A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.
SCALING RELATIONS FOR A BEAM-DEFLECTING TM_{110} MODE IN AN ASYMMETRIC CAVITY

AUTHOR(S): H. Takeda

DE89 009277

SUBMITTED TO: 1989 Particle Accelerator Conference
Chicago, IL
March 20-23, 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This is a publication of the Los Alamos National Laboratory, Los Alamos, New Mexico, 87545.
SCALING RELATIONS FOR A BEAM-DEFFACTING TM_{110} MODE IN AN ASYMMETRIC CAVITY

H. Takeda
MS-11829, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

A deflection mode in an RF cavity caused by an aperture of the coupling hole from a waveguide-studied. If the coupling hole has a finite size, the RF modes in the cavity can be detected. We consider the deflection mode as a sum of the accelerating mode and the deflection mode. The finite size coupling hole can be considered as radiating dipole sources in an open cavity. Following the prescription given by H. Biedenharn, the relative strength of the deflection mode TM_{110} to the accelerating TM_{111} mode is computed by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius.

Introduction

A comparison between the accelerating and deflection modes of a cavity is made, and the deflection mode is derived as a free sum of an accelerating mode and a deflection component. We study the TM_{110} deflection component as a function of coupling aperture size. We derive the field distribution of the coupling aperture of the cavity to the deflection component with the help of dipole source theory. The spatial distribution of the TM_{110} component is approximated with a dipole source. The deflection modes of a cavity can be approximated as the superposition of the accelerating and deflection components. The uniformity of the field distribution in the cavity is shown to be the same as that of the accelerating and deflection components.

TM_{110} Mode of a Cavity

The field distribution of the TM_{110} component of the cavity is approximated with the dipole source

$$\mathbf{E}_{TM_{110}} = \sum_{n} I_n \overline{E}_{TM_{110}} \delta(\mathbf{r} - \mathbf{r}_n)$$

where I_n is the amplitude of the dipole source, $\overline{E}_{TM_{110}}$ is the electric field of the TM_{110} mode, and \mathbf{r}_n is the location of the dipole source.

To express the electric field \mathbf{E} in terms of the cavity modes, we define the orthogonal basis vectors $\mathbf{e}_{TM_{110}}$ for the TM_{110} mode of the cavity,

$$\mathbf{E} = \sum_{n} I_n \mathbf{e}_{TM_{110}}$$

Then, the vector potential \mathbf{A} for the TM_{110} mode is obtained with the dipole source

$$\mathbf{A} = \sum_{n} I_n \mathbf{A}_{TM_{110}}$$

We consider the field distribution of the TM_{110} mode of the cavity.

Cavity Mode Equations and the Mode Component of Electric Current

The electric field of the cavity \mathbf{E} can be expressed as

$$\mathbf{E} = \sum_{m} \mathbf{E}_{TM_{110}}$$

where $\mathbf{E}_{TM_{110}}$ is the electric field of the TM_{110} mode.
Applying the Theory of Diffraction Developed by H. Bethe

We apply the diffraction theory developed by H. Bethe to solve the scattering problem between the waveguide and the cavity. Because the system is linear, Bethe obtained a set of boundary conditions that must be satisfied on a plane at the hole. In his small hole approximation, the fields are approximately constant over the waveguide. Bethe showed that the scattered fields are generated as if they are from an electric dipole and a magnetic dipole located at the edge. The magnetic and electric dipole moments are given as

\[M = \sum R_i N_i \]
\[E = \sum R_i N_i \]

The magnetic dipole moment is given by the sum of the magnetic dipole moment for each point source, and the electric dipole moment is given by the sum of the electric dipole moment for each point source. However, the magnetic and electric dipole moments depend on the incident wave and the scattering properties of the cavity. The incident wave is known, but the scattering properties of the cavity are unknown. This problem is typically solved using numerical methods, such as the finite difference time domain (FDTD) method.

The expressions for the electric and magnetic fields are

\[E = \sum R_i N_i \]
\[B = \sum R_i N_i \]

Where \(R_i \) are the electric and magnetic dipole moments, and \(N_i \) are the normal modes of the cavity.

For a small cavity, the cavity modes are negligible, and the electric and magnetic fields are

\[E = E_0 \]
\[B = B_0 \]

Mode Equations for a Small Bethe Hole

For a small cavity, the equations for the electric and magnetic fields are

\[\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t} \]
\[\nabla \times B = \mu_0 \frac{\partial E}{\partial t} \]

Analytical Expression of Mode Amplitudes

Neglecting Intracavity Coupling

\[E_i = E_0 \]
\[B_i = B_0 \]
Example of the Bethe Hole Radiation