once the
nature of the desired change has been determined.

The extent that the code can be operated easily and well
on computer configurations other than its current one,

The extent that the code's function and design can be
easily understood by reading (e.g., complex expressions
having mnemonic variable names and parentheses even if
they are unnecessary).

The extent that the code can be axpected to perform its
intended functions satisfactorily under normal condi-
tions. In a reliable system, abnormal conditions may
cause degraded performance but will not rasult in
erronegus performance masked as correct performance.
Reliability implies that the program will cempile, load,
and execute, praducing answers of the requisite accuracy;
and that the program will continue to operate correctly,
except for a tolerably few instances, while in use.
Reliability also implies that the code is complete and
externally consistent.

The extent to which a program or ts pieces can ba used
in other applications., Reusability is related tg the
packaging and scope of the functions that programs
perform,

The extent that the code can centinue to perform despite
same viglation of the assumptions 1n fts specification,
Robustness implfes, for example, that the progran will
handle frputs or intermediate caleulated wvariables that
are out of range or in different format or type than
specified, without degrading the performance of functions
not dependent on the inputs or vartables,

The extent that the code performs its explicit and
implicit functions within itself, Examples of implicit
functions are initializakion, input checking, and
diagnostics.

A.3

SELF-DESCRIPTIVENESS

SIMPLICITY

STRUCTUREDNESS

TESTABILITY

TRACEABILITY

UNDERSTAKDABILITY

USABILITY

The extent that the code listing comtains enough informa-
tion for a reader to determine or verify ts objactives,
assumptions, constraints, inputs, outputs, components,
and reyision status. Commentary and traceability of pre-
vious changes by transforming previpus versions of code
into nonexecutable but available c¢ode provide for self-
descriptiveness. Self-descriptiveness is necessary for
both testability and inderstandability.

Implementation of functions in the most understandable
manner, usually requiring avoidance of practices that
increase complexity,

The extent that the code possesses a definite pattern
within its interdependent parts. Structuredness implies
that the program design has proceeded in an orderly and
systematic mdnner, that standaerd control structures have
been followed in coding the program, etc.

The extent that the code facilitates the establishment of
test plans, designs, procedures, and implementaticon.

These attributes of software that provide a thread from
raqui rements to implementation, with respect to the
gpecific development and operaticnal environment.

The extent that the code's functions are ¢lear to the
reader, Understandability implies that variable names or
symbols are used consistently, modules of code are self-
descriptive, and the control strecture is simple or in
accordance with a prescribed staapdard, The program
should contain no hidden meanings or operating character-
istics that come to 1ight only after months of use.

The effort required to learn, operate, prepare input, and
interpret output of & program.

A4

APPENDIX B

EXAMPLE QUESTIONS TO--BE ADODRESSED FOR PROCURED SOFTWARE

APPENDIX B

EXAMPLE QUESTIONS TO BE AQDRESSED FOR PROCURED SOFTWARE

DEVELOPER-USER [NTERACTIONS

To what extent does the user participate in the following steps of
the software development process:

~ software requirements specification?
- spftware design specification?

- software verification/validation?

- reviews and audits?

After transfer of the software te the user, what further obliga-
tions/responsibilities reside with the developer? Who in the user
organfzation will monitar these actions to assure perfarmanca?

SOFTWARE LIFE CYCLE

Dpes the developer ascribe to and actually utilize a software 1ife
cycle for software development?

If so, what is the 1ife cycle, and does it meet the user's needs and
requirements? b

What assurance daoes the developer provide to the user that the life
cycle has been implemented as represented; i.e., what traceability i<
provided?

PROBLEM REPORTING/CORRECTIVE ACTION

How does the developer report software problems and corrective
actions to the user?

Conversely, how does the user repert problems to the developer?

What positions within each organization represent the point of
contact for problem reporting?

W11l the developer/supplier address the magnitude of problems, cor-

rective actions, and possible consequences, or are these the
responsibilities of the user?

B.1

CONFTGURATTON CONTROL AND MANAGEMENT

s What methods of cenfiguration control! and configuration management
are used by the developer?

e Whan are new versions of software issued by the developer? Does the
user receive updated versions, or must they be purchased?

+ Does the user raceive a read-only version of the software?

+ How is the source code protected and stored?

VERIFICATION AND VALIDATION OF THE SOFTWARE

o How is verification and/or validation {V and/or V) performed?
» What documentation is provided on the ¥ and/or ¥ process?

+ To what extent has ¥ and/or ¥V been systematically conducted; 1.e.,, i%
¥ and/or ¥ equated with acceptance testing by the developer?

DOCUMENTATION

¢ What documentation is fncluded along with the softwara?

- User's manual?
= Theory and algorithms used?
¥ and/qr ¥ documentation?
- Requirements and design specifications?
- Acceptance tests?
- Other?

B.2

APPENDIX ¢

SRS REVIEW CHECKLIST

APPENDIX C

SRS REVIEW CHECKLISTIa}

A. Is the software requirements specification (SRS) in conformance with the
SRS documentatTon quideTine (Wilburn 1932B) and any other company

quidelines?
. Doas a formal SRS document axist?

2. Are the necessary sections present?

3. Does each section contain the regquired information?
4, Is the 3RS document in the recommended format?

5. Does the SRS conform to documentation guidelines?

6. Are the technical requirements in concurrence with adminis-
trative and contract requirements?

8. Boes the SRS reflect an understanding of the problem to be solved?

1. Are the requirements consistent with the Statement of Work for
the program?

2. Are the models that are specified appropriate for the problem
being so0lved?

3. Are the numericzl techniques that are specified appropriate for
the problem being solved?

4, Are the algorithms that are specified appropriate for the prob-
lem being solved? i

5. Have the program functfons been partitioned in a manner consis-
tent with the problem to be solved?

6. Will the program, as spacified, solve the problem?

7. Are the equations sclentifically correct and consistent with the
raquirements?

{a) As adapted from Wilburn 1983a,

8.

9.

Is the full scope of software development understaod, and are
problem areas explicitly noted?

Is the operational environment correctly understopd?

C. Are the requirements complete?

1., Are the ultimate software products completely defined and is
adequate documentation reguired?

2. Are documentation standards established for all deliverable and
nondeliverable software?

3. Is all seftware to be used, jdentified?

4, Are system startup, restart, and batch or interactive pragram
execution procadures identified?

5. Are user requirements addressed?

6. Are human enginearing requirements and problem areas identifiad?

7. Are goals for the software identified?

8. Have the expected level of change in the system and the time
required to implement changes been considered?

9. Is each functional requirement explicitly, quantitatively, and
testably defined in terms of inputs, processing, outputs, data
requirements, interfacaes, accuracy, timing, exceptien handling,
constraints, and performance?

1}. Are the requirements mapped from system specifications into cor-
rect software reguirements specifications?

11. Are the software reguirements identified? If not, are possible
approaches described well gnough so that pu551hle software
requirements are indicated?

12. Do the requirements include the functions implied by the State-
ment of Work?

Input /Qutput

l. Are display contents and layouts described?

2. Are program inputs identified and described to the extent needed

to design the program?

C.2

3. Are required program qutputs ident{fied and described to the
extent needed to design the program?

4. Does the SRS include required behaviar in the face of impraper
inputs and other anomalous conditions?

Data

l. Are procedures identified for purging and updating data bases?

2. Are data security and protection agafnst data Toss pravided for?

3. Are the logic data base and its access mechanisms defined?

4, Is each entity or relationship that is mentioned in the require-
ments also defiped in the data dictionary, and vice wversa?

5. Are requirements specified for security, accuracy, who requires
dccess to the information, and how quickly it is needed?

Interfaces

1., Are the persgn-machina interfaces and operatignal procadures
clearly defined?

2. Is adequate attemtion given to beth the hardware-to-software and
software=to-software interfaces?

3. Is conformance with system accuracy control and interface
control specifications (i.e., other egquipments, operators, other
software and data/data bases) stated?

4, Are external system interface definitioms accurate and complete?

5. Are gperational interfaces with the computer praogram, including
both hardware and software, jdentified, or are there references
to the specifications that define those interfaces?

6. Are applicable nonoperational interfaces that are related to
computer program support and code generation identified, such as
specific programning languade, compiler, data base management
system, loaders, other utility programs, or unique support
hardware? Are references to appropriate documentation of these
interfaces identified?

7. Do the requiraments identify external interfages and fully

specify required program behavior with respect to each?

€.3

Parformance

1.

2.

Are performance requirements for each function described in
separate paragraphs? Do these paragraphs include sourcs and
type of fnputs, and destination and type of ocutputs?

Are requirements for system resource marginsg adequately
spacified?

Error Praocessing

Are provisions made for transition to deqraded or manual modes
if the system or subsystem fails?

Are adequate provisions made for system backup and redundancy?
Are the software and hardware diagnostic capabiiities adequate?

Is error processing logic described; i.e., does the software
indicate improper, incorrect, or ouf-of-range inputs?

Environmant

1.

Are the software tools required for development, festing, and
mzintenance of the software described, and are they
delivarables?

Does the 5RS describe the pparational environment into which the
program must fig?

Do the specifications tel!l what the computer program must do,
how well, and under what conditions, and do they describe the
environment Tn which it 1s co operate?

Hava software support and modification requirements been
initially identified?

Have support tools, facilities, and recruitment and training of
support personnal been addressed?

Constrajints

1.

2,

Are axplicit limits far the system (i.e, what it should and
should not do)} defined, and are constraints identified?

Are the volume and throughput expectations for the system
identified?

C.4

3-
4,

D. Are

Are the system protection and security requirements jdentified?
Does the SRS include applicable timing and si2ing constraints?

the requirements correct?

l.

2.

E. Are

Are the requirements consistent with the program's Statement of
Work?

Are the requirements consistent with documented descriptions and
known properties of the operational environment into which the
program myst fit?

Do interface requirements agree with document descriptions and
known properties of the external interfacing elements?

Do input requirements correctly describe inputs whose format,
content, data rate, etc. are not at the discretion of the
designer?

Do output reguirements correctly describe ocutputs whose format,
content, data rate, etc. are not at the discretion of the

designer?

Do requirements concerning models, algerithms, and numerical
techniques agree with standard references, where applicable?

Do the project manager and user management have any differences
agver interpretation of the requirements?

the requiresments consistent?

Is the SRS free of fnterpal contradictions?

Are the medels, algorithms, and numerical techniques that are
specified mathematically compatible?

Are input and output formats consistent, to fhe extent possible?

Are the requirements for similar or related functicns
consistent?

Are the accuracies required of inputs, computations, cutput,
etc. compatibla?

Are the style of presentation and the level of detail consistent
throughout the document?

Is the mapping of software requirements from the system specifi-
cations consistent, complete, and aceurate?

€.5

13.

1.

12,
13,

14,

Are software system limits and capacities compatible with the
system specification?

Are vartical and horizontal consistency and compatibility
achieved betwsen raguirements?

Are system availability requirements consistent with the sys-
tem's intended operation, and will they require reasonably
priced hardwars or software?

Is any information entity defined more than once unnecessarily
[t.e., 15 there redundancy)?

Can each input entity be related to a source of informatign?

Is each input entity related to a derived entity or an output
entity?

Is each output entity related to a derived ar input entity?

Are all requirements clear and unambiguous?

Can all requirements be adequately interpreted?
Can all requirements be interpreted in only one way?

Are the requirements sufficiently detailed to prevent
misintarpretation?y

Are the reguirements organized and presented in a way that pro-
motes clarity {for example, use of tables and Tists in place of
text, where applicable)?

Dpes the SRS differentiate betwean program requirements and
athar information provided in the spacifications?

Are the data base and data requirements clearly stated?

Ara the reguirements for software structure, etc., clearly
stated?

Ara requiremencs stated singularly, clearly, and concisely?

Are the performance requirements stated in a manner that will
support unambiguous design and test?

C.6

10, 1Is each definitfon and description of an entity or relationship
understandable and ¢onsistent with requiremants specification
guidelines?

11, Are system/subsystem limitations and restrictions clearly
stateg?

6. Are the requicrements feasible?

1. [Is the necessary technology fully develgped and are the
approaches to its utilization mature?

2. Are the specified models, algorithms, and numerical techmiques
state of the art?

3. Can the models, algorithms, and numerical techpiques be imple-
mented within the constraints imposed on the system and on the

devalopment effort?

4, Are the quality attributes specified for the program achievable,
when viewing the program both by its parts and as a whole?

5. Are the requirad functions attainable within the available
resources?

6. Is the hardware available?
7. Is the hardware of sufficient size to perform debugging?
8. Are adequate development and test facilities available?

9. Are hardware/firmware/software tradeoffs sufficlently discussed,
and are adeguate flex{bility and growth potential retained in
the result?

H. Does the SRS contain adequate provision for prugrém verification and
acceptance?

1. Are requirements stated in testable terms?

2. Are acceptance criteria specified far each requirement?
3, Can quantitativa terms (e.g., ranges, accuracias, tolerances,

rates, boundary values, and 1imits) used in stating requirements
be recorded as eyidence of satisfactfon?

C.7

4. Are the acceptance criteria consistent with use of any of the

following:

- results obtained from similar computer programs

« rlassical salutions

- accepted experimental results

- analytical results published in the technical literature
- benchmark problems?

K. Is the source of each requirement or derivation shown, and are
all requirements traceable to or derived from a higher level
specification?

Ooes the SRS avoid placing undue constraints on program design and

fmpTemeatation?

1. 1[5 there justification for including in the SRS constraints in
the SRS on desfgn or implementation?

2., [s the specification limited to defining requirements, and how
will it be done?

Does the SRS have sufficient quality requirements?

1. Does the SRS include the desired quality requirements (e.q.,
requirements for performance, reliability, accuracy, porta-
bility, maintainabiiity, user friendliness}?

2. Are the factors that lead to gquality and reliable software suf-

ficiently well dafined? Are modularity, structuredness,
descriptiveness, consistency, simplicity, expandability,
testability, device independence, robustness/integrity, and
accessibility required?

C.8

n‘n‘: Foam 138 I NUCLLAR MEGULATIA T SNy RGN

aReM 11Eg

Ml BIBLIOCGRAPHIC DATA SHEET NURE G/ CR- 4640
SEE afyS TARICTIOMNS iy THE REVIREE JNI - 5 ?34

2 TITLE and S48 TrTLE

Handbgok of Software Quality Assurance Techniques
Applicable to the Muclear Industry

3 LEAVE fLaNK

4 GaTE REMRT COMPLETED

| AEFDA T U BER LA nagraed br F/OC g W Ml fane)

I 87

5 auTwH]RISE
J. L. Bryant
N. P. Wilburn

Augug?"ﬂ' 1987
o aTE AFORT I SILEQ

AT H I YEAR

August 1987

T PEMECIA NG ORGSRk FATHIMN MANE AN A LmG ADDAETS M, s Jap Cooke)

Pacific Morthwest Laboratory
Richland, Washington 99352

MR ECTITASK LR E g T NULgES

"% NINOW SRakT WUMBER
FIN P20D2

13 SPOMSORING MG EATIDN MAME AR AL MG SODMLEE [tacwas S Sovn)

Division of Licensee Performance and Quality Evaluation
Dffice of Nuclezar Reactor Regulation

U.5. Nuclear Requlatory Commission

Washington, DC 20555

vy TTPL R MEFORT

Technical

g PERIQD CQYERED Mrhdiyniand SHia

12 SUPFPLEYEMT LAY HOTES

T3 WBETRACT 1200 rearirt o7 refnd

Pacific Northwest Laboratory is conducting a research project to recommend good
engineering practices in the appiication of 10 CFR 50, fopendix B requirements
to assure quaiity in the development and use of computer software for the

design and gperation ¢f nuclear power plants for NRC and industry.

This

handbook defines the content of a software quality assurance program by

enumerating the techniques applicable.

Definitions, descriptions, and

refarences where further information may be obtafned are provided for each

topic.

14 OOCUMGNT Afay ¥ 50 = g KETWDRDLREICE FTOAL

Software Quality Assurance in the Nuclear Industry

6 AVATLARMLEY
$TATIVENT

Unlimited
W FECURITY O, A gmE IS aTION
¥ papa
T IQERTIFILAS/OPEN ENAED TEAMS Llnc'l -ﬂSS‘i fi Ed
Computer 5oftware, Software Quality Assurance. Nuclear Indystry P e
Appendix B Criteria, Software Life Cvcle, Software Yerlfication and Unclassified

Yalidations, Configuration Management and Code Control, TT RAER OF FAGTS

il FRICE

